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ABSTRACT

Understanding document from their visual snapshots is an emerging and chal-
lenging problem that requires both advanced computer vision and NLP methods.
Although the recent advance in OCR enables the accurate extraction of text seg-
ments, it is still challenging to extract key information from documents due to the
diversity of layouts. To compensate for the difficulties, this paper introduces a
pre-trained language model, BERT Relying On Spatiality (BROS), that represents
and understands the semantics of spatially distributed texts. Different from pre-
vious pre-training methods on 1D text, BROS is pre-trained on large-scale semi-
structured documents with a novel area-masking strategy while efficiently includ-
ing the spatial layout information of input documents. Also, to generate structured
outputs in various document understanding tasks, BROS utilizes a powerful graph-
based decoder that can capture the relation between text segments. BROS achieves
state-of-the-art results on four benchmark tasks: FUNSD, SROIE*, CORD, and
SciTSR. Our experimental settings and implementation codes will be publicly
available.

1 INTRODUCTION

Document intelligence (DI)1, which understands industrial documents from their visual appearance,
is a critical application of AI in business. One of the important challenges of DI is a key information
extraction task (KIE) (Huang et al., 2019; Jaume et al., 2019; Park et al., 2019) that extracts struc-
tured information from documents such as financial reports, invoices, business emails, insurance
quotes, and many others. KIE requires a multi-disciplinary perspective spanning from computer
vision for extracting text from document images to natural language processing for parsing key
information from the identified texts.

Optical character recognition (OCR) is a key component to extract texts in document images. As
OCR provides a set of text blocks consisting of a text and its location, key information in documents
can be represented as a single or a sequence of the text blocks (Schuster et al., 2013; Qian et al., 2019;
Hwang et al., 2019; 2020). Although OCR alleviates the burden of processing images, understanding
semantic relations between text blocks on diverse layouts remains a challenging problem.

To solve this problem, existing works use a pre-trained language model to utilize its effective repre-
sentation of text. Hwang et al. (2019) fine-tunes BERT by regarding KIE tasks as sequence tagging
problems. Denk & Reisswig (2019) uses BERT to incorporate textual information into image pixels
during their image segmentation tasks. However, since BERT is designed for text sequences, they
artificially convert text blocks distributed in two dimensions into a single text sequence losing spa-
tial layout information. Recently, Xu et al. (2020) proposes LayoutLM pre-trained on large-scale
documents by utilizing spatial information of text blocks. They show the effectiveness of the pre-
training approach by achieving high performance on several downstream tasks. Despite this success,
LayoutLM has three limitations. First, LayoutLM embeds x- and y-axis individually using trainable
parameters like the position embedding of BERT, ignoring the gap between positions in a sequence
and 2D space. Second, its pre-training method is essentially identical to BERT that does not ex-
plicitly consider spatial relations between text blocks. Finally, in its downstream tasks, LayoutLM
only conducts sequential tagging tasks (e.g. BIO tagging) that require serialization of text blocks.

1https://sites.google.com/view/di2019
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These limitations indicate that LayoutLM fails not only to fully utilize spatial information but also
to address KIE problems in practical scenarios when a serialization of text blocks is difficult.

This paper introduces an advanced language model, BROS, pre-trained on large-scale documents,
and provides a new guideline for KIE tasks. Specifically, to address the three limitations mentioned
above, BROS combines three proposed methods: (1) a 2D positional encoding method that can
represent the continuous property of 2D space, (2) a novel area-masking pre-training strategy that
performs masked language modeling on 2D, and (3) a combination with a graph-based decoder
for solving KIE tasks. We evaluated BROS on four public KIE datasets: FUNSD (form-like docu-
ments), SROIE* (receipts), CORD (receipts), and SciTSR (table structures) and observed that BROS
achieved the best results on all tasks. Also, to address KIE problem under a more realistic setting we
removed the order information between text blocks from the four benchmark datasets. BROS still
shows the best performance on these modified datasets. Further ablation studies provide how each
component contributes to the final performances of BROS.

2 RELATED WORK

2.1 PRE-TRAINED LANGUAGE MODELS

BERT (Devlin et al., 2019) is a pre-trained language model using Transformer (Vaswani et al.,
2017) that shows superior performance on various NLP tasks. The main strategy to train BERT
is a masked language model (MLM) that masks and estimates randomly selected tokens to learn
the semantics of language from large-scale corpora. Many variants of BERT have been introduced
to learn transferable knowledge by modifying the pre-training strategy. XLNet (Yang et al., 2019)
permutes tokens during the pre-training phase to reduce a discrepancy from the fine-tuning phase.
XLNet also utilizes relative position encoding to handle long texts. StructBERT (Wang et al., 2020)
shuffles tokens in text spans and adds sentence prediction tasks for recovering the order of words
or sentences. SpanBERT (Joshi et al., 2020) masks span of tokens to extract better representation
for span selection tasks such as question answering and co-reference resolution. ELECTRA (Clark
et al., 2020) is trained to distinguish real and fake input tokens generated by another network for
sample-efficient pre-training.

Inspired by these previous works, BROS utilizes a new pre-training strategy that can capture com-
plex spatial dependencies between text blocks distributed on two dimensions. Note that LayoutLM
is the first pre-trained language model on spatial text blocks but they still employs the original MLM
of BERT.

2.2 KEY INFORMATION EXTRACTION FROM DOCUMENTS

Most of the existing approaches utilize a serializer to identify the text order of key information.
POT (Hwang et al., 2019) applies BERT on serialized text blocks and extracts key contexts via a
BIO tagging approach. CharGrid (Katti et al., 2018) and BERTGrid (Denk & Reisswig, 2019) map
text blocks upon a grid space, identify the region of key information, and extract key contexts in the
pre-determined order. Liu et al. (2019), Yu et al. (2020), and Qian et al. (2019) utilize graph convo-
lutional networks to model dependencies between text blocks but their decoder that performs BIO
tagging relies on a serialization. LayoutLM (Xu et al., 2020) is pre-trained on large-scale documents
with spatial information of text blocks, but it also conducts BIO tagging for their downstream tasks.
However, using a serializer and relying on the identified sequence has two limitations. First, the
information represented in two dimensional layout can be lost by improper serialization. Second,
there may even be no correct serialization order.

A natural way to model key contexts from text blocks is a graph-based formulation that identifies
all relationships between text blocks. SPADE (Hwang et al., 2020) proposes a graph-based decoder
to extract key contexts from identified connectivity between text blocks without any serialization.
Specifically, they utilize BERT without its sequential position embeddings and train the model while
fine-tuning BERT. However, their performance is limited by the amount of data as all relations have
to be learned from the beginning at the fine-tuning stage. To fully utilize the graph-based decoder,
BROS is pre-trained on a large number of documents and is combined with the SPADE decoder to
determine key contexts from text blocks.

2



Under review as a conference paper at ICLR 2021

Figure 1: Overview of BROS for downstream KIE tasks. Tokens in a document are feed into BROS
with their bounding box information. After pre-trained with large-scale unlabeled documents, BROS
is fine-tuned with a graph-based decoder for document KIE tasks that have small labeled documents.

3 BERT RELYING ON SPATIALITY (BROS)

The main structure of BROS follows BERT, but there are three novel differences: (1) a spatial en-
coding metric that reflects the continuous property of 2D space, (2) a pre-training objective designed
for text blocks on 2D space, and (3) a guideline for designing downstream models based on a graph-
based formulation. Figure 1 shows visual description of BROS for document KIE tasks.

3.1 ENCODING SPATIAL INFORMATION INTO BERT

3.1.1 REPRESENTATION OF A TEXT BLOCK LOCATION

The way to represent spatial information of text blocks is important to encode information from
layouts. We utilize sinusoidal functions to encode continuous values of x- and y-axis, and merge
them through a linear transformation to represent a point upon 2D space.

For formal description, we use p = (x, y) to denote a point on 2D space and f sinu : R → RDs

to represent a sinusoidal function. Ds is the dimensions of sinusoid embedding. BROS encodes
a 2D point by applying the sinusoidal function to x- and y-axis and concatenating them as p̄ =
[f sinu(x)⊕ f sinu(y)]. The ⊕ symbol indicates concatenation. The bounding box of a text block, bbi,
consists of four vertices, such as ptl

i , ptr
i , pbr

i , and pbl
i that indicate top-left, top-right, bottom-right,

and bottom-left points, respectively. The four points are converted into vectors such as p̄tl
i , p̄tr

i , p̄br
i ,

and p̄bl
i with f sinu. Finally, to represent a spatial embedding, bbi, BROS combines four identified

vectors through a linear transformation,

bbi = W tlp̄tl
i + W trp̄tr

i + W brp̄br
i + W blp̄bl

i , (1)

where W tl, W tr, W br, W bl ∈ RH×2Ds
are linear transition metrics and H is a hidden size of

BERT. The periodic property of the sinusoidal function can encode continuous 2D coordinates more
natural than using point-specific embedding used in BERT and LayoutLM. In addition, by learning
the linear transition parameters, BROS provides an effective representation of a bounding box.

3.1.2 ENCODING SPATIAL REPRESENTATION

Position encoding methods affect how models utilize the position information. In BERT, position
embedding is tied with the token through a point-wise summation. However, 2D spatial information
is richer than 1D sequence due to the their continuous property and the high dimensionality. More-
over, text blocks can be placed over various locations on documents without significant changes in
its semantic meaning. For example, locations of page numbers differ over multiple document snap-
shots even though they are captured from a single document. Therefore, more advanced approach
is required to maximally include spatial information during encoding beyond the simple summation
approach used in BERT. In BROS, the spatial information is directly encoded during the contextual-
ization of text blocks. Specifically, BROS calculates an attention logit combining both semantic and
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(a) Random token selection and token masking (b) Random area selection and block masking

Figure 2: Comparison of (a) conventional token masking and (b) area masking. Although there can
be multiple tokens in a single text block, the token masking flats all tokens of a document, selects
a token randomly (red), and masks it directly (black). In contrast, the area masking selects a text
block, identifies an area by expanding the block area with an exponential distribution (red), masks
tokens in all text blocks of which center is aligned in the identified area (black). In both, 15% of
tokens are masked.

spatial features. The former is the same as the original attention mechanism in Transformer (Vaswani
et al., 2017), but the latter is a new component identifying the importance of the target location when
the source context and location are given. Our proposed attention logit is formulated as follows,

Ai,j = (W qti)
>(W ktj) + (W qti �W sq|qbbi)

>(W sk|qbbj) + (W sqbbi)
>(W skbbj), (2)

where ti and tj are context representations for ith and jth tokens and W q, W k, W sq|q, W sk|q,
W sq, W sk are linear transition matrices. The � symbol indicates Hadamard product. The first
term indicates an attention logit from contextual representations and the third term is from spatial
representation. The second term is designed to model the spatial dependency given the source
semantic representation, ti. The second and third terms are independently calculated at each layer
because spatial dependencies might differ over layers.

3.2 PRE-TRAINING OBJECTIVE: AREA-MASKED LANGUAGE MODEL

Pre-training diverse layouts from unlabeled documents is a key factor for document understanding
tasks. To learn effective spatial representation including relationships between text blocks, we pro-
pose a novel pre-training objective. Inspired by SpanBERT (Joshi et al., 2020), we expand spans of
a 1D sequence to consecutive text blocks in 2D space. Specifically, we select a few regions in a doc-
ument layout, mask all tokens of text blocks in the selected regions, and estimate the masked tokens.
The rules for masking tokens in area-masked language model are as the following procedure.

(a) Select a text block randomly and get the top-left and bottom-right points (ptl and pbr) of the block.
(b) Identify the width, height, and center of the block as (w, h) = |ptl − pbr| and c = (ptl + pbr)/2.

(c) Expand the width and height as (ŵ, ĥ) = l ∗ (w, h) where l ∼ exp(λ) and λ is a distribution parameter.

(d) Identify rectangular masking area of which top-left and bottom-right are p̂tl = ptl − (ŵ, ĥ), and p̂br =

pbr + (ŵ, ĥ), respectively.
(e) Mask all tokens of text blocks whose centers are allocated in the area.
(f) Repeat (a)–(e) until 15% of tokens are masked.

The rationale behind using exponential distribution is to convert the geometric distribution used
in SpanBERT for a discrete domain into distribution for a continuous domain. Thus, we set λ =
−ln(1 − p) where p = 0.2 used in SpanBERT. In addition, we truncated exponential distribution
with 1 to prevent an infinity multiplier covering all space of the document. It should be noted that
the masking area is expanded from a randomly selected text block since the area should be related
to the text sizes and locations to represent text spans in 2D space. Figure 2 compares token- and
area-masking on text blocks.
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Finally, the loss function for the area-masked language model is formed as;

LAMLM = −
∑

x̂∈A(x)

log p(x̂|x\A(x)), (3)

where x, A(x), and x\A(x) denote tokens in given image, masked tokens of which text block is
located in masking area, and the rest tokens, respectively. Similar to BERT (Devlin et al., 2019), the
masked tokens are replaced by [MASK] token 80% of the time, a random token 10% of the time, or
an unchanged token 10% of the time.

3.3 SPATIAL DEPENDENCY PARSERS FOR DOWNSTREAM TASKS

Key information in a document (e.g. store address in a receipt) is represented as sub-sequences of
text blocks. Although BIO tagging has been used to extract the sub-sequences from a text sequence,
it cannot represent key texts in a document without the optimal order of text blocks. Therefore,
BIO tagging cannot be applied when the optimal order is not available which often can appear in a
practical scenario.

To deal with the issue, BROS utilizes a decoder of SPADE (Hwang et al., 2020) that can infer a
sequence of text blocks by employing a graph-based formulation. BROS supports two downstream
tasks: (1) an entity extraction (EE) task and (2) an entity linking (EL) task. The EE identifies a
sequence of text blocks for key information (e.g. extract address texts in a receipt) and the EL
determines relations between target texts when target text blocks are known (e.g. identify key and
value text pairs).

(a) Starting token classification (b) Next token classification (c) Entity linking (EL) task

Figure 3: Visual descriptions of BROS downstream tasks. For EE tasks, BROS combines two sub-
tasks such as (a) and (b). For EL task, BROS links the first tokens of the entities.

For EE tasks, BROS divides the problem into two sub-tasks: starting token classification (Figure 3,
a) and subsequent token classification (Figure 3, b). Let t̃i ∈ RH denote the ith token representation
from the last Transformer layer of BROS. The starting token classification conducts a token-level
tagging determining whether a token is a starting token of target information as follows,

fstc(t̃i) = softmax(W stct̃i) ∈ RC+1, (4)

where W stc ∈ R(C+1)×H is a linear transition matrix and C indicates the number of target classes.
Here, the extra +1 dimension is considered to indicate non-starting tokens.

The subsequent token classification is conducted by utilizing pair-wise token representations as
follows,

fntc(t̃i) = softmax((W ntc-st̃i)
>(tntc ⊕W ntc-tt̃1 ⊕ · · · ⊕W ntc-tt̃N ))> ∈ RN+1, (5)

where W ntc-s,W ntc-t ∈ RHntc×H are linear transition matrices, Hntc is a hidden feature dimension
for the next token classification decoder andN is the maximum number of tokens. Here, tntc ∈ RHntc

is a model parameter to classify tokens which do not have a next token or are not related to any class.
It has a similar role with an end-of-sequence token, [EOS], in NLP. By solving these two sub-tasks,
BROS can identify a sequence of text blocks by finding first tokens and connecting subsequent
tokens.

For EL tasks, BROS conducts a binary classification for all possible pairs of tokens (Figure 3, c) as
follows,

frel(t̃i, t̃j) = sigmoid((W rel-st̃i)
>(W rel-tt̃j)), (6)
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where W rel-s,W rel-t ∈ RH rel×H are linear transition matrices andH rel is a hidden feature dimension.
Compared to the subsequent token classification, a single token can hold multiple relations with
other tokens to represent hierarchical structures of document layouts. For more detail about this
graph-based formulation, see Appendix E.

4 KEY INFORMATION EXTRACTION TASKS

Here, we describe three EE tasks and three EL tasks from four KIE benchmark datasets.

• Form Understanding in Noisy Scanned Documents (FUNSD) (Jaume et al., 2019) is a set of
documents with various forms. The dataset consists of 149 training and 50 testing examples.
FUNSD has both EE and EL tasks. In the EE task, there are three semantic entities: Header,
Question, and Answer. In the EL task, the semantic hierarchies are represented as relations
between text blocks like header-question and question-answer pairs.

• SROIE* is a variant of Task 3 of “Scanned Receipts OCR and Information Extraction” (SROIE)2

that consists of a set of store receipts. In the original SROIE task, semantic contents (Company,
Date, Address, and Total price) are generated without explicit connection to the text blocks. To
convert SROIE into a EE task, we developed SROIE* by matching ground truth contents with
text blocks. We also split the original training set into 526 training and 100 testing examples
because the ground truths are not given in the original test set. SROIE* will be publicly available.

• Consolidated Receipt Dataset (CORD) (Park et al., 2019) is a set of store receipts with 800
training, 100 validation, and 100 testing examples. CORD consists of both EE and EL tasks. In
the EE task, there are 30 semantic entities including menu name, menu price, and so on. In the
EL task, the semantic entities are linked according to their layout structure. For example, menu
name entities are linked to menu id, menu count, and menu price.

• Complicated Table Structure Recognition (SciTSR) (Chi et al., 2019) is a EL task that connects
cells in a table to recognize the table structure. There are two types of relations: vertical and
horizontal connection between cells. The dataset consists of 12,000 training images and 3,000
test images.

Although, these four datasets provide test beds for the EE and EL tasks, they represent the subset of
real problems as the optimal order of text blocks is given. In real service, user can submit documents
with a complex layout where the serialization of input texts are non-trivial. FUNSD provides the
optimal orders of text blocks related to target classes in both training and testing examples. In
SROIE*, CORD, and SciTSR, the text blocks are serialized in reading orders.

To reveal the serialization problem in the EE and EL tasks, we randomly permuted text blocks of
the datasets to remove their order information. We denote the permuted datasets as p-FUNSD, p-
SROIE*, p-CORD, and p-SciTSR and compare all models on them. For fair comparisons, we will
open the permuted datasets.

5 EXPERIMENTS

5.1 EXPERIMENT SETTINGS

For pre-training, IIT-CDIP Test Collection 1.03 (Lewis et al., 2006), which consists of approximat-
ley 11M document images, is used but 400K RVL-CDIP dataset4 (Harley et al., 2015) is excluded
following LayoutLM. In-house OCR engine was applied to obtain text blocks from unlabeled docu-
ment images.

The main Transformer structure of BROS is the same as BERT. By following BERTBASE, the hidden
size, the number of self-attention heads, the feed-forward size, and the number of Transformer layers
set to 768, 12, 3072, and 12, respectively. The same pre-training setting with LayoutLM is used for
a fair comparison.

2https://rrc.cvc.uab.es/?ch=13
3https://ir.nist.gov/cdip/
4https://www.cs.cmu.edu/ aharley/rvl-cdip/
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Entity Extraction Entity Linking
Dataset Model P R F1 P R F1

FUNSD

BERT (Xu et al., 2020) 54.69 61.70 60.26 30.89 25.03 27.65
LayoutLM (Xu et al., 2020) 75.97 81.55 78.66 - - -
LayoutLM† 76.12 81.88 78.89 47.80 48.21 48.00
BROS 80.56 81.88 81.21 64.70 70.83 67.63

SROIE*
BERT 92.90 94.47 93.67
LayoutLM† 94.31 95.78 95.04 -
BROS 94.93 96.03 95.48

CORD
BERT 93.08 93.18 93.13 93.03 92.62 92.83
LayoutLM† 95.03 94.58 94.80 93.58 92.72 93.15
BROS 95.58 95.14 95.36 94.37 92.80 93.58

SciTSR

Tabby (Shigarov et al., 2016) 92.6 92.0 92.1
DeepDeSRT (Schreiber et al., 2017) 90.6 88.7 89.0
GraphTSR (Chi et al., 2019) - 95.9 94.8 95.3
BERT 87.61 85.92 86.76
LayoutLM† 98.76 99.44 99.09
BROS 99.05 99.47 99.26

Table 1: Performance comparisons on three EE and three EL tasks with the optimal order informa-
tion of text blocks. P, R, and F1 indicate precision, recall, and F1 scores, respectively. For EL tasks
connecting entities, SPADE decoder is applied for all pre-trained models such as BERT, LayoutLM,
and BROS. The scores are the average of the results with 5 different random seeds.

BROS is trained by using AdamW optimizer (Loshchilov & Hutter, 2019) with a learning rate of
5e-5 with linear decay. First 10% of the total epochs are used for a warm-up. We initialized weights
of BROS with those of BERTBASE and trained BROS on IIT-CDIP for 2 epochs with 80 of batch size,
following LayoutLM. The pre-training takes 64 hours on 8 NVIDIA Tesla V100s with Distributed
Data Parallel (DDP).

During fine-tuning, the learning rate is set to 5e-5. The batch size is set to 16 for all tasks. The
number of training epochs or steps is as follows: 100 epochs for FUNSD, 1K steps for SROIE* and
CORD, and 7.5 epochs for SciTSR. The hidden feature dimensions, Hntc and H rel, of the SPADE
decoder are set to 128 for FUNSD, 64 for SROIE*, and 256 for CORD and SciTSR.

Although the authors of LayoutLM published their codes on GitHub5, the data and script file used
for pre-training are not included. For a fair comparison, we made our own implementation, which
we refer to LayoutLM†, on the same pre-training data and script file used for BROS pre-training.
We verified LayoutLM† by comparing its performances on FUNSD from the reported scores in (Xu
et al., 2020). See Appendix A for more information.

5.2 EXPERIMENTAL RESULTS WITH OPTIMAL ORDER INFORMATION

Table 1 shows the results on four KIE datasets with given optimal order information of text blocks.
For EL tasks, we applied SPADE decoders to all pre-trained models such as BERT, LayoutLM,
and BROS. In all tasks, we observed that BERT shows lower scores than LayoutLM and BROS
presumably due to the loss of spatial information. BROS achieves the highest scores showing the
effectiveness of our approach. Specifically, in FUNSD, BROS shows the state-of-the-art perfor-
mances with a large margins of 2.32pp in the EE task and 19.63pp in the EL task. Moreover, it
should be noted that BROS achieves higher F1 score than one of the LayoutLM variants, which
utilizes visual features (81.21 > 79.27 (Xu et al., 2020)). In SROIE* and CORD, BROS also shows
the best performances over all the EE and EL tasks. In SciTSR, LayoutLM and BROS show the im-
portance of pre-training by exceeding other baselines with large margins which are trained by using
either only spatial information of cells (Tabby and DeepDeSRT) or without pre-training spatial texts

5https://github.com/microsoft/unilm/tree/master/layoutlm
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(GraphTSR). These results prove that BROS captures better representations of text blocks for KIE
downstream tasks.

5.3 EXPERIMENTAL RESULTS WITHOUT OPTIMAL ORDER INFORMATION

It is an another challenging problem to arrange text blocks in the order that humans can under-
stand (Li et al., 2020). Although most commercial OCR products provide an order of OCR text
blocks, they are unable to reconcile the structural formatting of the texts precisely (See Appendix B).
Therefore, the experiments in Section 5.2 cannot fully represent real KIE problems because they as-
sume the optimal order of text blocks is given. To reveal the challenge, we removed the order
information in all datasets by permuting the order of text blocks as mentioned in Section 4 and
investigated how BERT, LayoutLM, and BROS work without the order information. We utilized
a SPADE decoder for all models because BIO tagging on these permuted dataset cannot extract a
sequence of text blocks in a correct order.

Entity Extraction Entity Linking
Dataset Model P R F1 P R F1

p-FUNSD
BERT 21.17 16.99 18.85 14.13 7.26 9.59
LayoutLM† 34.98 32.55 33.72 28.73 23.67 25.95
BROS 74.84 75.50 75.14 63.94 65.53 64.73

p-SROIE
BERT 40.65 38.84 39.73
LayoutLM† 67.42 66.48 66.94 -
BROS 81.32 81.36 81.34

p-CORD
BERT 59.84 59.58 59.71 31.29 25.14 27.88
LayoutLM† 77.49 77.27 77.38 56.11 53.67 54.86
BROS 93.86 93.68 93.77 84.77 83.15 83.95

p-SciTSR
BERT 59.42 0.89 1.75
LayoutLM† - 95.59 99.04 97.28
BROS 98.90 99.32 99.11

Table 2: Performance comparisons on three EE and three EL tasks without the optimal order infor-
mation of text blocks. All models utilize the SPADE decoder because BIO tagging cannot be used
without the optimal order. The scores are the average of the results with 5 different random seeds.

Table 2 shows the results. Due to the lose of correct orders, BERT shows poor performances over all
tasks. By utilizing spatial information of text blocks, LayoutLM† shows better performance but it
suffers from huge performance degradation compared to the score computed with the optimal order.
On the other hand, BROS shows comparable results compared the cases with the optimal order and
achieves better performances than BERT and LayoutLM†.

To systematically investigate how the order information affects the performance of the models, we
construct variants of FUNSD by re-ordering text blocks with two sorting methods based on the top-
left points. The text blocks of xy-FUNSD are sorted according to x-axis with ascending order of
y-axis and those of yx-FUNSD are sorted according to y-axis with ascending order of x-axis.

Table 3 shows performance on p-FUNSD, xy-FUNSD, yx-FUNSD, and the original FUNSD. All
models utilize a SPADE decoder for a fair comparison. Interestingly, the performance of LayoutLM†
is degraded in the order of FUNSD, yx-FUNSD, xy-FUNSD, and p-FUNSD as like the order of the
reasonable serialization for text on 2D space. On the other hand, the performance of BROS is
relatively consistent. These results show that BROS is applicable to real KIE problems without
relying on an additional serialization method.

5.4 ABLATION STUDIES

Table 4 provides the result of the ablative experiments computed while changing pre-training strat-
egy, 2D position embedding and encoding methods, and a decoder for downstream tasks. The 2D
embedding method represents how to treat spatial information of text blocks and the 2D encoding
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Model p-FUNSD xy-FUNSD yx-FUNSD FUNSD

LayoutLM† 33.72 36.61 60.50 77.30
BROS 75.14 75.24 76.26 81.21

Table 3: Comparison of the EE task performance changes according to sorting methods. p-FUNSD
and FUNSD indicate permuted and original datasets, repectively. xy-FUNSD/yx-FUNSD represents
datasets in which text blocks are sorted on x/y-axis with the top-left point of the blocks and then
sorted on y/x-axis again if holding the same values. For the same reason as in Table 2, all model
utilize a SPADE decoder. The scores indicate averages of F1 scores for the EE task and they are
repeated five times.

MLM F1 2D position embedding method F1
Random tokens (LayoutLM’s) 73.85 Look-up tables (LayoutLM’s) 67.99
Random areas 74.44 Sinusoid & linear 74.44

2D position encoding method F1 Decoder for downstream tasks F1
Tied with token embedding (LayoutLM’s) 42.46 BIOE tagging (LayoutLM’s) 73.16
Untied with token embedding 74.44 SPADE decoder 74.44

Table 4: Ablative studies of the proposed changes from BROS’s to LayoutLM’s on the FUNSD EE
task. For each ablation, the other components are set as those of BROS. The number of pre-training
data is 512K and the scores are the average of 5 experimental results.

method indicates how to merge the 2D embeddings into BERT. The results show that all modifica-
tions improve performance when comparing the methods of LayoutLM. Specifically, 2D position
embedding and its encoding methods show huge performance gaps by 6.45pp and 31.98pp, respec-
tively. These results represent a co-modality of our 2D continuous position embedding approach
and its untied encoding method.

LayoutLM and BROS are initialized with weights of BERT to utilize powerful knowledge of BERT
that learns from large-scale corpora. However, BERT includes its 1D positional embeddings (1D-
PE) that might be harmful by making a sequence of text blocks even though there is no order in-
formation. To investigate the effectiveness of the 1D-PE, we conduct an additional ablative study.
BROS without the 1D-PE shows the same F1 scores on both FUNSD and p-FUNSD (70.07), but
BROS with the 1D-PE shows performance degradation when the dataset loses the optimal order
information (81.21 on FUNSD→ 75.14 on p-FUNSD). Nevertheless, BROS with the 1D-PE shows
better performances on both datasets. This might be because the 1D-PE preserves the token order in
a single text block. Based on this result, we decided to incorporate the 1D-PE in our model.

6 CONCLUSION

We present a novel pre-trained language model, BROS, for understanding semi-structured docu-
ments. BROS encodes 2D continuous position of text blocks and learns natural language from text
blocks with an area-driven training strategy. To extract key contexts from text blocks without the
order information, BROS adapts a graph-based decoder that identifies text sequences for EE tasks
and layout relationships for EL tasks. In our extensive experiments on three EE and three EL tasks,
BROS consistently shows better performances as well as the robustness on perturbed orders of text
blocks compared to the existing approaches.
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Höhne, and Jean Baptiste Faddoul. Chargrid: Towards understanding 2d documents. In Proceed-
ings of the 2018 Conference on Empirical Methods in Natural Language Processing (EMNLP),
pp. 4459–4469, 2018.

David Lewis, Gady Agam, Shlomo Argamon, Ophir Frieder, D Grossman, and Jefferson Heard.
Building a test collection for complex document information processing. In Proceedings of the
29th annual international ACM SIGIR conference on Research and development in information
retrieval (SIGIR), pp. 665–666, 2006.

Liangcheng Li, Feiyu Gao, Jiajun Bu, Yongpan Wang, Zhi Yu, and Qi Zheng. An end-to-end OCR
text re-organization sequence learning for rich-text detail image comprehension. In Proceedings
of the 16th European Conference on Computer Vision (ECCV), 2020.

Xiaojing Liu, Feiyu Gao, Qiong Zhang, and Huasha Zhao. Graph convolution for multimodal in-
formation extraction from visually rich documents. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies (NAACL-HLT), Volume 2 (Industry Papers), pp. 32–39, 2019.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In Proceedings of the
7th International Conference on Learning Representations (ICLR), 2019.

10



Under review as a conference paper at ICLR 2021

Seunghyun Park, Seung Shin, Bado Lee, Junyeop Lee, Jaeheung Surh, Minjoon Seo, and Hwalsuk
Lee. CORD: A consolidated receipt dataset for post-ocr parsing. In Workshop on Document
Intelligence at NeurIPS 2019, 2019.

Yujie Qian, Enrico Santus, Zhijing Jin, Jiang Guo, and Regina Barzilay. GraphIE: A graph-based
framework for information extraction. In Proceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language Technologies
(NAACL-HLT), Volume 1 (Long and Short Papers), pp. 751–761, 2019.

Sebastian Schreiber, Stefan Agne, Ivo Wolf, Andreas Dengel, and Sheraz Ahmed. DeepDeSRT:
Deep learning for detection and structure recognition of tables in document images. In Proceed-
ings of the 14th International Conference on Document Analysis and Recognition (ICDAR), pp.
1162–1167. IEEE, 2017.

Daniel Schuster, Klemens Muthmann, Daniel Esser, Alexander Schill, Michael Berger, Christoph
Weidling, Kamil Aliyev, and Andreas Hofmeier. Intellix–end-user trained information extrac-
tion for document archiving. In Proceedings of the 12th International Conference on Document
Analysis and Recognition (ICDAR), pp. 101–105. IEEE, 2013.

Alexey Shigarov, Andrey Mikhailov, and Andrey Altaev. Configurable table structure recognition
in untagged PDF documents. In Proceedings of the 2016 ACM Symposium on Document Engi-
neering (DocEng), pp. 119–122, 2016.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems 30 (NeurIPS), pp. 5998–6008, 2017.

Wei Wang, Bin Bi, Ming Yan, Chen Wu, Jiangnan Xia, Zuyi Bao, Liwei Peng, and Luo Si. Struct-
BERT: Incorporating language structures into pre-training for deep language understanding. In
Proceedings of the 8th International Conference on Learning Representations (ICLR), 2020.

Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, and Ming Zhou. LayoutLM: Pre-
training of text and layout for document image understanding. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD), pp. 1192–
1200, 2020.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, and Quoc V Le.
XLNet: Generalized autoregressive pretraining for language understanding. In Advances in Neu-
ral Information Processing Systems 32 (NeurIPS), pp. 5753–5763, 2019.

Wenwen Yu, Ning Lu, Xianbiao Qi, Ping Gong, and Rong Xiao. PICK: Processing key information
extraction from documents using improved graph learning-convolutional networks. In Proceed-
ings of the 25th International Conference on Pattern Recognition (ICPR), 2020.

11



Under review as a conference paper at ICLR 2021

A REPRODUCING THE LAYOUTLM

As mentioned in the paper, to compare BROS from LayoutLM in diverse experimental settings, we
implement LayoutLM in our experimental pipeline. Table 5 compares our implementations from the
reported scores in Xu et al. (2020). As can be seen, multiple experiments are conducted according
to the number of pre-training data. Our implementation, referred to LayoutLM†, shows comparable
performances over all settings.

# Pre-training Data # Epochs Model P R F1

500K 1 LayoutLM (Xu et al., 2020) 0.5779 0.6955 0.6313
LayoutLM† 0.5823 0.6935 0.6330

1M 1 LayoutLM (Xu et al., 2020) 0.6156 0.7005 0.6552
LayoutLM† 0.6142 0.7151 0.6608

2M 1 LayoutLM (Xu et al., 2020) 0.6599 0.7355 0.6957
LayoutLM† 0.6562 0.7456 0.6980

11M
1 LayoutLM (Xu et al., 2020) 0.7464 0.7815 0.7636

LayoutLM† 0.7384 0.8022 0.7689

2 LayoutLM (Xu et al., 2020) 0.7597 0.8155 0.7866
LayoutLM† 0.7612 0.8188 0.7889

Table 5: Sanity checking of LayoutLM† by comparing its performances on FUNSD from the re-
ported scores in Xu et al. (2020).

B VISUALIZATION OF SERIALIZED OCR BLOCKS

Figure 4: OCR block sequence comparisons between appropriate reading order and commercial
OCR (Google Cloud - Vision API) on FUNSD training sample. Red text denotes question, green
texts denotes answer, circled number denotes appropriate reading order, order of OCR output each.

With the developments in the field of machine learning, the performance of commercial OCR has
improved over the years. However, it is still hard to entrust the ordering of commercial OCR block
outputs Li et al. (2020). Figure 4 shows the gap between the comprehensive reading order and
outputs of commercial OCR. Specifically, the figure contrasts how the words in the OCR results
should be serialized (Figure 4a) but most commercially available OCR technologies are unable to
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reconcile the structural formatting of the text – leading to them ordering the words horizontally
(Figure 4b). This cursory example illustrates that as advanced as commercial OCR solutions have
become, there are still ways to improve and our proposed method is one way in which this can be
done.

C ABLATION STUDIES

Here, we provide more ablation studies on the components proposed in the paper. In the following
tables, the number of pre-training data is 512K and the scores (F1) are the average of 5 experimental
results. And for all the EL tasks, since BIO tagging cannot address the problem, SPADE decoder is
applied to all models.

C.1 FURTHER ABLATION STUDIES ON ALL DOWNSTREAM TASKS

Table 6 and Table 7 are the extension of Table 4 and show the F1 scores for all downstream EE and
EL tasks measured by changing each components one by one in BROS. From these tables, we can
see that the settings of BROS show the best performance in most cases.

Model FUNSD EE SROIE EE CORD EE
BROS 74.44 93.99 95.15
(area-masking→ token-masking) 73.85 93.07 94.89
(sinusoid & linear→ look-up table) 67.99 92.22 93.53
(untied→ tied) 42.46 26.39 75.21
(SPADE decoder→ BIO tagging) 73.16 93.70 94.88

Table 6: Ablation studies on all downstream EE tasks. For each ablation, the other components are
set as those of BROS except for the highlighted component.

Model FUNSD EL CORD EL SciTSR EL
BROS (with SPADE decoder) 42.48 90.59 99.17
(area-masking→ token-masking) 41.92 89.80 99.15
(sinusoid & linear→ look-up table) 32.11 86.55 98.65
(untied→ tied) 27.83 76.35 98.76

Table 7: Ablation studies on all downstream EL tasks. For each ablation, the other components are
set as those of BROS except for the highlighted component.

C.2 GRADUALLY ADDING PROPOSED COMPONENTS TO THE ORIGINAL LAYOUTLM

To evaluate performance improvements from LayoutLM, we provide the experimental results when
gradually adding each new component. Table 8 and Table 9 provide performance changes of F1
score for EE and EL tasks, respectively. In most cases, our proposed methods show performance
improvements over all tasks.

Model FUNSD EE SROIE EE CORD EE
LayoutLM 64.54 93.47 92.81

+ area-masking strategy 65.98 92.97 93.56
+ untied token encoding 66.78 93.70 93.46
+ positional embedding (sinusoid & linear) 73.16 93.70 94.88
+ SPADE decoder (→ BROS) 74.44 93.99 95.15

Table 8: Performance improvements on EE tasks through gradual changes from Layout’s method to
our method. At the last line, all components are changed from LayoutLM and the model becomes
BROS.
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Model FUNSD EL CORD EL SciTSR EL
LayoutLM (with SPADE decoder) 29.18 86.29 98.35

+ area-masking strategy 31.74 86.47 98.67
+ untied token encoding 32.11 86.55 98.65
+ sinusoid & linear (→ BROS) 42.48 90.59 99.17

Table 9: Performance improvements on EL tasks through gradual changes from Layout’s method to
our method. At the last line, all components are changed from LayoutLM and the model becomes
BROS.

C.3 PROPOSED COMPONENTS ON THE ORIGINAL LAYOUTLM

For apples-to-apples comparison, we provides performance changes when adding each proposed
component on LayoutLM. The results are shown in Table 10 and Table 11. When changing the
original module to ours, the performances are solely increased except for the case of the positional
embedding (sinusoid & linear). Interestingly, when combining our positional embedding and en-
coding (untied), the performance is dramatically increased. This result shows the benefits of using
our proposed embedding and encoding methods together.

Model FUNSD EE SROIE EE CORD EE
LayoutLM 64.54 93.47 92.81
(token-masking→ area-masking) 65.98 92.97 93.56
(tied→ untied) 66.03 94.23 93.38
(look-up table→ sinusoid & linear) 49.42 79.16 87.76
(tied + look-up table→ untied + sinusoid & linear) 72.48 93.61 94.89
(BIO tagging→ SPADE decoder) 65.91 92.18 92.93

Table 10: Performance comparison on EE tasks when changing from Layout’s method to our
method. At each ablation, the other components are set as those of LayoutLM.

Model FUNSD EL CORD EL SciTSR EL
LayoutLM (with SPADE decoder) 29.18 86.29 98.35
(token-masking→ area-masking) 31.74 86.47 98.67
(tied→ untied) 32.79 86.60 98.62
(look-up table→ sinusoid & linear) 32.31 80.06 98.91
(tied + look-up table→ untied + sinusoid & linear) 41.92 89.80 99.15

Table 11: Performance comparison on EL tasks when changing from Layout’s method to our
method. At each ablation, the other components are set as those of LayoutLM.
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D RESOURCE ANALYSIS

Table 12 shows the resource and speed analysis of LayoutLM and BROS. The F1 scores of Lay-
outLM are referred from (Xu et al., 2020) and all pre-training models are trained with 1 epoch of
11M data. As can be seen, BROS shows better performance than LayoutLMLARGE even though
requiring fewer parameters and less inference time.

Model Backbone # params inference time (ms) FUNSD EE
LayoutLMBASE BERTBASE 113M 100.46 76.36
BROS BERTBASE 139M 135.36 79.63
LayoutLMLARGE BERTLARGE 343M 292.08 77.89

Table 12: Resource analysis of LayoutLM and BROS. To measure the inference time, we used 1
NVIDIA Tesla V100 32GB GPU with a batch size of 8.

E GRAPH-BASED FORMALIZATION FOR EE AND EL TASKS

Document KIE is a task that extracts structural information from documents. In this paper, we
defined EE task that identifies text sequences for target classes and EL task that links the head of
the text sequences to determine structural information of documents. These EE and EL tasks can
be interpreted as tasks that identify a directional graph structure between OCR text blocks. In this
formalization, all tokens are treated as nodes in a graph and the links between the nodes indicate
the structural relationships between tokens in a document. Figure 5 shows examples of FUNSD,
SROIE, CORE, and SciTSR with the graph-based formalization.

F SAMPLE INFERENCE RESULTS OF THE FUNSD EE AND EL TASKS

Figure 6 shows the inference results of LayoutLM and BROS and the ground truth of a same FUNSD
image. Even though the document has a complex layout, BROS identified key contexts and relations
reasonably. However, we observed that LayoutLM tends to link unrelated contexts that are spatially
far in the layout.
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(a) FUNSD EE task
(b) CORD EE task

(c) SROIE EE task

(d) FUNSD EL task
(e) CORD EL task

(f) SciTSR EL task

Figure 5: Examples of EE and EL task definition through graph-based formalization in all down-
stream tasks. For all EE tasks, the colored boxes indicate the first boxes of target classes and the
green arrows represent next word connections. For example, the first menu in (b) has the first word
is “1001-Choco” and its next word is “Bun”. For EL tasks, the structural relationship between com-
ponents are represented with red arrows. For example, the first menu (“1001-Choco Bun”) in (b)
has multiple sub information such as unit price (“22.000”), count (“x1”), and total price (“22.000”).
SciTSR has two types of relations such as “horizontal” (red) and “vertical” (blue). As shown in the
examples, EE and EL tasks can be formed with these graph-based formalization.
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(a) EE task - LayoutLM (b) EE task - BROS (c) EE task - GT

(d) EL task - LayoutLM (e) EL task - BROS (f) EL task - GT

Figure 6: Inference EE and EL results on a sample FUNSD image. The images of upper row show
the results of LayoutLM, BROS, and ground truth for EE task and the images of lower row show
those for EL task. In EE task, the red, green, and blue boxes indicate Question, Answer, ans Header
classes, respectively. In EL task, the blue boxes indicate key blocks and the red lines show the
relations.
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