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ABSTRACT

Dynamic Text-Attribute Graphs (DyTAGsS), characterized by time-evolving graph
interactions and associated text attributes, are prevalent in real-world applications.
Existing methods, such as Graph Neural Networks (GNNs) and Large Language
Models (LLMs), mostly focus on static TAGs. Extending these existing methods to
DyTAG:s is challenging as they largely neglect the recent-global temporal seman-
tics: the recent semantic dependencies among interaction texts and the global se-
mantic evolution of nodes over time. Furthermore, applying LLMs to the abundant
and evolving text in DyTAGs faces efficiency issues. To tackle these challenges,
we propose Dynamic Global-Recent Adaptive Semantic Processing (DyGRASP),
a novel method that leverages LLMs and temporal GNNss to efficiently and ef-
fectively reason on DyTAGs. Specifically, we first design a node-centric implicit
reasoning method together with a sliding window mechanism to efficiently capture
recent temporal semantics. In addition, to capture global semantic dynamics of
nodes, we leverage explicit reasoning with tailored prompts and an RNN-like chain
structure to infer long-term semantics. Lastly, we intricately integrate the recent
and global temporal semantics as well as the dynamic graph structural information
using updating and merging layers. Extensive experiments on DyTAG bench-
marks demonstrate DyGRASP’s superiority, achieving up to 34% improvement in
Hit@10 for destination node retrieval task. Besides, DyGRASP exhibits strong
generalization across different temporal GNNs and LLMs.

1 INTRODUCTION

Dynamic Text-Attribute Graphs (DyTAGs) are widely present in real-world scenarios like E-
commerce, knowledge graphs, and social networks (Khrabrov & Cybenko, 2010; Deng et al., 2019;
Song et al., 2019; Zhang et al., 2022; Tang et al., 2023; Luo et al., 2023; Huang et al., 2022). Unlike
commonly studied TAGs (Sen et al., 2008; Giles et al., 1998; Mernyei & Cangea, 2020; Hu et al.,
2020; He et al., 2023; Yan et al., 2023), where nodes only contain static text attributes, DyTAGs
contain evolving information over time and involve interactions accompanied by timestamp and
dynamic text attributes (Zhang et al., 2024). For example, consider an E-comment graph illustrated
in Figure 1 where nodes represent users or merchants and interactions represent user reviews to
merchants. Clearly, the spatio-temporal patterns of DyTAGs contain more abundant information than
static TAGs. How to fully mine the rich value underlying DyTAGs is essential for both academia and
industry.

For static TAGs, most primitive approaches resort to Graph Neural Networks (GNNs) (Wu et al.,
2019; Li et al., 2021; Velickovi¢ et al., 2018; Hamilton et al., 2017; Kipf & Welling, 2017) for their
end-to-end learning capabilities. While excelling at capturing graph structural information, these
methods usually only adopt shallow text encodings, such as Bag-of-Words or word embeddings as
features, thus lacking strong semantic knowledge to understand the textual attributes comprehensively.
Recently, Large Language Models (LLMs) (Abdin et al., 2024; Almazrouei et al., 2023; Touvron et al.,
2023; Guo et al., 2025; Achiam et al., 2023), pretrained on vast text corpora, have demonstrated strong
capabilities in text understanding and generation. Thus, researchers have explored various methods to
combine GNNs and LLMs for TAGs (Zhu et al., 2025; Wang et al., 2024b; Khoshraftar et al., 2025;
Beiranvand & Vahidipour, 2025; Chen et al., 2024), aiming to integrate textual information into graph
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Figure 1: An illustrative comparison between handling static TAGs and DyTAGs. Static methods that
utilize LL.Ms usually generate static embeddings or explanations for text attributes. In comparison,
DyTAGs contain rich spatio-temporal information, such as recent semantic dependency or global
semantic dynamics of nodes, which the existing methods for TAGs do not account for.

structures. Despite the remarkable progress in combining LLMs and GNNs for TAGs, these methods
cannot be directly transferred to DyTAGs due to the following challenges:

Firstly, existing GNNs and LLMs neglect the global-recent semantic dynamics in DyTAGs. In
real life, the temporal changes of many phenomena conform to a complicated mixture of recent
and global patterns. For example, ice cream sales might be related to recent promotional activities
while also being influenced by long-term dietary structure changes. Specifically, we investigate two
complementary temporal semantic features with different temporal granularities within DyTAG:

* Recent semantic dependency of temporal interactions: The text attribute of an interaction in
DyTAG exhibits recent semantic dependency. For instance, the word “notebook” might mean
“notepad” following a “visit bookstore” interaction, but the same word is more likely to mean
“computer” after a “visit electronics store” interaction.

* Global semantic dynamics of nodes: Unlike static node semantics, node features in DyTAG
also continuously undergo global changes, which are reflected by emerging interactions. For
example, a user in an E-commerce network may shift her interests from literature to technology,
as reflected in visiting different kinds of shops.

Current GNNs and LLMs methods for TAGs largely ignore the above issues as they only employ
static methods to model the semantic and structural information. .

Secondly, DyTAGs pose more severe efficiency challenges for LLMs. For static TAGs, most text
attributes are associated with nodes. However, for DyTAGs, there exist edge-level text (such as the
example in Figure 1) and the edge attributes can also evolve with time. Considering that the number
of edges is usually orders of magnitude larger than the number of nodes and there can exist at least
hundreds or thousands of time stamps, developing effective models for DyTAGs demands highly
efficient LLM reasoning designs to reduce computational costs.

To tackle these challenges, in this paper, we propose DyGRASP' (Dynamic Global-Recent Adaptive
Semantic Processing), which leverages both the implicit and the explicit reasoning capabilities of LLM
to capture recent-global temporal semantics in DyTAGs. Specifically, DyGRASP features three novel
designs: (i) Implicit reasoning for recent temporal semantics: to capture recent semantic dependency
while retaining a low computational complexity, we leverage the unidirectional consistency between
temporal sequences and causal sequences of LLMs to achieve node-centric implicit reasoning. In
addition, we propose a sliding window mechanism to organize a node’s historical interactions

'We will release the code at publication time.
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chronologically in batches for the LLM. Our proposed method models recent semantic features for
multiple interactions simultaneously while ensuring no future information leakage, which significantly
reduces the number of consumed tokens so that our method can be scaled to real-world DyTAGs;
(i1) Explicit reasoning for global temporal semantics: to learn node representations from extensive
historical interactions while reducing consumed number of tokens, we utilize the generative reasoning
ability of LLM and segment a node’s historical interactions into a constant number of partitions
based on timestamps. Then, we carefully design prompts to instruct the LLM to summarize a node’s
feature description for each period. Finally, we employ an RNN-like reasoning chain structure
to pass long-distance semantics and dynamically update node features; (iii) Integrating Semantics
and Graph Structure: lastly, we design three tailored layers to update recent semantics, global
semantics, and graph structural features and then integrate them, together with a temporal GNN to
learn comprehensive node representations.

To verify DyGRASP’s effectiveness, we conduct extensive experiments on DyTAGs benchmark. Our
proposed method achieves up to a 34% improvement in Hit@ 10 for destination node retrieval task
compared to state-of-the-art methods. Besides, DyGRASP demonstrates strong generalization across
different LLMs and Temporal GNNs. We also perform detailed analyses for different components
and hyperparameters. Our contributions are summarized as follows:

* We study the recent-global spatio-temporal patterns in DyTAGs, which are overlooked in existing
GNNs and LLMs for static TAGs.

* We propose to leverage the implicit and explicit reasoning capabilities of LLMs to capture the
recent-global semantics on DyTAGs. Motivated by this goal, we propose DyGRASP, a tailored
model fusing the advantages of LLMs and temporal GNNs.

* We theoretically prove that our proposed method has optimized reasoning efficiency compared to
straightforward methods, thereby reducing the cost of practical applications.

* We verify the effectiveness of DyGRASP through extensive experiments on DyTAG benchmarks,
outperforming state-of-the-art baselines up to 34%.

2 RELATED WORK

LLM for TAGs. While GNNs excel at encoding graph structure features, preliminary methods
exhibit deficiencies in understanding the textual content within TAGs. Consequently, researchers
leverage the powerful capability of LLMs on text understanding to enhance the performance of GNNs
on TAGs (Chien et al.; Yang et al., 2021; Xue et al., 2023; Wu et al., 2024; Wei et al., 2024; Guo et al.,
2024; Liu et al., 2024). Among them, ENGINE (Zhu et al., 2024) employs LLMs to enhance the
quality of node representations by proposing “G-Ladder” structure. TAPE (He et al., 2024) utilizes
“explanations” generated by an LLM for the textual attributes as features. SimTeG (Duan et al., 2023)
boosts textual graph learning by first fine-tuning a language model to generate node embeddings,
which are then used as features for a separate GNN. GraphGPT (Tang et al., 2024) employs graph
instruction tuning to integrate LLMs with graph structural knowledge. However, the aforementioned
methods primarily target TAGs containing only static semantic features. The dynamic characteristics
of DyTAGs render these approaches incapable of modeling the temporal semantic relationships
therein. In contrast, we investigate the temporal semantics inherent in DyTAGs by leveraging the
reasoning capabilities of LLMs.

Temporal Graph Neural Networks. To extend the capabilities of GNNs to dynamic graphs,
recent studies have proposed various temporal GNNs (Rossi et al., 2020; Poursafaei et al., 2022;
Wang et al., 2021b; Luo & Li, 2022; Ma et al., 2020; Cong et al., 2023) to model dynamic graph
features. Among these, TGAT (Xu et al., 2020) introduces functional time encoding based on
Bochner’s theorem. CAWN (Wang et al., 2021c¢) leverages temporal random walks to inductively
learn representations of temporal network dynamics. DyRep (Trivedi et al., 2019) learns dynamic
graph representations by modeling a latent mediation process between topological evolution and
node activities. DyGFormer (Yu et al., 2023) learns solely from the historical first-hop interaction
sequences of nodes to simplify the dynamic graph learning task. However, the aforementioned
temporal GNNs are unable to comprehend the textual semantic information within DyTAG, leading
to suboptimal performance. In comparison, our method introduces LLMs reasoning over DyTAG to
capture the temporal semantic features.
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LLM for DyTAGs. Following the pioneering benchmark for DyTAGs named DGTB (Zhang et al.,
2024), there has recently been few research on LLMs for DyTAGs, which are largely concurrent
to our work. Among them, LKD4DyTAG (Roy et al., 2025) distills knowledge from LLM into a
temporal GNN. CROSS (Zhang et al., 2025) employs LLMs to dynamically extract text semantics
and a co-encoder to synergistically unify these semantics with evolving graph structures. GAD (Lei
et al., 2025) utilizes a multi-agent system with collaborative LLMs to directly perform prediction on
DyTAGs without dataset-specific training. However, existing studies are unable to identify the recent-
global patterns inherent in DyTAG, thus failing to comprehensively capture its multi-granularity
temporal semantic features.

3 NOTATIONS

Definition 1 (DYTAG) A DyTAG is represented as G = {V,E,T, D, R}, where V is the set of nodes,
E CV x V is the set of edges, T is the set of observed timestamps, D is the set of node textual
attributes, and R is the set of edge textual attributes. The textual attribute of a node u is denoted by
D,, € D. An edge, also known as an interaction, occurring between nodes u and v at timestamp t is
represented as I = (u,r,v,t), where v € R represents the textual attribute.

We use interaction to refer to an edge in DyTAGs to emphasize its dynamic nature, e.g., interaction
text denotes the complete description of the source node’s behavior towards the target node, rather
than merely the edge’s text attribute itself. We use reasoning to represent the LLM’s process of
uncovering underlying information from a series of interactions. We aim to develop models that
can handle various tasks associated with DyTAGs, such as node classification, link prediction, and
destination node retrieval.

4 METHOD

In this section, we introduce our method. We first introduce implicit reasoning for recent temporal
semantics in Section 4.1, then introduce explicit reasoning for global temporal semantics in Section
4.2, and finally integrate the temporal semantics with the dynamic graph structures in Section 4.3.

4.1 IMPLICIT REASONING FOR RECENT TEMPORAL SEMANTICS

Unlike the static attributes in normal TAGs, the textual attributes in DyTAG contain temporal semantic
relationships with historical interactions. Therefore, we leverage the implicit reasoning ability of
LLMs by harvesting the hidden embedding of texts within LLMs.

To obtain textual attribute embeddings that incorporate temporal semantics, an intuitive approach
is to take an edge-centric view and organize the textual attributes of an interaction and historical
interactions chronologically, and use an LLM to extract the hidden embeddings for the interaction.
However, denoting d as the average degree of the graph, the complexity (i.e., the number of consumed
input tokens) of the LLM reaches O(|€] x d). For a real-world DyTAG that has millions of edges and
an average degree of hundreds or thousands, this straightforward method suffers from an excessively
high computational complexity. To address this potential issue while preserving temporal semantic
relationships, we propose two key designs: (i) node-centric implicit reasoning, which leverages the
unidirectional consistency between the causal order inherent in LLMs and the chronological order
of the dynamic graph; (ii) sliding window mechanism, which segments interaction sequences into
overlapping batches to balance computational consumption and semantic feature modeling capability.
Using these two designs, our proposed method can theoretically reduce the computational complexity
to O(|€|) (Proof is shown in Appendix C). Next, we elaborate on these two designs.

Node-centric implicit reasoning. As illustrated in Figure 2(a), for a node v in G, we first extract all
its interactions with its neighbors, denoted as AV,,. Then we sort them by the timestamp and arrange
them into a sequence, which ensures interactions earlier in time positioned earlier in the sequence.
Lastly, we input NV, into an LLM at once to extract hidden features of V. As LLMs are designed
for causal modeling of text sequences and share the unidirectional nature with the time sequence of
N, this consistency prevents an interaction from observing future interaction text, thereby avoiding
leakage of future information. Benefiting from this, in a single forward pass, all interactions in N,
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Figure 2: An overview of DyGRASP. DyGRASP first utilizes the implicit and explicit reasoning
capabilities of the LLM to respectively extract recent and global temporal semantic features from a
DyTAG, as shown in (a) and (b), respectively. Then it integrates these temporal semantic features
with the dynamic graph structure features by temporal GNN, as shown in (c).

can simultaneously acquire recent semantic features from the historical interactions thus enabling
efficient reasoning.

Sliding window mechanism. This module aims to solve three challenges: (i) the context window
length limitation of LLMs, (ii) the heavy computational resource consumption, (iii) the tendency for
LLM performance to degrade with increased input length (Wang et al., 2024a; Levy et al., 2024).
Specifically, we partition V,, into multiple overlapping batches:

Bi={Ilg+i+1<k<Sxitel €N} M

where B3; is the i-th batch and c is the window length. In each batch, the first % interactions serve to
provide temporal context for the subsequent £ interactions. Subsequently, for each batch, we organize
the interactions chronologically into an input sequence using a dataset-specific prompt template (see
an example in Figure 6) and feed it into the LLM. Finally, we apply mean pooling to the output
hidden layer features for each interaction. The obtained temporal semantic feature for an interaction

1 € Iisdenoted as F* € R4 where dy v denotes the dimensionality of the hidden features.

4.2 EXPLICIT REASONING FOR GLOBAL TEMPORAL SEMANTICS

Complementary to recent temporal features, the occurrence of a real-world phenomenon is often
associated with long-range global temporal features. Therefore, this module aims to uncover these
global temporal semantic features with the explicit reasoning ability of LLMs, i.e., we directly let
LLMs generate textual information after comprehending DyTAGs.

Specifically, as shown in Figure 2(b), we first evenly partition the interaction sequence N, into s
segments by timestamps. Each segment is denoted by S;(1 < ¢ < s). The partition timestamps are
denoted by T = {fo, t1, 1o, ..., fs}, where £y = —1 denotes the special starting time. S; consists
of the chronologically ordered sequence of all interactions occurring between t;_1 (exclusive) and
t; (inclusive). Our motivation is twofold: (i) similar to implicit reasoning, V,, cannot be fed into
LLM at once; (ii) performing only a single inference fails to capture the temporal evolution of global
semantic features.

Next, we employ an RNN-like reasoning chain structure to empower the LLM with memory capabili-
ties. Specifically, let D;(1 < i < s) represent the textual description of the node’s dynamic features
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corresponding to the period of .S;, and Dy be the node’s original textual attribute. The reasoning
process can be described as:

D; = LLM (D;-1, Si), (2)
where we use dataset-specific template (see Figure 7 for an example) to prompt LLM to uncover
the potential global semantics. The reasoning chain structure is designed for the propagation of
long-range dynamic features and providing essential background description of the node for the LLM
to infer the node’s current features.

In the above process, each interaction is fed into the LLM twice. Consequently, the overall complexity
is limited to O(|€]), highlighting the efficiency of the explicit reasoning process.

4.3 INTEGRATING SEMANTICS AND GRAPH STRUCTURE

Next we present the component to integrate temporal semantics and dynamic graph structure features.
For a node v and a prediction time ¢, this module aims to obtain an integrated representation, which
will be used for downstream tasks. As shown in Figure 2(c), we first divide the model into three
components: Recent Semantic (RS) layer, Global Semantic (GS) layer, and graph structure layer. Let
L denote the total number of layers and [ denote the current layer index.

Recent Semantic Layer. Let /\/’5 = {L;i|t; < t,I; € N,}. In Section 4.1, we have obtained the
temporal feature F'° for interaction I; € A and its corresponding timestamp ¢;. Following (Xu et al.,
2020), we use a learnable time encoder to encode the time interval At; = ¢ — ¢; into a d;-dimensional
vector to capture periodic temporal patterns:

R” = [P(F¥) || 7(t —t.)], 3)

where P(-) : R — R i a projector, [||-] denotes concatenation, and .7 () is the time encoder.

Note that d; < dim and thus the projection can also accelerate computing. Lastly, {REO)} are used
as the input feature for the RS layer to compute the recent temporal semantics:

RO = [R{" R, .. R}, | = RS_Layer ([R{ ™V R{™V,.RIV]). @

Given the strengths of Transformers in processing sequential data, we employ a Transformer Encoder
to realize RS_Layer(-).

Global Semantic Layer. Similarly, we have obtained the global textual description D; for node v in
timestamp ¢; in Section 4.2. We use a word embedding model (e.g., BERT) to transform each textual

description D; into a hidden representation Ffb € R a5 olobal semantic features. To capture
the dynamic changes in node features leading up to ¢, we then calculate the input features GEO) as
follows:

G = [P || 7t 1), 5)

where P/(-) : R — R97 is another projector. Lastly, the global feature are updated as:

1

cb — [G(()l), Ggl), ...,G(l)} = GS_Layer ([G(()l_l)a ng—n’ vy G;(-l_l)]) : ©)

where i = max{i\f,» < t} ensures that only features up to ¢ are considered to prevent future
information leakage. Similar to the RS_layer, we use a Transformer Encoder to realize GS_Layer(-)
in our implementation.

Graph Structure Layer. In this component, we first explicitly model dynamic graph structures by
learning the structural representation S(*). The graph structure layer is represented as:

S — TGNN (MU*U, MPg (v, t)) , %

where MPg (v, t) denotes the process of gathering and aggregating features from the neighbors of
node v in graph G up to time ¢, TGNN(-) is a temporal GNN, and M~ is the integrated node
feature. Benefiting from the modularity design of DyGRASP, our method is compatible with any
existing message-passing temporal GNN. In our implementation, two representative temporal GNNs,
DyGFormer (Yu et al., 2023) and TGAT (Xu et al., 2020), are used to demonstrate the compatibility
of DyGRASP.
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The integrated node feature M® aims to fuse features from three components, i.e., recent semantics
{Rgl)}, global semantics {GEZ)}), and graph structure S, using Merge_Layer(-):

M(l) — Merge_LayeI‘ (RT({REI)}), Rg({GEI)})7 S(l)) 9 (8)

where M() € R%F* represents the node’s integrated feature, M(?) is the node raw feature, R”(-) and
RI(-) are readout functions responsible for summarizing the features from the RS and GS Layer,
respectively. We set Merge_Layer as an MLP and R"(+) as a mean pooling operation:

RT({RZ(.Z)}) = Mean_Pooling ([R(()l)7 Rgl)7 . ]) . )

For RY(-), we simply take the last feature in the sequence, i.e.,
RI{GIY =G, (10)
which is based on following considerations: (i) the Transformer Encoder in the GS_Layer(-) inher-
ently aggregates information via the attention mechanism, potentially concentrating historical global

semantics in the final feature Ggl); (ii) the preceding global reasoning chain employs a RNN-like
mechanism to propagate historical global semantic to the final feature. The final output of the model,
M) serves as the node’s comprehensive feature representation for downstream tasks.

5 EXPERIMENTS

In this section, we first show the superiority of DyGRASP over existing methods across various tasks
and validate the generalizability of DyGRASP on multiple LLMs and base temporal GNNs. Then we
separately validate the effectiveness of Recent/Global Semantic Reasoning and study the impact of
the hyperparameter, as well as investigate the inference efficiency.

5.1 EXPERIMENTAL SETTINGS

We select four datasets from the DTGB benchmark (Zhang et al., 2024): GDELT, Enron, Googlemap,
and Stack_elec, which cover diverse graph scales and domains. We choose seven state-of-the-art
temporal GNNs as baselines: JODIE (Kumar et al., 2019), DyRep (Trivedi et al., 2019), CAWN
(Wang et al., 2021c), TCL (Wang et al., 2021a), GraphMixer (Cong et al., 2023), TGAT (Xu et al.,
2020), and DyGFormer (Yu et al., 2023). We also evaluate the performance of Llama-3.1-8B-Instruct
(Grattafiori et al., 2024), the primary LLM used in DyGRASP, as another baseline. Following (Zhang
et al., 2024), we evaluate models using the destination node retrieval task with Hit@ 10 metric under
transductive and inductive settings and the future link prediction task with AP and ROC-AUC metrics.
More details can be found in Appendix E.

5.2 MAIN RESULTS

DyGRASP consistently outperforms all existing methods with substantial improvements.
As shown in Table 1 we can observe that under both transductive and inductive settings, Dy-
GRASP(DyGFormer) outperforms existing methods on all datasets, including traditional temporal
GNNs and Llama-3.1-8B-Instruct, demonstrating the superiority of DyGRASP. Notably, benefiting
from the strong generalization of LLMs on semantic understanding, DyGRASP achieves higher
improvements in the inductive setting compared to the transductive setting. Moreover, as shown in
Table 1 and Figure 8, the performance improvement over the base temporal GNN is more pronounced
on datasets with richer textual information, highlighting the important role of the LLM in our method.

DyGRASP demonstrates generalizability across both base temporal GNNs and LLMs. As
shown in Table 1, the results indicate that DyGRASP consistently yields significant performance
improvements compared to the original temporal GNNs when either using TGAT or DyGFormer as
the base temporal GNN. Furthermore, we validate the effectiveness of DyGRASP with three different
families of LLMs, including Qwen2.5, Mistral, and Llama-3.1, on the Enron and Googlemap datasets.
As shown in Figure 3, DyGRASP consistently outperforms the base temporal GNN regardless of the
specific LLM and exhibits minimal variation across different LLMs, demonstrating the exceptional
general applicability and compatibility of DyGRASP.
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Table 1: Hit@10 (%) results for destination node retrieval. OOM means out of memory. We use
boldface and underlining to denote the best and the second-best performance, respectively.

Methods Transductive Inductive
GDELT Enron Googlemap Stack_elec | GDELT Enron Googlemap Stack_elec
JODIE 89.88x0.10  91.01:0.82 OOM OOM 68.84+1.09 78.78:1.63 OOM OOM
DyRep 85.34z0.61  85.79+2.81 OOM OOM 61.63x4.01  68.53:1.68 OOM OOM
CAWN 89.92:024 91.96x087  52.07x0.97 91.37x0.17 | 63.84:0.99 76.48x1.03  44.04x0.74 46.30+0.32
TCL 90.58+0.44  87.9623.12  48.70:0.75 84.16+1094 | 69.28+1.12  64.99+9.99  40.90+0.66  37.82+11.58
GraphMixer 88.67x0.05 87.36+1.07  48.34:0.23 93.25+0.04 | 63.92+0.12 66.83x1.08  40.71x0.19 52.04+0.34
Llama-3.1 | 4101 92.09 53.97 3424 | 3175 79.55 43.56 33.59
TGAT 89.97+0.03  89.1220.21 63.5320.69 93.74:0.11 | 65.76x046 70.93x085  56.61x051 54.2920.47
DyGRASP(TGAT) 91.96+0.17 96.25+1.11  82.79+0.17 99.74:0.04 | 71.78:028 86.7612.07  78.63+0.20 99.77x0.09
Improv. 1 +1.99 +7.13 +19.26 +6.00 +6.02 +15.83 +22.02 +45.48
DyGFormer 91.64:024 92.04x1.7  51.32+2.13 94.39:0.12 | 72.49+037 82.52:234  43.84x1.92 56.23+0.52
DyGRASP®yGFormer) | 93.24+0.13  99.40:0.29  85.88:2.64 99.59+0.25 | 75.93x0.16 95.18x0.58  81.14:2.12 99.74+0.14
Improv. T +1.60 +7.36 +34.56 +5.20 +3.44 +12.66 +37.30 +43.51

Table 2: Results for future link prediction. OOM means out of memory. We use boldface and
underlining to denote the best and the second-best performance, respectively.

Metric| Methods Transductive Inductive
GDELT Enron Googlemap Stack_elec | GDELT Enron Googlemap Stack_elec
JODIE 95.56£0.08  96.700.34 OOM OOM 87.94+047  90.260.58 OOM OOM
DyRep 94.55+0.19  94.99:0.93 OOM OOM 85.02+1.59  85.84x1.11 OOM OOM
CAWN 96.57+0.05  97.850.13 82.78+0.50 95.550.08 | 88.65:029 92.91x0.38 78.67+0.63 80.48+0.21
TCL 96.63+0.14  96.31+1.44  80.71x0.40 89.58+9.50 | 89.95:038 88.27+437  76.13:046  73.09+10.44
AP GraphMixer 95.95+0.05  96.01x022  80.60+0.05 96.17x0.02 | 87.30x0.06 87.60:030  76.13x0.18 82.75+0.20
TGAT 96.412002  96.78+0.04  87.71x0.27 96.59+0.10 | 88.30:0.14  89.54+0.33 84.97+0.23 84.24+051
DyGFormer 97.02+0.03  97.86+0.01 81.63:0.40 96.70£0.10 | 91.09:0.15  93.60+0.22 77.23x0.72 84.67x0.34
| Llama-3.1 | 8223 86.13 67.80 6035 | 73.61 74.34 64.08 58.93
DyGRASP(TGAT) 97.78+1.46  98.04:0.61  96.23:2.46 98.25:0.13 | 93.05:4.43 91.66+326  95.31:3.01 88.11+031
DyGRASP®DyGFormer) | 97.40:0.03 98.81x0.14  94.85:0.22 98.42:0.02 | 92.23:0.02  95.03:0.60 93.68+0.20 88.50+0.20
JODIE 96.26+0.02  97.01:0.25 OOM OOM 88.03x027  90.21x0.52 OOM OOM
DyRep 95.23:0.11  95.470.92 OOM OOM 85.49:069  86.24+1.03 OOM OOM
CAWN 96.69+0.05  97.80+0.17  83.45+0.50 96.38z0.10 | 88.32:029 91.93x057  78.92+0.67 80.44+0.28
TCL 96.77+0.13  96.54+124  80.90+0.41 89.23+11.74 | 89.56+038 88.08z4.15  75.45:066  73.16+10.59
AUC | GraphMixer 96.14:0.02  96.13:021  80.84+0.07 96.86+0.02 | 87.19x0.13 87.33x026  75.21x025 83.25+0.13
TGAT 96.58+0.02  96.92:+0.04 88.19+0.33 97.1920.06 | 88.33:0.12 89.46+0.34 85.34+0.30 84.56+0.29
DyGFormer 97.10+0.03  97.69+0.03  81.91x037 97.3120.07 | 90.59z0.15 92.68+028  76.34x0.78 85.24+031
| Llama-3.1 | 8331 86.86 69.38 5541 | 74.03 78.26 66.17 56.04
DyGRASP(TGAT) 97.22+0.04 98.34:039  94.87+0.04 98.79+0.06 | 90.74z0.10 92.38+233  93.47+0.08 85.91+039

DyGRASP®DyGFormer) | 97.60+0.04 98.86:0.14  94.89:0.26 98.87+0.01 | 92.19:0.06 94.85:0.63  93.58:0.25 86.69+0.20

5.3 ABLATION STUDIES AND ANALYSES

Ablation studies. To validate the components of our method, we evaluate the following ablations:
(1) removing the global semantic layer (denoted as -Global); (ii) removing the recent semantic layer
(denoted as -Recent); (iii) removing both layers (denoted as -Recent&-Global).

As illustrated in Figure 4, under both the transductive and inductive settings, adding either the recent
or global temporal semantic reasoning module individually leads to improvements in performance.
Furthermore, the performance obtained with both modules added simultaneously surpassed those
achieved when only a single module is incorporated, which strongly confirms the complementarity of
recent-global features and the effectiveness of both LLM reasoning designs.

Hyperparameter Sensitivity Analysis. Next, we investigate the key hyperparameters of DyGRASP,
including the number of global segments s in global semantic reasoning and the maximum interaction
length c in recent temporal semantic reasoning. We separately study the effects of ¢ and s using the
features given by either the recent semantic layer or the global semantic layer. We report results on
the Googlemap dataset, while other datasets show similar trends.

Number of global segments s. As shown in Figure 5, model performance consistently improves as
s increases. We hypothesize that it is because a larger number of segments leads to more frequent
reasoning for the LLM and smaller intervals between two reasoning time points, which allows the
LLM to give smoother global temporal semantic variations. However, a higher number of s also leads
to a proportional increase in the inference time.
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Figure 3: Results with different LLM backbones. Figure 4: Results of ablation studies. Both global
Our method is compatible with various LLMs. and recent modules contribute to our method.

Maximum interaction length c. As il- 55 —— —
lustrated in Figure 5, model perfor- Inductive > Inductive
mance initially improves significantly
as c increases but then decreases. A
plausible reason is that, compared to
independent encoding of text attribute 40
(¢ = 0), the recent semantic reasoning 40
captures temporal semantic dependen- :
cies between interactions. A larger ¢

allows observation of more historical
interactions, enriching the recent tem-

poral semantics thus leading to perfor-

mance gains. However, when c surpasses 16, performance starts to decline plausibly because of
increased input length, i.e., the performance of LLMs can degrade significantly as input length
increases (Wang et al., 2024a; Levy et al., 2024).

Value of s Value of ¢

Figure 5: Results of sensitivity analysis.

Efficiency Analysis. Due to the decoupling of LLM inference from the online prediction task,
the inference of actual prediction task can be as fast as a lightweight temporal GNN. Furthermore,
the computationally intensive LLLM reasoning is an offline, one-time pre-processing step to extract
temporal semantic features. These features are then stored (e.g., in a vector database) for fast retrieval.
Here we investigate the inference efficiency of LLMs in our method. The results are shown in Table
3 where the inference time is measured by Nvidia-A100 GPU-Days,

Table 3: Token consumption and inference time of different components.

Token Consumption Inference time

Reasoning configuration ‘ GDELT Enron Googlemap Stack elec | GDELT Enron Googlemap Stack_elec
Recent w/o node-centric reasoning 1.68B 3.62B 2.42B 7.00B 2.37 4.34 245 7.21
Recent w/ node-centric reasoning 0.10B 0.86B 0.35B 0.96B 0.16 0.84 0.52 1.21
Global Reasoning | 0.03B 0.25B 0.52B 0488 | 0.04 0.37 0.89 1.42

Recent semantic reasoning efficiency. As discussed in Section 4.1, we introduce node-centric implicit
reasoning to address the inference efficiency. The results show that the node-centric reasoning method
significantly reduces the reasoning time across all datasets, which is consistent with our theoretical
analysis.

Global semantic reasoning efficiency. We also report the inference time in Table 3. We could observe
that the time consumption for this module is also low, highlighting the efficiency of DyGRASP.

6 CONCLUSION

In this paper, we propose DyGRASP, an efficient and effective model for DyTAGs by capturing the
recent-global temporal semantics. We leverage the implicit and explicit reasoning capabilities of
LLMs to uncover the recent and global semantics in DyTAGs, respectively, and integrate these tempo-
ral semantic features with dynamic graph structural features through a temporal GNN. Experiments
show that DyGRASP achieves significant improvement of up to 34% in the Hit@ 10 metric for the
destination node retrieval task compared to state-of-the-art methods.
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A LIMITATIONS

One limitation of our paper is that we only test our method on DTGB benchmarks, considering that
it is the only publicly available benchmark for DyTAGs. Experiments on more diverse real-world
datasets and tasks will further demonstrate the usefulness of DyGRASP. Another direction worthy
of exploration is extending our method into more complicated graph types, such as DyTAGs with
heterogeneous nodes and edges or hyper-relations.
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Table 4: Notations and descriptions.

Notation | Description

g A dynamic text-attributed graph.

& The edge set of the DyTAG.

T The timestamp set of the DyTAG.

D The node text attribute set of the DyTAG.

R The edge text attribute set of the DyTAG.

Ny The chronological list of interactions with node v’s first-hop neighbors.

G The state of the DyTAG before timestamp ¢.

Tyy An interaction between two nodes.

| The raw recent temporal semantic feature of an interaction I;.

S A segment of interactions, which contains interactions occurring between two partition timestamps.
Teb The set of all partition timestamps.

D; The description of a node before a certain timestamp .S;.

Ffb The raw global temporal semantic feature of a node before the i** partition timestamp.
RO The processed recent temporal semantic feature of the [-th layer.

GW" The processed global temporal semantic feature of the [-th layer.

s® The graph structure feature given by a temporal GNN of the [-th layer

R"(-) A readout function to get the recent semantic feature of a certain node from a list of R(!)
RI(-) A readout function to get the global semantic feature of a certain node from a list of G)

B NOTATIONS

In this section, we provide important notations used in this paper, detailed in Table 4.

C PROOF OF REASONING COMPLEXITY

In this section, we give a complexity proof of recent semantic reasoning in Section 4.1 (i.e., the
number of consumed input tokens), including both intuitive approach without node-centric reasoning
and the proposed method with node-centric reasoning. For simplicity of analysis, we assume that the
degree of each node is d and the interaction of each node with its d neighbor nodes occurs at distinct
times ¢;(1 < ¢ < d), where ¢; = t; if and only if ¢ = j. In this case, we have O(|€]) = O(|V| x d).

Complexity of intuitive approach without node-centric reasoning. Consider node v and its
historical interaction sequence:

N, ={I} I3, ..., I}, where t; <ty < ... <14 (11)

For a historical interaction I;*, assume its interacted node is v. To provide temporal context for I},
the input content to the LLM is:

Input = {Iﬂke {u,v},1 <j <} U{I} (12)
which totals 2 x (i — 1) + 1 interactions. Therefore, the input complexity for a single node is:
d
0> (2i —1)) = O(d?). (13)
i=1

Since each edge belongs to two nodes, the total input complexity for all nodes is:

VI

O(2

) x O(d®) = O(|€] x d). (14)

Complexity of our proposed method with node-centric reasoning. Consider node v and its

historical interaction sequence N, as shown in Eq. 11. This sequence is divided by a sliding window

into [4] — 1 input batches, where ¢ is the window length. The complexity of each batch is O(c).
2

Therefore, the input complexity for node w is:

o141~ 1) x ¢) = 0(a). (15)

2
The final input complexity for all nodes is O(d x [V|) = O(|&]).
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D PROMPT FOR LLM REASONING

In this section, we provide dataset-specific prompt templates used for LLM reasoning, including
implicit reasoning for recent temporal semantics and explicit reasoning for global temporal semantics.
We select prompt for Googlemap as an example. The remaining dataset follows a similar structure.

Below is a series of reviews on business entities given by {user_description}, an user of Google map. These reviews
are arranged in chronological order from earliest to latest. Capture the potential relationships between them.

Timestamp: {timestamp A} | Business Description: '{business description A} | Review: '{review_content A}’
Timestamp: {timestamp B} | Business Description: '{business description B}' | Review: '{review_content B}'
Timestamp: {timestamp C} | Business Description: '{business description C}' | Review: {review_content C}'

Figure 6: The prompt used for Googlemap of recent semantic reasoning.

(i struction A

Here is information about an user of Google map and its description at timestamp {last_describe_time}. Taking
into account its recent reviews on business entities, please provide a new summative description of this user at
timestamp {current_describe_time} based on your understanding. Return in the format "Description:<Your
Description>".

{raw_user_description}
### Description
{last_user_description}

Timestamp: {timestamp A} | Business Description: '{business description A} | Review: {review_content A}
Timestamp: {timestamp B} | Business Description: '{business description B}' | Review: '{review_content B}'
Timestamp: {timestamp C} | Business Description: '{business description C}' | Review: {review_content C}'

2 J

Figure 7: The prompt used for Googlemap of global semantic reasoning.

E DETAILED EXPERIMENTAL SETTINGS

Evaluation Tasks and Metrics. As detailed in Section 3, following (Zhang et al., 2024), we evaluate
models using the destination node retrieval task under two settings: the transductive setting where
the model predicts future links between nodes observed during training, and the inductive setting
where the model predicts links between unseen nodes. We use the Hit@k as evaluation metrics,
which represents the proportion of test instances where the score of the interaction between the
source and ground-truth destination node ranks within the top-k among scores for all candidate
nodes. Additionally, we present results on the future link prediction task for reference with AP and
ROC-AUC metrics.

Model Configurations. For DyGRASP, we primarily utilize DyGFormer as the base temporal
GNN and include TGAT to validate the generalizability. We mainly employ Llama-3.1-8B / Llama-
3.1-8B-Instruct for implicit and explicit reasoning, respectively. We also include Qwen2.5-7B /
Qwen2.5-7B-Instruct (Yang et al., 2024) and Mistral-7B / Mistral-7B-Instruct (Jiang et al., 2023) to
verify the generalizability of DyGRASP across different LLMs. We set ¢ to 64 for GDELT and 16 for
the remaining datasets. c is selected based on following considerations:

» Data Characteristics: c is adapted to the average node degree. Datasets with denser histories,
like GDELT, require a larger c to capture sufficient temporal context.

* Computational & LLM Constraints: A larger ¢ increases input sequence length, posing
challenges for computational resources and the LLM’s hard token limit. For datasets with lengthy
text attributes (e.g., Enron and Stack_elec), c is carefully bounded by these resource constraints.

* Model Performance: Crucially, LLM performance degrades on excessively long inputs, es-
pecially as they approach or exceed the model’s context window—a phenomenon we analyze
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in Figure 5. This is the most critical interaction with token limits. We select ¢ to maximize
information gain while avoiding this performance cliff.

We set s to 8 across all datasets. The impact of these two hyperparameters is investigated in Section
5.3. The total number of layers L is set to 2.

Implementation Details. We adopt the experimental setup provided by DTGB benchmark. All
datasets are split into training, validation, and test sets with a ratio of 0.7:0.15:0.15. All models are
trained using the Adam (Kingma & Ba, 2014) optimizer with a batch size of 256 and a learning rate
of 0.0001. Training runs for up to 50 epochs, with validation performed every 5 epochs. We employ
an early stopping mechanism with a patience of 5 epochs. Model-specific hyperparameters for each
baseline are set according to the optimal values recommended by the DTGB benchmark (see Table
6 for details). Text attributes within the datasets, as well as the text generated by the LLM during
explicit reasoning, are vectorized with the bert-base-uncased model (Devlin et al., 2019). All training
was conducted on NVIDIA A100 40G GPUs.

Training for DyGRASP. Following DTGB, we supervise the model training using a binary cross-

entropy loss. Specifically, we use an MLP layer to take the final features (i.e., MgL) and Mq(JL)) to
predict the probability score of a future interaction between nodes » and v. For each true interaction
Iy.v,,, occurring at time 7', we randomly sample a negative node v,  to create a false interaction
Iy v,,.,» which did not actually occur. Finally, we use all the true and false samples for training.

E.1 DESCRIPTIONS OF DATASETS

We use four datasets for the experiments, including GDELT, Enron, Googlemap and Stack_elec. We
provide the statistics of datasets in Table 5. We also summarize the text attribute length of these
datasets in Figure 8.

Table 5: Statistics of datasets.

Dataset \ Nodes Edges Domain Timestamps Bipartite Graph

GDELT 6,786 1,339,245 Knowledge graph 2,591 X

Enron 42,711 797,907 E-mail 1,006 X

Googlemap | 111,168 1,380,623 E-commerce 55,521 v

Stack_elec 397,702 1,262,225 Multi-round dialogue 5,224 v
Stack_elec

Enron

Googlemap_CT

i

GDELT

o

200 400 600 800 1000 1200

m Node text attribute length M Edge text attribute length

Figure 8: Text attribute length of used DyTAG datasets.

We provide descriptions of these datasets as follows.
* GDELT: this dataset comes from the "Global Database of Events, Language, and Tone" project,

which aims to build a catalog of political behavior covering countries worldwide. In this dataset,
nodes represent political entities and the node text attribute is the entity name while edges
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represent political relationships or actions between entities and the edge text attribute represents
the description of the behavior.

* Enron: this dataset originates from the email communications of employees at the Enron energy
company. Here, nodes represent employees and the node text attribute is the employee’s email
address while edges represent the sending of emails and the edge text attribute is the email content.

* Googlemap: this dataset is extracted from the Connecticut State (CT) portion of the "Google
Local Data" project, containing business review information from Google Maps. In this dataset,
nodes are users or businesses and the node text attribute is the user name or business description
while edges represent reviews from users to businesses and the edge text attribute is the specific
review content.

« Stack_elec: this dataset comes from anonymized data of user question-and-answer content related
to electronics technology on the Stack Exchange website. In this dataset, nodes are questions or
users on the site and the node text attribute is the question description or user profile while edges
represent answers or comments by users on questions and the edge text attribute is the content of
the answer or comment.

E.2 DESCRIPTION OF BASELINES
In this section, we provide detailed descriptions of the baselines.

¢ JODIE (Kumar et al., 2019): JODIE is a coupled recurrent neural network model that learns
dynamic embedding trajectories for users and items based on their temporal interactions. JODIE
utilizes a novel projection operator to predict the future trajectory of embeddings and employs
a scalable t-Batch training algorithm, significantly outperforming baseline methods in future
interaction and user state change prediction tasks.

* DyRep (Trivedi et al., 2019): DyRep is a framework for learning representations on dynamic
graphs by modeling topological evolution and node interactions as two distinct but coupled
temporal point processes. It uses a temporal-attentive network to learn evolving node embeddings
that capture the interplay between these structural and activity dynamics over continuous time.

* CAWN (Wang et al., 2021c): CAWN is a neural network model for inductive representation
learning on temporal networks. CAWN captures network dynamics using temporal random
walks and a novel anonymization strategy, outperforming prior methods in predicting future links,
particularly on unseen parts of networks.

e TCL (Wang et al., 2021a): TCL is a Transformer-based dynamic graph modeling method, which
optimizes dynamic node representations through contrastive learning. TCL adopts a two-stream
encoder architecture to respectively process the temporal neighborhood information of the target
interaction nodes and fuses them at the semantic level via a co-attentional Transformer.

* GraphMixer (Cong et al., 2023): GraphMixer is a conceptually simple architecture for temporal
link prediction using only MLPs and neighbor mean-pooling, intentionally avoiding complex
RNN and self-attention mechanisms. Despite its simplicity, GraphMixer achieves state-of-the-art
performance on benchmarks, demonstrating better results, faster convergence, and improved
generalization compared to more complicated models.

¢ TGAT (Xu et al., 2020): TGAT utilizes a self-attention mechanism combined with a novel
functional time encoding technique based on harmonic analysis. TGAT efficiently aggregates
temporal-topological neighborhood information to generate time-aware embeddings for both
existing and newly appearing nodes.

* DyGFormer (Yu et al., 2023): DyGFormer is a new Transformer-based architecture for dynamic
graph learning that uses neighbor co-occurrence encoding and sequence patching to effectively
capture node correlations and long-term dependencies from historical first-hop interactions.

E.3 CONFIGURATIONS OF DIFFERENT METHODS

We present the hyperparameters for all baselines in Table 6, which are recommended by the official
DTGB benchmark.
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Table 6: Hyper-parameter setting for all baselines.

Methods #layers # heads dropout time_feat_dim channel_embedding_dim patch_size max_input_sequence_length
JODIE 1 2 0.1 100 / / /

DyRep 1 2 0.1 100 / / /

CAWN / / 0.1 100 / / /

TCL 2 2 0.1 100 / / /
GraphMixer 2 / 0.1 100 / / /

TGAT 2 2 0.1 100 / / /
DyGFormer 2 2 0.1 100 50 1 48
Methods #depths # walk_heads walk_length position_feat_dim # neighbors sample_neighbor_strategy time_scaling_factor
JODIE / / / / 10 recent /

DyRep / / / / 10 recent /

CAWN / 8 1 768 32 time_interval_aware le-6

TCL 21 / / / 20 recent /
GraphMixer / / / / 20 recent /

TGAT / / / / 20 recent /
DyGFormer / / / / / recent /

F USE OF LLM ASSISTANTS

We used a LLM for the sole purpose of copyediting the paper to improve its clarity and readability.
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