
“Stack It Up!”: 3D Stable Structure Generation from
2D Hand-drawn Sketch

Yiqing Xu1∗ Linfeng Li1 Cunjun Yu1 David Hsu1,2

1School of Computing,
2 Smart Systems Institute,

National University of Singapore

2D Sketches Real-world Executions

Marina Bay Sands

Eiffel Tower

StackItUp

Modern House

Figure 1: Demonstration of StackItUp. StackItUp allows non-experts to specify 3D structure for robot exe-
cution using a simple 2D sketch. From a rough front-view drawing, it predicts accurate 3D poses and hidden
supports to generate stable structures that resemble the sketch. These poses can be directly used by a robotic
arm as goal specification for motion planning and physical execution. Shown: input sketches (left), generated
3D structures with predicted supports highlighted (middle), and real robot executions (right).

Abstract: Imagine a child sketching the Eiffel Tower and asking a robot to bring
it to life. Today’s robot manipulation systems can’t act on such sketches di-
rectly—they require precise 3D block poses as goals, which in turn demand struc-
tural analysis and expert tools like CAD. We present StackItUp, a system that
enables non-experts to specify complex 3D structures using only 2D front-view
hand-drawn sketches. StackItUp introduces an abstract relation graph to bridge
the gap between rough sketches and accurate 3D block arrangements, capturing
the symbolic geometric relations (e.g., left-of) and stability patterns (e.g., two-
pillar-bridge) while discarding noisy metric details from sketches. It then grounds
this graph to 3D poses using compositional diffusion models and iteratively up-
dates it by predicting hidden internal and rear supports—critical for stability but
absent from the sketch. Evaluated on sketches of iconic landmarks and modern
house designs, StackItUp consistently produces stable, multilevel 3D structures
and outperforms all baselines in both stability and visual resemblance. Our project
page is available here.
Keywords: Robotic Goal Specification, Compositional Generative Models

1 Introduction
Imagine a child drawing a simple sketch of Eiffel Tower and asking a robot to build it. A human
grasps the idea at a glance, but the robot freezes: the current robotic system requires the manipulation
goal to be fully specified as exact 3D object poses—typically crafted in design software and verified

∗xuyiqing@comp.nus.edu.sg

9th Conference on Robot Learning (CoRL 2025), Seoul, Korea.

https://stackitup-corl.github.io

by force analysis—before motion planning and execution can even begin [1, 2, 3, 4, 5, 6, 7]. This
creates a significant barrier for non-experts, making robot systems inaccessible to everyday users.

We propose StackItUp, a system that enables non-experts to specify complex 3D structures for robot
manipulation using only a single 2D front-view hand-drawn sketch (Figure 1). The challenge lies in
bridging the gap between the rough drawing and a complete 3D goal specification. First, hand-drawn
sketches are metrically imprecise—objects may be distorted, misaligned, or physically implausible,
making direct pose recovery unreliable. Second, a front-view sketch—precisely because it avoids
perspective—is inherently incomplete: it omits interior and rear supports that are crucial for physical
stability [8, 9, 10, 11, 12, 13]. To construct such a stable structure, the robot must infer both the
missing supporting elements and the metrically accurate 3D poses of all blocks for execution.

Jointly predicting missing blocks and precise 3D poses creates a vast discrete–continuous search
space [14, 15, 16, 17]. Our key idea is to introduce an abstract relation graph as an intermediate
representation to manage this complexity [18, 19, 20]. This graph captures high-level geometric
relations (e.g., left-of) and stability patterns (e.g., two-pillar-bridge), distilling essential structural
cues while discarding noisy metric details from the sketch. When hidden supports are required
for stability, subgraph matching against a dictionary of stability patterns efficiently reveals likely
missing blocks and their relations. Moreover, this symbolic abstraction also enables flexible and
scalable 3D pose generation: given any graph, we compose diffusion-based pose generators trained
on individual relation types, and perform MCMC sampling over their combined scores to generate
a coherent, stable 3D arrangement [18, 19, 21, 22].

StackItUp operates in two stages, as shown in Figure 2. First, it extracts an abstract relation graph
from the sketch, capturing geometric relations and stability patterns among visible objects. Then,
as illustrated in Figure 3, it grounds the graph to 3D poses using compositional diffusion models,
checks stability via simulation, and iteratively updates this graph by adding hidden supports and
relations as guided by the stability patterns until the generated 3D arrangement is stable.

We evaluate StackItUp on a diverse set of hand-drawn sketches depicting historical buildings (e.g.,
Taj Mahal), iconic landmarks (e.g., Marina Bay Sands), and modern architectural designs. As shown
in Figure 4, these examples vary widely in appearance, internal support structure, and block dimen-
sions. In all cases, StackItUp produces physically stable, multilevel 3D arrangements that faithfully
reflect the sketch intent and outperform all baselines in both stability and visual resemblance.

2 Related Works
Sketch-Based Goal Specification for Robotics. Sketches have long been used in robotic systems to
specify goals such as navigation targets, obstacles, or object interactions [23, 24]. More recent work
explores sketch-based inputs for high-level manipulation tasks. For example, RT-Sketch [25] lever-
ages hand-drawn inputs for object rearrangement, Sketch2Scene [26] generates detailed 3D game
scenes from sketches and text with an emphasis on visual richness, and other works [27, 28] in-
corporate sketches into multimodal interfaces for task planning. However, these methods primarily
focus on scene-level or trajectory goals, and do not address structure-centric reasoning. In contrast,
StackItUp targets a fundamentally different challenge: generating physically stable, multi-object 3D
structures from rough 2D sketches, which requires inferring both spatial layout and unseen supports.
User-Friendly Input for 3D Structure Generation. Recent systems translate high-level in-
puts such as natural language into object-centric structures. Blox-Net [29] leverages vision-
language models to generate 3D assemblies that are physically plausible and robot-executable.
QUERY2CAD [30] refines CAD models through natural language corrections. While these methods
highlight the potential of user-friendly inputs for structure generation, they lack fine-grained spatial
control and rely on natural language’s limited ability to express geometric detail. In contrast, our
sketch-based approach captures fine-grained spatial details and integrates explicit stability reason-
ing, thereby addressing a gap left by natural language–based methods.
3D Structure Generation from Single-View 2D Inputs. A related direction involves generating
3D object structures from single-view 2D inputs [31, 32]. StackGen [33] uses diffusion models to
produce stacking layouts from silhouettes. However, it operates in 2D (x–z plane) and optimizes

2

O1 O2 O3

O4

O5
O6

O8

2D Sketches

Visible Block

Hidden Block

Hidden Relation
Visible Relation

Abstract Relation Graph Generated 3D Poses

Forward Generation
via Compositional Diffusion Models

Backward Update

by Predicting Hidden Objects

Hidden Block

Figure 2: Method overview. StackItUp uses an abstract relation graph G as an intermediate between a rough 2D
sketch (left) and the generated 3D block arrangement (right). The graph (middle) encodes high-level geometric
and stability relations while abstracting away exact poses. StackItUp first extracts G0 from visible blocks in the
sketch (blue nodes), then iteratively grounds it to 3D poses using compositional diffusion models. If instability
is detected, the graph is updated with predicted hidden supports (green nodes), and re-grounded to 3D poses.

for visual similarity, without explicit reasoning about physical stability. Other methods such as
Part123 [34] and follow-ups [35, 36, 37] reconstruct metrically accurate 3D models from images.
Yet, these methods typically require photorealistic input views and produce unified meshes, making
them unsuitable for block-based robot stacking tasks. Moreover, their reliance on fully observed
objects limits applicability when key structural elements are occluded or missing.

3 Problem Formulation
StackItUp enables non-experts to specify their desired multi-level 3D structures to robots by drawing
a 2D rough sketch, as shown in Figure 1. This sketch S is a front-view illustration of the desired
structure that shows a set of visible blocks with labeled types. From this sketch, StackItUp must
choose a set of blocks from a given library T = {τ1, . . . , τN}—each type τi representing a rigid,
axis-aligned block of size gi = (wi, li, hi)—and assign metric poses so that the resulting structure (i)
remains static under gravity and (ii) closely resembles the user’s sketch. Formally, the output is a set
of blocks O = {o1, . . . , oM} with oi = (τi, pi), where τi ∈ T is the block type and pi = (xi, yi, zi)
is the block’s centroid. Equivalently, we write O = (T ,P), with T = (τ1, . . . , τM) collects the
block types and P = (p1, . . . , pM) for the corresponding poses. The sketch provides type labels for
visible blocks Tobs but inaccurate pose cues Pobs; it may also omit interior or rear supports. The final
goal specification O = Oobs ∪Ohid must be physically stable and, when projected to the front view,
preserve the abstract geometric relations implied by S.

4 Stack It Up
StackItUp transforms a metrically imprecise 2D front-view sketch S into a 3D block arrangement O
that is both physically stable and visually resembles the sketch. Central to StackItUp is an abstract
relation graph G, where nodes represent blocks and edges capture qualitative geometric relations
(e.g., left-of) and local stability patterns (e.g., two-pillar-bridge), as an intermediate representation
between the 2D sketch S and the 3D block arrangement O (see Table 1 for a complete list of relations
used in this work). With this abstraction, the task splits naturally into two phases (Figure 2):
1. One-time Graph Extraction. Extract an initial graph G0 from sketch S for the visible blocks.
2. Iterative Graph Grounding. Ground the graph Gt to 3D poses Pt through compositional diffu-

sion models, test them in simulation, and—when instability is detected—extend the graph with
hidden supports, i.e., Gt+1 = Gt ∪ Ghid

t . The loop terminates once the structure stands.
Section 4.1 presents the geometric relation and stability pattern libraries and describes the one-time
graph extraction from the sketch; Section 4.2 outlines the iterative forward–backward grounding
algorithm that alternates between pose generation and graph update.

4.1 Abstract Relation Graph Extraction
We use an abstract relation graph G as an intermediate representation between a 2D sketch S and the
final 3D block arrangement O. This graph compactly encodes the qualitative geometric and stability
relations that define the structure of multi-layer 3D structures. Formally, G consists of nodes repre-
senting blocks with their types T , and edges denoting abstract relations from a set R. Each relation
ri(o

i
1, . . . , o

i
ki
;Ri) ∈ G has type Ri ∈ R and arity ki, applying to a subset of blocks {oi1, . . . , oiki

}.

3

Table 1: Library of abstract relations, including both geometric relations and stability patterns.
Geometric Relations
Front View, x-z plane Top-down View, x-y plane

left-of left-in front-of front-in
right-in center-in back-in touching-along-y
supported-by-partially supported-by-fully near-along-y depth-aligned
horizontal-aligned vertical-aligned-centroid depth-aligned-in-a-line regular-grid-sparse
vertical-aligned-left vertical-aligned-right regular-grid-compact random-split-grid-sparse
horizontal-aligned-in-a-line touching-along-x random-split-grid-compact
near-along-x

Stability Patterns
single-block-stack cantilever-with-counterbalance two-pillar-single-top-bridge n-pillar-single-top-bridge
single-base-n-pillar-bridge two-base-single-overhead-pyramid n-base-single-overhead-pyramid single-base-n-overhead-pyramid
n-base-m-overhead-pyramid basic-arc

The poses {pi1, . . . , piki
} are abstracted away by this intermediate representation. We divide relation

types into geometric relations Rgeom (e.g., left-of) that capture spatial layout, and stability patterns
Rstab (e.g., two-pillar-bridge) that encode physical support. We begin by defining these relations
and then describe how to extract the initial graph G0 from the sketch S.
Geometric relations. We define 24 qualitative geometric relations (top of Table 1). Among these,
13 arise directly from the sketch because they depend only on bounding-box coordinates in the
front (x–z) plane(e.g., left-of, touching-along-x). The remaining 11 involve depths (e.g., front-of,
touching-along-y), therefore requiring x–y information and are only revealed once hidden supports
are added. Each relation R ∈ Rgeom is detected by a rule-based classifier hR that inspects the bound-
ing boxes projected into their respective planes; full rule sets appear in Appendix A.1.
Local Stability Patterns. Beyond geometric relations, we model 10 local stability patterns (bot-
tom of Table 1), each pattern R ∈ Rstab describes a class of stable two-layer subgraphs in which a
base tier supports a top tier; arbitrary compositions of these patterns yield stable multi-level struc-
tures. Each stability pattern R ∈ Rstab has a classifier hR defined by four descriptors: (i) admissible
counts ({nbase}, {ntop})R of blocks per tier; (ii) allowed “supported-by” subgraphs {GR

supp} connect-
ing base to top blocks; permissible geometric subgraphs (iii) among base blocks {GR

base} and (iv)
among top blocks {GR

top}, including relations such as horizontally-aligned and regular-grid. Al-
though these patterns are manually defined, they compose flexibly to cover diverse multi-level struc-
tures—including variations in block size, layout, and hidden supports—and the framework remains
extensible: new structures (e.g., circle) can be incorporated by adding patterns to this dictionary.
Given a candidate graph Ggeom and a partition into top and base blocks, the classifier evaluation
hR(o

1
base, . . . , o

n
base, o

1
top, . . . , o

m
top) returns 1 when this candidate graph matches an permissible in-

stance for each classifier descriptor. Complete classifier specifications appear in Appendix A.2.
Extracting Abstract Relation Graph from Sketch. The sketch S depicts the desired 3D struc-
ture through enclosed boxes in a front (x–z) plane, where each box corresponds to a visible block
oi ∈ Oobs = {o1, o2, . . . , oK} with an labeled type τi ∈ Tobs = {τ1, τ2, . . . , τK}. To handle im-
perfect or roughly drawn sketches, we first regularize the strokes by flood-fill and dilation, fitting
an axis-aligned bounding box to each block and recording coarse dimensions (ŵi, ĥi) and centroids
(x̂i, ẑi); these values only reflect qualitative geometric relations, but not the metrically accurate 3D
pose pi = (xi, yi, zi). Enclosed regions are treated as candidate blocks by default; users can mark
regions as gaps to allow open structures. Looking ahead, we plan to use cues such as shading to au-
tomate gap detection. With the candidate blocks identified, a set of rule-based geometric classifiers
hR, R ∈Rgeom, then operates on the bounding boxes (ŵi, ĥi, x̂i, ẑi)

K

i=1 to populate the geometric
graph Ggeom

0 . Next, stability-pattern classifiers hR, R ∈ Rstab, search Ggeom
0 for subgraph matches

to known local stability patterns, producing the stability graph Gstab
0 . Their union yields the initial

graph G0 = Ggeom
0 ∪ Gstab

0 .

4.2 Abstract Relation Graph Grounding
To ground the graph G0 into stable 3D poses P , we avoid training a single monolithic model con-
ditioned on the entire graph and instead use a set of specialized diffusion models {fR0 , . . . , fRM

},
each trained on a relation type Ri ∈ R. By composing these models based on the relations in
G0 = {r0, . . . , rN}, we jointly predict initial poses P0 for all blocks. However, since G0—extracted

4

Forward Graph Grounding

Iteration 0

Abstract Relation
Graph

Generated 3D PoseCompositional
Diffusion Models

Backward Graph Update

Unstable

Stability CheckStability Pattern
Subgraphs

Update

Iteration 1

Updated Abstract Relation
Graph

Figure 3: Iterative graph grounding. In the forward step (left), given a graph Gt, compositional diffusion
models generate 3D block poses. In the backward step (center-left), Gt is decomposed into subgraphs based
on stability patterns, and each is checked via physics simulation. If unstable, new support blocks (green nodes)
and relations are added. These updates are aggregated into an updated graph Gt+1 for re-grounding. The right
column shows the 3D structure before and after the graph update, with an added support ensuring stability.

from a front-view sketch—often omits hidden supports needed for stability, we introduce an iterative
forward–backward grounding procedure (see Figure 3). This process alternates between generating
poses (forward) and augmenting the graph with missing supports when instability is detected (back-
ward). The remainder of this section first describes the pre-training of relation-specific diffusion
models, then details the iterative grounding algorithm.
Training Individual Diffusion Models for Each Abstract Relation. We train a set of specialized
diffusion models {fR0

, . . . , fRM
}, where each fR corresponds to an abstract relation R ∈ Rgeom ∪

Rstab. Each relation R is defined by a rule-based classifier hR that verifies whether a tuple of
block poses {p1, . . . , pk} satisfies the relation given their geometries {g1, . . . , gk}. Its diffusion
model fR learns to generate such valid poses by sampling from qR(p | g) ∝ 1[hR(g,p)], where p
and g are vectorized pose and geometry inputs, and 1[·] is an indicator function enforcing relation
satisfaction. To train each fR, we generate synthetic data of multi-level 3D structures by composing
multiple stability patterns. These structures exhibit diverse instances of both geometric and stability
relations. We then apply the classifier hR to extract positive examples for each relation and construct
datasets DR accordingly. For each R, we construct a denoising diffusion model fR [38] where the
distribution qR(p | g) maximizes the likelihood of its dataset. Specifically, for a given sample
(g,p) ∈ DR, we apply Gaussian noise to p across T time steps and train a denoising network
ϵR(pt, g, t) to recover the original poses. The training loss minimizes the following error:

LMSE = E(g,p),ϵ,t

[∣∣ϵ− ϵR
(√

ᾱtp+
√
1− ᾱtϵ, g, t

)∣∣2] , (1)

where ϵ ∼ N (0, I), t ∼ U(1, T), and ᾱt is the diffusion denoising schedule. Sampling from fR
involves reversing the diffusion process using the learned denoiser. Starting from pT ∼ N (0, I), we
apply a learned reverse kernel parameterized by ϵR to iteratively obtain pt−1 from pt until reaching
p0 ∼ qR(· | g), a valid pose that satisfies hR. See Appendix B for implementation details.

Iterative Pose Generation. We alternate between grounding a graph into 3D poses and updating
the graph to recover missing supports. This forward–backward loop combines compositional diffu-
sion models for pose generation with stability-pattern-guided heuristics for efficient graph update.

Forward Graph Grounding via Compositional Diffusion Models. Given a G, we aim to sample
valid 3D poses P that satisfy all relations in the graph. Each edge r ∈ G corresponds to a relation
R applied to a specific block set and is associated with a diffusion model fR that generates poses
by approximating a conditional distribution qR(p

r | gr) over the poses pr with geometries gr. To
predict poses for the entire graph G, we compose these models into a product distribution: qtprod(p |
g) :=

∏
r∈G qtR(p

r | gr), where each qtR(·) is the noised distribution at diffusion step t for the
relation R associated with edge r. Our target is to sample from a sequence of product distributions
{qtprod(p | g)}t=0:T starting from an initial sample pT drawn from N (0, I). However, we cannot
directly access the reverse diffusion kernel or exact score function for qtprod(p | g), since it aggregates
multiple models [21, 18]. To approximate the transition from qtprod(p | g) to qt−1

prod (p | g), we adopt a
form of annealed MCMC that approximates the composite score function by summing the individual
score functions from each model: ∇pt

log qtprod(pt | g) ≈
∑

r∈G ϵR(p
r
t , g

r, t), where ϵR is the
learned denoising function for relation R. We apply the unadjusted Langevin algorithm (ULA) to

5

perform one reverse diffusion step using the composite score function over the graph G:

pt−1 = pt −At

∑
r∈G

ϵR(p
r
t , g

r, t) +Btξ, ξ ∼ N (0, I), (2)

where At and Bt are constants from the diffusion schedule. At each noise level t, we run M
iterations of ULA sampling using the composite score for the product distribution qtprod(·). Starting
from pT ∼ N (0, I), this iterative process gradually refines the sample, producing a final pose P
drawn from q0prod(·) that satisfies all relations in G.

Backward Graph Update Guided by Stability Patterns. The initial grounded poses P0 from G0 may
be unstable due to missing hidden supports. Extending G0 efficiently is challenging, as the space
of possible missing blocks and their placements is combinatorially large. To guide the search, we
leverage the descriptors associated with each stability pattern R ∈ Rstab: permissible object counts
(nbase, ntop)R, supported-by subgraph GR

supp, and subgraphs of geometric relations among the base
and top blocks, i.e., GR

base and GR
top. Since these descriptors constrain the search space and provide

strong priors, we propose a heuristic search guided by stability pattern descriptors to predict missing
blocks and relations. To repair an unstable subgraph, we add hidden blocks and relations to either
(i) extend the subgraph within the same pattern by preserving descriptor validity, or (ii) evolve it
into a more complex pattern that satisfies a richer set of descriptors. The types of added blocks
Thid are sampled heuristically from existing block types, conditioned on the newly added relations.
For example, an unstable single-block-stack may indicate the top block overhangs the base. This
can be resolved by converting it to a cantilever-with-counterbalance by changing the relation from
supported-by-fully to supported-by-partially, or by transforming it into a two-pillar-bridge by adding a
hidden support—of the same type as the base—behind the visible block. In both cases, the guidance
of object counts and subgraph constraints from the pattern descriptors enables efficient search.

At each iteration t, we first decompose (Gt,Pt) into subgraphs by matching against stability patterns.
For each subgraph (Gi

t ,Pi
t), we simulate its stability. If unstable, we apply the stability-pattern-

guided heuristic search to sample missing blocks and relations. All updates are aggregated into
a new abstract relation graph Gt+1 = Gt ∪ Ghid

t , which is then re-grounded using compositional
diffusion models. This forward-backward refinement continues until a stable structure is found or
the maximum number of iterations is reached.

5 Experiment
We evaluate StackItUp on 30 hand-drawn sketches illustrating a wide collection of 3D structures,
ranging from iconic buildings (e.g., Eiffel Tower), to modern house designs (see Appendix D for
all sketches). Generation complexity is quantified by the total number of blocks and the spatial
relations in the sketch. We evaluate performance using two metrics: (i) physical stability, measured
as the fraction of blocks that remain in place under gravity in simulation; and (ii) resemblance,
measured as the fraction of abstract geometric relations from the 2D sketch that are satisfied in the
3D generated structure from its front-view. Our evaluation tests three hypotheses: H1: Abstract
relation graphs enable zero-shot generation of stable, multi-level 3D structures from sketches; H2:
Stability-pattern-guided graph updates efficiently recover missing supports; and H3: Sketch-based
input provides a more expressive design specification than natural language.

5.1 Baselines
We compare StackItUp against two baselines and an ablated variant (details in Appendix C):
End-to-End Diffusion Model. Following StackGen [33], we implement a single transformer-based
diffusion model that directly predicts stable 3D block poses from sketches. The model is trained on
the same synthetic dataset as our compositional models, using the extracted 2D sketches as inputs.
Direct VLM Prediction. Inspired by Blox-net [29], we use a vision-language model (VLM) to
predict 3D structures. Given a sketch, we first prompt the VLM to generate a textual description of
the scene, then use the description to produce a corresponding 3D block arrangement.
Ablation: No Hidden Object Prediction. This ablation removes the stability-pattern-guided graph
update. It grounds the initial abstract relation graph iteratively using compositional diffusion models
when instability is detected, with no addition of hidden supports at each iteration.

6

With Hidden
Objects

Without Hidden
Objects

Figure 4: Qualitative results. 3D arrangements generated by StackItUp from 2D sketches. Top row: sketches
where hidden supports are predicted for stability. Bottom row: sketches that require no hidden supports.

2D Sketch VLM Prediction Ours w/o Hidden Objects Pred OursEnd-to-End Diffusion

Figure 5: Qualitative Comparison.Comparison of 3D block arrangements generated from 2D sketches across
methods. StackItUp consistently produces structures that are both visually faithful and physically stable.

5.2 Results
Table 2 summarizes the overall performance across all test cases. Figures 4 and 5 show example
outputs from StackItUp and the baselines. StackItUp consistently outperforms all baselines in both
physical stability and resemblance to the input sketch, whether or not hidden supports are needed.
This validates H1, showing that abstract relation graphs enable effective zero-shot generation of sta-
ble, multi-level 3D structures from unseen sketches. In contrast, Direct-VLM-Prediction achieves
reasonable stability but poor resemblance, highlighting the importance of precise spatial information
in sketches for specifying 3D structures (H3). End-to-end diffusion model performs poorly on both
metrics, likely due to the gap between synthetic training data and real-world sketches. Our ablation
variant performs comparably to StackItUp when hidden supports are not required, but its perfor-
mance degrades significantly when hidden supports are necessary, underscoring the importance of
stability-pattern-guided graph updates and supporting H2.
End-to-End Diffusion vs. StackItUp: Abstract Relation Graph Enables Zero-Shot General-
ization (H1). Although both models are trained on the same synthetic dataset, StackItUp achieves
significantly higher stability and resemblance on test sketches. The test sketches differ substantially
from the synthetic training data, causing the end-to-end model to generalize poorly. In contrast,
StackItUp demonstrates strong zero-shot generalization by leveraging the abstract relation graph as
an intermediate representation, which (i) accurately captures the intended geometric relations from
arbitrary sketches and (ii) flexibly composes relevant diffusion models at inference to preserve the
user’s design intent, thus validating H1.
Direct-VLM-Prediction vs. StackItUp: Sketches Better Capture User Intent (H3). While
Direct-VLM-Prediction produces stable structures, its low resemblance scores indicate that lan-
guage descriptions often fail to encode full spatial and geometric intent. In contrast, hand-drawn
sketches naturally preserve key geometric and physical relationships that are difficult to express ver-
bally, leading to more faithful reconstructions. This result supports H3.
Ablation vs. StackItUp: Stability-Pattern-Guided Updates Improve Robustness (H2). The ab-

7

Table 2: Quantitative evaluation of different methods across sketches. The reported percentages are the
mean and standard deviation over 15 diverse test scenes; the best performance in each column is boldfaced.

Model Sketch w/o Hidden Objects Sketch with Hidden Objects

Resemblance (%) Physical Stability (%) Resemblance (%) Physical Stability (%)

End-to-End Diffusion 18.2 ±7.70 24.2±13.5 16.2±9.24 12.1±8.98

Direct VLM Prediction 33.1±22.6 63.6±26.8 30.2±26.7 53.7±35.5

Our Ablation (No Hidden Object Pred) 84.4±9.45 98.8±4.53 78.8±17.8 69.8±33.9

StackItUp (Ours) 84.4±9.45 98.8±4.53 79.9±15.0 94.5±15.3

Large Overhead Bridge

Small Overhead Bridge

Real World ExecutionThin Pillar

Thick Pillar

(a) Same sketch, abstract relation graph, different
object poses due to different object geometries.

(b) Same sketch, different abstract relation graphs and object poses due to different object
geometries.

Figure 6: Robustness of StackItUp. StackItUp adapts the 3D poses to different block geometries. Given a
sketch, it adjusts poses to accommodate geometric variations under the same G (a). If the structure is stable
through pose adjustment alone, StackItUp extends G with hidden objects and re-grounds it to new poses (b).

10 15 20 25 30 35
Total # of Blocks

0

20

40

60

80

100

%
 o

f M
at

ch
ed

 R
el

at
io

ns

10 15 20 25 30 35
Total # of Blocks

0

20

40

60

80

100

%
 o

f S
ta

bl
e

Bl
oc

ks

100 200 300
Total # of Abstract Relations

0

20

40

60

80

100

%
 o

f M
at

ch
ed

 R
el

at
io

ns

100 200 300
Total # of Abstract Relations

0

20

40

60

80

100

%
 o

f S
ta

bl
e

Bl
oc

ks

End-to-End-DM
Direct-VLM-Prediction
w/o-Block-Pred-Ablation
Stack-It-Up

Figure 7: Performance vs. sketch complexity, measured by the number of blocks and abstract relations.

lation removes the stability-pattern-guided graph updates and simply re-optimizes the initial graph
using diffusion models without inserting hidden supports. The resulting drop in stability for sketches
requiring hidden structures demonstrates that stability-pattern-guided updates provide an efficient
and effective heuristic for repairing unstable configurations, supporting H2.

5.3 Showcase of StackItUp’s Robustness
Same Sketch, Different Object Sets: Adapting Object Poses to Satisfy Relations. Given the
same sketch, StackItUp adapts object poses to satisfy the abstract relations even when the candidate
block dimensions vary (Figure 6(a)). This flexibility comes from using the abstract relation graph,
which composes diffusion models online to adjust poses according to the specific object geometries.
Same Sketch, Different Object Sets: Predicting Support Structures for Stability. When the
candidate object set changes, StackItUp robustly predicts different hidden supports to maintain
structural stability (Figure 6(b)). This is enabled by organizing support structures through stabil-
ity patterns, which guide the addition of hidden supports when the predicted poses are unstable.
Robustness to Sketch Complexity. We show how resemblance and stability scores change against
the number of blocks and spatial relations in Figure 7. As complexity increases, Direct-VLM-
Prediction degrades sharply, showing the limitations of language-based specification. The end-to-
end diffusion model also performs poorly due to the domain gap between real and synthetic sketches.
In contrast, StackItUp consistently maintains high resemblance and stability, enabled by its abstract
relation graph and compositional diffusion models. Unlike the ablation, whose stability declines
with larger structures, StackItUp effectively predicts hidden supports, demonstrating strong gener-
alization to complex, multi-level designs.

6 Conclusion
StackItUp transforms a rough 2D sketch into a stable 3D block arrangement for robot manipulation.
By using an abstract relation graph that captures geometric and stability relations, StackItUp en-
ables compositional 3D pose generation and efficient prediction of hidden supports. Experiments on
diverse sketches show that StackItUp reliably produces stable, visually faithful structures, making
sketch-based goal specification accessible to non-expert users.

8

7 Limitation
While StackItUp enables intuitive and robust 3D structure specification from sketches, several limi-
tations point to promising directions for future work.

First, StackItUp currently relies on a single 2D front-view sketch, which limits observability of
depth and occluded components. While this format is accessible to non-experts, extending the
system to support multi-view sketches would improve accuracy. Our abstract relation graph pro-
vides a natural abstraction for this extension: integrating sketches from different views reduces to a
graph-matching problem, where the key challenge is inferring correspondence between nodes across
views. Second, we assume the block types in the sketch are labeled and that candidate object ge-
ometries are known. To make StackItUp deployable in real-world settings, we could relax these
assumptions by integrating 3D perception techniques—such as single-view reconstruction or multi-
view fusion—to estimate available object geometries. Then, relative proportions in the sketch can
be used to infer likely block types. Finally, closing the loop with real-world robot feedback opens
an exciting direction for interactive manipulation. Integrating visual or language-based corrections
[39, 40, 41], human-in-the-loop refinement [42, 43, 44], or even learning a reward or cost function
[45, 46, 47, 48, 49, 50, 51, 52] to discriminate and select among outcomes can make the system
more responsive, adaptable, and effective in dynamic environments.

Acknowledgments

This research is supported by the National Research Foundation, Singapore, under its Medium Sized
Centre Program, Center for Advanced Robotics Technology Innovation (CARTIN).

References
[1] T. Simeon, J. Cortes, A. Sahbani, and J. Laumond. A Manipulation Planner for Pick and

Place Operations Under Continuous Grasps and Placements. In IEEE Int. Conf. on Robotics &
Automation, 2002.

[2] A. Holladay, J. Barry, L. P. Kaelbling, and T. Lozano-Pérez. Object Placement as Inverse
Motion Planning. In IEEE Int. Conf. on Robotics & Automation, 2013.

[3] F. Suárez-Ruiz and Q.-C. Pham. A Framework for Fine Robotic Assembly. In IEEE Int. Conf.
on Robotics & Automation, 2016.

[4] M. Zucker, N. Ratliff, A. D. Dragan, M. Pivtoraiko, M. Klingensmith, C. M. Dellin, J. A. Bag-
nell, and S. S. Srinivasa. CHOMP: Covariant Hamiltonian Optimization for Motion Planning.
Int. J. Robotics Research, 32, 2013.

[5] S. Karaman and E. Frazzoli. Sampling-Based Algorithms for Optimal Motion Planning. Int.
J. Robotics Research, 30, 2011.

[6] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars. Probabilistic Roadmaps for
Path Planning in High-Dimensional Configuration Spaces. IEEE Trans. on Robotics and Au-
tomation, 12, 1996.

[7] S. LaValle. Rapidly-Exploring Random Trees: A New Tool for Path Planning. Research Report
9811, 1998.

[8] N. Č. Babič and D. Rebolj. Culture Change in Construction Industry: From 2D Toward BIM
Based Construction. Journal of Information Technology in Construction (ITcon), 21, 2016.

[9] C. A. Hunt. The Benefits of Using Building Information Modeling in Structural Engineering.
https://digitalcommons.usu.edu/gradreports/319, 2013.

[10] Novel BIM. Problems of 2D Drawings in Construction Projects, 2023.

9

https://digitalcommons.usu.edu/gradreports/319

[11] Mars BIM. Traditional Drawings Vs BIM Technology: Why 2D Plans Are No Longer Enough,
2023.

[12] Tekla. Are You Harming Your Business by Sticking with 2D?, 2023.

[13] Shalin Designs. Importance of Structural 3D Modeling, 2023.

[14] B. Sen, A. Agarwal, G. Singh, B. B., S. Sridhar, and M. Krishna. SCARP: 3D Shape Comple-
tion in Arbitrary Poses for Improved Grasping. In IEEE Int. Conf. on Robotics & Automation,
2023.

[15] M. Z. Irshad, S. Zakharov, R. Ambrus, T. Kollar, Z. Kira, and A. Gaidon. ShAPO: Implicit
Representations for Multi-Object Shape, Appearance, and Pose Optimization. In Proc. Euro-
pean Conference on Computer Vision, 2022.

[16] C. R. Garrett, T. Lozano-Perez, and L. P. Kaelbling. FFRob: Leveraging Symbolic Planning
for Efficient Task and Motion Planning. Int. J. Robotics Research, 37, 2018.

[17] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling. Sampling-Based Methods for Factored
Task and Motion Planning. Int. J. Robotics Research, 37, 2018.

[18] Z. Yang, J. Mao, Y. Du, J. Wu, J. B. Tenenbaum, T. Lozano-Pérez, and L. P. Kaelbling. Com-
positional Diffusion-Based Continuous Constraint Solvers. In Conference on Robot Learning,
2023.

[19] Y. Xu, J. Mao, Y. Du, T. Lozano-Pérez, L. P. Kaelbling, and D. Hsu. Set It Up!: Functional
Object Arrangement with Compositional Generative Models. In Proc. Robotics: Science &
Systems, 2024.

[20] Y. Zhu, J. Tremblay, S. Birchfield, and Y. Zhu. Hierarchical Planning for Long-Horizon Ma-
nipulation with Geometric and Symbolic Scene Graphs. In IEEE Int. Conf. on Robotics &
Automation, 2021.

[21] Y. Du, C. Durkan, R. Strudel, J. B. Tenenbaum, S. Dieleman, R. Fergus, J. Sohl-Dickstein,
A. Doucet, and W. Grathwohl. Reduce, Reuse, Recycle: Compositional Generation with
Energy-Based Diffusion Models and MCMC. In Proc. Int. Conf. on Machine Learning, 2023.

[22] A. Sjöberg, J. Lindqvist, M. Önnheim, M. Jirstrand, and L. Svensson. MCMC-Correction
of Score-Based Diffusion Models for Model Composition. arXiv preprint arXiv:2307.14012,
2023.

[23] C. M. Barber, R. J. Shucksmith, B. MacDonald, and B. C. Wünsche. Sketch-Based Robot
Programming. In IEEE Int. Conf. on Image and Vision Computing New Zealand, 2010.

[24] D. Porfirio, L. Stegner, M. Cakmak, A. Sauppé, A. Albarghouthi, and B. Mutlu. Sketching
Robot Programs on the Fly. In ACM/IEEE Int. Conf. on Human-Robot Interaction, 2023.

[25] P. Sundaresan, Q. Vuong, J. Gu, P. Xu, T. Xiao, S. Kirmani, T. Yu, M. Stark, A. Jain, K. Haus-
man, et al. RT-Sketch: Goal-Conditioned Imitation Learning From Hand-Drawn Sketches. In
Conference on Robot Learning, 2024.

[26] Y. Xu, Y. Ng, Y. Wang, I. Sa, Y. Duan, Y. Li, P. Ji, and H. Li. Sketch2scene: Auto-
matic generation of interactive 3d game scenes from user’s casual sketches. arXiv preprint
arXiv:2408.04567, 2024.

[27] Y. Cui, S. Niekum, A. Gupta, V. Kumar, and A. Rajeswaran. Can Foundation Models Perform
Zero-Shot Task Specification for Robot Manipulation? In Learning for Dynamics and Control
Conference, 2022.

10

[28] J. Gu, S. Kirmani, P. Wohlhart, Y. Lu, M. G. Arenas, K. Rao, W. Yu, C. Fu, K. Gopalakrishnan,
Z. Xu, et al. Robotic Task Generalization Via Hindsight Trajectory Sketches. In First Workshop
on Out-of-Distribution Generalization in Robotics at CoRL 2023, 2023.

[29] A. Goldberg, K. Kondap, T. Qiu, Z. Ma, L. Fu, J. Kerr, H. Huang, K. Chen, K. Fang, and
K. Goldberg. Blox-Net: Generative Design-for-Robot-Assembly Using VLM Supervision,
Physics Simulation, and a Robot with Reset. arXiv preprint arXiv:2409.17126, 2024.

[30] A. Badagabettu, S. S. Yarlagadda, and A. B. Farimani. Query2CAD: Generating CAD Models
Using Natural Language Queries. arXiv preprint arXiv:2406.00144, 2024.

[31] Y. Hong, K. Zhang, J. Gu, S. Bi, Y. Zhou, D. Liu, F. Liu, K. Sunkavalli, T. Bui, and H. Tan.
LRM: Large Reconstruction Model for Single Image to 3D. In Int. Conf. on Learning Repre-
sentations, 2024.

[32] J. Tang, J. Ren, H. Zhou, Z. Liu, and G. Zeng. DreamGaussian: Generative Gaussian Splatting
for Efficient 3D Content Creation. In Int. Conf. on Learning Representations, 2024.

[33] L. Sun, T. Yoneda, S. W. Wheeler, T. Jiang, and M. R. Walter. Stackgen: Generating Stable
Structures From Silhouettes Via Diffusion. arXiv preprint arXiv:2409.18098, 2024.

[34] A. Liu, C. Lin, Y. Liu, X. Long, Z. Dou, H.-X. Guo, P. Luo, and W. Wang. Part123: Part-Aware
3D Reconstruction From a Single-View Image. In ACM SIGGRAPH Conference Papers, 2024.

[35] R. Liu, R. Wu, B. Van Hoorick, P. Tokmakov, S. Zakharov, and C. Vondrick. Zero-1-to-3:
Zero-Shot One Image to 3D Object. In IEEE Int. Conf. on Computer Vision, 2023.

[36] M. Liu, C. Xu, H. Jin, L. Chen, M. Varma T, Z. Xu, and H. Su. One-2-3-45: Any Single Image
to 3D Mesh in 45 Seconds Without Per-Shape Optimization. Advances in Neural Information
Processing Systems, 2023.

[37] M. Liu, R. Shi, L. Chen, Z. Zhang, C. Xu, X. Wei, H. Chen, C. Zeng, J. Gu, and H. Su. One-
2-3-45++: Fast Single Image to 3D Objects with Consistent Multi-View Generation and 3D
Diffusion. In IEEE Conf. on Computer Vision & Pattern Recognition, 2024.

[38] J. Ho, A. Jain, and P. Abbeel. Denoising Diffusion Probabilistic Models. In Advances in Neural
Information Processing Systems, 2020.

[39] K. Lu, C. Ma, C. Hori, and D. Romeres. KitchenVLA: Iterative Vision-Language Correc-
tions for Robotic Execution of Human Tasks. In IEEE International Conference on Robotics
and Automation Workshop on Safely Leveraging Vision-Language Foundation Models in
Robotics (SafeLVMs@ICRA), May 2025. URL https://www.merl.com/publications/

TR2025-068.

[40] Y. Zeng and Y. Xu. Learning reward for physical skills using large language model. arXiv
preprint arXiv:2310.14092, 2023.

[41] P. Sharma, B. Sundaralingam, V. Blukis, C. Paxton, T. Hermans, A. Torralba, J. An-
dreas, and D. Fox. Correcting robot plans with natural language feedback. arXiv preprint
arXiv:2204.05186, 2022.

[42] A. P. Dani, I. Salehi, G. Rotithor, D. Trombetta, and H. Ravichandar. Human-in-the-loop
robot control for human-robot collaboration: Human intention estimation and safe trajectory
tracking control for collaborative tasks. IEEE Control Systems Magazine, 40(6):29–56, 2020.

[43] P. Slade, C. Atkeson, J. M. Donelan, H. Houdijk, K. A. Ingraham, M. Kim, K. Kong, K. L.
Poggensee, R. Riener, M. Steinert, et al. On human-in-the-loop optimization of human–robot
interaction. Nature, 633(8031):779–788, 2024.

11

https://www.merl.com/publications/TR2025-068
https://www.merl.com/publications/TR2025-068

[44] C. Jiang, Y. Xu, and D. Hsu. Llms for robotic object disambiguation. arXiv preprint
arXiv:2401.03388, 2024.

[45] M. Palan, N. C. Landolfi, G. Shevchuk, and D. Sadigh. Learning reward functions by integrat-
ing human demonstrations and preferences. arXiv preprint arXiv:1906.08928, 2019.

[46] P. F. Christiano, J. Leike, T. Brown, M. Martic, S. Legg, and D. Amodei. Deep reinforcement
learning from human preferences. In Advances in Neural Information Processing Systems,
2017.

[47] Y. Xu and D. Hsu. How to tidy up a table: Fusing visual and semantic commonsense reasoning
for robotic tasks with vague objectives. arXiv preprint arXiv:2307.11319, 2023.

[48] B. D. Ziebart, A. Maas, J. A. Bagnell, and A. K. Dey. Maximum entropy inverse reinforcement
learning. 2008.

[49] M. Wulfmeier, P. Ondruska, and I. Posner. Maximum entropy deep inverse reinforcement
learning. In Advances in Neural Information Processing Systems, 2016.

[50] J. Fu, K. Luo, and S. Levine. Learning robust rewards with adversarial inverse reinforcement
learning. In Int. Conf. on Learning Representations, 2018.

[51] Y. Xu, W. Gao, and D. Hsu. Receding horizon inverse reinforcement learning. In Advances in
Neural Information Processing Systems, 2022.

[52] Y. Xu, F. Doshi-Velez, and D. Hsu. On the effective horizon of inverse reinforcement learning.
In Proceedings of the 24th International Conference on Autonomous Agents and Multiagent
Systems, pages 2208–2216, 2025.

[53] P. Vincent. A Connection Between Score Matching and Denoising Autoencoders. Neural
Comput., 23(7):1661–1674, 2011.

[54] D. Coleman, I. Sucan, S. Chitta, and N. Correll. Reducing the barrier to entry of complex
robotic software: a MoveIt! case study. Journal of Software Engineering for Robotics, 2014.

12

A Abstract Relation Library

The abstract relation library comprises a suite of qualitative geometric relations and local stability
patterns used to compactly represent multi-layer block structures. Each relation is defined as a clas-
sifier hR that examines block dimensions and relative poses to determine if a specific relation holds.
This systematic encoding enables straightforward extraction of relation graphs from block arrange-
ments and provides a foundation for generating synthetic data and training the class-conditional
diffusion models fR. Table 1 lists the symbolic names and arities of all relations. Below, we de-
tail the implementation of each classifier, following the rules that also underlie our synthetic data
generation.

A.1 Geometric Relations

We define 24 qualitative geometric relations in total. Of these, 13 are front-view (x–z plane) rela-
tions, such as left-of and horizontally-aligned, which can be computed directly from the bounding
boxes in the sketch. The remaining 11 describe layout in the x–y (depth) plane (e.g., front-of, depth-
aligned), and are only predicted once hidden (occluded) supports are inferred. For each relation, we
specify its arity, associated plane, language description, and the explicit rule used by its classifier
hR.

Relation Arity Plane Description Implementation of hR

left-of(oA,
oB)

2 x-z Block oA is positioned
entirely to the left of block
oB on the same support
level; they do not overlap
along the x-axis, but their
front-to-back positions
overlap substantially,
meaning they are laterally
offset and adjacent as seen
from the front.

oA.right x ≤ oB .left x +
EPS; |right x − left x| <
GAP; y-projections overlap
> ALPHA × min depth;
same z-level

left-in(o,
table)

2 x-z Block o is located entirely
to the left side of the table,
with its rightmost side not
crossing the table center.

o.right x < table.center x

right-in(o,
table)

2 x-z Block o is located entirely
to the right side of the table,
with its leftmost side not
crossing the table center.

o.left x > table.center x

center-in(o,
table)

2 x-z Block o is centered on the
table, having its center
positioned at or very close
to the table’s origin.

|o.center x-
table.center x| < EPS and
|o.center y-
table.center y| < EPS

supported-by-
partially(oA,
oB)

2 x-z Block oA sits on top of (is
immediately above) block
oB but its base is only
partially resting on oB’s top
surface—so some but not all
of its footprint is supported.

oA.base z ≈ oB .top z
(within EPS), oA’s xy
footprint overlaps with but
is not contained in oB’s

supported-by-
fully(oA, oB)

2 x-z Block oA sits on top of (is
immediately above) block
oB , and its entire base lies
within (is fully supported
by) oB’s top surface.

oA.base z ≈ oB .top z
(within EPS), oA’s xy
footprint is fully contained
in oB’s

13

horizontal-
aligned(oA,
oB)

2 x-z Blocks oA and oB have the
same front-back (y)
coordinate—either at their
centers or at matching
front/back
surfaces—indicating that
they’re horizontally aligned
across the table (as seen
from the front).

|center yA−center yB | <
EPS; or front/back surfaces
match

vertical-
aligned-
centroid(oA,
oB)

2 x-z Block oA is stacked directly
above block oB ; both their
x and y centroids align, so
they form a straight vertical
column.

oA.base z ≈ oB .top z;
|(xA, yA)− (xB , yB)| <
EPS

vertical-
aligned-
left(oA, oB)

2 x-z Blocks oA and oB are
precisely stacked so that
their left (x) sides line up,
and they overlap
significantly along the y
axis (as seen from above).

oA.base z ≈ oB .top z;
|left xA−left xB | <EPS;
y-overlap >ALPHA×depth

vertical-
aligned-
right(oA, oB)

2 x-z Blocks oA and oB are
stacked so their right (x)
sides line up exactly, with
significant y-overlap
(depth).

oA.base z ≈ oB .top z;
|right xA−right xB | <EPS;
y-overlap >ALPHA×depth

horizontal-
aligned-in-a-
line(o1, . . . ,
on)

n x-z Several blocks are arranged
in a perfectly straight row
(line) horizontally (left to
right) with exactly matched
y positions and equal z;
typical for bridges/beams.

All |center yi−center yj | <
EPS; x positions ordered,
spacing regular

touching-
along-x(oA,
oB)

2 x-z Blocks oA and oB are side
by side and touch exactly at
their adjoining left/right
faces, with a strong
front-back (y) overlap.

|right xA−left xB | <EPS,
y-overlap >ALPHA×min
depth

near-along-
x(oA, oB)

2 x-z Blocks oA and oB are on
the same level and are
placed close to each other
side-by-side along the
left-right (x) direction, but
with a small gap (not
touching). They overlap
substantially in the
front-back (y) direction,
meaning they are nearly
“neighbors” from the front
view but not actually in
contact with each other.

EPS ≤ gap x < D NEAR;
y-projection overlap >
ALPHA × min depth; same
z-level

14

front-of(oA,
oB)

2 x-y Block oA is positioned
entirely in front of block oB
on the same level; their
sides overlap along
left/right, but oA is closer to
the front (observer), not
overlapping with oB in the
y direction.

oA.back y ≤ oB .front y +
EPS; |back y − front y| <
GAP; x-projections overlap
> BETA × min width;
same z-level

front-in(o,
table)

2 x-y Block o is positioned
entirely in front of the
table’s center (the y = 0
axis), meaning its entire
back face is still in front of
the table origin. The block
lies between the observer
and the center of the table,
not straddling or exceeding
the central axis.

o.back y < table.center y

back-in(o,
table)

2 x-y Block o is located entirely
behind the table’s origin,
with its frontmost point
behind the y = 0 axis.

o.front y > table.center y

touching-
along-y(oA,
oB)

2 x-y Blocks oA and oB are
placed side by side in the
front-back (y) axis, so that
one’s back directly meets
the other’s front, with strong
overlap along the left-right
(x) axis; they “touch” along
their y faces.

|back y − front y| < EPS;
x-projection overlap >
ALPHA×min width

near-along-
y(oA, oB)

2 x-y Blocks oA and oB are
positioned nearly touching
in the front-back (y)
direction—separated by a
small gap, but otherwise
closely aligned, and
substantially overlapping
along the x axis.

EPS ≤ gap y < D NEAR;
x-projection overlap >
ALPHA×min width

depth-
aligned(oA,
oB)

2 x-y Blocks oA and oB have
aligned depth (front-back)
placements: their centers, or
edges, in the left-right (x)
axis coincide; often used for
checking columnar or
grid-like arrangements.

|center xA−center xB | <
EPS; or for left/right
versions,
|left/right xA−left/right xB | <
EPS

depth-
aligned-in-a-
line(o1, . . . ,
on)

n x-y A group of n blocks,
arranged in a straight line
along the y (front-back)
axis, each with the same x
position (column
formation), often with
similar or equal spacing
between centers.

All |center xi−center xj | <
EPS; y positions ordered,
spacing regular

15

regular-grid-
sparse(o1,
. . . , on)

n x-y A set of blocks forms a 2D
grid in the x-y plane, where
the left-right and front-back
spacings between blocks are
consistent but relatively
wide—leaving space
between adjacent blocks.

All blocks similar size,
grouped into rows/columns
by x/y; adjacent grid pairs
are more than just touching
(spacing>touch eps), but
rows/cols are regular

regular-grid-
compact(o1,
. . . , on)

n x-y A set of blocks arranged in
a closely packed, regular 2D
grid, so that each block
touches its neighbors both
horizontally and vertically
without gaps, and fills
nearly all of the bounding
rectangle.

All blocks similar size,
assigned to rows/columns
by x/y; all adjacent blocks
touch (spacing ≤
touch eps); grid fills ≥95%
of bounding box

random-split-
grid-
sparse(o1,
. . . , on)

n x-y A group of blocks covers
much—but not all—of a
region in the x-y plane,
forming a loosely connected
configuration that is not
fully regular, but no large
gaps exist; may result from
a random split/composition.

Sum of all block areas
≥90% of total bounding
box; block positions
irregular

random-split-
grid-
compact(o1,
. . . , on)

n x-y A group of blocks forms a
compact area in the x-y
plane, filling almost all
available space but without
the strict regularity of a grid.

Sum of all block areas ≥
90% of bounding box;
positions irregular, but very
little wasted space

A.2 Stability Patterns

(a) single-block-stack
(d) n-base-single-bridge(c) two-pillar bridge

(b) cantilever with
counterbalance

(f) two-pillar pyramid (g) n-base-single-pyramid

(e) single-base-n-bridge

(h) single-base-n-pyramid (i) n-base-m-pyramid (j) basic-arch

Figure 8: Illustration of the ten stability patterns.

We define 10 local stability patterns, each describing a recurring two-tier stable arrangement (e.g.,
pillar-bridge, stack). Each pattern’s classifier hR is characterized by four descriptors: (i) allowed
counts of base and top blocks (nbase, ntop); (ii) admissible supported-by subgraphs GR

supp connect-
ing base and top blocks; (iii) required or allowed interrelations among the base blocks GR

base; and
(iv) likewise among top blocks GR

top. These descriptors allow the automatic extraction of stability
patterns from block arrangements, support straightforward synthetic data generation, and guide the
compositional assembly of stable multi-level structures. By enumerating these patterns and their
descriptors, we enable principled graph growth and hidden block insertion subject to stability con-
straints. Detailed specification for each stability classifier appears below.

16

Stability Pattern Natural Language
Description

Block
Counts
(base, top)

Subgraph Pattern
Constraints

Notes on Subgraph Patterns:
(a) Supported-by subgraph: Describes which “supported-by-fully” and “supported-by-
partially” relations between base and top blocks must hold.
(b) Base geometric subgraph: Specifies geometric layout constraints (touching, regular grid,
separation, etc.) among base blocks.
(c) Top geometric subgraph: Specifies geometric layout constraints among top blocks (when
there are multiple).

single-block-
stack

A simple stack: one
block sits fully above
and is supported by
another, forming a
minimal stable column
or pillar.

({1}, {1}) (a)
supported-by-fully(top, base)
(b) none
(c) none

cantilever-with-
counterbalance

Two blocks stacked
where the top block
overhangs the base, but
its center of mass
remains safely above
the base.

({1}, {1}) (a)
supported-by-partially(top, base)
(COM of top within base)
(b) none
(c) none

two-pillar-single-
top-bridge

Two upright, separated
base blocks (pillars)
jointly support a single
horizontal top block
(lintel), which bridges
across them.

({2}, {1}) (a)
supported-by-fully(top, base1)
and
supported-by-fully(top, base2)
(b) bases must not touch:
not-touching(base1, base2).
They should be either
horizontal-aligned or
depth-aligned.
(c) none

n-pillar-single-
top-bridge

A single bridge block
fully supported by n
separated pillar blocks
below, forming a
“wide” bridge.

({n}, {1}) (a)
supported-by-fully(top, basei)
for all i = 1..n
(b) bases must not touch: all
pairs
not-touching(basei, basej),
i ̸= j. The pillars should be
arranged in
regular-grid-sparse.
(c) none

single-base-n-
pillar-bridge

A single large base
block with n separated
vertical pillar blocks
supported on top, each
independent.

({1}, {n}) (a)
supported-by-fully(topi, base)
for all i = 1..n
(b) none
(c) tops must not touch: all
pairs
not-touching(topi, topj),
i ̸= j. The pillars should be
arranged in
regular-grid-sparse.

17

two-base-single-
overhead-
pyramid

Two base blocks,
placed touching each
other, jointly support a
single overhead block
centered above.

({2}, {1}) (a)
supported-by-fully(top, base1)
and
supported-by-fully(top, base2)
(b) bases must touch along
x or y: touching-along-x or
touching-along-y
(c) none

n-base-single-
overhead-
pyramid

n base blocks form a
touching or tightly
packed group
(typically a regular
grid), all together
supporting a single
overhead block.

({n}, {1}) (a)
supported-by-fully(top, basei)
for all i = 1..n
(b) bases form a regular grid
or are all pairwise touching:
regular-grid-compact or all
pairwise touching
(c) none

single-base-n-
overhead-
pyramid

A single base supports
n top blocks closely
packed together
(usually in a regular
row or grid), like a
multi-top step of a
pyramid.

({1}, {n}) (a)
supported-by-fully(topi, base)
for all i
(b) none
(c) tops form a regular grid
or are all pairwise touching:
regular-grid-compact(top1, ..., topn)
or all pairwise touching

n-base-m-
overhead-
pyramid

n base blocks in a
compact/touching
pattern collectively
support m overhead
blocks in a similarly
compact arrangement;
a multi-unit platform
or tier.

({n}, {m}) (a)
supported-by-fully/partially(topj , basei)
for each (i, j) where direct
support exists
(b) bases: regular grid or all
touching,
regular-grid-compact(base1, ..., basen)
(c) tops: regular grid or all
touching,
regular-grid-compact(top1, ..., topm)

basic-arc Two separated base
blocks act as pillars to
partially support a top
“keystone” block,
often at an angle,
forming the core of an
arch.

({2}, {1}) (a)
supported-by-partially(top, base1)
and
supported-by-partially(top, base2)
(b) bases must not touch:
not-touching(base1, base2)
(c) none

Table 4: Dictionary of local stability patterns. Block Counts: ({n}, {m}) means n base blocks stabilize m top
blocks. Subgraph Pattern Constraints: (a) Required supported-by relations between base/top, (b) required
geometric relations among base blocks, (c) required geometric relations among top blocks if m > 1.

B Training of Diffusion-based Pose Generators for Abstract Relations

For each distinct abstract relation in our library, we train a dedicated diffusion model to generate ob-
ject poses that fulfill the specified spatial or stability constraint. Each model is tasked with predicting
the denoising direction necessary to recover normalized object poses, ensuring the given structural
relation holds.

Model Input and Data Preparation. To enable consistent learning, object geometries and poses
are preprocessed and normalized: each object’s 3D bounding box is scaled relative to the reference
container region. The resulting input features comprise shape descriptors (width, height, depth, etc.)

18

Table 5: Comparison of methods and their user input mode, use of intermediate graphs, and how to search for
hidden objects.

Method User Input Mode Intermediate Graph Search for Hidden Objects
Direct VLM Prediction Language Description No VLM informed search
End-to-end Diffusion Model 2D hand-drawn Sketch No N.A.
Our Ablation 2D hand-drawn Sketch Yes N.A.
Stack It Up (Ours) 2D hand-drawn Sketch Yes Stability pattern guided search

and normalized 3D pose coordinates. These, along with a diffusion timestep, form the input tuple
for the network.

Modular Encoder Design. Our architecture integrates three specialized encoders:

• Shape Encoder: Implements a two-stage neural network, compressing raw geometry into
a 256-dimensional latent representation using SiLU activations.

• Pose Encoder: With a configuration paralleling the shape encoder, this module transforms
the normalized bounding box positions and dimensions into hidden feature space.

• Temporal Encoder: Timestep information is embedded via a sinusoidal encoder followed
by linear and Mish-activated layers, mapping to and from a higher intermediate dimension
to facilitate time-aware conditioning.

Backbone Architectures. The core relational reasoning is handled by one of two network back-
bones, selected based on relation arity:

• MLP Backbone: Fixed-arity relations employ a multi-layer perceptron that processes con-
catenated encodings, mapping directly to noise prediction in pose space. The MLP consists
of linear and SiLU layers.

• Transformer Backbone: Variable-arity relations are addressed with a transformer-based
network, which ingests sequences of object features (padded and masked as necessary,
with positional encodings) for relations spanning multiple objects. The transformer output
is post-processed and projected to the target pose distribution.

Pose Decoding and Reconstruction. The pose decoder reverses the encoding process, converting
the hidden noise representations produced by the backbone into 3D pose refinements or direct pose
predictions as appropriate for each object.

Learning Objective and Inference Procedure. The model is trained end-to-end, optimizing
mean squared error (L2 loss) between the predicted and true denoising directions at each diffu-
sion step. During inference, a cosine noise schedule over 1500 diffusion steps is applied. For sce-
narios involving multiple overlapping relations, noise estimates from individual relations are com-
bined—either averaged or weighted—prior to decoding, allowing for joint enforcement of multiple
spatial or stability constraints during the generation process.

C Baseline Implementation

We implemented two baselines and one ablated variant of StackItUp, as summarized in Table 5.
The baselines differ in (i) user input modality, (ii) whether they use an intermediate abstract relation
graph, and (iii) their ability to infer hidden supporting blocks. We provide implementation details
for each below.

C.1 Direct VLM Prediction

The Direct VLM Prediction baseline adapts principles from Blox-Net [29], employing a vision-
language model (VLM) to directly generate 3D block arrangements from natural language descrip-

19

tions. Unlike Blox-Net, this baseline does not use simulator-based filtering; instead, it relies on a
single-pass VLM output. The purpose is to assess whether text alone can reliably convey structural
intent. While we initially considered using human-written descriptions, their level of detail var-
ied widely—from vague phrases to precise layouts—making comparisons inconsistent. To ensure
consistency, we used VLM-generated descriptions, which are typically rich and precise, capturing
layout, level count, and intra-level arrangements. This setup allows us to compare natural language
as a specification modality against 2D sketches.

Given a hand-drawn sketch, the pipeline proceeds as follows:

1. Scene Description Generation: We prompt GPT-4.1 with the 2D sketch to produce a detailed,
structured textual description, specifically requesting explicit statements of spatial relations and
overall assembly appearance. The instruction emphasizes capturing all necessary details for faith-
fully reconstructing the depicted 3D structure from language alone. We use the following prompt:

Listing 1: Prompt used for scene description generation (Step 1).

You a given a front -view 2D rough hand -drawn sketch that illustrate a
desired 3D mutli -level stacking structure (in its x-z plane) that
are build from rectangle blocks. Generate a detail text
description of this sketch , focusing on the relative spatial
relations among the objects and the overall appearance , so that
someone can generate the 3D structure by specifying the location
of the blocks purely based on this textual description.

2. Block Type Selection: Using the generated scene description and a catalog of available block
types (each with known dimensions), the VLM is asked to:

• Select a combination of block types and their quantities required to realize the described
scene, including both visible and potentially hidden support blocks for stability.

• Briefly annotate each type’s structural role within the assembly.

To facilitate this, block types and their dimensions are supplied in a structured dictionary format:

Listing 2: Format of candidate block dimensions into the VLM.

{
"type_1_block ": [w_1 , l_1 , h_1], # width (x), length (y), height (

z)
"type_2_block ": [w_2 , l_2 , h_2],
...,
"type_M_block ": [w_M , l_M , h_M],

}.

Example answer fragment:

Listing 3: Example output of block selection via VLM.

- 2 x type_3_block: act as the base platform
- 1 x type_7_block: forms the central vertical column
- ...

Prompt:

Listing 4: Prompt used for block selection (Step 2).

You are now the structural planner.

Inputs

Textual scene description (from Step 1) - enclosed in <SCENE > ... </
SCENE >.

20

Catalogue of blocks with their exact dimensions - enclosed in <
CATALOGUE > ... </CATALOGUE >. The dictionary format is {"
type_1_block ": [w_1 , l_1 , h_1], ... } where w = width (x-axis), l
= length (y-axis), h = height (z-axis).

Task
Select a set of block types and quantities that can realise the scene

while obeying these rules:

- Use only block types listed in the catalogue; no scaling or custom
sizes.

- Infer the smallest sufficient number of blocks; you may add hidden
support blocks if the scene requires stability.

- Match the relative proportions described in <SCENE >.
- Ignore absolute coordinates -those will be assigned in Step 3.

Output format (return nothing else)

BLOCK_SELECTION = [
{"type": "type_k_block", "count ": N, "role": "one -sentence purpose" },
...
]

Example
BLOCK_SELECTION = [
{ "type": "type_3_block", "count": 2, "role": "forms the ground -level

platform" },
{ "type": "type_7_block", "count": 1, "role": "serves as the central

vertical column" }
]

Note that "type_0_block" is the base that is not drawn in the sketch.
Always select it.

Begin.

3. Block Placement Prediction: Finally, the VLM assigns 3D coordinates to every block instance,
respecting the following constraints:

• The entire assembly must fit within a fixed bounding box.

• Block instances are axis-aligned and individually identified.

• No two blocks occupy the same space (collisions are disallowed).

• Support and stability are enforced by allowing the VLM to introduce hidden blocks, as
needed.

• The resulting output is a mapping between each block (with type) and its 3D centroid.

The centroid definition, bounding box, and other spatial conventions follow those of our main
model for comparability.

Required output format:

Listing 5: Pose prediction output format via VLM.

{
0: { "type": "type_3_block", "centroid ": [-1.2, 0.8, 0.25] },
1: { "type": "type_3_block", "centroid ": [1.2, 0.8, 0.25] },
2: { "type": "type_7_block", "centroid ": [0.0, 0.0, 1.75] },
...
}

Prompt used:

21

Listing 6: Prompt used for block pose generation (Step 3).

You are now the placement engine.
Your job is to assign exact 3D positions to every physical block

selected in Step 2.

INPUTS

Scene description <SCENE > ... </SCENE > (optional - use for spatial
cues)

Block selection list <SELECTION > ... </SELECTION > created in Step 2
Example: [{ "type": "type_3_block", "count": 2, "role": "ground -
level platform" }, { "type": "type_7_block", "count": 1, "role": "
central column" }]

Block catalogue with dimensions <CATALOGUE > ... </CATALOGUE > Format: {
"type_i_block ": [w_i , l_i , h_i], ... } w = width (x-axis), l =

length (y-axis), h = height (z-axis)
GLOBAL CONSTRAINTS
- The whole assembly must fit inside the bounding box
x \in [-1.5, 1.5] (width < 3)
y \in [-1.0, 1.0] (length < 2)
z \in [0.0, 5.0] (height < 5)
- Blocks are axis -aligned; do not rotate them.
- No two blocks may overlap (touching faces/edges is allowed).
- Every block above ground level must rest on, or be supported by,

blocks beneath it; hidden support blocks from <SELECTION > may be
used.

- Centroids are expressed in the same linear units as the catalogue.

TASK
For every physical block instance:

Assign a unique integer id starting at 0.
Specify its block type (exact key from the catalogue).
Output the centroid coordinates [x, y, z].
OUTPUT FORMAT (return nothing else)

PLACEMENT = {
0: { "type": "type_3_block", "centroid ": [-1.2, 0.8, 0.25] },
1: { "type": "type_3_block", "centroid ": [1.2, 0.8, 0.25] },
2: { "type": "type_7_block", "centroid ": [0.0, 0.0, 1.75] },
...
}

Note that "type_0_block" is the base that is not drawn in the sketch
. Always select it and assigns its centroid to [0, 0, -0.05].

Begin.

The second baseline follows the end-to-end paradigm of StackGen [33], training a single
transformer-based diffusion model to directly predict the full set of 3D block poses conditioned
on sketch input, without any explicit intermediate graph representations.

This baseline involves two steps:

1. Block Type Selection: A small convolutional neural network (CNN) is trained to predict
the set and count of block types required, given the input sketch and candidate block di-
mensions.

2. Block Pose Regression: A large transformer-based diffusion model generates the 3D poses
(centroids) for all selected blocks, conditioned on the sketch and selected types.

The CNN encoder transforms the input sketch into a compact latent embedding by passing it through
several convolutional layers, each followed by batch normalization and ReLU activations, and finally

22

by spatial pooling and a linear layer. This embedding is added to each object’s feature representation
before being processed by the transformer to promote cross-block information sharing and contex-
tualization.

Within the diffusion model, sketch embeddings are broadcast and added to the positional and ge-
ometric embeddings of each block, and position encoding is applied. Batch data is padded and
appropriately masked to handle varying object counts per sample.

Training and Data: Both models are trained on synthetic data generated by composing multiple
local stability patterns. However, only the 3D block arrangements and dimensions are available
initially. To create paired sketch inputs, we generate a 2D front-view sketch for each 3D structure.

For each sample, we project the 3D arrangement to the x-z (front-view) plane. We retain only the
visible blocks, sorting them by their y-coordinates (depth), and filtering out those fully occluded by
others. The outlines of visible blocks are rendered onto a blank canvas, and their edges are dilated
and blurred to resemble hand-drawn sketches and reduce the domain gap. Padding is added to main-
tain consistent framing. Figure 9 illustrates representative examples of these generated sketches.

C.2 Our Ablation: No Hidden Object Prediction

To assess the importance of hidden support prediction, we ablate the stability-pattern-guided back-
ward graph update in StackItUp. In this variant, the relation graph representing the 3D structure
is not expanded with additional hidden support blocks. Instead, when an arrangement generated
from the abstract relation graph is found to be unstable in physical simulation, we re-ground the
same graph using our compositional diffusion models and attempt pose adjustments using only the
initially specified blocks. This allows us to study whether iterative re-sampling alone is sufficient to
achieve global stability or if explicit reasoning over hidden supports is necessary.

D Hand-drawn Test Cases

We evaluate all methods on a set of 30 hand-drawn sketches spanning a range of stacking challenges.
The complete set of test cases is shown below, across two pages.

23

Figure 10: Hand-drawn test cases. The full set of 30 human-drawn 2D sketches used for evaluation, presented
over two pages (15 per page). The test cases cover a variety of multi-level stacking scenarios and structural
challenges.

E Joint Pose Prediction with Composite Diffusion Scores and ULA
To jointly satisfy multiple abstract relations among objects, we combine the score functions from
several trained diffusion models and perform inference using a composite score. This approach
enables simultaneous pose generation that respects all specified abstract relations.

Diffusion Reverse Step as Score-Based Sampling. A single reverse step of a diffusion model at
noise level t updates the input xt by

xt+1 = xt −
βt√
1− ᾱt

ϵθ(xt, t) + βtξ, ξ ∼ N (0, I),

where ϵθ denotes the neural network’s noise prediction, βt is the step’s noise parameter, and ξ is
standard Gaussian noise. Notably, the quantity ϵθ(xt,t)√

1−ᾱt
is, by denoising score matching theory [53],

an explicit estimator of the gradient of the log-density for the perturbed data distribution pt(x) at
time t:

∇x log qt(x) ≃
ϵθ(xt, t)√
1− ᾱt

. (3)

Thus, the reverse step can be rewritten in Langevin form:

xt+1 = xt − βt∇x log qt(x) + βtξ. (4)

Connection to ULA. The unadjusted Langevin algorithm (ULA) samples from qt(x) according
to

xt+1 = xt − η∇x log qt(x) +
√
2ηξ, ξ ∼ N (0, I), (5)

for step size η. If we set η = βt, this becomes

xt+1 = xt − βt∇x log qt(x) +
√
2βtξ. (6)

The only difference from the diffusion reverse update is a multiplicative factor of
√
2 in the noise

term. Consequently, running the reverse diffusion process is equivalent to a ULA sampler with
a reduced noise temperature; one can recover exact ULA sampling by scaling the variance of the
added noise by a factor of 2 at each step, or equivalently scaling the standard deviation by

√
2.

Composing Scores from Multiple Relations. When enforcing multiple spatial relations jointly,
we aggregate (e.g., sum) the individual score estimates from relevant diffusion models at each step
to create a composite score:

∇x log q
t
prod(x) ≃

∑
r∈G

wr∇x log q
t
r(x), (7)

where qtr is the noisy distribution associated with relation r, and wr are optional weights. We then
perform sampling updates using this composite gradient, applying ULA theory as above.

Implementation in Practice. In our experiments, joint ULA sampling is implemented by replac-
ing the noise term in the standard reverse diffusion step with one scaled by

√
2, and substituting the

composite score for the individual model score. Alternatively, if using the original (diffusion) noise
schedule, the resulting samples correspond to a lower-temperature (less stochastic) variant of the
fully tempered ULA trajectory.

F Real Robot Execution of Planned Poses
We conduct our real-robot experiments using a Franka Research 3 (FR3) robotic arm. The robot
performs motion planning to reach target gripper poses while avoiding collisions using MoveIt! [54].

26

We assume that StackItUp’s output, O = {o1, . . . , oM}, is sorted such that lower-level objects
have smaller indices. Each object oi = (τi, pi = (xi, yi, zi)) has a goal pose Hgoal

i with identity
orientation:

Hgoal
i =

 1 0 0 xi

0 1 0 yi
0 0 1 zi
0 0 0 1

 . (8)

We assume the initial pose Hinit
i of each object oi is known. In our setup, we use an L-shaped

bracket with a known pose: by aligning the object with the bracket on a flat surface, its pose can be
determined. Alternatively, vision-based methods can be used to estimate object poses. In practice,
our current setup simplifies deployment by assuming known block types, predefined grasp poses, and
an L-block calibration to fix initial poses, which reduces planning uncertainty. A natural extension
is a fully vision-based pipeline: 3D perception could recover block geometry from point clouds
and generalize to unseen shapes, though this would require robust closed-loop control to mitigate
compounding uncertainty.
For each object type τ ′, we define a relative grasp pose Hgrasp

τ ′ between the gripper frame and the
object frame. We also specify a sequence of approach poses Hpick

τ ′ for picking (e.g., moving the
gripper above the object, then descending to align with it). To pick up an object oi = (τi, pi), the
robot executes the sequence of poses Hinit

i Hgrasp
τi H for each H ∈ Hpick

τi , followed by closing the
gripper. For placement, we define pre-placement and post-placement pose sequences, Hpre−place

τ ′

and Hpost−place, respectively, which are executed before and after opening the gripper.
To assemble the target configuration O, the robot performs the pick-and-place routine sequentially
for each object.

27

Figure 9: Illustrative examples of sketch conversion. For each synthetic 3D block structure (top), we extract
the visible blocks from the front-view (x-z plane), and render their outlines as a 2D sketch (bottom). To better
resemble human-drawn sketches, we further apply edge dilation and Gaussian blur. These converted sketches
serve as input representations for our end-to-end diffusion model baseline.

28

	Introduction
	Related Works
	Problem Formulation
	Stack It Up
	Abstract Relation Graph Extraction
	Abstract Relation Graph Grounding

	Experiment
	Baselines
	Results
	Showcase of StackItUp's Robustness

	Conclusion
	Limitation
	Abstract Relation Library
	Geometric Relations
	Stability Patterns

	Training of Diffusion-based Pose Generators for Abstract Relations
	Baseline Implementation
	Direct VLM Prediction
	Our Ablation: No Hidden Object Prediction

	Hand-drawn Test Cases
	Joint Pose Prediction with Composite Diffusion Scores and ULA
	Real Robot Execution of Planned Poses

