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Abstract

Generating images from prompts containing001

specific entities requires models to retain as002

much entity-specific knowledge as possible.003

However, fully memorizing such knowledge004

is impractical due to the vast number of en-005

tities and their continuous emergence. To006

address this, we propose Text-based Intelli-007

gent Generation with Entity prompt Refinement008

(TEXTTIGER), which augments knowledge009

on entities included in the prompts and then010

summarizes the augmented descriptions using011

Large Language Models (LLMs) to mitigate012

performance degradation from longer inputs.013

To evaluate our method, we introduce WiT-014

Cub (WiT with Captions and Uncomplicated015

Background-explanations), a dataset compris-016

ing captions, images, and an entity list. Exper-017

iments on multiple image generation models018

and LLMs show that TEXTTIGER improves019

image generation performance in standard met-020

rics (IS, FID, and CLIPScore) compared to021

caption-only prompts. Additionally, multiple022

annotators’ evaluation confirms that the summa-023

rized descriptions are more informative, validat-024

ing LLMs’ ability to generate concise yet rich025

descriptions. These findings demonstrate that026

refining prompts with augmented and summa-027

rized entity-related descriptions significantly028

enhances image generation capabilities. The029

dataset will be available upon acceptance.030

1 Introduction031

Text-to-Image is a task to generate images from032

given texts. To convert textual information into033

an image, image generation models such as Stable034

Diffusion (Rombach et al., 2022) rely on a diffu-035

sion model (Ho et al., 2020) with a text encoder,036

which requires precise and appropriate prompts037

that capture the images they intend to generate. In038

this process, the image generation models should039

retain as much entity-specific knowledge, e.g., the040

names of buildings, rivers, castles, and mountains,041
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Figure 1: We propose a method, TEXTTIGER, which
first augments descriptions of entities included in
prompts and then adjusts their sequence length prop-
erly through summarization with LLMs for generating
images.

as possible from the provided prompts in order to 042

generate images that meet the user’s expectations. 043

However, even massive image generation mod- 044

els struggle to retain this knowledge or continu- 045

ously acquire the latest information fully (Mar- 046

tinelli et al., 2024). Properly understanding en- 047

tities in models helps generate user-desired im- 048

ages in tasks such as advertisement image genera- 049

tion (Mita et al., 2023). To completely incorporate 050

up-to-date knowledge, one would need to invest 051

substantial costs in continuously collecting data 052

and retraining the image generation models, which 053

is not realistic or almost impossible. For exam- 054

ple, as shown in Figure 1, when given the prompt 055

“Giant’s Castle,” the image generation model 056

fails to properly understand the entity1, i.e., “Gi- 057

ant’s Castle (See: https://en.wikipedia.org/ 058

1We define entity as the named entity level, which is not
abstract concepts like “bridge”, but specific instances such as
“Golden Gate Bridge.” (Choi et al., 2018; Pakhale, 2023)
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wiki/Giant%27s_Castle).” Moreover, simply059

appending externally acquired information as a060

long-context prompt does not allow the Trans-061

former (Vaswani et al., 2017) architecture to handle062

the information effectively and correctly (Beltagy063

et al., 2020; Bertsch et al., 2023) due to its maxi-064

mum token length, e.g., 512 tokens.065

To address the challenges posed by insuffi-066

cient entity understanding in image generation,067

we first construct a new dataset, WiT-Cub (WiT068

with Captions and Uncomplicated Background-069

explanations) for the validation. WiT-Cub con-070

sists of image-caption pairs annotated with entity071

mentions and enriched with informative descrip-072

tions, enabling systematic evaluation of how exter-073

nal knowledge about entities affects quality.074

Building on WiT-Cub, we propose a novel075

method called Text-based Intelligent Generation076

with Entity prompt Refinement, or TEXTTIGER.077

Our approach begins by retrieving entity-specific078

knowledge from external sources to augment the079

original prompt. For instance, as shown in Figure 1,080

for the prompt “Giant’s Castle,” we obtain addi-081

tional context such as “Giant’s Castle is a mountain082

located within the...” to overcome limitations in083

the model’s internal knowledge. We then lever-084

age Large Language Models (LLMs) (Abdin et al.,085

2024; Guo et al., 2025; Team et al., 2024) to sum-086

marize these descriptions concisely, ensuring that087

essential information is preserved while keeping088

the prompt within a manageable token length. This089

refined prompt is then used to generate images, ef-090

fectively mitigating both the model’s knowledge091

limitations and its difficulty in processing long con-092

texts.093

Experimental results using multiple different im-094

age generation models and LLMs on the WiT-Cub095

show that our method significantly outperforms096

baselines in widely used metrics, IS (Salimans097

et al., 2016), FID (Heusel et al., 2017), and CLIP-098

Score (Hessel et al., 2021). Furthermore, the results099

indicate a drop in performance when prompts are100

simply augmented by descriptions, while the per-101

formance improves when descriptions are summa-102

rized. Moreover, human evaluations confirm that103

the fully summarized descriptions are appropriately104

shortened to the appropriate length and outperform105

the baselines across criteria, i.e., informativeness,106

conciseness, and fluency. These findings not only107

prove that generating prompts of proper length with108

summarized descriptions of entities by LLMs sig-109

nificantly enhances image generation capabilities110

but also demonstrate that this approach is effective 111

in overcoming the knowledge limitations of image 112

generation models. 113

2 Related Work 114

2.1 Vision and Entity Knowledge 115

In Vision and Language (V&L) fields, the chal- 116

lenge of understanding visual and/or textual infor- 117

mation often unveils V&L models’ limited gener- 118

alization abilities in text generation from images 119

for, e.g., newspapers (Lu et al., 2018; Liu et al., 120

2021), e-commerce (Ma et al., 2022), fashion (Ros- 121

tamzadeh et al., 2018), and artworks (Bai et al., 122

2021; Hayashi et al., 2024; Ozaki et al., 2024). 123

Likewise, Kamigaito et al. (2023) uncovers the lack 124

of entity knowledge of a V&L model OFA (Wang 125

et al., 2022) in the image generation tasks. An ex- 126

tensive study by Huang et al. (2024) introduced 127

the “Kitten” benchmark to evaluate knowledge- 128

intensive generation, leading to a finding that even 129

the most advanced models frequently fail to gen- 130

erate entities with accurate visual details. In their 131

experiments across domains like landmarks, plants, 132

and animals, models like Stable Diffusion (Esser 133

et al., 2024), DALL-E 3, and others produced im- 134

ages with large inaccuracies or missing critical fea- 135

tures when asked to depict many real-world entities. 136

This shortfall indicates that current diffusion mod- 137

els are limited by what they “know” from training 138

data, and they lack a robust factual grounding of 139

many specific entities. 140

2.2 Refinement of Prompts 141

Existing methods, such as those proposed by Hao 142

et al. (2024); Zhan et al. (2024), primarily explore 143

appropriate prompts for the improvement. While 144

these prior works highlight the variability in ap- 145

propriate prompts across models, they do not con- 146

sider entity-specific and up-to-date knowledge not 147

covered by image generation models. Hao et al. 148

(2024) also introduced a reinforcement learning- 149

based framework that rewrites user prompts into 150

model-preferred ones, improving both aesthetics 151

and alignment. Similarly, Zhan et al. (2024) formu- 152

lated prompt refinement as a translation problem 153

between user language and model language, lever- 154

aging image embeddings to pivot toward prompts 155

that better reflect the model’s preferred input distri- 156

bution. Other efforts, such as the dynamic prompt 157

weighting mechanism by Mo et al. (2024), adapt 158

the importance of each token and its diffusion 159
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Entity List
Caption

Entity Description
Image

Phahurat Road Phahurat or Pahurat sometimes described as
Thailand’s Little India, is an ethnic neighbor-
hood surrounding Phahurat Road in Wang Bu-
rapha Phirom Subdistrict, Phra Nakhon District,
Bangkok.

Former seat of the
Constitutional Court
at Lord Rattanathi-
bet’s Mansion on
Phahurat Road.

Constitutional Court A constitutional court is a high court that deals
primarily with constitutional law. Its main au-
thority is to rule on whether laws that are chal-
lenged are in fact unconstitutional...

Table 1: An example of our constructed dataset, WiT-Cub. We augment the entities included in image captions using
external resources. Section 3 describes the detailed information, and Appendix E.5 provides another example.

time step to control the generation process more160

precisely. Mañas et al. (2024) proposed using161

LLMs to iteratively rewrite prompts based on feed-162

back from previous generations, optimizing for163

semantic-image consistency. While these methods164

largely improve image quality and alignment, they165

primarily focus on stylistic, structural, or distribu-166

tional refinement of prompts. They often operate167

within the model’s inherent knowledge and do not168

explicitly address situations where factual or up-to-169

date entity knowledge is missing.170

3 Dataset Creation: WiT-Cub171

For the sake of systematically investigating whether172

augmenting named entities with rich descriptions173

improves the quality, we construct a new dataset,174

WiT with Captions and Background-explanations175

(WiT-Cub). While existing datasets such as176

WiT (Srinivasan et al., 2021) provide a large col-177

lection of image-captions pairs, they lack explicit178

entity-level information, limiting their usefulness in179

settings where understanding and visually ground-180

ing specific named entities is crucial. In real-world181

applications, prompts often contain proper nouns182

or named entities that assume background knowl-183

edge not explicitly provided in the caption. Without184

access to such knowledge, even advanced image185

generation models may hallucinate incorrect visual186

content, fail to capture distinctive features, or con-187

flate similarly named entities.188

To address this need, we extend the original189

WiT dataset by augmenting each image-caption190

pair with background descriptions of all named191

entities, retrieved via the Wikipedia API2. Specif-192

ically, WiT’s metadata includes hyperlinks to the193

2https://www.mediawiki.org/wiki/API:Main_page

Wikipedia pages corresponding to entities men- 194

tioned in the captions. We programmatically follow 195

these URLs and extract the introductory abstract 196

of each page, which typically contains a concise 197

yet informative summary of the entity, i.e., often 198

covering its definition, category, origin, or salient 199

characteristics. These abstracts serve as natural 200

and reliable sources of contextual knowledge, espe- 201

cially for entities that are uncommon, ambiguous, 202

or culturally specific. For instance, given a cap- 203

tion that simply states “Statue of Liberty at sunset,” 204

the Wikipedia abstract can provide clarifying in- 205

formation, e.g., its location, height, width, visual 206

appearance, or symbolic significance, i.e., knowl- 207

edge that is often critical for faithful image genera- 208

tion. To ensure consistency and quality, we filter for 209

English-language entries and retain only the exam- 210

ples where both the image and the linked Wikipedia 211

page remain accessible at the time of dataset con- 212

struction. From the initial WiT corpus, we extract 213

2,500 valid instances that meet these criteria. Each 214

instance in our dataset thus consists of a triplet: the 215

original image, its corresponding caption, and the 216

retrieved entity description. The resulting dataset, 217

WiT-Cub, supports controlled experimentation on 218

how access to entity-specific background knowl- 219

edge affects the behavior of text-to-image gener- 220

ation models. Table 1 and Appendix E.5 present 221

examples, and Appendix C.3 provides summary 222

statistics of created dataset. 223

4 Proposed Method: TEXTTIGER 224

We propose a method that augments entity-specific 225

knowledge for entities included in prompts using 226

their precisely explained descriptions and then sum- 227

marizes the descriptions to an appropriate length 228

using LLMs, as shown in Figure 1. This approach 229
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Method Prompt for Image Generation

CAP-ONLY The caption in WiT-Cub.

CAP-AUG-ONLY The caption + Augmented knowl-
edge from Wikipedia.

TEXTTIGER
W/O LEN

The caption + Summarized de-
scription generated by LLMs.

TEXTTIGER
The caption + Summarized de-
scription generated by LLMs with
the explicit token length.

ITERATIVE-
TEXTTIGER

The caption + Iteratively applying
TEXTTIGER (n = 3)

Table 2: Our proposed methods alongside the baseline.

effectively mitigates both the knowledge limita-230

tions of the image generation model and its serious231

weakness in handling long contexts. Our proposed232

method mainly comprises the following two steps:233

augmenting entities with informative descriptions234

and summarizing the descriptions by LLMs.235

4.1 STEP 1: Augment Entities with236

Informative Descriptions237

To ensure that the image generation model ac-238

curately understands entities, we augment entity-239

specific knowledge for entities in the caption using240

external and informative descriptions. Specifically,241

we extract entities in the caption using an entity list242

found in WiT-Cub and retrieve their description to243

mitigate the limitation of the model’s knowledge.244

4.2 STEP 2: Summarize the descriptions by245

LLMs246

We let LLMs summarize the augmented entity-247

specific description from STEP 1 while retaining248

detailed entity information and ensuring an appro-249

priate length. Following previous work (Juseon-Do250

et al., 2024), which demonstrated that explicitly251

specifying both input length and output token count252

helps LLMs manage length constraints, we adopt a253

similar approach for summarization. Specifically,254

we tokenize the augmented description from STEP255

1 using CLIP (Radford et al., 2021)3, the tokenizer256

of the text encoder commonly used in image gen-257

eration models, and explicitly provide the token258

count to the LLMs. Since image generation models259

primarily use not only CLIP but also T5 (Raffel260

et al., 2020) as the text encoder, we set the output261

token limit to 1804, ensuring compatibility with262

3https://huggingface.co/openai/
clip-vit-large-patch14

4We choose the default model. https://huggingface.
co/stabilityai/stable-diffusion-3.5-large

T5’s token capacity. Appendix A.2 provides details 263

about the token counts and the rationale for setting 264

the limit to 180 tokens for image generation. 265

After applying these steps, we concatenate the 266

summarized entity-specific description to the end 267

of the caption, i.e., (caption + summarized descrip- 268

tion), forming a new prompt for image generation. 269

Our preliminary experiments showed that append- 270

ing the summarized entity-specific description of 271

180 tokens to the original caption achieved the best 272

performance, as demonstrated in the ablation study 273

in Appendix A.1. We refer to our proposed method 274

as Text-based Intelligent Generation with Entity 275

prompt Refinement, TEXTTIGER. 276

For the comparison with our proposed method, 277

we evaluate another approach that more strictly en- 278

sures compliance with the token length limit. If the 279

summarized description by LLMs still exceeds 180 280

token lengths, our work iteratively repeats STEP 281

2 until the length constraint is met. We define this 282

method as ITERATIVE-TEXTTIGER, setting the 283

maximum number of iterations to n = 3. 284

5 Experimental Settings 285

5.1 Dataset 286

We use the WiT-Cub in Section 3, which comprises 287

images, captions, and entity descriptions. WiT- 288

Cub comprises 2,500 instances, which provides a 289

sufficiently reasonable quantity for our purpose. 290

5.2 Prompt Format 291

Prompt for Summarizing the Description We 292

provide the prompt for letting LLMs summarize 293

augmented entity-specific descriptions for image 294

generation models in Appendix E.1. The summa- 295

rized description begins with SummaryStart: and 296

ends with <SummaryEnd>. We instruct the model to 297

output these markers, and then extract the content 298

between them using a regular expression. 299

Furthermore, to analyze the performance of our 300

methods, we also try TEXTTIGER W/O LEN, 301

where LLMs perform summarization without token 302

counts being explicitly provided. This setting is 303

likely to result in truncation due to the exceeded 304

length of the input prompt for generation models. 305

Prompt for Image Generation CAP-ONLY 306

uses only the original caption in WiT-Cub. CAP- 307

AUG-ONLY involves extracting entities from the 308

caption, obtaining their description from the entity 309

list, and appending the description as a bullet-point 310

list to the caption. The prompt of this method tends 311
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CLIPScore (↑)Method Description Generation Image Generation Encoder IS (↑) FID (↓)
Txt-Img Img-Img

CAP-ONLY
(Baseline)

– dreamlike-photoreal-2.0 T5 20.57 43.29 29.94 67.91

– IF-I-L-v1.0 CLIP 21.66 35.83 30.31 67.84

– FLUX.1-dev Both 23.03 43.27 29.26 66.95
– stable-diffusion-3.5-large 24.03 39.17 31.32 69.96

CAP-AUG-ONLY
(Baseline)

– dreamlike-photoreal-2.0 T5 20.93 42.88 29.58 68.02

– IF-I-L-v1.0 CLIP 21.34 36.25 30.52 68.38

– FLUX.1-dev Both 22.40 42.80 29.17 67.71
– stable-diffusion-3.5-large 23.87 39.75 30.52 69.34

Table 3: Experimental results for the baselines CAP-ONLY and CAP-AUG-ONLY, which incorporates entity-specific
descriptions without summarization. The red values indicate improvement compared to the baseline (CAP-ONLY)
and the bold values highlight the best results among models. In CAP-AUG-ONLY, due to the excessive token length
and subsequent truncation, the overall accuracy deteriorates, describing the importance of prompt refinement.

to become longer, leading to a truncated input to312

the text encoder of image generation models.313

For the other three methods (i.e., TEXTTIGER314

methods), the prompt is formed by concatenat-315

ing the caption and description. This approach is316

based on preliminary experiments in Appendix A.1,317

where inputting the concatenation of the caption318

and description as the prompt yields superior319

performance compared to using the description320

only. Table 2 provides all five methods, and Ap-321

pendix E.2 describes the more detailed prompts.322

5.3 Models323

Summarization Models To summarize the aug-324

mented entity-specific description for the im-325

age generation process, we adopt the follow-326

ing LLMs: Llama3.1 (8B-Instruct and 70B-327

Instruct) (Dubey et al., 2024), Llama3.3 (70B-328

Instruct) (Dubey et al., 2024), and Qwen2.5329

(72B-Instruct) (Yang et al., 2024). The 70B-330

class models (Llama and Qwen) are applied with331

quantization to 4-bit precision. As for TEXT-332

TIGER W/O LEN, we also analyze using GPT-4o-333

mini (gpt-4o-mini-2024-07-18) (Achiam et al.,334

2023), assuming that GPT-4o-mini generates the335

summarized description of the appropriate length336

without explicit token count information. This337

choice adopts different model types (Qwen and338

Llama), varying model sizes (8B and 70B), and339

a proprietary model (GPT-4o-mini). Appendix B340

provides more details about model settings.341

Image Generation Models The image gener-342

ation models include: IF-I-L v1.0 (DeepFloyd,343

2023), Dreamlike-photoreal-2.0 (Art, 2023), Sta-344

ble Diffusion 3.5-large (Esser et al., 2024), and345

FLUX.1-dev (Labs, 2024) as shown in Appendix B.346

We chose the models based on prior research347

(Chen, 2023), which identified high-performing 348

models. Besides this, our choice is also based on 349

the idea of varying text encoders: T5 (Raffel et al., 350

2020) only (IF-I-L), CLIP only (Dreamlike), and a 351

combination of both (Stable Diffusion, FLUX). 352

5.4 Evaluation Metrics for Image Generation 353

We evaluate the effectiveness of our method using 354

widely used evaluation metrics in image generation 355

fields, i.e., Inception Score (Salimans et al., 2016), 356

Fréchet Inception Distance (Heusel et al., 2017), 357

and CLIPScore (Hessel et al., 2021). Appendix C.5 358

provides a detailed explanation of these evaluation 359

metrics, including notations. 360

Inception Score (IS) (Salimans et al., 2016) evalu- 361

ates the diversity and semantic meaningfulness of 362

generated images. It quantifies how confidently a 363

classifier can predict labels for the generated im- 364

ages, while also measuring the diversity of label 365

predictions. A higher score indicates that the gen- 366

erated images are both of high quality and varied. 367

Fréchet Inception Distance (FID) (Heusel et al., 368

2017) evaluates the difference between the fea- 369

ture distributions of generated and reference im- 370

ages. It extracts image features using Inception 371

v3 (Szegedy et al., 2015b), and then measures how 372

closely the distributions of real and generated im- 373

ages align. A lower FID value indicates that the 374

generated images resemble the reference images 375

more closely in terms of quality and realism. 376

CLIPScore (Img-Txt) (Hessel et al., 2021) mea- 377

sures the alignment between a generated image and 378

its corresponding textual description. It computes 379

how similar the text and image representations are 380

by using a model trained on both modalities. A 381

higher score means that the generated image is 382

more semantically relevant to the given text. 383
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CLIPScore (↑)Method Description Generation Image Generation Encoder IS (↑) FID (↓)
Txt-Img Img-Img

TEXTTIGER
(Ours)

Llama-3.1-8B-Instruct

dreamlike-photoreal-2.0 T5 21.46 42.34 30.83 68.51

IF-I-L-v1.0 CLIP 21.27 35.49 30.81 68.88

FLUX.1-dev Both 23.49 41.92 29.87 68.56

stable-diffusion-3.5-large 24.11 39.13 32.02 70.02

Llama-3.3-70B-Instruct

dreamlike-photoreal-2.0 T5 21.20 42.20 29.94 68.44

IF-I-L-v1.0 CLIP 22.21 35.76 30.68 69.05

FLUX.1-dev Both 23.74 42.88 29.63 68.47

stable-diffusion-3.5-large 24.45 39.48 31.79 70.72

Qwen2.5-72B-Instruct

dreamlike-photoreal-2.0 T5 21.60 42.35 30.01 68.59

IF-I-L-v1.0 CLIP 21.99 35.40 30.63 69.34

FLUX.1-dev Both 23.34 42.11 29.74 68.48

stable-diffusion-3.5-large 24.39 38.30 31.99 70.34

ITERATIVE-
TEXTTIGER

(Ours)

Llama-3.1-8B-Instruct

dreamlike-photoreal-2.0 T5 21.36 42.34 30.83 68.51

IF-I-L-v1.0 CLIP 21.67 35.63 30.84 68.93

FLUX.1-dev Both 23.67 41.92 29.87 68.56

stable-diffusion-3.5-large 24.92 39.13 32.02 70.02

Llama-3.3-70B-Instruct

dreamlike-photoreal-2.0 T5 21.23 42.20 29.94 68.44

IF-I-L-v1.0 CLIP 22.25 35.76 30.68 69.05

FLUX.1-dev Both 23.58 42.45 29.63 68.40

stable-diffusion-3.5-large 24.51 39.48 31.79 70.72

Qwen2.5-72B-Instruct

dreamlike-photoreal-2.0 T5 21.68 42.37 30.01 68.60

IF-I-L-v1.0 CLIP 22.08 35.63 30.64 69.41

FLUX.1-dev Both 23.89 42.00 29.74 68.50

stable-diffusion-3.5-large 24.31 38.30 31.99 70.34

Table 4: Experimental results of our proposed method. The notations are the same as those in Table 3. The results
show the improvement. Underline value indicates that the score improvement is statistically significant (p < 0.05).

CLIPScore (Img-Img) compares two images in-384

stead of text and image. By calculating the similar-385

ity between two feature representations, this metric386

determines how visually or semantically similar387

they are. A higher score suggests that the two im-388

ages share more visual or conceptual similarities.389

Significance Test To demonstrate the statistical390

strength of our results, we run a significance test391

for TEXTTIGER and ITERATIVE-TEXTTIGER.392

Following prior work (Kamigaito et al., 2023), we393

use paired-bootstrap resampling (Koehn, 2004) as394

detailed in Appendix B.4.395

6 Results396

Overall Results Tables 3 and 4 show that397

our methods, i.e., TEXTTIGER and ITERATIVE-398

TEXTTIGER, significantly outperform the base-399

line CAP-ONLY in almost all cases for every metric. 400

These results indicate the importance of capturing 401

information about entities for text-to-image gen- 402

eration. Compared with our methods, the perfor- 403

mance improvements of CAP-AUG-ONLY from 404

CAP-ONLY are limited, indicating the necessity of 405

using concise prompts in image generation rather 406

than lengthy prompts. Thus, it is evident that our 407

method TEXTTIGER, which augments entity de- 408

scriptions and summarizes them to the appropriate 409

length, is effective for image generation models. 410

Table 8 shows the results of generated images 411

among all methods using Llama3.3 (70B) for the 412

original caption, “The River Nore at Kilkenny.” 413

It can be observed that TEXTTIGER consistently 414

produces images that are closer to the reference 415

image across all image generation models when 416

compared with CAP-ONLY. For example, TEXT- 417
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CLIPScore (↑)Method Description Generation Image Generation Encoder IS (↑) FID (↓)
Txt-Img Img-Img

TEXTTIGER W/O LEN
(Baseline)

Llama-3.1
8B-Instruct

dreamlike-photoreal-2.0 T5 20.66 42.04 30.03 68.49

IF-I-L-v1.0 CLIP 19.52 37.25 30.81 67.83

FLUX.1-dev Both 23.12 42.60 29.83 67.99
stable-diffusion-3.5-large 21.99 41.36 31.07 68.94

Llama-3.3
70B-Instruct

dreamlike-photoreal-2.0 T5 20.82 42.10 29.97 68.51

IF-I-L-v1.0 CLIP 20.66 37.02 30.67 68.11

FLUX.1-dev Both 22.93 42.21 29.22 67.12
stable-diffusion-3.5-large 21.90 40.45 30.72 68.71

Qwen2.5
72B-Instruct

dreamlike-photoreal-2.0 T5 21.20 42.35 29.90 68.64

IF-I-L-v1.0 CLIP 20.31 35.88 30.58 68.61

FLUX.1-dev Both 23.25 41.93 29.76 68.27
stable-diffusion-3.5-large 23.18 39.26 30.95 69.53

Table 5: Experimental results for TEXTTIGER W/O LEN, using prompts without explicit length control. The
notations are the same as those in Table 3. It is evident that token truncation leads to performance degradation.

Avg. # of Num. of
Method

Tokens Violation

CAP-ONLY 26.48 0
CAP-AUG-ONLY 487.34 1,429
TEXTTIGER W/O LEN 314.15 2,117

TEXTTIGER (Ours) 118.89 0
ITERATIVE-TEXTTIGER 118.89 0

Table 6: Avg. # of token and # instances over T5 limit.

Perspective
Method Model

Informative Concise Fluent

CAP-ONLY – 3.68 3.81 3.7

TEXT
TIGER

Llama3.1 (8B) 3.71 3.38 3.73

Llama3.1 (70B) 3.82 3.3 3.7
Llama3.3 (70B) 3.78 3.24 3.63
Qwen2.5 (72B) 3.76 3.35 3.64

Table 7: The average scores for human evaluation.

TIGER features a wide river at the center with418

buildings or houses on both sides. While the base-419

line can recognize the general layout, Dreamlike420

tends to produce images that evoke a river in the421

middle of a forest, suggesting that CAP-ONLY does422

not adequately capture the entities in the caption.423

In contrast, our proposed method, which augments424

the entity-related knowledge and summarizes it to425

an appropriate length, leads to images that more426

closely resemble the reference image.427

TEXTTIGER v.s. ITERATIVE-TEXTTIGER428

Table 4 compares our method, TEXTTIGER,429

which generates summarized descriptions by di-430

rectly specifying a target token length, with its it-431

erative variant, ITERATIVE-TEXTTIGER, which432

refines the output up to three times to better sat-433

isfy the token limit. The improvements observed 434

with ITERATIVE-TEXTTIGER suggest that both 435

approaches yield nearly identical results, indicat- 436

ing that TEXTTIGER alone is sufficient to produce 437

descriptions of appropriate length. 438

Importance of Length Control To reveal the im- 439

portance of controlling prompt lengths, we analyze 440

TEXTTIGER W/O LEN, which does not impose 441

length constraints. Table 5 indicates the perfor- 442

mance drop from TEXTTIGER, which aligns with 443

the tendency of the generated token lengths. As 444

shown in Table 6, this approach led to an average 445

token sequence length of 314.15 with 2,117 viola- 446

tions, while CAP-AUG-ONLY had 487.34 tokens 447

on average with 1,429 violations. These results 448

demonstrate that exceeding the token length limit 449

causes truncation, leading to performance degra- 450

dation. In contrast to their failure, our methods 451

control length, keeping prompts within the limit 452

while preserving key information. This confirms 453

length control is essential for an appropriate prompt 454

design in image generation. 455

7 Analysis and Discussion 456

Human Evaluation To evaluate whether the de- 457

scriptions summarized by LLMs include accurate 458

and reliable information, we conducted human eval- 459

uation by multiple participants via MTurk (Crow- 460

ston, 2012), following the guidelines from previous 461

research (Fabbri et al., 2021). We show both cases, 462

CAP-ONLY (caption only) and our method TEXT- 463

TIGER (caption + description), along with their 464

corresponding reference image to ensure that an- 465

notators can evaluate them on an equal footing. 466
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Model CAP-ONLY CAP-AUG-ONLY TEXTTIGER W/O LEN TEXTTIGER ITERATIVE-TEXTTIGER Reference

Dreamlike

IF-I-L

FLUX

Stable Diffusion

Table 8: The examples of outputs generated using various methods for the input “The River Nore at Kilkenny”
alongside the reference image. The models used include Dreamlike (CLIP-only), IF-I-L (T5-only), and FLUX and
Stable Diffusion, which utilize both CLIP and T5. The model used for summarization is Llama3.3 (70B).

Annotators rated them based on three criteria: In-467

formativeness, Conciseness, and Fluency. Each468

criterion was scored on a scale from 1 (worst) to469

5 (best), without requiring any additional explana-470

tions. Due to cost constraints, we randomly sam-471

pled 100 cases for evaluation and allocated up to 5472

(≥3) annotators for each case. We present the aver-473

age scores for each criterion in Table 7, demonstrat-474

ing that, while all models produced lower scores475

in conciseness compared to the baseline (CAP-476

ONLY), because of the description being appended,477

they achieved higher scores in informativeness and478

fluency. This suggests that the summarized de-479

scriptions by LLMs preserve more information.480

However, we observed only a small correlation481

between these human evaluation results and the482

performance of the image generation models, in-483

dicating that descriptions judged informative and484

fluent by humans do not necessarily align with im-485

proved performance in image generation models.486

Appendices C.2 and E.3 describe the more details.487

Performance for Different Encoder Types Ta-488

ble 4 shows the results of image generation models489

using only CLIP, only T5, or both as text encoders.490

Comparing the Dreamlike and IF-I-L models, IF-491

I-L, which incorporates CLIP, consistently out-492

performed Dreamlike, indicating that CLIP has a493

greater impact on image generation than T5. How-494

ever, when comparing IF-I-L with Stable Diffusion495

(or FLUX), models utilizing both demonstrated496

superior performance. This highlights the continu-497

ing importance of T5’s expressive capabilities and498

the meaningful contribution of retaining T5 in the 499

model effectively. From such kind of conclusions, 500

these findings underscore the importance of maxi- 501

mizing information within a proper token sequence 502

length. The results emphasize the impact of the 503

proposed method for improving image generation. 504

8 Conclusion 505

We addressed the limitations of current text- 506

to-image generation models in handling entity- 507

specific knowledge, which is essential for produc- 508

ing accurate and user-intended outputs. 509

To systematically investigate this problem, we 510

introduced WiT-Cub, a novel dataset that enriches 511

image–captions pairs with entity annotations and 512

detailed descriptions. Leveraging this dataset, we 513

proposed TEXTTIGER, a method that augments 514

prompts with externally retrieved entity knowledge 515

and uses Large Language Models to summarize the 516

information concisely, ensuring the inclusion of es- 517

sential knowledge while keeping the prompt within 518

a length suitable for image generation models. 519

Our experiments demonstrated that TEXT- 520

TIGER consistently outperforms baseline ap- 521

proaches across both automatic metrics and hu- 522

man evaluations, particularly in informativeness 523

and fluency. These results confirm that entity- 524

aware prompt refinement is a promising direction 525

for improving factual accuracy and reliability. Our 526

findings also highlight the potential of combining 527

external knowledge sources with LLM-based sum- 528

marization to overcome knowledge limitations. 529
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9 Limitations530

Evaluation of Object Recognition As discussed531

in Appendix A.6, our study evaluates the proposed532

method using standard evaluation metrics. These533

metrics primarily assess the overall diversity of534

generated images and the similarity of their dis-535

tribution to the target distribution, e.g., via KL di-536

vergence. However, they do not directly evaluate537

object-level recognition within individual images.538

Evaluating entity-level object recognition, such as539

recognizing complex entities described in WiT-Cub540

or WiT captions, requires new evaluation metrics.541

Current metrics for such evaluation remain limited,542

and developing them represents an opportunity for543

future research. Our study focuses on improving544

image generation capabilities, leaving metric devel-545

opment outside our scope. On the other hand, as546

shown in Appendix 2, models still fail to correctly547

handle entities such as proper names of people,548

character names, and specific company names.549

Limitations of Human Evaluation and Annota-550

tor Bias Annotators may have sufficient knowl-551

edge about their own country or culture but often552

lack familiarity with entities from other regions,553

leaving potential bias, especially in tasks requiring554

recognition of named entities from diverse geo-555

graphical and cultural contexts. As future work,556

recruiting local annotators for each region could557

address this issue more effectively by ensuring that558

evaluators have the necessary knowledge. Fur-559

thermore, we intentionally avoided human eval-560

uation of generated images for the following rea-561

sons. First, it is difficult to find annotators who can562

accurately judge entities from around the world.563

Second, when annotators oversimplify their judg-564

ments to reduce effort, the reliability of the evalu-565

ation deteriorates. Third, evaluating how well the566

generated images reflect the entities described in567

WiT-Cub captions demands a deep understanding568

of those entities. For example, a Chinese evaluator569

is unlikely to recognize the names of rivers, cas-570

tles, or mountains in a remote region of the United571

States (Mostafazadeh Davani et al., 2024; Lee et al.,572

2024). Due to these issues, we deliberately opted573

not to perform human evaluations and leave it as574

our future studies.575

Differences from Prior Work Previous studies576

have proposed several methods to enhance image577

generation capabilities. However, many of them578

pursue different goals and thus diverge from our579

approach. Lyu et al. (2024) improved image gener- 580

ation by leveraging multiple modalities, including 581

speech, to infer and generate complex visual out- 582

puts. Jeong et al. (2025) improved image genera- 583

tion for cultural nouns through multiple refinement 584

steps, rather than focusing on entities. Chen et al. 585

(2022) enhanced abstract image generation via mul- 586

timodal retrieval, without targeting specific entities. 587

None of these studies deal with concrete entities at 588

the level of specificity that we target, which makes 589

our approach distinct. 590

NER for Prompt to Extract Entities We used 591

an API to extract entities from captions and aug- 592

mented them. By utilizing techniques such as 593

Named Entity Recognition (NER) (Pakhale, 2023) 594

to extract entities, we believe it is possible to apply 595

this approach to a wider range of tasks (Yamada 596

et al., 2020; Lample et al., 2016). Our focus is 597

on enhancing image generation capabilities by ex- 598

panding entity information using Wikipedia. Thus, 599

evaluating NER itself is beyond the scope of our 600

study, and we do not conduct such an evaluation. 601

Additionally, we have created WiT-Cub dataset. 602

Comparison with Retrieval-base Methods 603

Our method may be comparable to Retrieval- 604

Augmented Generation (RAG) (Lewis et al., 2020). 605

However, our task specifically focuses on whether 606

the performance of image generation models im- 607

proves, rather than evaluating the correctness of re- 608

trieved information or competing on retrieval qual- 609

ity. Thus, such comparisons fall outside the scope 610

of our work, and employing a suitable RAG system 611

remains a promising direction for future work. 612

10 Ethical Considerations 613

When conducting human evaluation, we ensure that 614

all 100 sampled images can be assessed fairly and 615

that none of them violate human rights. Although 616

MTurk5 allows specifying the worker’s race when 617

outsourcing tasks, it is impossible to guarantee that 618

the specified individual is the one actually perform- 619

ing the task (Karpinska et al., 2021; Tang et al., 620

2022; Gilardi et al., 2023). However, as previously 621

mentioned, we carefully verified the 100 sampled 622

images, making it unlikely that annotators inten- 623

tionally lowered the rankings. Additionally, 3–5 624

individuals participate in the evaluation, ensuring 625

the reliability of the results. 626

5https://www.mturk.com/
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A Appendix1013

A.1 Ablation Study1014

In our preliminary experiments, we attempted to1015

generate appropriate summarized for image gen-1016

eration by including captions. Table 10 presents1017

the results, showing that prompts for image genera- 1018

tion without including the caption led to a decline 1019

in image generation performance. This finding 1020

highlights the large impact of the 77-token limit 1021

processed by CLIP. Based on this preliminary ex- 1022

periment, we propose a method that supplements 1023

captions without altering them, i.e., (caption + sum- 1024

marized descriptions), as shown in Appendix E.2. 1025

A.2 Why Was the Token Limit Set to 180? 1026

As discussed in Appendix A.1, our preliminary ex- 1027

periment confirmed that concatenating augmented 1028

entity-specific descriptions with the original cap- 1029

tion, i.e., (caption + description), improves perfor- 1030

mance as prompts for image generation. In our 1031

study, we limit the summary length to 180 tokens, 1032

taking the caption length, which has dozens of to- 1033

kens into account. Specifically, this value is de- 1034

termined by subtracting the length of the caption 1035

from the maximum token limit of 256 accepted by 1036

T5. This constraint ensures that both the caption 1037

and the augmented information are fully included, 1038

enabling effective image generation. 1039

A.3 The result of Llama3.1 (70B) 1040

The experimental results using Llama3.1 (70B) are 1041

shown in Table 9. Based on the results in Table 4 1042

and Table 5, it is emphasized that our method, 1043

i.e., summarization to an appropriate length us- 1044

ing LLMs, is effective regardless of the number 1045

of model parameters when compared to Llama3.1 1046

(8B). At the same time, it is confirmed that per- 1047

formance declines when the summary becomes 1048

excessively long. 1049

A.4 Why Did GPT-4o Perform Worse? 1050

Table 9 also shows that the result generated by gpt- 1051

4o was bad. One clear issue was that the model 1052

failed to respect the text token limit we had set. 1053

Although we specified a maximum number of new 1054

tokens, truncation still occurred mid-sentence. As 1055

a result, the image generation model received in- 1056

complete inputs, which likely led to a failure in 1057

properly understanding the prompt, i.e., this was 1058

the most critical factor affecting performance. 1059

A.5 Token Limit 1060

Table 6 shows the tokenized lengths of image gen- 1061

eration prompts in each dataset, computed using 1062

the T5 tokenizer. Our method converts prompts 1063

to appropriate lengths so that they do not exceed 1064
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CLIPScore (↑)
Method Description Generation Image Generation Encoder IS (↑) FID (↓) Txt-Img Img-Img

TEXTTIGER
(Ours)

Llama-3.1
70B-Instruct

dreamlike-photoreal-2.0 T5 21.08 42.10 30.81 68.67

IF-I-L-v1.0 CLIP 22.53 35.60 30.66 68.88

FLUX.1-dev Both 23.85 42.39 29.80 68.80

stable-diffusion-3.5-large 24.92 39.07 31.86 70.23

ITERATOIVE-
TEXTTIGER

(Ours)

Llama-3.1
70B-Instruct

dreamlike-photoreal-2.0 T5 21.04 42.10 30.81 68.67

IF-I-L-v1.0 CLIP 21.76 35.60 30.66 69.54

FLUX.1-dev Both 23.98 42.25 29.79 68.87

stable-diffusion-3.5-large 24.03 39.07 31.86 70.23

TEXTTIGER W/O LEN
(Baseline)

Llama-3.1
70B-Instruct

dreamlike-photoreal-2.0 T5 21.63 42.61 29.95 68.36

IF-I-L-v1.0 CLIP 21.13 36.08 30.67 69.02

FLUX.1-dev Both 22.85 42.51 29.85 68.37
stable-diffusion-3.5-large 23.79 39.17 31.09 69.90

GPT-4o
mini

dreamlike-photoreal-2.0 T5 18.41 47.13 26.55 62.89

IF-I-L-v1.0 CLIP 19.09 41.70 26.75 61.73

FLUX.1-dev Both 16.96 59.75 26.17 59.41
stable-diffusion-3.5-large 14.99 68.10 27.09 60.39

Table 9: The experimental results obtained using Llama 3.1 (70B) and GPT-4o-mini.

the maximum sequence length supported by the1065

T5-based image generation model.1066

A.6 Object Recognition1067

Table 8 and Appendix E.7 show the images gen-1068

erated by image generation models. While some1069

images deviate from the reference images, others1070

bear a strong resemblance.1071

A.7 Generalization to Unseen Entities1072

While TEXTTIGER improves image generation1073

by augmenting and summarizing entity-specific1074

knowledge, its effectiveness depends on the avail-1075

ability and quality of external knowledge sources,1076

such as Wikipedia. When encountering entities1077

with limited or no publicly available descriptions,1078

the method may struggle to provide meaningful1079

augmentations, potentially reducing its advantage1080

over baseline methods (Vyas and Ballesteros, 2021;1081

Zhang et al., 2022; Logeswaran et al., 2019).1082

A.8 Do LLMs Generate Summarized1083

Descriptions Correctly?1084

To generate summarized descriptions for image1085

generation, we instructed the model to output1086

start and end markers, i.e., SummaryStart: and1087

<SummaryEnd> as shown in Appendix E.1, and1088

used only the text extracted between them for im-1089

age generation. This approach enabled the cre-1090

ation of descriptions that were both of appropriate 1091

length and properly summarized for image gen- 1092

eration. Appendix E.6 provides examples of the 1093

summarized descriptions output by the model and 1094

the corresponding images generated using them. 1095

B Detailed Model Settings 1096

B.1 LLMs 1097

The table below provides detailed configurations 1098

of the models used in this study. For LLM infer- 1099

ence to create properly summarized descriptions, 1100

we set the seed to 0. The max_tokens varied by 1101

method: 512 tokens for TEXTTIGER W/O LEN 1102

and 180 tokens for TEXTTIGER and ITERATIVE- 1103

TEXTTIGER. During image generation, we fixed 1104

the seed at 42. We conducted the experiments us- 1105

ing Transformers library (Wolf et al., 2020) and 1106

applied quantization with bitsandbytes6. For Ope- 1107

nAI API usage, we processed requests in batches, 1108

setting max_tokens to 512 and the seed to 0. Pro- 1109

cessing all TEXTTIGER W/O LEN experiments 1110

costs approximately $10. 1111

B.2 Image Generation Models 1112

For image generation, we followed the configura- 1113

tion of Stable Diffusion 3.5. The model generates 1114

6https://github.com/bitsandbytes-foundation/
bitsandbytes
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CLIPScore (↑)
Method Description Generation Image Generation Encoder IS (↑) FID (↓) Txt-Img Img-Img

CAP-ONLY
– Dreamlike T5 20.57 43.29 29.94 67.91
– IF-I-L CLIP 21.66 35.83 30.31 67.84
– Stable Diffusion Both 24.03 39.17 31.32 69.96

TEXTTIGER

Llama-3.1
8B-Instruct

Dreamlike T5 19.75 48.51 29.93 68.51

IF-I-L CLIP 21.95 38.91 30.81 68.88

Stable Diffusion Both 22.14 43.11 31.12 70.02

Llama-3.3
70B-Instruct

Dreamlike T5 19.51 45.67 29.94 68.44

IF-I-L CLIP 22.10 37.66 30.68 69.05

Stable Diffusion Both 23.67 41.50 30.89 69.82

Qwen2.5
72B-Instruct

Dreamlike T5 18.74 91.86 30.01 68.59

IF-I-L CLIP 16.37 59.14 30.63 69.34

Stable Diffusion Both 18.20 82.99 31.09 70.34

ITERATIVE-
TEXTTIGER

Llama-3.1
8B-Instruct

Dreamlike T5 19.73 48.51 29.93 68.51

IF-I-L CLIP 21.80 38.91 30.84 68.93

Stable Diffusion Both 22.01 43.11 31.12 70.02

Llama-3.3
70B-Instruct

Dreamlike T5 19.51 45.67 29.94 68.44

IF-I-L CLIP 21.96 37.66 30.68 69.05

Stable Diffusion Both 23.69 41.50 30.89 69.82

Qwen2.5
72B-Instruct

Dreamlike T5 18.62 91.86 30.01 68.60

IF-I-L CLIP 16.14 59.14 30.64 69.41

Stable Diffusion Both 18.23 82.99 31.09 70.34

Table 10: The result of our preliminary experiment among comparisons across Dreamlike, IF-I-L, and Stable
Diffusion. We confirmed that using summarized captions instead of the original ones as input for image generation
models resulted in lower accuracy. Our proposed method, TEXTTIGER, described in Section 4, overcomes these
challenges and demonstrates improvements over the baseline.

Model Params HuggingFace Name / OpenAI API

LLaMA3.1 8B meta-llama/Llama-3.1-70B-Instruct

LLaMA3.1 70B meta-llama/Llama-3.1-70B-Instruct

LLaMA3.3 70B meta-llama/Llama-3.3-70B-Instruct

Qwen2.5 72B Qwen/Qwen2.5-72B

GPT-4o-mini – GPT-4o-mini-2024-0718

Dreamlike – dreamlike-art/dreamlike-photoreal-2.0s

IF-I-L – DeepFloyd/IF-I-L-v1.0

FLUX.1-dev – black-forest-labs/FLUX.1-dev

Stable Diffusion – stabilityai/stable-diffusion-3.5-large

T5 4.7B google-t5/t5-11b

CLIP 428M openai/clip-vit-large-patch14

Table 11: Detailed name of models. As for T5, only the
encoder part is used in image generation models.

images with a resolution of 1,024 × 1,024 pixels.1115

The guidance scale is set to 3.5, and the number1116

of inference steps is 50. The maximum sequence1117

length for processing inputs is 512 tokens.1118

B.3 Experimental Environments 1119

We used the NVIDIA RTX 6000 Ada Generation 1120

to create prompts designed for appropriate image 1121

generation. For the image generation process, we 1122

employed the NVIDIA RTX 6000 Ada Genera- 1123

tion with Stable Diffusion and FLUX, which incor- 1124

porates both T5 and CLIP. We used the NVIDIA 1125

A6000 with Dreamlike and IF-I-L. 1126

B.4 Detailed Significance Test 1127

Following prior work (Kamigaito et al., 2023), we 1128

conducted statistical testing using paired-bootstrap 1129

resampling (Koehn, 2004). We randomly extracted 1130

2,000 samples with replacement from the dataset 1131

and ran the test 1,000 times. 1132

B.5 Reproducibility of Outputs 1133

This study relies on external resources, including 1134

the OpenAI API, external LLMs, and image gen- 1135

15



eration models. Changes in the availability or per-1136

formance of these resources, beyond our control,1137

could affect reproducibility. The batch processing1138

cost for using the OpenAI API in our research was1139

approximately $10.1140

C Detailed Evaluation1141

C.1 Details of Human Evaluation (MTurk)1142

We used MTurk to evaluate the summarized de-1143

scriptions for image generation generated by LLMs.1144

We compared four different LLMs with the base-1145

line (WiT-Cub captions) and designed the evalua-1146

tion procedure following previous research (Fabbri1147

et al., 2021). Annotators rated the prompts on three1148

criteria: (1) Informativeness, (2) Conciseness, and1149

(3) Fluency, using a five-point scale (1 = worst, 51150

= best). Details of the evaluation procedure are1151

provided in Appendix E.3. To ensure reliability,1152

we hired multiple annotators, with up to five anno-1153

tators per question (greater than three annotators).1154

Due to cost constraints, we sampled 100 cases for1155

evaluation. Additionally, to maintain consistency,1156

we intentionally included duplicate questions, i.e.,1157

dummy ones. If an annotator provided inconsistent1158

answers for the same question, we excluded their1159

responses from the final analysis. Each question is1160

distributed at a rate of 3 dollars. The sum in our1161

work is around $200. We outsourced 100 questions,1162

offering a reward of $3 per question, with a maxi-1163

mum of five annotators per question. This amount1164

also accounts for factors such as dry runs and the1165

exclusion of inattentive annotators. We hired work-1166

ers who have an approval rate greater than 90%1167

with at least 50 approved HITs, following the prior1168

research. (Sakai et al., 2024)1169

C.2 Statistics of Human Evaluation1170

Table 12 presents the inter-annotator agreement1171

values measured by Fleiss’ Kappa (Cohen, 1960)1172

and Krippendorff’s Alpha (Krippendorff, 2011).1173

To ensure the reliability of annotators, as done in1174

prior studies (Hayashi et al., 2025; Filippova et al.,1175

2015), we exclude annotators who consistently pro-1176

duce outliers and use the scores from the remaining1177

annotators. For evaluation, we use questions after1178

removing dummy questions inserted to assess an-1179

notator reliability. Krippendorff’s evaluation scale1180

is set to “ordinal.”1181

Metrics Concise Fluency Informative

Fleiss’ Kappa 0.335 0.22 0.364
Krippendorff’s Alpha 0.731 0.677 0.685

Table 12: Statistics results of human evaluation.

C.3 Detailed Dataset Statistics 1182

The WiT-Cub dataset created in our study in Sec- 1183

tion 3 is an extension of WiT. Therefore, the image 1184

resolution and size remain unchanged from the 1185

original dataset. 1186

Detail Value

# of instances 2,500
#Avg. number of entities 3.02
#Avg. token length 26.48

Table 13: WiT-Cub statistics. We calculate the token
sequence length by CLIP, as described in Section 4.2.

C.4 Automatic Evaluation of Summarization 1187

In our study, we did not conduct automatic eval- 1188

uations for the summarization, such as ROUGE 1189

scores (Lin, 2004), for two reasons: 1) There are no 1190

reference answers for the descriptions augmented 1191

in our study, making automatic evaluation infea- 1192

sible; 2) Although an exact match-based method 1193

exists for measuring how many entities are included 1194

in the generated text (Shao et al., 2024), we aug- 1195

mented all entities using the Wikipedia API and 1196

summarized them with LLMs. As a result, entities 1197

are guaranteed to appear in the summaries. Due 1198

to these reasons, we did not conduct automatic 1199

evaluations for the summaries. Instead, we per- 1200

formed large-scale human evaluations, which are 1201

more insightful than automatic metrics. The re- 1202

sults confirmed that the summaries are informative, 1203

demonstrating the effectiveness of our method. 1204

C.5 Detailed Evaluation Metrics 1205

Inception Score (IS) (Salimans et al., 2016) evalu- 1206

ates the diversity and semantic meaningfulness of 1207

generated images. It analyzes the label distribution 1208

of images using a classifier and computes the score 1209

based on entropy and KL divergence. A higher 1210

score indicates greater diversity and quality of the 1211

generated images. 1212

IS = exp
(

Ex∼pg [DKL(p(y|x)||p(y))]
)

(1) 1213

Here, x represents a generated image, pg denotes 1214

the distribution of generated images, p(y|x) is the 1215
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predicted label distribution for image x, p(y) is1216

the marginal label distribution over all generated1217

images, and DKL represents the KL divergence.1218

Fréchet Inception Distance (FID) (Heusel et al.,1219

2017) measures the difference in feature distribu-1220

tions between generated and reference images. It1221

extracts image features using the Inception net-1222

work (Szegedy et al., 2015a) and calculates the1223

Fréchet distance between the distributions. A lower1224

value indicates higher quality and closer resem-1225

blance of generated images to real images.1226

FID = ||µr − µg||
2

2
+ Tr(Σr +Σg − 2(ΣrΣg)

1/2)
(2)1227

Here, µr and µg are the mean vectors of the feature1228

distributions for real and generated images, respec-1229

tively. Σr and Σg are the covariance matrices for1230

the feature distributions of real and generated im-1231

ages, Tr denotes the trace of a matrix, and || · ||21232

represents the 2-norm.1233

CLIPScore (Img-Txt) (Hessel et al., 2021) evalu-1234

ates the relevance between generated images and1235

text. A higher score indicates that the image aligns1236

well with the text content.1237

CLIPScoreImg-Txt = cos(Eimg(x), Etxt(t)) (3)1238

Here, Eimg(x) is the CLIP embedding vector for1239

image x, Etxt(t) is the CLIP embedding vector for1240

text t, and cos(·, ·) represents cosine similarity.1241

CLIPScore (Img-Img) evaluates the similarity be-1242

tween two images by calculating the cosine simi-1243

larity between their CLIP embedding vectors. A1244

higher score indicates that the two images are se-1245

mantically similar.1246

CLIPScoreImg-Img = cos(Eimg(x1), Eimg(x2))
(4)

1247

Here, Eimg(x1) and Eimg(x2) are the CLIP embed-1248

ding vectors for images x1 and x2, respectively,1249

and cos(·, ·) represents cosine similarity.1250

D Case Study on Failure Cases1251

We still observed failure cases during prompt sum-1252

marization and image generation.1253

D.1 Summarized Description by LLMs1254

TEXTTIGER instructed the model to generate spe-1255

cific start and end symbols for the summary, then1256

extracted the description between them using reg-1257

ular expressions. The extracted text uses as the1258

summarized description. However, in some cases,1259

the model generated the end symbol at an incorrect 1260

position, resulting in unnatural sentences. 1261

Failure Case of Summarization

Budapest is the capital and most populous city of Hun-
gary. It has a population of 1,752,286 and is the centre
of the Budapest metropolitan area. The city has a rich
history, dating back to the Roman town of Aquin-
cum, and has been influenced by various cultures,
including the Hungarians, Mongols, and Ottomans.
Budapest became a global city after the unification
of Buda, Óbuda, and Pest in 1873. The city is a hub
for commerce, finance, media, art, fashion, research,
technology, education, and entertainment. It is home
to over 40 colleges and universities, including Eötvös
Loránd University and the Budapest University of
Technology and Economics. The city’s central area
along the Danube River is a UNESCO World Her-
itage Site and features several notable monuments of
classical architecture. Budapest attracts around

1262

D.2 Image generation 1263

We observed cases where this approach was less 1264

effective, leading to images that deviated from 1265

the reference. Figure 2 shows an example where 1266

the caption “An electronic billboard on 1267

the Thomson Reuters building welcomes 1268

Facebook to the Nasdaq.” was used. These 1269

results indicate that while our method effectively 1270

enhances entity-based descriptions for scenes, land- 1271

scapes, and buildings, it struggles to accurately re- 1272

flect faces or texts. Table 13 provides the statistics 1273

of WiT-Cub. 1274

Figure 2: (Left) Generated image by Stable Diffusion
and (Right) reference image.

E AI Assistant Tools 1275

We leverage advanced tools such as ChatGPT 7, 1276

DeepL 8, and GitHub Copilot 9to accelerate our 1277

research processes and streamline the writing of 1278

academic papers. These tools enable efficient idea 1279

generation, precise translations, and coding assis- 1280

tance, enhancing productivity and quality. 1281

7https://openai.com/index/chatgpt/
8https://www.deepl.com/en/translator
9https://github.com/features/copilot
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E.1 Prompt for Summarization1282

The prompts used as input to the LLMs for generating properly summarized descriptions for image1283

generation are shown below, where blue text represents variables and red text indicates the explicit input1284

of token counts tokenized by CLIP (https://huggingface.co/openai/clip-vit-large-patch14).1285

Prompt for Summarizing (TEXTTIGER W/O LEN)

Please generate a summary so that there are 180 tokens.
However, please do not delete proper nouns or other important information.
Please begin the output with SummaryStart: and write the summary of the text.
Please end the output with <SummaryEnd> as the last token.

Example:
SummaryStart: The summary of the text is as follows. The text is about the summary of the text.
<SummaryEnd>

Complement:
{Complement}

SummaryStart:

1286

Prompt for Summarizing (TextTIGER)

The current tokens are {current_words} tokens.
Please generate a summary so that there are 180 tokens.
However, please do not delete proper nouns or other important information.
Please begin the output with SummaryStart: and write the summary of the text.
Please end the output with <SummaryEnd> as the last token.

Example:
SummaryStart: The summary of the text is as follows. The text is about the prompt of the text.
<SummaryEnd>

Complement:
{Complement}

SummaryStart:

1287

Prompt for Summarizing (Iterative-TEXTTIGER)

The current tokens are still {current_words} tokens.
Please generate a summary so that there are 180 tokens.
However, please do not delete proper nouns or other important information.
Please begin the output with SummaryStart: and write the summary of the text.
Please end the output with <SummaryEnd> as the last token.

Example:
SummaryStart: The summary of the text is as follows. The text is about the prompt of the text.
<SummaryEnd>

Complement:
{description}

SummaryStart:

1288
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E.2 Prompt for Image Generation 1289

The prompts used for image generation are as follows. To maximize the information content, we only 1290

include the necessary information. Blue text represents variables. 1291

Prompt for Image Generation (CAP-ONLY)

Caption: {caption}

1292

Prompt for Image Generation (CAP-AUG-ONLY and Three TEXT-TIGER Methods)

Caption: {caption}

Note: {description}

1293

E.3 Details of Human Evaluation 1294

Below, we provide the procedure used for outsourcing evaluations via Amazon Mechanical Turk 1295

(MTurk (Crowston, 2012), https://www.mturk.com/). The procedure was designed with reference 1296

to previous research on summarization evaluation (Fabbri et al., 2021). For each task, we hired up to five 1297

evaluators on MTurk. Additionally, to ensure the reliability of their assessments, we included identical 1298

test cases within the evaluation subset to verify consistency in their responses. 1299

Prompt for Image Generation

# Instructions
In this task, you will evaluate how well the provided captions match the given images.
To complete this task correctly, follow these steps:
　1. Watch the image and understand the scene.
　2. Read the caption and compare it with the image.
　3. Rate the caption based on the following criteria on a scale from 1 (worst) to 5 (best):
　4. Please only score the rank without explaining the reason.

# Definitions
## Informativeness:
　- How much useful information the caption provides about the image.
　- Captions should include relevant details, such as proper nouns and contextual information,
to help the reader visualize the image.

## Conciseness:
　- How accurately and efficiently the caption describes the image.
　- It should avoid unnecessary details while clearly conveying the key points.

## Fluency:
　- How natural and well-structured the caption is.
　- It should be a coherent sentence rather than a list of words.

1300

19

https://www.mturk.com/


E.4 A Sample of MTurk1301

The figure below indicates a sample screenshot of MTurk.1302

Figure 3: A sample screenshot in MTurk.

E.5 Another Example of WiT-Cub1303

Entity List
Caption

Entity Description
Image

threshing machine A threshing machine or a thresher is a piece of
farm equipment that separates grain seed from
the stalks and ...Threshing machine

in 1881. Today both
reaping and thresh-
ing are done with a
combine harvester.

combine harvester The modern combine harvester, also called a
combine, is a machine designed to harvest a
variety of cultivated seeds. Combine harvesters
are one of the most....

machine A machine is a physical system ...

Table 14: Another example of the dataset, WiT-Cub, we created. We augment the entities included in image captions
using external resources. Section 3 demonstrate the dataset creation process.
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E.6 Examples of the Summarized Description 1304

Caption LLMs Summarized description Generated image

Reference

Llama 3.1
8B-Instruct

Clermont-Ferrand is a city in France with a population of 147,284. It is the prefecture of
the Puy-de-Dôme department and has a metropolitan area of 504,157 inhabitants. The
city is known for its chain of volcanoes, the Chaîne des Puys, and its dormant volcano
Puy de Dôme. Clermont-Ferrand has been listed as a UNESCO World Heritage Site
since 2018. The city has a rich history, dating back to the Gallo-Roman era, and has
been the site of several important events, including the Council of Clermont in 1095.
Today, Clermont-Ferrand hosts the Clermont-Ferrand International Short Film Festival
and is home to the corporate headquarters of Michelin. The city is also a learning city,
with a quarter of its population being students.

Clermont
Ferrand

Llama 3.1
70B-Instruct

Clermont-Ferrand is a city and commune of France, in the Auvergne-Rhône-Alpes
region, with a population of 147,284 (2020). It is the prefecture of the Puy-de-Dôme
département and has a metropolitan area of 504,157 inhabitants. The city is known for
the chain of volcanoes, the Chaîne des Puys, and the dormant volcano Puy de Dôme.
Clermont-Ferrand has been listed as a ẗectonic hotspots̈ince July 2018 on the UNESCO
World Heritage List. The city has a rich history, dating back to the Gallo-Roman era,
and has been an important center for trade and culture. Today, Clermont-Ferrand hosts
the Clermont-Ferrand International Short Film Festival and is home to the corporate
headquarters of Michelin.

Llama 3.3
70B-Instruct

Clermont-Ferrand is a city and commune of France, in the Auvergne-Rhône-Alpes region,
with a population of 147,284. It is the prefecture of the Puy-de-Dôme département and
has a metropolitan area with 504,157 inhabitants. The city is known for the chain of
volcanoes, the Chaîne des Puys, and has been listed as a ẗectonic hotspots̈ince July 2018
on the UNESCO World Heritage List. Clermont-Ferrand has a rich history, dating back
to the Gallo-Roman era, and has been an important city in France, hosting the Council
of Clermont in 1095. Today, it is home to the corporate headquarters of Michelin and
hosts the Clermont-Ferrand International Short Film Festival. The city is also known for
its distinctive black lava.

Qwen 2.5
72B-Instruct

Clermont-Ferrand, a city and commune in the Auvergne-Rhône-Alpes region of France,
has a population of 147,284 (2020) and a metropolitan area of 504,157 inhabitants
(2018). As the capital of the Puy-de-Dôme département, it is known for its volcanic
landscape, including the Puy de Dôme, and its designation as a UNESCO World Heritage
Site. Historically significant, it was the capital of the Arvernie tribe and later named
Augustonemetum during the Roman era. The city played a crucial role in the First
Crusade, hosting the Council of Clermont in 1095. Today, it is home to the Michelin
headquarters, the Clermont-Ferrand International Short Film Festival.

Table 15: Images generated using our proposed method (TEXTTIGER) by Stable Diffusion 3.5. This table compares
simplified and summarized descriptions across LLMs which we use for generating the prompt.

21



Caption LLMs Summarized description Generated image

Reference

Llama 3.1
8B-Instruct

The Metropolitan Railway was a passenger and goods railway that served London from
1863 to 1933. It connected the main-line railway termini at Paddington, Euston, and
King’s Cross to the City. The first section was built beneath the New Road using cut-
and-cover between Paddington and King’s Cross. The line was extended from both ends
and northwards via a branch from Baker Street. The most important route was northwest
into the Middlesex countryside, stimulating the development of new suburbs. Electric
traction was introduced in 1905, and the Met developed land for housing, promoting
housing estates near the railway using the M̈etro-landb̈rand. The Met was amalgamated
with the Underground Electric Railways Company of London and the capital’s tramway
and bus operators to form the London Passenger Transport Board in 1933.

Construction of
the Metropolitan Railway

close to King’s Cross
station in 1861

Llama 3.1
70B-Instruct

The Metropolitan Railway was a passenger and goods railway that served London from
1863 to 1933. It connected the main-line railway termini at Paddington, Euston, and
King’s Cross to the City. The first section opened on 10 January 1863 with gas-lit wooden
carriages hauled by steam locomotives. The line was extended from both ends, and
northwards via a branch from Baker Street. Southern branches reached Hammersmith in
1864, Richmond in 1877, and the original completed the Inner Circle in 1884. Electric
traction was introduced in 1905, and by 1907 electric multiple units operated most of
the services. The Met developed land for housing and promoted housing estates near
the railway using the M̈etro-landb̈rand. On 1 July 1933, the Met was amalgamated with
other companies.

Llama 3.3
70B-Instruct

The Metropolitan Railway was a passenger and goods railway that served London from
1863 to 1933. It connected the main-line railway termini at Paddington, Euston, and
King’s Cross to the City. The first section was built beneath the New Road using cut-and-
cover between Paddington and King’s Cross. The line was soon extended from both ends,
and northwards via a branch from Baker Street. The Met developed land for housing
and promoted housing estates near the railway using the M̈etro-landb̈rand. On 1 July
1933, the Met was amalgamated with other companies to form the London Passenger
Transport Board. Former Met tracks and stations are used by the London Underground’s
Metropolitan, Circle, District, Hammersmith & City, Piccadilly, Jubilee and Victoria
lines, and by Chiltern Railways and Great Northern.

Qwen 2.5
72B-Instruct

The Metropolitan Railway, or Met, began serving London in 1863, connecting major
railway termini like Paddington, Euston, and King’s Cross to the City. The initial line
was constructed using cut-and-cover methods and tunnels, opening to the public on 10
January 1863. Extensions followed, reaching Hammersmith in 1864, Richmond in 1877,
and completing the Inner Circle in 1884. The Met played a crucial role in developing
suburban areas, extending to Harrow in 1880 and Verney Junction in 1897. Electric
traction was introduced in 1905, and by 1907, most services were electric. The Met also
engaged in property development, promoting M̈etro-landḧousing estates.

Table 16: Images generated using our proposed method (TEXTTIGER) by Stable Diffusion 3.5. This table compares
simplified and summarized descriptions across LLMs which we use for generating the prompt.
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E.7 Another Example of Generated Images 1305

Here, we introduce some examples of generated images.10

Model CAP-ONLY (Baseline) CAP-AUG-ONLY TEXTTIGER W/O LEN TEXTTIGER Iterative-TEXTTIGER Reference

Dreamlike

IF-I-L

FLUX

Stable Diffusion

Table 17: Another example of generated images using various methods for the input “Haymarket roundabout,
Melbourne” alongside their reference images. The models used include Dreamlike (CLIP-only), IF-I-L (T5-only),
and FLUX and Stable Diffusion which utilize both as text encoders. The model used for summarization is Qwen2.5
(72B).

1306

Model CAP-ONLY (Baseline) CAP-AUG-ONLY TEXTTIGER W/O LEN TEXTTIGER Iterative-TEXTTIGER Reference

Dreamlike

IF-I-L

FLUX

Stable Diffusion

Table 18: Another example of generated images using various methods for the input “Smelting Works. Oreana,
Nevada. ca. 1857 by Timothy H. O’Sullivan.” alongside their reference images. The models used include
Dreamlike (CLIP-only), IF-I-L (T5-only), and FLUX and Stable Diffusion which utilize both as text encoders. The
model used for summarization is Qwen2.5 (72B).

10Due to reduced resolution for file size constraints, some images may appear blurry or hard to see.
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Model CAP-ONLY (Baseline) CAP-AUG-ONLY TEXTTIGER W/O LEN TEXTTIGER Iterative-TEXTTIGER Reference

Dreamlike

IF-I-L

FLUX

Stable Diffusion

Table 19: Another example of generated images using various methods for the input “Helichrysum arenarium
from Thomé Flora von Deutschland, Österreich und der Schweiz 1885"” alongside their reference images.
The models used include Dreamlike (CLIP-only), IF-I-L (T5-only), and FLUX and Stable Diffusion which utilize
both as text encoders. The model used for summarization is Qwen2.5 (72B).

Model CAP-ONLY (Baseline) CAP-AUG-ONLY TEXTTIGER W/O LEN TEXTTIGER Iterative-TEXTTIGER Reference

Dreamlike

IF-I-L

FLUX

Stable Diffusion

Table 20: Another example of generated images using various methods for the input “The bronze entrance doors
to the administration building on West 155th Street were designed by Academy member Adolph
Alexander Weinmaen.” alongside their reference images. The models used include Dreamlike (CLIP-only), IF-I-L
(T5-only), and FLUX and Stable Diffusion which utilize both as text encoders. The model used for summarization
is Qwen2.5 (72B).
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