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Abstract

Generating images from prompts containing
specific entities requires models to retain as
much entity-specific knowledge as possible.
However, fully memorizing such knowledge
is impractical due to the vast number of en-
tities and their continuous emergence. To
address this, we propose Text-based Intelli-
gent Generation with Entity prompt Refinement
(TEXTTIGER), which augments knowledge
on entities included in the prompts and then
summarizes the augmented descriptions using
Large Language Models (LLMs) to mitigate
performance degradation from longer inputs.
To evaluate our method, we introduce WiT-
Cub (WiT with Captions and Uncomplicated
Background-explanations), a dataset compris-
ing captions, images, and an entity list. Exper-
iments on multiple image generation models
and LLMs show that TEXTTIGER improves
image generation performance in standard met-
rics (IS, FID, and CLIPScore) compared to
caption-only prompts. Additionally, multiple
annotators’ evaluation confirms that the summa-
rized descriptions are more informative, validat-
ing LLMs’ ability to generate concise yet rich
descriptions. These findings demonstrate that
refining prompts with augmented and summa-
rized entity-related descriptions significantly
enhances image generation capabilities. The
dataset will be available upon acceptance.

1 Introduction

Text-to-Image is a task to generate images from
given texts. To convert textual information into
an image, image generation models such as Stable
Diffusion (Rombach et al., 2022) rely on a diffu-
sion model (Ho et al., 2020) with a text encoder,
which requires precise and appropriate prompts
that capture the images they intend to generate. In
this process, the image generation models should
retain as much entity-specific knowledge, e.g., the
names of buildings, rivers, castles, and mountains,
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Figure 1: We propose a method, TEXTTIGER, which
first augments descriptions of entities included in
prompts and then adjusts their sequence length prop-
erly through summarization with LLMs for generating
images.

as possible from the provided prompts in order to
generate images that meet the user’s expectations.

However, even massive image generation mod-
els struggle to retain this knowledge or continu-
ously acquire the latest information fully (Mar-
tinelli et al., 2024). Properly understanding en-
tities in models helps generate user-desired im-
ages in tasks such as advertisement image genera-
tion (Mita et al., 2023). To completely incorporate
up-to-date knowledge, one would need to invest
substantial costs in continuously collecting data
and retraining the image generation models, which
is not realistic or almost impossible. For exam-
ple, as shown in Figure 1, when given the prompt
“Giant’s Castle,” the image generation model
fails to properly understand the entity', i.e., “Gi-
ant’s Castle (See: https://en.wikipedia.org/

'We define entity as the named entity level, which is not
abstract concepts like “bridge”, but specific instances such as
“Golden Gate Bridge.” (Choi et al., 2018; Pakhale, 2023)
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wiki/Giant%27s_Castle).” Moreover, simply
appending externally acquired information as a
long-context prompt does not allow the Trans-
former (Vaswani et al., 2017) architecture to handle
the information effectively and correctly (Beltagy
et al., 2020; Bertsch et al., 2023) due to its maxi-
mum token length, e.g., 512 tokens.

To address the challenges posed by insuffi-
cient entity understanding in image generation,
we first construct a new dataset, WiT-Cub (WiT
with Captions and Uncomplicated Background-
explanations) for the validation. WiT-Cub con-
sists of image-caption pairs annotated with entity
mentions and enriched with informative descrip-
tions, enabling systematic evaluation of how exter-
nal knowledge about entities affects quality.

Building on WiT-Cub, we propose a novel
method called Text-based Intelligent Generation
with Entity prompt Refinement, or TEXTTIGER.
Our approach begins by retrieving entity-specific
knowledge from external sources to augment the
original prompt. For instance, as shown in Figure 1,
for the prompt “Giant’s Castle,” we obtain addi-
tional context such as “Giant’s Castle is a mountain
located within the...” to overcome limitations in
the model’s internal knowledge. We then lever-
age Large Language Models (LLMs) (Abdin et al.,
2024; Guo et al., 2025; Team et al., 2024) to sum-
marize these descriptions concisely, ensuring that
essential information is preserved while keeping
the prompt within a manageable token length. This
refined prompt is then used to generate images, ef-
fectively mitigating both the model’s knowledge
limitations and its difficulty in processing long con-
texts.

Experimental results using multiple different im-
age generation models and LLLMs on the WiT-Cub
show that our method significantly outperforms
baselines in widely used metrics, IS (Salimans
et al., 2016), FID (Heusel et al., 2017), and CLIP-
Score (Hessel et al., 2021). Furthermore, the results
indicate a drop in performance when prompts are
simply augmented by descriptions, while the per-
formance improves when descriptions are summa-
rized. Moreover, human evaluations confirm that
the fully summarized descriptions are appropriately
shortened to the appropriate length and outperform
the baselines across criteria, i.e., informativeness,
conciseness, and fluency. These findings not only
prove that generating prompts of proper length with
summarized descriptions of entities by LLMs sig-
nificantly enhances image generation capabilities

but also demonstrate that this approach is effective
in overcoming the knowledge limitations of image
generation models.

2 Related Work

2.1 Vision and Entity Knowledge

In Vision and Language (V&L) fields, the chal-
lenge of understanding visual and/or textual infor-
mation often unveils V&L models’ limited gener-
alization abilities in text generation from images
for, e.g., newspapers (Lu et al., 2018; Liu et al.,
2021), e-commerce (Ma et al., 2022), fashion (Ros-
tamzadeh et al., 2018), and artworks (Bai et al.,
2021; Hayashi et al., 2024; Ozaki et al., 2024).
Likewise, Kamigaito et al. (2023) uncovers the lack
of entity knowledge of a V&L model OFA (Wang
et al., 2022) in the image generation tasks. An ex-
tensive study by Huang et al. (2024) introduced
the “Kitten” benchmark to evaluate knowledge-
intensive generation, leading to a finding that even
the most advanced models frequently fail to gen-
erate entities with accurate visual details. In their
experiments across domains like landmarks, plants,
and animals, models like Stable Diffusion (Esser
et al., 2024), DALL-E 3, and others produced im-
ages with large inaccuracies or missing critical fea-
tures when asked to depict many real-world entities.
This shortfall indicates that current diffusion mod-
els are limited by what they “know” from training
data, and they lack a robust factual grounding of
many specific entities.

2.2 Refinement of Prompts

Existing methods, such as those proposed by Hao
et al. (2024); Zhan et al. (2024), primarily explore
appropriate prompts for the improvement. While
these prior works highlight the variability in ap-
propriate prompts across models, they do not con-
sider entity-specific and up-to-date knowledge not
covered by image generation models. Hao et al.
(2024) also introduced a reinforcement learning-
based framework that rewrites user prompts into
model-preferred ones, improving both aesthetics
and alignment. Similarly, Zhan et al. (2024) formu-
lated prompt refinement as a translation problem
between user language and model language, lever-
aging image embeddings to pivot toward prompts
that better reflect the model’s preferred input distri-
bution. Other efforts, such as the dynamic prompt
weighting mechanism by Mo et al. (2024), adapt
the importance of each token and its diffusion
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Table 1: An example of our constructed dataset, WiT-Cub. We augment the entities included in image captions using
external resources. Section 3 describes the detailed information, and Appendix E.5 provides another example.

time step to control the generation process more
precisely. Maidas et al. (2024) proposed using
LLMs to iteratively rewrite prompts based on feed-
back from previous generations, optimizing for
semantic-image consistency. While these methods
largely improve image quality and alignment, they
primarily focus on stylistic, structural, or distribu-
tional refinement of prompts. They often operate
within the model’s inherent knowledge and do not
explicitly address situations where factual or up-to-
date entity knowledge is missing.

3 Dataset Creation: WiT-Cub

For the sake of systematically investigating whether
augmenting named entities with rich descriptions
improves the quality, we construct a new dataset,
WiT with Captions and Background-explanations
(WiT-Cub). While existing datasets such as
WIT (Srinivasan et al., 2021) provide a large col-
lection of image-captions pairs, they lack explicit
entity-level information, limiting their usefulness in
settings where understanding and visually ground-
ing specific named entities is crucial. In real-world
applications, prompts often contain proper nouns
or named entities that assume background knowl-
edge not explicitly provided in the caption. Without
access to such knowledge, even advanced image
generation models may hallucinate incorrect visual
content, fail to capture distinctive features, or con-
flate similarly named entities.

To address this need, we extend the original
WiT dataset by augmenting each image-caption
pair with background descriptions of all named
entities, retrieved via the Wikipedia API. Specif-
ically, WiT’s metadata includes hyperlinks to the

2https://www.mediawiki.org/wiki/API:Main_page

Wikipedia pages corresponding to entities men-
tioned in the captions. We programmatically follow
these URLs and extract the introductory abstract
of each page, which typically contains a concise
yet informative summary of the entity, i.e., often
covering its definition, category, origin, or salient
characteristics. These abstracts serve as natural
and reliable sources of contextual knowledge, espe-
cially for entities that are uncommon, ambiguous,
or culturally specific. For instance, given a cap-
tion that simply states “Statue of Liberty at sunset,”
the Wikipedia abstract can provide clarifying in-
formation, e.g., its location, height, width, visual
appearance, or symbolic significance, i.e., knowl-
edge that is often critical for faithful image genera-
tion. To ensure consistency and quality, we filter for
English-language entries and retain only the exam-
ples where both the image and the linked Wikipedia
page remain accessible at the time of dataset con-
struction. From the initial WiT corpus, we extract
2,500 valid instances that meet these criteria. Each
instance in our dataset thus consists of a triplet: the
original image, its corresponding caption, and the
retrieved entity description. The resulting dataset,
WiT-Cub, supports controlled experimentation on
how access to entity-specific background knowl-
edge affects the behavior of text-to-image gener-
ation models. Table 1 and Appendix E.5 present
examples, and Appendix C.3 provides summary
statistics of created dataset.

4 Proposed Method: TEXTTIGER

We propose a method that augments entity-specific
knowledge for entities included in prompts using
their precisely explained descriptions and then sum-
marizes the descriptions to an appropriate length
using LL.Ms, as shown in Figure 1. This approach
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Method Prompt for Image Generation

The caption in WiT-Cub.

CAP-ONLY

CAP-AUG-ONLY  The caption + Augmented knowl-

edge from Wikipedia.

TEXTTIGER The caption + Summarized de-
W/0 LEN scription generated by LLMs.
The caption + Summarized de-
TEXTTIGER scription generated by LLMs with
the explicit token length.
ITERATIVE- The caption + Iteratively applying
TEXTTIGER TEXTTIGER (n =3)

Table 2: Our proposed methods alongside the baseline.

effectively mitigates both the knowledge limita-
tions of the image generation model and its serious
weakness in handling long contexts. Our proposed
method mainly comprises the following two steps:
augmenting entities with informative descriptions
and summarizing the descriptions by LLMs.

4.1 STEP 1: Augment Entities with
Informative Descriptions

To ensure that the image generation model ac-
curately understands entities, we augment entity-
specific knowledge for entities in the caption using
external and informative descriptions. Specifically,
we extract entities in the caption using an entity list
found in WiT-Cub and retrieve their description to
mitigate the limitation of the model’s knowledge.

4.2 STEP 2: Summarize the descriptions by
LLMs

We let LLMs summarize the augmented entity-
specific description from STEP 1 while retaining
detailed entity information and ensuring an appro-
priate length. Following previous work (Juseon-Do
et al., 2024), which demonstrated that explicitly
specifying both input length and output token count
helps LLMs manage length constraints, we adopt a
similar approach for summarization. Specifically,
we tokenize the augmented description from STEP
1 using CLIP (Radford et al., 2021)3, the tokenizer
of the text encoder commonly used in image gen-
eration models, and explicitly provide the token
count to the LLMs. Since image generation models
primarily use not only CLIP but also T5 (Raffel
et al., 2020) as the text encoder, we set the output
token limit to 180*, ensuring compatibility with

3https://huggingface.co/openai/
clip-vit-large-patch14

“We choose the default model. https://huggingface.
co/stabilityai/stable-diffusion-3.5-1arge

T5’s token capacity. Appendix A.2 provides details
about the token counts and the rationale for setting
the limit to 180 tokens for image generation.

After applying these steps, we concatenate the
summarized entity-specific description to the end
of the caption, i.e., (caption + summarized descrip-
tion), forming a new prompt for image generation.
Our preliminary experiments showed that append-
ing the summarized entity-specific description of
180 tokens to the original caption achieved the best
performance, as demonstrated in the ablation study
in Appendix A.1. We refer to our proposed method
as Text-based Intelligent Generation with Entity
prompt Refinement, TEXTTIGER.

For the comparison with our proposed method,
we evaluate another approach that more strictly en-
sures compliance with the token length limit. If the
summarized description by LLMs still exceeds 180
token lengths, our work iteratively repeats STEP
2 until the length constraint is met. We define this
method as ITERATIVE-TEXTTIGER, setting the
maximum number of iterations to n = 3.

5 Experimental Settings

5.1 Dataset

We use the WiT-Cub in Section 3, which comprises
images, captions, and entity descriptions. WiT-
Cub comprises 2,500 instances, which provides a
sufficiently reasonable quantity for our purpose.

5.2 Prompt Format

Prompt for Summarizing the Description We
provide the prompt for letting LLMs summarize
augmented entity-specific descriptions for image
generation models in Appendix E.1. The summa-
rized description begins with SummaryStart: and
ends with <SummaryEnd>. We instruct the model to
output these markers, and then extract the content
between them using a regular expression.
Furthermore, to analyze the performance of our
methods, we also try TEXTTIGER w/0 LEN,
where LLMs perform summarization without token
counts being explicitly provided. This setting is
likely to result in truncation due to the exceeded
length of the input prompt for generation models.

Prompt for Image Generation CAP-ONLY
uses only the original caption in WiT-Cub. CAP-
AUG-ONLY involves extracting entities from the
caption, obtaining their description from the entity
list, and appending the description as a bullet-point
list to the caption. The prompt of this method tends
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CLIPScore (1)

Method Description Generation Image Generation Encoder IS(7) FID () Txt-Img Img-Img
- dreamlike-photoreal-2.0 T5 20.57 43.29 29.94 67.91
CAP-ONLY - IF-I-L-v1.0 CLIP 21.66  35.83 30.31 67.84
(Bascline) - stable—lji];flf{lﬁgﬁ?g .vS—large Both %43!823; g;% %?%g gggg
- dreamlike-photoreal-2.0 TS 20.93 42.88 29.58 68.02
CAP-AUG-ONLY - IF-I-L-v1.0 CLIP 2134 36.25 30.52 68.38
(Baseline) - FLUX.1-dev Both 2240 4280 2017 6771
- stable-diffusion-3.5-large 23.87 39.75 30.52 69.34

Table 3: Experimental results for the baselines CAP-ONLY and CAP-AUG-ONLY, which incorporates entity-specific
descriptions without summarization. The red values indicate improvement compared to the baseline (CAP-ONLY)
and the bold values highlight the best results among models. In CAP-AUG-ONLY, due to the excessive token length
and subsequent truncation, the overall accuracy deteriorates, describing the importance of prompt refinement.

to become longer, leading to a truncated input to
the text encoder of image generation models.

For the other three methods (i.e., TEXTTIGER
methods), the prompt is formed by concatenat-
ing the caption and description. This approach is
based on preliminary experiments in Appendix A.1,
where inputting the concatenation of the caption
and description as the prompt yields superior
performance compared to using the description
only. Table 2 provides all five methods, and Ap-
pendix E.2 describes the more detailed prompts.

5.3 Models

Summarization Models To summarize the aug-
mented entity-specific description for the im-
age generation process, we adopt the follow-
ing LLMs: Llama3.1 (8B-Instruct and 70B-
Instruct) (Dubey et al., 2024), Llama3.3 (70B-
Instruct) (Dubey et al., 2024), and Qwen2.5
(72B-Instruct) (Yang et al., 2024). The 70B-
class models (Llama and Qwen) are applied with
quantization to 4-bit precision. As for TEXT-
TIGER w/0 LEN, we also analyze using GPT-4o-
mini (gpt-40-mini-2024-07-18) (Achiam et al.,
2023), assuming that GPT-40-mini generates the
summarized description of the appropriate length
without explicit token count information. This
choice adopts different model types (Qwen and
Llama), varying model sizes (8B and 70B), and
a proprietary model (GPT-40-mini). Appendix B
provides more details about model settings.

Image Generation Models The image gener-
ation models include: IF-I-L v1.0 (DeepFloyd,
2023), Dreamlike-photoreal-2.0 (Art, 2023), Sta-
ble Diffusion 3.5-large (Esser et al., 2024), and
FLUX.1-dev (Labs, 2024) as shown in Appendix B.
We chose the models based on prior research

(Chen, 2023), which identified high-performing
models. Besides this, our choice is also based on
the idea of varying text encoders: T5 (Raffel et al.,
2020) only (IF-I-L), CLIP only (Dreamlike), and a
combination of both (Stable Diffusion, FLUX).

5.4 Evaluation Metrics for Image Generation

We evaluate the effectiveness of our method using
widely used evaluation metrics in image generation
fields, i.e., Inception Score (Salimans et al., 2016),
Fréchet Inception Distance (Heusel et al., 2017),
and CLIPScore (Hessel et al., 2021). Appendix C.5
provides a detailed explanation of these evaluation
metrics, including notations.

Inception Score (IS) (Salimans et al., 2016) evalu-
ates the diversity and semantic meaningfulness of
generated images. It quantifies how confidently a
classifier can predict labels for the generated im-
ages, while also measuring the diversity of label
predictions. A higher score indicates that the gen-
erated images are both of high quality and varied.
Fréchet Inception Distance (FID) (Heusel et al.,
2017) evaluates the difference between the fea-
ture distributions of generated and reference im-
ages. It extracts image features using Inception
v3 (Szegedy et al., 2015b), and then measures how
closely the distributions of real and generated im-
ages align. A lower FID value indicates that the
generated images resemble the reference images
more closely in terms of quality and realism.
CLIPScore (Img-Txt) (Hessel et al., 2021) mea-
sures the alignment between a generated image and
its corresponding textual description. It computes
how similar the text and image representations are
by using a model trained on both modalities. A
higher score means that the generated image is
more semantically relevant to the given text.



CLIPScore (1)

Method Description Generation Image Generation Encoder IS (1) FID () Txt-Img Img-Img
dreamlike-photoreal-2.0 T5 2146 4234 30.83 68.51
IF-I-L-v1.0 CLIP 21.27 35.49 30.81 68.88
Llama-3.1-8B-Instruct
FLUX.1-dev Both 23.49 41.92 29.87 68.56
stable-diffusion-3.5-large 24.11 39.13 32.02 70.02
dreamlike-photoreal-2.0 T5 21.20 42.20 29.94 68.44
IF-I-L-v1.0 CLIP 22.21 35.76 30.68 69.05
TEXTTIGER Llama-3.3-70B-Instruct
(Ours) FLUX.1-dev Both 23.74 42.88 29.63 68.47
stable-diffusion-3.5-large 24.45 39.48 31.79 70.72
dreamlike-photoreal-2.0 T5 21.60  42.35 30.01 68.59
IF-I-L-v1.0 CLIP 21.99 35.40 30.63 69.34
Qwen2.5-72B-Instruct
FLUX.1-dev Both 23.34 42.11 29.74 68.48
stable-diffusion-3.5-large 24.39 38.30 31.99 70.34
dreamlike-photoreal-2.0 TS 21.36 42.34 30.83 68.51
IF-I-L-v1.0 CLIP 21.67 35.63 30.84 68.93
Llama-3.1-8B-Instruct
FLUX.1-dev Both 23.67 41.92 29.87 68.56
stable-diffusion-3.5-large 24.92 39.13 32.02 70.02
dreamlike-photoreal-2.0 TS 21.23 42.20 29.94 68.44
IF-I-L-v1.0 CLIP 22.25 35.76 30.68 69.05
ITERATIVE-  L]ama-3.3-70B-Instruct
TEXTTIGER FLUX.1-dev 2358 4245  29.63 68.40
(Ours) o Both
stable-diffusion-3.5-large 24.51 39.48 31.79 70.72
dreamlike-photoreal-2.0 T5 21.68 42.37 30.01 68.60
IF-I-L-v1.0 CLIP 22.08 35.63 30.64 69.41
Qwen2.5-72B-Instruct
FLUX.1-dev Both 23.89 42.00 29.74 68.50
stable-diffusion-3.5-large 24.31 38.30 31.99 70.34

Table 4: Experimental results of our proposed method. The notations are the same as those in Table 3. The results
show the improvement. Underline value indicates that the score improvement is statistically significant (p < 0.05).

CLIPScore (Img-Img) compares two images in-
stead of text and image. By calculating the similar-
ity between two feature representations, this metric
determines how visually or semantically similar
they are. A higher score suggests that the two im-
ages share more visual or conceptual similarities.

Significance Test To demonstrate the statistical
strength of our results, we run a significance test
for TEXTTIGER and ITERATIVE-TEXTTIGER.
Following prior work (Kamigaito et al., 2023), we
use paired-bootstrap resampling (Koehn, 2004) as
detailed in Appendix B.4.

6 Results

Overall Results Tables 3 and 4 show that
our methods, i.e., TEXTTIGER and ITERATIVE-
TEXTTIGER, significantly outperform the base-

line CAP-ONLY in almost all cases for every metric.
These results indicate the importance of capturing
information about entities for text-to-image gen-
eration. Compared with our methods, the perfor-
mance improvements of CAP-AUG-ONLY from
CAP-ONLY are limited, indicating the necessity of
using concise prompts in image generation rather
than lengthy prompts. Thus, it is evident that our
method TEXTTIGER, which augments entity de-
scriptions and summarizes them to the appropriate
length, is effective for image generation models.
Table 8 shows the results of generated images
among all methods using LLlama3.3 (70B) for the
original caption, “The River Nore at Kilkenny.”
It can be observed that TEXTTIGER consistently
produces images that are closer to the reference
image across all image generation models when
compared with CAP-ONLY. For example, TEXT-



CLIPScore (1)

Method Description Generation Image Generation Encoder IS (1) FID () Txt-Img Img-Img
dreamlike-photoreal-2.0 TS5 20.66 42.04 30.03 68.49
Llama-3.1 IF-I-L-v1.0 CLIP 19.52 37.25 30.81 67.83
8B-Instruct FLUX.1-dev Both 2312 4260 2983 67.99
stable-diffusion-3.5-large 21.99 4136 31.07 68.94
dreamlike-photoreal-2.0 T5 20.82 42.10 29.97 68.51
TEXTTIGER W/0 LEN Llama-3.3 IF-I-Lv1.0 CLIP 2066 37.02  30.67 68.11
(Baseline) 70B-Instruct FLUX.1-dev Both 2293 4221 2922 6112
stable-diffusion-3.5-large 21.90 40.45 30.72 68.71
dreamlike-photoreal-2.0 T5 21.20 42.35 29.90 68.64
Qwen2.5 IF-I-L-v1.0 CLIP 2031 3588 3058 686l
72B-Instruct FLUX.I-dev Both 2325 4193 2976 68.27
stable-diffusion-3.5-large 23.18 39.26 30.95 69.53

Table 5: Experimental results for TEXTTIGER W/0 LEN, using prompts without explicit length control. The
notations are the same as those in Table 3. It is evident that token truncation leads to performance degradation.

Avg. #of Num. of
Megiod Tokens Violation
CAP-ONLY 26.48 0
CAP-AUG-ONLY 487.34 1,429
TEXTTIGER w/0 LEN 314.15 2,117
TEXTTIGER (Ours) 118.89 0
ITERATIVE-TEXTTIGER 118.89 0

Table 6: Avg. # of token and # instances over TS5 limit.

Perspective
R L fuxtel Informative Concise Fluent
CAP-ONLY - 3.68 3.81 3.7
Llama3.1 (8B) 3.71 3.38 3.73
TEXT Llama3.1 (70B) 3.82 3.3 3.7
TIGER Llama3.3 (70B) 3.78 3.24 3.63
Qwen2.5 (72B) 3.76 3.35 3.64

Table 7: The average scores for human evaluation.

TIGER features a wide river at the center with
buildings or houses on both sides. While the base-
line can recognize the general layout, Dreamlike
tends to produce images that evoke a river in the
middle of a forest, suggesting that CAP-ONLY does
not adequately capture the entities in the caption.
In contrast, our proposed method, which augments
the entity-related knowledge and summarizes it to
an appropriate length, leads to images that more
closely resemble the reference image.

TEXTTIGER v.s. ITERATIVE-TEXTTIGER
Table 4 compares our method, TEXTTIGER,
which generates summarized descriptions by di-
rectly specifying a target token length, with its it-
erative variant, ITERATIVE-TEXTTIGER, which
refines the output up to three times to better sat-

isfy the token limit. The improvements observed
with ITERATIVE-TEXTTIGER suggest that both
approaches yield nearly identical results, indicat-
ing that TEXTTIGER alone is sufficient to produce
descriptions of appropriate length.

Importance of Length Control To reveal the im-
portance of controlling prompt lengths, we analyze
TEXTTIGER w/0 LEN, which does not impose
length constraints. Table 5 indicates the perfor-
mance drop from TEXTTIGER, which aligns with
the tendency of the generated token lengths. As
shown in Table 6, this approach led to an average
token sequence length of 314.15 with 2,117 viola-
tions, while CAP-AUG-ONLY had 487.34 tokens
on average with 1,429 violations. These results
demonstrate that exceeding the token length limit
causes truncation, leading to performance degra-
dation. In contrast to their failure, our methods
control length, keeping prompts within the limit
while preserving key information. This confirms
length control is essential for an appropriate prompt
design in image generation.

7 Analysis and Discussion

Human Evaluation To evaluate whether the de-
scriptions summarized by LLMs include accurate
and reliable information, we conducted human eval-
uation by multiple participants via MTurk (Crow-
ston, 2012), following the guidelines from previous
research (Fabbri et al., 2021). We show both cases,
CAP-ONLY (caption only) and our method TEXT-
TIGER (caption + description), along with their
corresponding reference image to ensure that an-
notators can evaluate them on an equal footing.



Model CAP-ONLY CAP-AUG-ONLY TEXTTIGER w/0 LEN TEXTTIGER ITERATIVE-TEXTTIGER  Reference
o -i. - -

Dreamlike

IF-I-L

FLUX

Stable Diffusion

Table 8: The examples of outputs generated using various methods for the input “The River Nore at Kilkenny”
alongside the reference image. The models used include Dreamlike (CLIP-only), IF-I-L (T5-only), and FLUX and
Stable Diffusion, which utilize both CLIP and T5. The model used for summarization is Llama3.3 (70B).

Annotators rated them based on three criteria: In-
formativeness, Conciseness, and Fluency. Each
criterion was scored on a scale from 1 (worst) to
5 (best), without requiring any additional explana-
tions. Due to cost constraints, we randomly sam-
pled 100 cases for evaluation and allocated up to 5
(>3) annotators for each case. We present the aver-
age scores for each criterion in Table 7, demonstrat-
ing that, while all models produced lower scores
in conciseness compared to the baseline (CAP-
ONLY), because of the description being appended,
they achieved higher scores in informativeness and
fluency. This suggests that the summarized de-
scriptions by LLMs preserve more information.
However, we observed only a small correlation
between these human evaluation results and the
performance of the image generation models, in-
dicating that descriptions judged informative and
fluent by humans do not necessarily align with im-
proved performance in image generation models.
Appendices C.2 and E.3 describe the more details.

Performance for Different Encoder Types Ta-
ble 4 shows the results of image generation models
using only CLIP, only TS5, or both as text encoders.
Comparing the Dreamlike and IF-I-L. models, IF-
I-L, which incorporates CLIP, consistently out-
performed Dreamlike, indicating that CLIP has a
greater impact on image generation than TS. How-
ever, when comparing IF-I-L. with Stable Diffusion
(or FLUX), models utilizing both demonstrated
superior performance. This highlights the continu-
ing importance of T5’s expressive capabilities and

the meaningful contribution of retaining TS in the
model effectively. From such kind of conclusions,
these findings underscore the importance of maxi-
mizing information within a proper token sequence
length. The results emphasize the impact of the
proposed method for improving image generation.

8 Conclusion

We addressed the limitations of current text-
to-image generation models in handling entity-
specific knowledge, which is essential for produc-
ing accurate and user-intended outputs.

To systematically investigate this problem, we
introduced WiT-Cub, a novel dataset that enriches
image—captions pairs with entity annotations and
detailed descriptions. Leveraging this dataset, we
proposed TEXTTIGER, a method that augments
prompts with externally retrieved entity knowledge
and uses Large Language Models to summarize the
information concisely, ensuring the inclusion of es-
sential knowledge while keeping the prompt within
a length suitable for image generation models.

Our experiments demonstrated that TEXT-
TIGER consistently outperforms baseline ap-
proaches across both automatic metrics and hu-
man evaluations, particularly in informativeness
and fluency. These results confirm that entity-
aware prompt refinement is a promising direction
for improving factual accuracy and reliability. Our
findings also highlight the potential of combining
external knowledge sources with LLM-based sum-
marization to overcome knowledge limitations.



9 Limitations

Evaluation of Object Recognition As discussed
in Appendix A.6, our study evaluates the proposed
method using standard evaluation metrics. These
metrics primarily assess the overall diversity of
generated images and the similarity of their dis-
tribution to the target distribution, e.g., via KL di-
vergence. However, they do not directly evaluate
object-level recognition within individual images.
Evaluating entity-level object recognition, such as
recognizing complex entities described in WiT-Cub
or WiT captions, requires new evaluation metrics.
Current metrics for such evaluation remain limited,
and developing them represents an opportunity for
future research. Our study focuses on improving
image generation capabilities, leaving metric devel-
opment outside our scope. On the other hand, as
shown in Appendix 2, models still fail to correctly
handle entities such as proper names of people,
character names, and specific company names.

Limitations of Human Evaluation and Annota-
tor Bias Annotators may have sufficient knowl-
edge about their own country or culture but often
lack familiarity with entities from other regions,
leaving potential bias, especially in tasks requiring
recognition of named entities from diverse geo-
graphical and cultural contexts. As future work,
recruiting local annotators for each region could
address this issue more effectively by ensuring that
evaluators have the necessary knowledge. Fur-
thermore, we intentionally avoided human eval-
uation of generated images for the following rea-
sons. First, it is difficult to find annotators who can
accurately judge entities from around the world.
Second, when annotators oversimplify their judg-
ments to reduce effort, the reliability of the evalu-
ation deteriorates. Third, evaluating how well the
generated images reflect the entities described in
WiT-Cub captions demands a deep understanding
of those entities. For example, a Chinese evaluator
is unlikely to recognize the names of rivers, cas-
tles, or mountains in a remote region of the United
States (Mostafazadeh Davani et al., 2024; Lee et al.,
2024). Due to these issues, we deliberately opted
not to perform human evaluations and leave it as
our future studies.

Differences from Prior Work Previous studies
have proposed several methods to enhance image
generation capabilities. However, many of them
pursue different goals and thus diverge from our

approach. Lyu et al. (2024) improved image gener-
ation by leveraging multiple modalities, including
speech, to infer and generate complex visual out-
puts. Jeong et al. (2025) improved image genera-
tion for cultural nouns through multiple refinement
steps, rather than focusing on entities. Chen et al.
(2022) enhanced abstract image generation via mul-
timodal retrieval, without targeting specific entities.
None of these studies deal with concrete entities at
the level of specificity that we target, which makes
our approach distinct.

NER for Prompt to Extract Entities We used
an API to extract entities from captions and aug-
mented them. By utilizing techniques such as
Named Entity Recognition (NER) (Pakhale, 2023)
to extract entities, we believe it is possible to apply
this approach to a wider range of tasks (Yamada
et al., 2020; Lample et al., 2016). Our focus is
on enhancing image generation capabilities by ex-
panding entity information using Wikipedia. Thus,
evaluating NER itself is beyond the scope of our
study, and we do not conduct such an evaluation.
Additionally, we have created WiT-Cub dataset.

Comparison with Retrieval-base Methods
Our method may be comparable to Retrieval-
Augmented Generation (RAG) (Lewis et al., 2020).
However, our task specifically focuses on whether
the performance of image generation models im-
proves, rather than evaluating the correctness of re-
trieved information or competing on retrieval qual-
ity. Thus, such comparisons fall outside the scope
of our work, and employing a suitable RAG system
remains a promising direction for future work.

10 Ethical Considerations

When conducting human evaluation, we ensure that
all 100 sampled images can be assessed fairly and
that none of them violate human rights. Although
MTurk> allows specifying the worker’s race when
outsourcing tasks, it is impossible to guarantee that
the specified individual is the one actually perform-
ing the task (Karpinska et al., 2021; Tang et al.,
2022; Gilardi et al., 2023). However, as previously
mentioned, we carefully verified the 100 sampled
images, making it unlikely that annotators inten-
tionally lowered the rankings. Additionally, 3-5
individuals participate in the evaluation, ensuring
the reliability of the results.

Shttps://www.mturk.com/
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A Appendix
A.1 Ablation Study

In our preliminary experiments, we attempted to
generate appropriate summarized for image gen-
eration by including captions. Table 10 presents
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the results, showing that prompts for image genera-
tion without including the caption led to a decline
in image generation performance. This finding
highlights the large impact of the 77-token limit
processed by CLIP. Based on this preliminary ex-
periment, we propose a method that supplements
captions without altering them, i.e., (caption + sum-
marized descriptions), as shown in Appendix E.2.

A.2 Why Was the Token Limit Set to 180?

As discussed in Appendix A.1, our preliminary ex-
periment confirmed that concatenating augmented
entity-specific descriptions with the original cap-
tion, i.e., (caption + description), improves perfor-
mance as prompts for image generation. In our
study, we limit the summary length to 180 tokens,
taking the caption length, which has dozens of to-
kens into account. Specifically, this value is de-
termined by subtracting the length of the caption
from the maximum token limit of 256 accepted by
T5. This constraint ensures that both the caption
and the augmented information are fully included,
enabling effective image generation.

A.3 The result of Llama3.1 (70B)

The experimental results using Llama3.1 (70B) are
shown in Table 9. Based on the results in Table 4
and Table 5, it is emphasized that our method,
i.e., summarization to an appropriate length us-
ing LLMs, is effective regardless of the number
of model parameters when compared to Llama3.1
(8B). At the same time, it is confirmed that per-
formance declines when the summary becomes
excessively long.

A.4 Why Did GPT-40 Perform Worse?

Table 9 also shows that the result generated by gpt-
40 was bad. One clear issue was that the model
failed to respect the text token limit we had set.
Although we specified a maximum number of new
tokens, truncation still occurred mid-sentence. As
a result, the image generation model received in-
complete inputs, which likely led to a failure in
properly understanding the prompt, i.e., this was
the most critical factor affecting performance.

A.5 Token Limit

Table 6 shows the tokenized lengths of image gen-
eration prompts in each dataset, computed using
the TS5 tokenizer. Our method converts prompts
to appropriate lengths so that they do not exceed
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CLIPScore (1)

Method Description Generation Image Generation Encoder IS(1) FID() Txt-Img Img-Img
dreamlike-photoreal-2.0 T5 21.08 42.10 30.81 68.67
TEXTTIGER Llama-3.1 IF-I-L-v1.0 CLIP 22.53 35.60 30.66 68.88
(Ours) 70B-Instruct

FLUX.1-dev Both 23.85 42.39 29.80 68.80

stable-diffusion-3.5-large 24.92 39.07 31.86 70.23

dreamlike-photoreal-2.0 T5 21.04 42.10 30.81 68.67

ITERATOIVE- IF-I-L-v1.0 CLIP 21.76 35.60 30.66 69.54
TEXTTIGER Llama-3.1

70B-Instruct

(Ours) FLUX.1-dev Both 2398 4225 29.79 68.87

stable-diffusion-3.5-large 24.03 39.07 31.86 70.23

dreamlike-photoreal-2.0 T5 21.63 42.61 29.95 68.36

IF-I-L-v1.0 CLIP 21.13 36.08 30.67 69.02
Llama-3.1

70B-Instruct FLUX.1-dev Both 2285 4251 2985 68.37

TEXTTIGER w/0 LEN stable-diffusion-3.5-large 23.79 39.17 31.09 69.90

(Baseline)

dreamlike-photoreal-2.0 T5 18.41 47.13 26.55 62.89

GPT-4o IF-I-L-v1.0 CLIP 19.09 41.70 26.75 61.73

mint FLUX.1-dev Both 16.96 59.75 26.17 59.41

stable-diffusion-3.5-large 14.99 68.10 27.09 60.39

Table 9: The experimental results obtained using Llama 3.1 (70B) and GPT-40-mini.

the maximum sequence length supported by the
T5-based image generation model.

A.6 Object Recognition

Table 8 and Appendix E.7 show the images gen-
erated by image generation models. While some
images deviate from the reference images, others
bear a strong resemblance.

A.7 Generalization to Unseen Entities

While TEXTTIGER improves image generation
by augmenting and summarizing entity-specific
knowledge, its effectiveness depends on the avail-
ability and quality of external knowledge sources,
such as Wikipedia. When encountering entities
with limited or no publicly available descriptions,
the method may struggle to provide meaningful
augmentations, potentially reducing its advantage
over baseline methods (Vyas and Ballesteros, 2021;
Zhang et al., 2022; Logeswaran et al., 2019).

A.8 Do LLMs Generate Summarized
Descriptions Correctly?

To generate summarized descriptions for image
generation, we instructed the model to output
start and end markers, i.e., SummaryStart: and
<SummaryEnd> as shown in Appendix E.1, and
used only the text extracted between them for im-
age generation. This approach enabled the cre-
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ation of descriptions that were both of appropriate
length and properly summarized for image gen-
eration. Appendix E.6 provides examples of the
summarized descriptions output by the model and
the corresponding images generated using them.

B Detailed Model Settings
B.1 LLMs

The table below provides detailed configurations
of the models used in this study. For LLM infer-
ence to create properly summarized descriptions,
we set the seed to 0. The max_tokens varied by
method: 512 tokens for TEXTTIGER w/0 LEN
and 180 tokens for TEXTTIGER and ITERATIVE-
TEXTTIGER. During image generation, we fixed
the seed at 42. We conducted the experiments us-
ing Transformers library (Wolf et al., 2020) and
applied quantization with bitsandbytes®. For Ope-
nAl API usage, we processed requests in batches,
setting max_tokens to 512 and the seed to 0. Pro-
cessing all TEXTTIGER w/0 LEN experiments
costs approximately $10.

B.2 Image Generation Models

For image generation, we followed the configura-
tion of Stable Diffusion 3.5. The model generates

6https://github.com/bitsandbytes—foundation/
bitsandbytes
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CLIPScore (1)

Method Description Generation Image Generation Encoder IS (1) FID () Txt-Img Img-Img
- Dreamlike T5 20.57 43.29 29.94 67.91
CAP-ONLY - IF-I-L CLIP 21.66 35.83 30.31 67.84
Stable Diffusion Both 24.03 39.17 31.32 69.96
Dreamlike T5 19.75 48.51 29.93 68.51
Llama-3.1
8B-Instruct IF-I-L CLIP 21.95 38.91 30.81 68.88
Stable Diffusion Both 2214  43.11 31.12 70.02
TEXTTIGER Dreamlike T5 19.51 45.67 29.94 68.44
Llama-3.3
70B-Instruct IF-I-L CLIP 22.10  37.66 30.68 69.05
Stable Diffusion Both 23.67 41.50 30.89 69.82
Dreamlike T5 18.74 91.86 30.01 68.59
Qwen2.5
72B-Instruct IF-I-L CLIP 16.37 59.14 30.63 69.34
Stable Diffusion Both 18.20 82.99 31.09 70.34
Dreamlike T5 19.73 48.51 29.93 68.51
Llama-3.1
8B-Instruct IF-I-L CLIP 21.80 3891 30.84 68.93
Stable Diffusion Both 22.01 43.11 31.12 70.02
ITERATIVE- :
TEXTTIGER Llama-3.3 Dreamlike T5 19.51 45.67 29.94 68.44
70B-Instruct IF-I-L CLIP 21.96  37.66 30.68 69.05
Stable Diffusion Both 23.69 41.50 30.89 69.82
Dreamlike T5 18.62 91.86 30.01 68.60
Qwen2.5
72B-Instruct IF-I-L CLIP 16.14 59.14 30.64 69.41
Stable Diffusion Both 18.23 82.99 31.09 70.34

Table 10: The result of our preliminary experiment among comparisons across Dreamlike, IF-I-L, and Stable
Diffusion. We confirmed that using summarized captions instead of the original ones as input for image generation
models resulted in lower accuracy. Our proposed method, TEXTTIGER, described in Section 4, overcomes these
challenges and demonstrates improvements over the baseline.

Model Params HuggingFace Name / OpenAl API

LLaMA3.1 8B meta-llama/Llama-3.1-7@B-Instruct
LLaMA3.1 70B meta-llama/Llama-3.1-70B-Instruct
LLaMA3.3 70B meta-llama/Llama-3.3-70B-Instruct
Qwen2.5 72B  Qwen/Qwen2.5-72B

GPT-40-mini —  GPT-40-mini-2024-0718

Dreamlike — dreamlike-art/dreamlike-photoreal-2.0s
IF-I-L —  DeepFloyd/IF-I-L-v1.0

FLUX.1-dev —  black-forest-labs/FLUX.1-dev

Stable Diffusion —  stabilityai/stable-diffusion-3.5-large
T5 4.7B google-t5/t5-11b

CLIP 428M openai/clip-vit-large-patchi4

Table 11: Detailed name of models. As for TS, only the
encoder part is used in image generation models.

images with a resolution of 1,024 x 1,024 pixels.

The guidance scale is set to 3.5, and the number
of inference steps is 50. The maximum sequence
length for processing inputs is 512 tokens.
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B.3 Experimental Environments

We used the NVIDIA RTX 6000 Ada Generation
to create prompts designed for appropriate image
generation. For the image generation process, we
employed the NVIDIA RTX 6000 Ada Genera-
tion with Stable Diffusion and FLUX, which incor-
porates both T5 and CLIP. We used the NVIDIA
A6000 with Dreamlike and IF-I-L.

B.4 Detailed Significance Test

Following prior work (Kamigaito et al., 2023), we
conducted statistical testing using paired-bootstrap
resampling (Koehn, 2004). We randomly extracted
2,000 samples with replacement from the dataset
and ran the test 1,000 times.

B.5 Reproducibility of Outputs

This study relies on external resources, including
the OpenAl API, external LLMs, and image gen-



eration models. Changes in the availability or per-
formance of these resources, beyond our control,
could affect reproducibility. The batch processing
cost for using the OpenAl API in our research was
approximately $10.

C Detailed Evaluation

C.1 Details of Human Evaluation (MTurk)

We used MTurk to evaluate the summarized de-
scriptions for image generation generated by LLMs.
We compared four different LLMs with the base-
line (WiT-Cub captions) and designed the evalua-
tion procedure following previous research (Fabbri
et al., 2021). Annotators rated the prompts on three
criteria: (1) Informativeness, (2) Conciseness, and
(3) Fluency, using a five-point scale (1 = worst, 5
= best). Details of the evaluation procedure are
provided in Appendix E.3. To ensure reliability,
we hired multiple annotators, with up to five anno-
tators per question (greater than three annotators).
Due to cost constraints, we sampled 100 cases for
evaluation. Additionally, to maintain consistency,
we intentionally included duplicate questions, i.e.,
dummy ones. If an annotator provided inconsistent
answers for the same question, we excluded their
responses from the final analysis. Each question is
distributed at a rate of 3 dollars. The sum in our
work is around $200. We outsourced 100 questions,
offering a reward of $3 per question, with a maxi-
mum of five annotators per question. This amount
also accounts for factors such as dry runs and the
exclusion of inattentive annotators. We hired work-
ers who have an approval rate greater than 90%
with at least 50 approved HITs, following the prior
research. (Sakai et al., 2024)

C.2 Statistics of Human Evaluation

Table 12 presents the inter-annotator agreement
values measured by Fleiss’ Kappa (Cohen, 1960)
and Krippendorff’s Alpha (Krippendorff, 2011).
To ensure the reliability of annotators, as done in
prior studies (Hayashi et al., 2025; Filippova et al.,
2015), we exclude annotators who consistently pro-
duce outliers and use the scores from the remaining
annotators. For evaluation, we use questions after
removing dummy questions inserted to assess an-
notator reliability. Krippendorff’s evaluation scale
is set to “ordinal.”
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Metrics Concise Fluency Informative
Fleiss” Kappa 0.335 0.22 0.364
Krippendorff’s Alpha 0.731 0.677 0.685

Table 12: Statistics results of human evaluation.

C.3 Detailed Dataset Statistics

The WiT-Cub dataset created in our study in Sec-
tion 3 is an extension of WiT. Therefore, the image
resolution and size remain unchanged from the
original dataset.

Detail Value
# of instances 2,500
#Avg. number of entities 3.02

#Avg. token length 26.48

Table 13: WiT-Cub statistics. We calculate the token
sequence length by CLIP, as described in Section 4.2.

C.4 Automatic Evaluation of Summarization

In our study, we did not conduct automatic eval-
uations for the summarization, such as ROUGE
scores (Lin, 2004), for two reasons: 1) There are no
reference answers for the descriptions augmented
in our study, making automatic evaluation infea-
sible; 2) Although an exact match-based method
exists for measuring how many entities are included
in the generated text (Shao et al., 2024), we aug-
mented all entities using the Wikipedia API and
summarized them with LLMs. As a result, entities
are guaranteed to appear in the summaries. Due
to these reasons, we did not conduct automatic
evaluations for the summaries. Instead, we per-
formed large-scale human evaluations, which are
more insightful than automatic metrics. The re-
sults confirmed that the summaries are informative,
demonstrating the effectiveness of our method.

C.5 Detailed Evaluation Metrics

Inception Score (IS) (Salimans et al., 2016) evalu-
ates the diversity and semantic meaningfulness of
generated images. It analyzes the label distribution
of images using a classifier and computes the score
based on entropy and KL divergence. A higher
score indicates greater diversity and quality of the
generated images.

IS = exp (Ezmp, [Dx(p(y|2)|lp(¥))]) (D)

Here, x represents a generated image, p, denotes
the distribution of generated images, p(y|z) is the



predicted label distribution for image z, p(y) is
the marginal label distribution over all generated
images, and Dy represents the KL divergence.
Fréchet Inception Distance (FID) (Heusel et al.,
2017) measures the difference in feature distribu-
tions between generated and reference images. It
extracts image features using the Inception net-
work (Szegedy et al., 2015a) and calculates the
Fréchet distance between the distributions. A lower
value indicates higher quality and closer resem-
blance of generated images to real images.

FID = ||pir — Hg“% +Tr(Z, + 3y — 2(21"29)1/2)
2)
Here, j1, and pg4 are the mean vectors of the feature
distributions for real and generated images, respec-
tively. X, and X, are the covariance matrices for
the feature distributions of real and generated im-
ages, Tr denotes the trace of a matrix, and || - ||2
represents the 2-norm.
CLIPScore (Img-Txt) (Hessel et al., 2021) evalu-
ates the relevance between generated images and
text. A higher score indicates that the image aligns
well with the text content.

CLIPScoreimg-txt = c0s(Eimg (), Exi(t)) (3)

Here, Eimg(x) is the CLIP embedding vector for
image x, FEix(t) is the CLIP embedding vector for
text ¢, and cos(+, -) represents cosine similarity.
CLIPScore (Img-Img) evaluates the similarity be-
tween two images by calculating the cosine simi-
larity between their CLIP embedding vectors. A
higher score indicates that the two images are se-
mantically similar.

CLIPSCOI‘CImg_Img = COS (Eimg ($ 1 ) s Eimg (1’2 ) )
“)

Here, Eimg(x1) and Eipg(22) are the CLIP embed-
ding vectors for images x; and xo, respectively,
and cos(+, -) represents cosine similarity.

D Case Study on Failure Cases

We still observed failure cases during prompt sum-
marization and image generation.

D.1 Summarized Description by LLMs

TEXTTIGER instructed the model to generate spe-
cific start and end symbols for the summary, then
extracted the description between them using reg-
ular expressions. The extracted text uses as the
summarized description. However, in some cases,
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the model generated the end symbol at an incorrect
position, resulting in unnatural sentences.

Failure Case of Summarization

Budapest is the capital and most populous city of Hun-
gary. It has a population of 1,752,286 and is the centre
of the Budapest metropolitan area. The city has a rich
history, dating back to the Roman town of Aquin-
cum, and has been influenced by various cultures,
including the Hungarians, Mongols, and Ottomans.
Budapest became a global city after the unification
of Buda, Obuda, and Pest in 1873. The city is a hub
for commerce, finance, media, art, fashion, research,
technology, education, and entertainment. It is home
to over 40 colleges and universities, including E6tvos
Lorand University and the Budapest University of
Technology and Economics. The city’s central area
along the Danube River is a UNESCO World Her-
itage Site and features several notable monuments of
classical architecture. Budapest attracts around

D.2 Image generation

We observed cases where this approach was less
effective, leading to images that deviated from
the reference. Figure 2 shows an example where
the caption “An electronic billboard on
the Thomson Reuters building welcomes
Facebook to the Nasdaqg.” was used. These
results indicate that while our method effectively
enhances entity-based descriptions for scenes, land-
scapes, and buildings, it struggles to accurately re-
flect faces or texts. Table 13 provides the statistics
of WiT-Cub.

Figure 2: (Left) Generated image by Stable Diffusion
and (Right) reference image.

E AI Assistant Tools

We leverage advanced tools such as ChatGPT 7,
DeepL 8, and GitHub Copilot °to accelerate our
research processes and streamline the writing of
academic papers. These tools enable efficient idea
generation, precise translations, and coding assis-
tance, enhancing productivity and quality.

7https: //openai.com/index/chatgpt/
8https: //www.deepl.com/en/translator
9ht’cps: //github.com/features/copilot
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E.1 Prompt for Summarization

The prompts used as input to the LL.Ms for generating properly summarized descriptions for image
generation are shown below, where blue text represents variables and red text indicates the explicit input
of token counts tokenized by CLIP (https://huggingface.co/openai/clip-vit-large-patchi4).

Prompt for Summarizing (TEXTTIGER wW/0 LEN)

Please generate a summary so that there are 180 tokens.

However, please do not delete proper nouns or other important information.
Please begin the output with SummaryStart: and write the summary of the text.
Please end the output with <SummaryEnd> as the last token.

Example:
SummaryStart: The summary of the text is as follows. The text is about the summary of the text.
<SummaryEnd>

Complement:
{Complement}

SummaryStart:

,
\

Prompt for Summarizing (TextTIGER)

The current tokens are {current_words} tokens.

Please generate a summary so that there are 180 tokens.

However, please do not delete proper nouns or other important information.
Please begin the output with SummaryStart: and write the summary of the text.
Please end the output with <SummaryEnd> as the last token.

Example:
SummaryStart: The summary of the text is as follows. The text is about the prompt of the text.
<SummaryEnd>

Complement:
{Complement}

SummaryStart:

,
\

Prompt for Summarizing (Iterative-TEXTTIGER)

The current tokens are still {current_words} tokens.

Please generate a summary so that there are 180 tokens.

However, please do not delete proper nouns or other important information.
Please begin the output with SummaryStart: and write the summary of the text.
Please end the output with <SummaryEnd> as the last token.

Example:
SummaryStart: The summary of the text is as follows. The text is about the prompt of the text.
<SummaryEnd>

Complement:
{description}

SummaryStart:

,
\
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E.2 Prompt for Image Generation

The prompts used for image generation are as follows. To maximize the information content, we only
include the necessary information. Blue text represents variables.

Prompt for Image Generation (CAP-ONLY)

Caption: {caption}

Prompt for Image Generation (CAP-AUG-ONLY and Three TEXT-TIGER Methods)

Caption: {caption}

Note: {description}

\ J

E.3 Details of Human Evaluation

Below, we provide the procedure used for outsourcing evaluations via Amazon Mechanical Turk
(MTurk (Crowston, 2012), https://www.mturk.com/). The procedure was designed with reference
to previous research on summarization evaluation (Fabbri et al., 2021). For each task, we hired up to five
evaluators on MTurk. Additionally, to ensure the reliability of their assessments, we included identical
test cases within the evaluation subset to verify consistency in their responses.

Prompt for Image Generation

# Instructions

In this task, you will evaluate how well the provided captions match the given images.

To complete this task correctly, follow these steps:

. Watch the image and understand the scene.

Read the caption and compare it with the image.

Rate the caption based on the following criteria on a scale from 1 (worst) to 5 (best):
Please only score the rank without explaining the reason.

A wWwN =

# Definitions
## Informativeness:

- How much useful information the caption provides about the image.

- Captions should include relevant details, such as proper nouns and contextual information,
to help the reader visualize the image.

## Conciseness:
- How accurately and efficiently the caption describes the image.
- It should avoid unnecessary details while clearly conveying the key points.

## Fluency:
- How natural and well-structured the caption is.
- It should be a coherent sentence rather than a list of words.



https://www.mturk.com/

E.4 A Sample of MTurk

The figure below indicates a sample screenshot of MTurk.

Instructions

In this task, you will evaluate how well the provided captions match the given images.

To complete this task correctly, follow these steps:

1. Watch the image and understand the scene.
2. Read the caption and compare it with the image.

3. Rate the caption based on the following criteria on a scale from 1 (worst) to 5 (best):

1 = Strongly disagree (worst)
2 = Disagree

3 = Neither agree nor disagree
4 = Agree

5 = Strongly agree (best)

Please only score the rank without explaining the reason.

Some questions are duplicated intentionally, to weed out annotators who don't work properly.

Definitions

« Informativeness:

How much useful information the caption provides about the image. Captions should include relevant details, such as proper nouns and contextual information, to help the reader visualize the image.

« Conciseness:

How accurately and efficiently the caption describes the image. It should avoid unnecessary details while clearly conveying the key points.

* Fluency:

How natural and well-structured the caption is. It should be a coherent sentence rather than a list of words.

~ Caption 2

[This caption is informative. This caption is concise. This caption is fluent.

Figure 3: A sample screenshot in MTurk.

E.5 Another Example of WiT-Cub

' Caption: The Universities at Shady Grove Note: The Universities at Shady Grove is a multi-university higher education center of the University System of Maryland for mid-career working
professionals and non-traditional students. Degrees are by the individual

Caption Entity

Entity List
Description

Image

threshing machine

Threshing machine

A threshing machine or a thresher is a piece of
farm equipment that separates grain seed from
the stalks and ...

in 1881. Today both
reaping and thresh-
ing are done with a
combine harvester.

combine harvester

The modern combine harvester, also called a
combine, is a machine designed to harvest a
variety of cultivated seeds. Combine harvesters
are one of the most....

machine

A machine is a physical system ...

Table 14: Another example of the dataset, WiT-Cub, we created. We augment the entities included in image captions
using external resources. Section 3 demonstrate the dataset creation process.
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E.6 Examples of the Summarized Description

Caption LLMs Summarized description Generated image

Reference

Clermont-Ferrand is a city in France with a population of 147,284. It is the prefecture of
the Puy-de-Dome department and has a metropolitan area of 504,157 inhabitants. The
city is known for its chain of volcanoes, the Chaine des Puys, and its dormant volcano
Puy de Dome. Clermont-Ferrand has been listed as a UNESCO World Heritage Site
since 2018. The city has a rich history, dating back to the Gallo-Roman era, and has
been the site of several important events, including the Council of Clermont in 1095.
Today, Clermont-Ferrand hosts the Clermont-Ferrand International Short Film Festival
and is home to the corporate headquarters of Michelin. The city is also a learning city,
with a quarter of its population being students.

Llama 3.1
8B-Instruct

Clermont-Ferrand is a city and commune of France, in the Auvergne-Rhone-Alpes

region, with a population of 147,284 (2020). It is the prefecture of the Puy-de-Dome

département and has a metropolitan area of 504,157 inhabitants. The city is known for

Llama 3.1 the chain of volcanoes, the Chaine de"s Puys, and the dormant volcano Puy de Dome.
70B-In. stril ct Clermont-Ferrand has been listed as a tectonic hotspotsince July 2018 on the UNESCO
World Heritage List. The city has a rich history, dating back to the Gallo-Roman era,

and has been an important center for trade and culture. Today, Clermont-Ferrand hosts

the Clermont-Ferrand International Short Film Festival and is home to the corporate

Clermont headquarters of Michelin.

Ferrand Clermont-Ferrand is a city and commune of France, in the Auvergne-Rhone-Alpes region,
with a population of 147,284. It is the prefecture of the Puy-de-Ddme département and
has a metropolitan area with 504,157 inhabitants. The city is known for the chain of
volcanoes, the Chaine des Puys, and has been listed as a tectonic hotspot§ince July 2018
on the UNESCO World Heritage List. Clermont-Ferrand has a rich history, dating back
to the Gallo-Roman era, and has been an important city in France, hosting the Council
of Clermont in 1095. Today, it is home to the corporate headquarters of Michelin and
hosts the Clermont-Ferrand International Short Film Festival. The city is also known for
its distinctive black lava.

Llama 3.3
70B-Instruct

Clermont-Ferrand, a city and commune in the Auvergne-Rhone-Alpes region of France,
has a population of 147,284 (2020) and a metropolitan area of 504,157 inhabitants
(2018). As the capital of the Puy-de-Ddme département, it is known for its volcanic
Qwen 2 landscape, including the Puy de Dome, and its designation as a UNESCO World Heritage
en 2.5 . B A . . L
79B-Instruct Site. Historically mgn}ﬁcant, it was the capital o_f the Arvernie trl!ae and lgter nan}ed
Augustonemetum during the Roman era. The city played a crucial role in the First
Crusade, hosting the Council of Clermont in 1095. Today, it is home to the Michelin
headquarters, the Clermont-Ferrand International Short Film Festival.

Table 15: Images generated using our proposed method (TEXTTIGER) by Stable Diffusion 3.5. This table compares
simplified and summarized descriptions across LLMs which we use for generating the prompt.
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Caption LLMs Summarized description Generated image

Reference

The Metropolitan Railway was a passenger and goods railway that served London from
1863 to 1933. It connected the main-line railway termini at Paddington, Euston, and
King’s Cross to the City. The first section was built beneath the New Road using cut-
and-cover between Paddington and King’s Cross. The line was extended from both ends

Llama 3.1 and northwards via a branch from Baker Street. The most important route was northwest

8B-Instruct into the Middlesex countryside, stimulating the development of new suburbs. Electric
traction was introduced in 1905, and the Met developed land for housing, promoting
housing estates near the railway using the Metro-landbrand. The Met was amalgamated
with the Underground Electric Railways Company of London and the capital’s tramway
and bus operators to form the London Passenger Transport Board in 1933.

The Metropolitan Railway was a passenger and goods railway that served London from

1863 to 1933. It connected the main-line railway termini at Paddington, Euston, and

King’s Cross to the City. The first section opened on 10 January 1863 with gas-lit wooden

carriages hauled by steam locomotives. The line was extended from both ends, and

Llama 3.1 northwards via a branch from Baker Street. Southern branches reached Hammersmith in

70B-Instruct 1864, Richmond in 1877, and the original completed the Inner Circle in 1884. Electric

traction was introduced in 1905, and by 1907 electric multiple units operated most of

the services. The Met developed land for housing and promoted housing estates near

Construction of the railway usmg the Metro-landbrand. On 1 July 1933, the Met was amalgamated with

the Metropolitan Railway other companies.

close to King’s Cross

station in 1861

The Metropolitan Railway was a passenger and goods railway that served London from
1863 to 1933. It connected the main-line railway termini at Paddington, Euston, and
King’s Cross to the City. The first section was built beneath the New Road using cut-and-
cover between Paddinglon and King’s Cross. The line was soon extended from both ends,
Llama 3.3 and northwards via a branch from Baker Street. The Met developed land for housing
70B-Instruct and promoted housing estates near the railway usmg the Metro-landbrand. On 1 July
1933, the Met was amalgamated with other companies to form the London Passenger
Transport Board. Former Met tracks and stations are used by the London Underground’s
Metropolitan, Circle, District, Hammersmith & City, Piccadilly, Jubilee and Victoria
lines, and by Chiltern Railways and Great Northern.

The Metropolitan Railway, or Met, began serving London in 1863, connecting major

railway termini like Paddington, Euston, and King’s Cross to the City. The initial line

was constructed using cut-and-cover methods and tunnels, opening to the public on 10
Qwen 2.5 January 1863. Extensions followed, reaching Hammersmith in 1864, Richmond in 1877,

and completing the Inner Circle in 1884. The Met played a crucial role in developing
suburban areas, extending to Harrow in 1880 and Verney Junction in 1897. Electric
traction was introduced in 1905, and by 1907, most services were electric. The Met also
engaged in property development, promoting Metro-landhousing estates.

72B-Instruct

Table 16: Images generated using our proposed method (TEXTTIGER) by Stable Diffusion 3.5. This table compares
simplified and summarized descriptions across LLMs which we use for generating the prompt.
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E.7 Another Example of Generated Images

Here, we introduce some examples of generated images. '’

Model CAP-ONLY (Baseline) CAP-AUG-ONLY TEXTTIGER w/0 LEN TEXTTIGER Iterative-TEXTTIGER  Reference
. . = TLS — mss
Dreamlike
IF-I-L
FLUX
Stable Diffusion

Table 17: Another example of generated images using various methods for the input “Haymarket roundabout,
Melbourne” alongside their reference images. The models used include Dreamlike (CLIP-only), IF-I-L (T5-only),

and FLUX and Stable Diffusion which utilize both as text encoders. The model used for summarization is Qwen2.5
(72B).

Model CAP-ONLY (Baseline) CAP-AUG-ONLY TEXTTIGER w/0 LEN TEXTTIGER Iterative-TEXTTIGER  Reference

Dreamlike

IF-I-L

FLUX

Stable Diffusion

Table 18: Another example of generated images using various methods for the input “Smelting Works. Oreana,
Nevada. ca. 1857 by Timothy H. 0’Sullivan.” alongside their reference images. The models used include

Dreamlike (CLIP-only), IF-I-L (T5-only), and FLUX and Stable Diffusion which utilize both as text encoders. The
model used for summarization is Qwen2.5 (72B).

Due to reduced resolution for file size constraints, some images may appear blurry or hard to see.
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Model CAP-ONLY (Baseline) CAP-AUG-ONLY TEXTTIGER w/0 LEN TEXTTIGER Iterative-TEXTTIGER  Reference

Dreamlike

IF-I-L

FLUX

Stable Diffusion

Table 19: Another example of generated images using various methods for the input “Helichrysum arenarium
from Thomé Flora von Deutschland, Osterreich und der Schweiz 1885" alongside their reference images.
The models used include Dreamlike (CLIP-only), IF-I-L (T5-only), and FLUX and Stable Diffusion which utilize
both as text encoders. The model used for summarization is Qwen2.5 (72B).

Model CAP-ONLY (Baseline) CAP-AUG-ONLY TEXTTIGER w/0 LEN TEXTTIGER Iterative-TEXTTIGER  Reference

Dreamlike

i

IF-I-L

FLUX

Stable Diffusion

Table 20: Another example of generated images using various methods for the input “The bronze entrance doors
to the administration building on West 155th Street were designed by Academy member Adolph
Alexander Weinmaen.” alongside their reference images. The models used include Dreamlike (CLIP-only), IF-I-L
(T5-only), and FLUX and Stable Diffusion which utilize both as text encoders. The model used for summarization
is Qwen2.5 (72B).
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