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ABSTRACT

Training large language models is compute- and data-intensive, limiting optimi-
sation and low-resource training, and increasing environmental impact. This pa-
per examines pre-training effectiveness of language models of different sizes on
two small, curated datasets and evaluates (i) linguistic competence and (ii) com-
pute efficiency. The datasets are TinyStories, a collection of ChatGPT-generated
children’s stories, and BabyLM, a small, open-domain dataset. We perform ex-
periments with increasing amounts of data (yielding a learning curve) and size-
variants of a Llama-based, decoder-only architecture. We evaluate the pre-trained
models on downstream tasks from the BLiMP and GLUE benchmark suites. We
find that models trained on BabyLM outperform those trained on TinyStories on
formal linguistic competence, but not on functional linguistic tasks. Models pre-
trained on BabyLM yield more consistent performance results, as indicated by
lower variance across random seeds. We also find that small data samples are
representative of the model’s ultimate performance, which can aid the early se-
lection of promising candidate models. These findings emphasise the potential of
pre-training on small, curated datasets for data-efficient pre-training in resource-
constrained settings. Further work that includes additional datasets and model
architectures is needed to extend the scope of these findings.

1 INTRODUCTION

Large language models (LLMs) based on the transformer architecture (Vaswani et al., 2017) have
made remarkable progress in achieving linguistic competence over the past years. Linguistic com-
petence is characterised as twofold, involving both the mastery of grammatical and structural rules
(formal competence) and the ability to use and reason with language in real-world contexts (func-
tional competence) (Mahowald et al., 2023; Eldan & Li, 2023).

Following evidence that linguistic competence and other capabilities scale with model size (Wei
et al., 2022), we have recently seen a tendency to build ever larger LLMs in terms of num-
bers of parameters and training data size. This has led to increasing concerns about the data
hunger of current models for reasons of scaling limits (Sutskever, 2024), but also environmen-
tal footprint (Dhar, 2020) and the impossibility of checking immense datasets for quality, bias,
and copyright violations (Verberne, 2024). In light of these concerns, researchers have explored
various ways to build smaller models with no or little loss of linguistic competence. The ma-
jority of work in this area focuses on model architecture (Gu & Dao, 2023) and posthoc in-
terventions such as fine-tuning (Li & Liang, 2021), model quantisation (Xiao et al., 2023), and
constrained decoding (Beurer-Kellner et al., 2024). Yet, there is also increasing attention to aspects
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that influence the pre-training procedures (Gururangan et al., 2020) and the quality and nature of the
training data.

In this work, we investigate the use of small curated datasets in the pre-training phase of small-
scale decoder-based transformers. We compare models pre-trained on two intristically different
datasets: (i) the TinyStories dataset, containing ChatGPT-generated narratives with a simple vo-
cabulary, typically understandable for children around the age of 4 (Eldan & Li, 2023), versus (ii) the
BabyLM dataset, encompassing diverse human-produced data from publicly available domains,
such as child-directed speech, dialogues, Wikipedia articles, and books (Choshen et al., 2024).

We experiment with Llama-based decoder-only transformer models, varying their total trainable
parameters by adjusting key architectural components via the Hugging Face interface (Wolf et al.,
2020). The models being evaluated are categorised by their total number of parameters: 17 million,
58 million and 91 million. We propose an experimental method to analyse the performance of the
models across increasing dataset sizes, generating learning curves (Mohr & van Rijn, 2024; Viering
& Loog, 2023) for our models. We report on how the performance of the models develops when
using more tokens.

Our experimental methodology covers two stages of language model development: pre-training and
supervised fine-tuning to a specific task. Given the number of models, random seeds, datasets, and
anchors, we pre-train a total of 180 model instances. Each instance then undergoes fine-tuning for
individual tasks. This approach demands substantial compute and storage, as model weights are
stored separately per task.

To achieve a structured approach for comparing models trained on different data sources, we mea-
sure formal linguistic competence with the BLiMP benchmark suite (Warstadt et al., 2020) and
functional linguistic competence on a set of GLUE downstream tasks (Wang et al., 2019b). Addi-
tionally, analysis of token-based measures allows us to evaluate compute efficiency for each of the
two datasets.

Our work makes three key contributions.

1. We propose an experimental pipeline1 for evaluating language model training on token-
based anchors across datasets. An anchor is a fixed point of reference during the training
process, where the performance of the model under investigation can be measured and
used for comparison. In our specific case, we use anchors of the full dataset, thereby
sampling incrementally bigger portions of the data in terms of number of tokens. We pre-
train models (from scratch) at each token-based anchor and track performance through
evaluation, forming a learning curve. This pipeline assesses both formal and functional
linguistic competence.

2. We show that models trained on BabyLM achieve significantly higher performance on for-
mal linguistic competence and show lower variance and more consistent performance in-
crease across anchors than models trained on TinyStories. However, the performance gap
is smaller for functional linguistic competence. Since the difference in formal competence
can be attributed to the fact that linguistic structures and vocabulary are ‘simple-by-design’
in TinyStories, these findings highlight the potential of narrative datasets in pre-training
language models and suggest their applicability in curriculum learning.

3. We demonstrate that early performance metrics can be used in model selection, allowing
us to discard unpromising candidate models.

These contributions amount to a better understanding of how dataset size, complexity, and sampled
domains influence linguistic competence when pre-training language models, and how they impact
practical applications of compute efficiency and model deployment.

2 RELATED WORK

Recently, significant research attention has been given to data-centric problems in the training of
LLMs. Various datasets and approaches have been developed that take inspiration from child devel-
opment (Huebner et al., 2021; Eldan & Li, 2023; Feng et al., 2024; Choshen et al., 2024). Humans

1GitHub page: https://github.com/ADA-research/data-efficiency.
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become fluent speakers after interacting with an amount of language ‘data’ that is several orders
of magnitude smaller than even mid-sized LLMs (Warstadt & Bowman, 2022). This led to work
on pre-training of LLMs to explore various characteristics of children’s learning environments, in-
cluding the use of child-directed speech, children’s stories, and multi-modal input (Warstadt et al.,
2023).

Eldan & Li (2023) introduce a synthetic, ChatGPT-generated dataset called TinyStories, consisting
of short stories with a simple vocabulary, typically comprehensible by 3 to 4 year-old children. The
authors showcase the ability of small language models, once trained on this dataset, to generate
coherent and typically grammatically correct stories. However, their evaluation focuses exclusively
on the assessment of generated text (stories) by these models and their respective quality of grammar,
coherency, creativity, and other qualitative measures of generated text.

The aim of the BabyLM challenge (Choshen et al., 2024) is to optimise the pre-training stage of
language models with small data.2 The challenge has released a small dataset for researchers to train
their models on, which is much smaller than commonly used datasets for language model training.
The size is specified by word count (there is a 10-million and a 100-million version), and the datasets
comprise components from various domains representing a diverse vocabulary. The challenge’s
evaluation incorporates state-of-the-art benchmarks, such as GLUE and BLiMP, to assess linguistic
competence (see Section 3.3).

Although both TinyStories and BabyLM are small datasets for language model pre-training, they
differ in two important respects: (i) TinyStories exclusively contains stories while BabyLM is
compiled from a variety of open-domain genres, and (ii) TinyStories consists of LLM-generated
text while BabyLM consists of traditional, human-written data. Our work compares small language
models pre-trained on the TinyStories and BabyLM datasets, focusing on two aspects: linguistic
competence and compute efficiency. By performing qualitative and quantitative evaluations, we aim
to provide a more thorough understanding of these curated datasets’ abilities for language model
training while considering the underlying computational costs.

In prior work, Feng et al. (2024) investigate whether child-directed speech is beneficial for training
language models. They have generated a synthetic dialogue data, named TinyDialogues, and com-
pared its effectiveness against natural child-directed speech (CHILDES (MacWhinney, 2000)) and
other domains of dataset like OpenSubtitles (Lison & Tiedemann, 2016), Wikipedia (Xu & Lap-
ata, 2019) and BabyLM (Choshen et al., 2024). Their evaluation focuses on semantic and syntactic
knowledge (covering functional linguistic competence), with a partial focus on the effectiveness of
global and local ordering. The study shows that synthetic child-directed data outperformed natural
child-directed data. While curriculum learning did not significantly improve the final performance
of language models, maintaining the logical order of dialogues (i.e., retaining the local ordering)
had a noteworthy impact on the model’s performance. Our work does not focus on child-directed
speech but on the comparison of story data versus open-domain data. Our aim is to provide a more
diverse set of evaluation criteria for linguistic competence while also investigating the associated
computing efficiency of the explored small and curated dataset.

Inspired by Timiryasov & Tastet (2023), we focus on pre-training small Llama-based architecture
models. These models have been showcased to achieve competitive performance (Timiryasov &
Tastet, 2023), with a notable reduction in training speed compared to a GPT-based architecture used
in the TinyStories dataset by Eldan & Li (2023)).

3 EXPERIMENTAL METHOD

We set up an experimental pipeline for pre-training, evaluating, and comparing variants of Llama-
based transformer models with a decoder-only architecture. The aim is to derive insights into three
main factors across these datasets: formal linguistic competence, functional linguistic competence,
and computational efficiency.

Figure 1 depicts the experimental pipeline, which consists of the following steps:

2https://babylm.github.io/
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Figure 1: The experimental pipeline that we propose. For each model–dataset tuple, we pre-train
the model on each anchor of the dataset (from scratch), evaluate on BLiMP and a subset of GLUE,
and finally log the performances. The logged performances are used to create plots (such as learning
curves) and execute task-oriented performance analyses.

1. Fetch Llama model variant: we select a Llama-based model variant from a predefined set
of configurations. Details can be found in Section 3.2.

2. Fetch the dataset: we retrieve the dataset to be tested, choosing between BabyLM-
100m (Choshen et al., 2024) or TinyStories (Eldan & Li, 2023).

3. Token-based anchors: we create various subsamples of the dataset with an increasing
number of tokens. We extract progressively larger portions of tokens, following the prede-
fined anchor points: [2, 4, 8, 16, 32, 64, 96, 128, 160] (times million). These anchor sizes
were determined using a geometric sampling scheme (Provost et al., 1999), with as final
anchor the full size of the smallest dataset, i.e., BabyLM-100m with ∼160 million tokens.
Details of the datasets can be found in Section 3.1, with a general overview in Table 1.

4. Pre-training at each anchor: we pre-train the model at each anchor point from scratch.
We repeat the pre-training three times for each anchor–model–dataset combination to mit-
igate the effect of randomness and observe variance induced in the pre-training phase.

5. Evaluation on benchmark tasks: after pre-training, we evaluate the models on two com-
mon benchmarks: GLUE and BLiMP (see Section 3.3). We fine-tune the pre-trained
models individually on a subset of GLUE tasks.

3.1 DATASETS

The two datasets investigated in this work are the TinyStories (Eldan & Li, 2023) and the 100-
million variant of the 2024 BabyLM challenge (Choshen et al., 2024). For simplicity, the 100-
million BabyLM dataset will be referred to as the BabyLM dataset hereafter.

The choice of datasets stems from the aim to investigate small and curated datasets, to support more
efficient pre-training in resource-constrained settings. Additionally, they can potentially be used to
retrieve an estimation of the ultimate performance that can be achieved by a candidate model, en-
abling researchers to drop unfavourable model architectures early. Both datasets simulate aspects
inspired by human development, but they vary greatly in their domains and the underlying structure
of the language within the corpus. The aim is to investigate how these differences impact the per-
formance of models in linguistic competence tasks, as well as investigate their compute efficiency.

Pre-training and tokeniser settings: We use causal language modelling (i.e., next-token predic-
tion) as pre-training paradigm. We selected the hyperparameters for pre-training based on existing
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Dataset Total words Unique words Tokeniser vocabulary size
BabyLM ∼100M ∼1.7M 16K
TinyStories ∼450M ∼250K 8K

Table 1: The total words, unique words, and tokeniser vocabulary sizes of the datasets.

literature and parameters used in earlier studies (Timiryasov & Tastet, 2023; Eldan & Li, 2023), as
well as a small-scale pilot study. Prior work (Ali et al., 2024; Tao et al., 2024) examined the impact
of tokeniser choice and vocabulary size. Based on small-scale experimentation and this literature,
we choose the GPT2–Tokenizer BPE-based. It seems to work well with language models for the En-
glish language (Ali et al., 2024), and it should be able to better handle out-of-vocabulary words. The
vocabulary size affects the balance between word representation and computation cost. A larger vo-
cabulary improves the representation, reducing the chance of encountering out-of-vocabulary words,
but increases memory and computation costs. Therefore, we considered both the total number of
words and the count of unique words in each dataset to determine the appropriate tokeniser vocab-
ulary size. The decision was guided by Zipf’s law (Manning & Schütze, 1999), which outlines that
there is a long tail distribution of word frequency.

Specifically, we allocated a smaller vocabulary size to the TinyStories dataset, where a vocabulary of
8K tokens should effectively represent its word distribution. In contrast, the BabyLM dataset, which
has a higher ratio of unique words to total words, was provided with a slightly larger vocabulary of
16K tokens. Table 1 summarises the datasets and the chosen tokeniser vocabulary sizes.

3.2 MODELS

We use model variants of the Llama-based architecture (decoder-only transformer models). The
model variants are distinguished by their total number of trainable parameters. To retrieve the
variants of the model, we alter the configuration of the Llama model (through the Hugging Face
interface (Wolf et al., 2020)), and adapt (i) the hidden size, which impacts capacity, (ii) the inter-
mediate size, which impacts complexity, (iii) the number of heads, which impacts parallel focus,
and (iv) the number of stacked transformer decoders, which defines model depth. The model sizes
are: 17-million, 58-million, 91-million trainable parameters, and their configuration is provided in
Appendix A. Below, model references adhere to the following naming scheme: 17M, 58M, and
91M, where M denotes millions of parameters. Although the choice of models has been inspired
by Timiryasov & Tastet (2023), we exclude knowledge distillation to focus purely on comparing
intrinsic model performance across datasets rather than optimising final performance.

Given three model variants, two datasets, ten anchors (including the full dataset), and three repeti-
tions, we pre-train a total of 180 model instances. Each instance is then fine-tuned on the individual
tasks of the GLUE subset.

3.3 EVALUATION

We compare and analyse the performance of the models pre-trained on both datasets in two aspects:
the evaluation of the linguistic competence achieved by models trained on said datasets and their
associated compute efficiency. For the evaluation of linguistic competence we use a modified version
of the language model evaluation harness (Sutawika et al., 2024; Choshen et al., 2024).

1. Linguistic competence: We follow Mahowald et al. (2023)’s distinction between formal and
functional competence.

Formal linguistic competence refers to the ability to distinguish between grammatically correct and
incorrect formation of a language. To evaluate this, we use the BLiMP benchmark, where minimal
sentence pairs are provided to the pre-trained model in order to retrieve probabilistic assignments of
the correct variant. This is done by averaging the log probabilities of the tokens in each sentence, as
predicted by the model. No specific fine-tuning is required for evaluating on BLiMP.

Functional linguistic competence, also known as natural language understanding (NLU), refers to
the ability to understand language in ways necessary for using it in real-world contexts. GLUE
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evaluates this by using a collection of downstream tasks that require various forms of NLU. Each
model has undergone a specific fine-tuning process for each of the selected downstream tasks.

2. Compute efficiency: is estimated using a token-based measure, where models are incrementally
trained on larger token subsets of the dataset and evaluated at fixed anchor points. These anchors
provide a consistent reference for assessing and comparing performance during training.

The selection of tokens as a proxy of compute requirements is based on the proportional relationship
between training compute and tokens. The computational cost for training transformer-like models
follows the approximation (Austin et al., 2025):

Training Floating-point operations per second (FLOPS) ≈ 6× params × tokens

where params is the number of trainable parameters, and tokens represent the training dataset
size (in terms of tokens). Further evidence of this linear relationship is provided by Hoffmann
et al. (2022). Since we compare models of the same size and use tokens as anchors, we retain the
arguments of the formula constant at each anchor.

4 RESULTS

In this section, we discuss the results of training and evaluating models of three different sizes on
the two datasets in varying dataset sizes. Conclusions on compute efficiency are incorporated in the
subsections and results of formal and functional linguistic competence.

4.1 FORMAL LINGUISTIC COMPETENCE

Following our experimental pipeline (see Figure 1), we first evaluate formal linguistic competence.

Effect of model and dataset size: Figure 2 shows learning curves of the performance of three
model sizes (17M, 58M and 91M) trained on the BabyLM and TinyStories datasets. At each anchor
point, the models are pre-trained from scratch using the indicated number of tokens from the respec-
tive datasets. The trained models are then evaluated on their formal linguistic competence using the
BLiMP benchmark. Each point on the learning curve indicates the average performance.

Comparing the two datasets indicates that models trained with the BabyLM dataset achieve higher
overall BLiMP accuracy across the whole learning curve. Moreover, the models trained on TinySto-
ries show slower improvement and reach a performance plateau at around 64 million sampled tokens
for all model sizes. Additionally, results on TinyStories showcase greater variability and are more
prone to induced randomness. This observation suggests that models trained on the TinyStories
dataset are more sensitive to initial conditions of model parameters and random factors during the
pre-training phase. It could also imply a higher likelihood of unstable convergence.

Furthermore, the results indicate that the size of the model has a substantial impact on performance,
with the 91M model consistently outperforming the 58M model across all anchor points. This is
particularly evident for the BabyLM dataset, where the performance gap across model sizes is more
substantial. While this result is to be expected, this adds credibility to the experimental setup.

Finally, we can observe the ultimate dataset performance (i.e., using the full dataset) by investigating
the dashed lines in Figure 2. Analysis of this is particularly important in the case of the TinyStories
dataset, given that only a fraction of the ∼400-million token dataset had been considered up to 160
million tokens, whereas the BabyLM dataset is almost fully used. The lack of significant improve-
ment on the full dataset suggests that additional data do not reveal further properties of language
structure that could benefit the training of the model.

Possibly, the TinyStories dataset lacks rich linguistic features due to its vocabulary that was kept
simple by design; after all, for the creation of the dataset, GPT-3.5 and GPT-4 were prompted to
generate stories using only words that can be typically understood by children aged 3–4. In addition,
since the dataset is synthetic, there is little variation in the structure of the stories. These factors could
likely explain the inability of models trained on TinyStories to reach higher accuracy on BLiMP, with
clear stagnation around the 64 million tokens.

Evaluation of individual tasks: To extract further insights on the performance of model variants
across the datasets, we plot a heatmap to display the performance across the individual BLiMP tasks,
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Figure 2: Learning curves (on three repetitions) for BLiMP performance comparing model sizes
(17M, 58M and 91M) on two datasets: BabyLM and TinyStories. Dashed lines represent the
performance on the full dataset for each model-dataset combination, following the same colouration.
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Figure 3: Heatmap of average accuracy scores (for three repetitions) across models (17M, 58M,
and 91M) and all BLiMP tasks on two datasets: BabyLM and TinyStories, with 160M tokens (this
being the largest anchor that occurs in both datasets). Each cell reports the score of a given fine-
tuned model on a specific task. The background colour gives a row-wise indication of how the
specific model performed, with yellow colours indicating better performance. The boxplot on the
right depicts the distributions of performances across the BLiMP tasks.

along with a boxplot to showcase the distribution of performance across the tasks. For this, we used
the models pre-trained on the final anchor of the dataset (i.e., the largest portion of the data). These
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Figure 4: Learning curves (on three repetitions) for a subset of GLUE tasks comparing model sizes
(17m, 58M and 91M) on two datasets: BabyLM and TinyStories. Dashed lines represent the perfor-
mance on the full dataset for each model-dataset combination, following the same colouration.

can be observed in Figure 3. The yellow cell represents the best-retrieved performance on a task
(i.e., in a row), while the darkest blue represents the worst-performing model. Moreover, the scores
on the task are included in each cell.

Our findings show substantial variations in task allocation and overall performance and highlight
once more the influence of model size. Upon first examining the heatmap (located on the left side
of Figure 3), it is clear that models trained on BabyLM give better and more consistent performance
across tasks than models trained on TinyStories. Results from larger model sizes are notably better;
for the BabyLM dataset, this improvement is more noticeable across model sizes.

Analysis of the distribution via the boxplot (see right side of Figure 3) reveals tighter distributions
and higher medians for models trained on BabyLM. This indicates more consistent task competence.
In contrast, models trained on TinyStories exhibit greater variability and more extreme outliers,
suggesting dataset-specific challenges. Finally, scaling the model size improves the performance
for both datasets, with greater improvements for models trained on BabyLM. Increasing the model
size clearly improves the median accuracy (reflected by the rise of the central line in the boxplot).
Additionally, the boxplot constricts, indicating a reduction in variability of performance across the
tasks, which highlights the benefit of scaling model capacity.

4.2 FUNCTIONAL LINGUISTIC COMPETENCE

To evaluate the functional linguistic competence of the trained models, we use a collection of down-
stream tasks extracted from the GLUE benchmark suite. Figures 4 and 5 present the performance
metric scores obtained during the training phase, focusing on validation scores.

Effect of dataset size: Figure 4 shows the learning curves. Each point depicts the average GLUE
performance (across the repetitions) for each of the three model sizes (17M, 58M and 91M) pre-
trained on the BabyLM and TinyStories datasets. At each anchor point, candidate models are
pre-trained on sampled tokens from the respective datasets. Next, they are fine-tuned using pre-
determined hyperparameters following Timiryasov & Tastet (2023). We utilise the following tasks
of the GLUE benchmark: CoLA, MNLI-mm, MRPC, QNLI, QQP, RTE, and SST-2.

Similar to the BLiMP evaluation (see Section 4.1), model–variants of all sizes perform better when
trained on the BabyLM dataset compared to the TinyStories. The performance gap here is less
pronounced but still evident. It can also be observed that the training of TinyStories across the
anchor points presents greater fluctuations and higher variance across the repetitions. The 17M
model stagnates around 64M tokens for both datasets. However, unlike the BLiMP results, larger
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Figure 5: Heatmap of average accuracy scores (for three repetitions) across models (17M, 58M, and
91M) and GLUE tasks on two datasets: BabyLM and TinyStories, with 160M tokens (this being the
largest anchor that occurs in both datasets). Each cell reports the score of a given fine-tuned model
on a specific task. The background colour gives a row-wise indication of how the specific model
performed, with yellow colours indicating better performance. The boxplot on the right depicts the
distributions of performances across the GLUE tasks.

models (58M and 91M) consistently improve across all anchors on both datasets, reflecting their
ability to capture more information with increased data.

Notably, unlike for the BLiMP results, using the full TinyStories dataset beyond 160M tokens
(dashed lines in Figure 4) substantially improves performance. This suggests that the underlying
data in TinyStories, despite being limited in vocabulary and complex grammatical structure, does
enable the models to effectively capture fundamental linguistic patterns and structures needed for
language use and understanding. Increasing the number of data samples boosts downstream task
performance, indicating that data scale is important here.

Evaluation of individual tasks: Figure 5 shows the performance across individual tasks of the
GLUE benchmark and their distribution. As previously, we used the models pre-trained on the final
anchor of the dataset. Similarly to the previous heatmap, the scores per task are displayed, and
the colour indicates the performance of a model compared to other models on that task (i.e., row).
Even though the different datasets conclude on similar performances, BabyLM still outperforms the
TinyStories dataset. We see that the BabyLM trained models have overall better performance across
the different tasks (i.e., rows in the heatmap).

When looking into the distribution of scores (boxplot in Figure 5), it can be observed that moving
from the 17M model to the 58M model variant presents a higher performance boost when trained
on the BabyLM dataset. This can be inferred from the higher median score as well as constricted
bounds, showcasing less variance. Models trained on TinyStories show a slightly higher median
score with no substantial change in the outliers. Analysis of the 91M model for both datasets shows
small to no improvement with the BabyLM pre-trained variant receiving lower average score (see
Figure 4) and lower median scores as well as higher variance of scores across tasks (see Figure 5).
This can be partially explained by the lack of hyperparameter optimisation across the model-size
variants; current parameter settings were optimised in prior literature for the 58M model (Timiryasov
& Tastet, 2023). The model pre-trained on TinyStories still shows minor improvements.
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5 LIMITATIONS AND FUTURE WORK

Our work has revealed several valuable insights, but it also leaves room for further extensions and
improvements. For instance, exploring the TinyDialogues dataset (Feng et al., 2024) could provide
insights into how child-directed speech compares to the datasets analysed here in terms of linguistic
competence and computational efficiency.

Another possible scope extension is to experiment with a greater variety of model architectures and
sizes. In the current version, we have limited ourselves to Llama-based variants of relatively small
size and with a static tokeniser per dataset, but this could clearly be extended in various directions,
such as other model architectures, larger model sizes, tokeniser vocabulary sizes and other training
paradigms (e.g., model distillation and reinforcement learning (DeepSeek-AI et al., 2025)).

The subset of the GLUE benchmark that we used includes a variety of downstream tasks, but inte-
grating the full benchmark or tasks from more diverse benchmarking suites (e.g., SuperGLUE (Wang
et al., 2019a)) could offer a more comprehensive and concrete assessment of functional linguistic
competence.

Finally, the use of hyperparameter optimisation can further improve the downstream task perfor-
mance (Baratchi et al., 2024). Tornede et al. (2024) speculate that the fine-tuning stage can be
optimised while optimising all stages of the training pipeline is too costly. In this work, we adopted
hyperparameter settings from (Timiryasov & Tastet, 2023), and did not tailor these to the various
model sizes and tasks. Optimising the hyperparameters to all specific downstream tasks would pro-
vide more reliable results for the ultimate performance of the various models.

6 CONCLUSIONS

In this work, we have assessed the linguistic competence and computational efficiency of generative
language models that were trained on small, curated datasets. We have analysed the learning curves
with increasing amounts of data in the pre-training stage using two datasets that were originally
designed with constraints inspired by human development. We have evaluated linguistic compe-
tence in two dimensions: (i) formal linguistic competence and (ii) functional linguistic competence.
We have estimated computational efficiency with token-based measures, considering progressively
larger dataset samples (anchors) that lead to a learning curve.

Our findings indicate that models trained with the BabyLM dataset outperform models trained with
the TinyStories dataset on formal linguistic competence. The gap in functional linguistic competence
is less pronounced, with models trained on TinyStories achieving comparable performance but
showing smaller deviations across model sizes. Additionally, pre-training with BabyLM yields
more consistent improvements across different dataset sizes, with lower variance across repetitions.
These empirical findings suggest that TinyStories lacks certain rich linguistic features, likely due to
its simpler vocabulary and synthetic origin, yet still supports the idea that narrative structures could
contribute to functional linguistic competence.

These insights support the usage of BabyLM for pre-training language models in resource-
constrained settings, where performance on small dataset samples can reliably predict the final
achieved performance (such as mixture of experts (MoE) development). Moreover, the results seem
more robust to variations of random seeds, as demonstrated by the lower standard deviations of re-
sults). On the other hand, the results of GLUE downstream tasks of models pre-trained TinyStories
demonstrate the potential of narrative data for pre-training. Future work could consider the appli-
cation of curriculum learning, where progressively complex data could be incorporated to enrich
vocabulary. Such data could be sourced from other domains or more complex narrative samples.
Finally, extending the datasets included and the set of downstream tasks considered will allow us to
assess the generalizability of the insights we have obtained.
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A MODEL SIZE VARIANTS

Table 2 depicts the different Llama-based decoder-only transformer models, according their respec-
tive model-sizes and associated configuration settings.

Model size Hidden size Intermediate size Attention heads Transformer layers
17M 256 1024 8 8
58M 512 1024 8 16
91M 768 2048 12 10

Table 2: Llama Model Variants: Configurations explored across different model sizes, depth and
breadth. The models include 17-million, 58-million, 91-million parameters.
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