
GRAPHPATCHER: Mitigating Degree Bias for
Graph Neural Networks via Test-time Augmentation

Mingxuan Ju1, Tong Zhao2, Wenhao Yu1, Neil Shah2, Yanfang Ye1
1University of Notre Dame, 2Snap Inc.

1{mju2,wyu1,yye7}@nd.edu; 2{tzhao,nshah}@snap.com

Abstract

Recent studies have shown that graph neural networks (GNNs) exhibit strong biases
towards the node degree: they usually perform satisfactorily on high-degree nodes
with rich neighbor information but struggle with low-degree nodes. Existing works
tackle this problem by deriving either designated GNN architectures or training
strategies specifically for low-degree nodes. Though effective, these approaches un-
intentionally create an artificial out-of-distribution scenario, where models mainly
or even only observe low-degree nodes during the training, leading to a downgraded
performance for high-degree nodes that GNNs originally perform well at. In light
of this, we propose a test-time augmentation framework, namely GRAPHPATCHER,
to enhance test-time generalization of any GNNs on low-degree nodes. Specifically,
GRAPHPATCHER iteratively generates virtual nodes to patch artificially created
low-degree nodes via corruptions, aiming at progressively reconstructing target
GNN’s predictions over a sequence of increasingly corrupted nodes. Through this
scheme, GRAPHPATCHER not only learns how to enhance low-degree nodes (when
the neighborhoods are heavily corrupted) but also preserves the original superior
performance of GNNs on high-degree nodes (when lightly corrupted). Additionally,
GRAPHPATCHER is model-agnostic and can also mitigate the degree bias for either
self-supervised or supervised GNNs. Comprehensive experiments are conducted
over seven benchmark datasets and GRAPHPATCHER consistently enhances com-
mon GNNs’ overall performance by up to 3.6% and low-degree performance by
up to 6.5%, significantly outperforming state-of-the-art baselines. The source code
is publicly available at https://github.com/jumxglhf/GraphPatcher.

1 Introduction

Graph Neural Networks (GNNs) have gained significant popularity as a powerful approach for
learning representations of graphs, achieving state-of-the-art performance on various predictive tasks,
such as node classification [22, 38, 9], link prediction [50, 53], and graph classification [43, 47, 11].
These tasks further form the archetypes of many real-world applications, such as recommendation
systems [45, 3], predicative user behavior models [31, 52], and molecular property prediction [51, 48].

While existing GNNs are highly proficient at capturing information from rich neighborhoods (i.e.,
high-degree nodes), recent studies [13, 25, 36, 55] have revealed a significant performance degradation
of GNNs when dealing with nodes that have sparse neighborhoods (i.e., low-degree nodes). This
observation can be attributed to the fact that GNNs make predictions based on the distribution of
node neighborhoods [27]. According to this line of theory, GNNs struggle with low-degree nodes
due to the limited amount of available neighborhood information, which may not be able to precisely
depict the learned distributions. Empirically, as shown in Figure 1, the classification accuracy of
GCN [22] proportionally decays as the node degree decreases, resulting in a performance gap of
∼20% accuracy. Furthermore, the sub-optimal performance of GNNs on low-degree nodes can be

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/jumxglhf/GraphPatcher

0
100
200
300
400
500
600

60
65

70
75

80
85

90

1~2 3~4 5~6 7~8 9~10
50

150

250

350

450

70
75

80
85

90
95

100

1~2 3~4 5~6 7~8 9~10

GCN TuneUp Tail-GNN ColdBrew GraphPatcher # of Nodes

Acc (%) # of Nodes

Degree

Node Degree vs. Accuracy across SoTA

Acc (%) # of Nodes

Degree

Graph: Cora Graph: Citeseer

GCN Overall GCN Overall

Figure 1: The classification accuracy of GCN and SoTA frameworks that mitigate degree biases.

aggravated by the power-law degree distribution commonly observed in real-world graphs, where the
number of low-degree nodes significantly exceeds that of high-degree nodes [36].

To bridge this gap, several frameworks have been proposed to specifically improve GNNs’ perfor-
mance on low-degree nodes [36, 25, 13, 55, 49]. These frameworks either introduce designated
architectures or training strategies specifically for low-degree nodes. For examples, Tail-GNN [25]
enhances latent representations of low-degree nodes by incorporating high-degree structural infor-
mation; whereas Coldbrew [55] retrieves a set of existing nodes as virtual neighbors for low-degree
nodes. However, these approaches suffer from two significant drawbacks. Firstly, while benefiting
low-degree nodes, they inadvertently create an artificial out-of-distribution scenario during train-
ing [42], where models primarily observe low-degree nodes, leading to a downgraded performance
for high-degree nodes that GNNs originally perform well on. Secondly, deploying these frameworks
often requires changing model architectures, which can be impractical in real-world scenarios where
the original models are well-trained due to the expensive re-training cost (on large-scale graphs) and
the shared usage of it across different functionalities in production.

In light of these drawbacks, we propose a test-time augmentation framework for GNNs, namely
GRAPHPATCHER. Given a well-trained GNN, GRAPHPATCHER mitigates the degree bias by patching
corrupted ego-graphs with multiple generated virtual neighbors. Notably, GRAPHPATCHER not only
enhances the performance of low-degree nodes but also maintains (sometimes improves) GNNs
performance on high-degree nodes. This behavior is empirically important because practitioners can
universally apply GRAPHPATCHER to all nodes without, like previous works, manually discovering a
degree threshold that differentiates the low- and high-degree nodes. To achieve so, we first generate
a sequence of ego-graphs corrupted with increasing strengths. Then, GRAPHPATCHER recursively
generates multiple virtual nodes to patch the mostly corrupted graph, such that the frozen GNN
gives similar predictions for the patched graph and the corresponding corrupted ego-graph in the
sequence. Through this scheme, GRAPHPATCHER not only learns how to patch low-degree nodes
(i.e., heavily corrupted) but also maintains GNNs original superior performance on high-degree nodes
(i.e., lightly corrupted). As a test-time augmentation framework, GRAPHPATCHER is parameterized
in parallel with the target GNN. Hence, GRAPHPATCHER is model-agnostic and requires no updates
on the target GNN, enabling practitioners to easily utilize it as a plug-and-play module to existing
well-established infrastructures. Overall, our contributions are summarized as:

• We study a more practical setting of degree biases on graphs, where both the performances on
low- and high-degree nodes are considered. In this case, a good framework is required to not only
improve the performance over low-degree nodes but also maintain the original superior performance
over high-degree nodes. We evaluate existing frameworks in this setting and observe that many of
them trade off performance on high-degree nodes for that on low-degree nodes.

• To mitigate degree biases, we propose GRAPHPATCHER, a novel test-time augmentation framework
for graphs. Given a well-trained GNN, GRAPHPATCHER iteratively generates multiple virtual
nodes and uses them to patch the original ego-graphs. These patched ego-graphs not only improve
GNNs’ performance on low-degree nodes but also maintains that over high-degree nodes. Moreover,
GRAPHPATCHER is applied at the testing time for GNNs, a plug-and-play module that is easily
applicable to existing well-established infrastructures.

• We conduct extensive evaluation of GRAPHPATCHER along with six state-of-the-art frameworks
that mitigate degree biases on seven benchmark datasets. GRAPHPATCHER consistently enhances
the overall performance by up to 3.6% and low-degree performance by up to 6.5% of multiple
GNNs, significantly outperforming state-of-the-art baselines.

2

2 Related Works

Graph Neural Networks. Graph Neural Networks (GNNs) have become one of the most popular
paradigms for learning representations over graphs [22, 38, 9, 43, 23, 17, 4]. GNNs aim at mapping
the input nodes into low-dimensional vectors, which can be further utilized to conduct either graph-
level or node-level tasks. Most GNNs explore a layer-wise message passing scheme, where a
node iteratively extracts information from its first-order neighbors, and information from multi-hop
neighbors can be captured by stacked layers. They achieved state-of-the-art performance on various
tasks, such as node classification [22, 44, 12, 35], link prediction [50, 53, 8], node clustering [2, 37],
etc. These tasks further form the archetypes of many real-world applications, such as recommendation
systems [45, 3], predictive user behavior models [31, 52], question answering [18], and molecular
property prediction [51, 48, 7, 24].

Degree Bias underlying GNNs. Recent studies have shown that GNNs exhibit strong biases towards
the node degree: they usually perform satisfactorily over high-degree nodes with rich neighbor
information but suffer over low-degree nodes [13, 25, 36, 55]. Existing frameworks that mitigate
degree biases derive either designated architectures or training strategies specifically for low-degree
nodes. For instance, Tail-GNN [25] enhances low-degree nodes’ latent representations by injecting
high-degree structural information learned from high-degree nodes; Coldbrew [55] retrieves a set of
existing nodes as virtual neighbors for low-degree nodes; TuneUp [13] fine-tunes the well-trained
GNNs with pseudo labels and heavily corrupted graphs. Though effective for low-degree nodes,
they unintentionally create an artificial out-of-distribution scenario [42], where models only observe
low-degree nodes during the training, leading to downgraded performance for high-degree nodes that
GNNs originally perform well at.

Test-time Augmentation. While data augmentations during the training phase have become one
of the essential ingredients for training machine learning models [54], the augmentation applied
during the testing time is far less studied, especially for the graph learning community. It has been
moderately researched in the computer vision field, aimed at improving performance or mitigating
uncertainties [34, 21, 41, 1]. They usually corrupt the same sample by different augmentation
approaches and aggregate the model’s predictions on all corrupted samples. Whereas in the graph
community, GTrans [15] proposes a test-time enhancement framework, where the node feature and
graph topology are modified at the test time to mitigate potential out-of-distribution scenarios.

3 Methodology

3.1 Preliminary

In this work, we specifically focus on the node classification task. Let G = (V,E) denote a
graph, where V is the set of |V | = N nodes and E ⊆ V × V is the set of |E| edges between
nodes. X ∈ RN×d represents the feature matrix, with i-th row representing node vi’s d-dimensional
feature vector. Y ⊆ {0, 1}N×C denotes the label matrix, where C is the number of total classes.
And Y(L) denotes the label matrix for training nodes. We denote the ego-graph of node vi is
defined as G(vi) = (Vi, Ei) with Vi = Nk(vi), where Nk(vi) stands for all nodes within the k-hop
neighborhood of vi including itself and Ei refers to the edges in-between Nk(vi). A well-trained
GNN fg(·;θ) : G → RN×C parameterized by θ takes G as input and maps every node in G to a
C-dimensional class distribution. Formally, we define test-time node patching as the following:
Definition 1 (Test-time Node Patching). Given a GNN fg(·;θ) and a graph G, a test-time node
patching framework f(·;ϕ) : G → G takes G and outputs the patched graph Ĝ with generated
nodes and edges, such that the performance of fg over nodes in G is enhanced when Ĝ is utilized:

argmin
ϕ

L
(
fg
(
f(G;ϕ);θ∗),Y)

, where θ∗ = argmin
θ

L
(
fg(G;θ), Y(L)

)
, (1)

where L refers to the loss function evaluating the GNN (e.g., cross-entropy or accuracy).

In this work, we aim at mitigating the degree bias via test-time node patching. To achieve so, two
challenges need to be addressed: (1) how to optimize and formulate f(·;ϕ), such that the graphs
patched by f(·;ϕ) enhance the performance of fg(·;θ∗) over low-degree nodes; and (2) how to
derive a unified learning scheme that allows f(·;ϕ) to not only improve low-degree nodes but also
maintain the GNN’s original superiority over high-degree nodes.

3

Increasing Corruption Strength

Original Ego-graph
Heavily Corrupted Ego-graph

(Low-degree case)
Lightly Corrupted Ego-graph

(High-degree case)
Intermediate Ego-graph

1

G
raphPatcher

1

2

G
raphPatcher

G
raphPatcher1

2

3

Iterative Node Patching

Anchor Node Real Neighbor Patching Node
Feed-forward Gradient Descent

Patching from the most
corrupted graph

Target GNN 𝑓(•; 𝜽)

≈
KL Divergence Matching

Target GNN 𝑓(•; 𝜽)

≈
KL Divergence Matching

Target GNN 𝑓(•; 𝜽)

≈
KL Divergence Matching

Figure 2: GRAPHPATCHER is presented ego-graphs corrupted by increasing strengths (i.e., the top
half of the figure). From the most corrupted graph, it iteratively generates patching nodes to the
anchor node, such that the target GNN behaves similarly given the currently patched graph or the
corrupted graph next in the hierarchy (i.e., the bottom half of the figure).

3.2 The Proposed Framework: GRAPHPATCHER

Our proposed GRAPHPATCHER is a test-time augmentation framework for GNNs to mitigate their
degree biases. As shown in Figure 2, GRAPHPATCHER is presented a sequence of ego-graphs
corrupted by increasing strengths. Starting from the most corrupted graphs, GRAPHPATCHER
iteratively generates patching nodes to augment the anchor nodes. Compared with the corrupted
graphs next in the hierarchy, the patched graphs should allow the target GNN to deliver similar
outputs. Through this scheme, GRAPHPATCHER not only learns how to patch low-degree nodes
while preserving the superior performance over high-degree nodes.

3.2.1 Patching Ego-graphs via Prediction Reconstruction

In order to patch low-degree nodes, a straightforward approach is to corrupt high-degree nodes
into low-degree nodes, and allowing the learning model to patch the corrupted nodes to restore
their original properties [25, 13]. However, patching low-degree nodes not only affects their own
representations but also those of their neighbors due to the message-passing mechanism of GNNs as
well as the non-i.i.d. property of nodes in a graph. Besides, modeling over the entire graphs requires
the learning model to consider all potential circumstances, whose overheads grow quadratically
w.r.t. the number of nodes. Consequently, it becomes challenging to simultaneously determine both
features and neighbors of the patching nodes given the entire graph.

To reduce the complexity of the optimization process, instead of working over the entire graph, we
conduct node patching over ego-graphs and regard each ego-graph as an i.i.d. sample of the anchor
node [56, 19]. For each node vi, we have fg(G;θ)[vi] = fg(G(vi);θ)[vi] if k equals to the number
of layers in fg(·;θ). To further simplify the optimization process, we directly wire the generated
virtual nodes to the anchor node (i.e., the generated virtual nodes are the first-order neighbors of
the anchor node). This implementation is simple yet effective, because we no longer consider the
location to place the patching node: any modification that affects the latent representation of the
anchor node can be achieved by patching nodes (with different features) directly to the anchor nodes.

We start explaining GRAPHPATCHER by the most basic case where we only conduct node patching
once. Specifically, given the a trained GNN fg(·;θ∗), an anchor node vi, and a corruption function
T (·; t) with strength t (i.e., first-order neighbor dropping with probability t to simulate a low-degree

4

scenario), that is, G′(vi) = (V ′(vi), E
′(vi)) = T (G(vi), t). GRAPHPATCHER f(·;ϕ) takes the

corrupted ego-graph G′(vi) as input and outputs the augmented ego-graph Ĝ(vi) with a patching node
vp and its feature xp, which is directly connected to vi. That is,

Ĝ(vi) = f(G′(vi);ϕ), where V̂ = V ′(vi) ∪ {vp}, Ê = E′(vi) ∪ {e(i,p)}, (2)

where e(i,p) refers to the edge connecting vi and vp and V ′(vi) and E′(vi) refer to the nodes and edges
in G′(vi), respectively. To optimize f(· : ϕ) such that fg(·;θ∗) gives similar predictions to Ĝ′(vi)
and G(vi), we minimize the Kullback–Leibler divergence between the frozen GNN’s predictions on
these two ego-graphs, which is defined as:

argmin
ϕ

∑
vi∈Vtr

KL-Div
(
fg
(
G(vi);θ∗)[vi], fg(f(G′(vi);ϕ);θ

∗)[vi]), (3)

where KL-Div(y1,y2) = (y1+ ϵ) ·
(
log(y2+ ϵ)− log(y1+ ϵ)

)
1 with ϵ > 0 and Vtr refers to the set

of anchor nodes for training. Intuitively, the reconstruction process above enforces GRAPHPATCHER
to remedy the corrupted neighborhood caused by T (·; t) via adding a patching node directly to the
anchor node. It is philosophically similar to the existing works (e.g., TuneUp [13] and Tail-GNN [25]),
where models gain better generalization over low-degree nodes via the corrupted high-degree nodes.
Empirically, we observe that this branch of approaches can effectively enhance performance over low-
degree nodes. Though promising, according to our empirical studies, it falls short on the high-degree
node that original GNNs perform well at. This phenomenon may be attributed to the unintentially
created out-of-distribution scenario [42], wherein models primarily encounter nodes with low degrees
during the training. Consequently, the performance of GNNs, which is typically proficient with
high-degree nodes, is adversely affected and downgraded.

3.2.2 Iterative Patching to Mitigate Degree Bias

In this work, we emphasize that: mitigating degree bias should not focus specifically on the low-degree
nodes: trading off performance on high-degree nodes for that on low-degree nodes simply creates a
new bias towards high-degree nodes. Therefore, besides enhancing the performance on low-degree
nodes, maintaining GNN’s original superiority on high-degree nodes is equally critical. This behavior
is empirically desirable because practitioners can universally apply GRAPHPATCHER to all nodes
without, like previous works do, manually discovering the degree threshold that differentiates the low-
and high-degree nodes. Furthermore, the fact that these frameworks are applicable only to low-degree
nodes indicates a lack of robustness: further remedying a neighborhood that is informative enough to
deliver a good classification result should not jeopardize the performance.

To mitigate the degree bias, we propose a novel training scheme for GRAPHPATCHER such that
it observes both low- and high-degree nodes simultaneously during the optimization. Specifically,
given a node vi, we firstly create a sequence of M corrupted ego-graphs of vi, denoted as S(vi) =
[G′(vi)m = T (G(vi), tm)]Mm=1, with decreasing corruption strength (i.e., ∀ m,n ∈ {1, . . . ,M},
tm > tn if m < n). Instead of the one-step patching to match the prediction on the original ego-
graph as described in Section 3.2.1, GRAPHPATCHER traverses S(vi) and recursively patches the
corrupted ego-graph to match the target GNN’s prediction on the ego-graph next in the sequence. As
also illustrated in Figure 2, this optimization process is formulated as:

argmin
ϕ

∑
vi∈Vtr

M−1∑
m=1

KL-Div
(
fg
(
G′(vi)m+1;θ

∗)[vi], fg(Ĝ(vi)m;θ∗)[vi]
)
, (4)

s.t. Ĝ(vi)m = f(Ĝ(vi)m−1;ϕ),

where Ĝ(vi)m = (V̂m, Êm) with V̂m = V ′
1(vi) ∪ {vp}mp=1, Êm = E′

1(vi) ∪ {e(i,p)}mp=1, and
Ĝ(vi)0 = G′(vi)1.

The one-step patching described in Section 3.2.1 remedies low-degree anchor nodes directly to the
distributions of high-degree nodes. During this process, the model does not observe distributions
of high-degree nodes and hence delivers sub-optimal performance. Therefore, we design GRAPH-
PATCHER to be an iterative multi-step framework. At each step, it takes the previously patched

1KL divergence used here is equal to the regularized cross-entropy. It is strongly convex and Lipschitz
continuous due to the incorporation of ϵ. These two properties are required for the derivation of Theorem 1.

5

ego-graph as input and further remedies the partially patched ego-graph to match the GNN’s predic-
tion on the ego-graph next in the sequence. This scheme enables GRAPHPATCHER to learn to patch
low-degree nodes in early steps when the ego-graphs are heavily corrupted (e.g., low-degree case in
Figure 2) and maintain the original performance in later steps when ego-graphs are lightly corrupted
(e.g., high-degree case in Figure 2). Specifically, at the m-th patching step, the currently patched
ego-graph Ĝ(vi)m reflects the neighbor distribution of ego-graphs corrupted by a specific strength of
tm+1. GRAPHPATCHER takes Ĝ(vi)m as input and further generates another patching node vm+1 to
approach the neighbor distribution of ego-graphs corrupted by a slightly weaker strength of tm+2.
This process iterates until GRAPHPATCHER traverses S(vi). Intuitively, the incorporation of vm+1

enriches the neighbor distribution by an amount of tm+2 − tm+1 corruption strength. This opti-
mization scheme allows GRAPHPATCHER to observe neighbor distributions with varying corruption
strengths and makes our proposal applicable to both low- and high-degree nodes.

However, the target distribution at each step (i.e., fg
(
G′(vi)m+1;θ

)
[vi] in Equation (4)) is not

deterministic due to the stochastic nature of the corruption function T . Given an ego-graph G(vi)
and a corruption strength t, one can at most generate

(|Vi|
(1−t)|Vi|

)
different corrupted ego-graphs. With

a large corruption strength (e.g., ego-graphs early in the sequence S(vi)), two corrupted ego-graphs
generated by the same exact priors might exhibit completely different topologies. Such differences
could bring high variance to the supervision signal and instability to the optimization process. To
alleviate the issue above, at each step we sample L ego-graphs with the same corruption strength and
let GRAPHPATCHER approximate multiple predictions over them, formulated as:

Lpatch =
∑
vi∈Vtr

M−1∑
m=1

L∑
l=1

KL-Div
(
fg
(
G′(vi)

l
m+1;θ

∗)[vi], fg(Ĝ(vi)m;θ∗)[vi]), (5)

where Ĝ(vi)m = f(Ĝ(vi)m−1;ϕ) and G′(vi)
l
m+1 refers to one of the L target corrupted ego-graphs

that GRAPHPATCHER aims to approximate at the m-th step. This approach allows GRAPHPATCHER
to patch the anchor node towards a well-approximated region where its high-degree counterparts
should locate, instead of one point randomly sampled from this region.

With M−1 virtual nodes patched to the ego-graph, we further ask GRAPHPATCHER to generate a last
patching node to Ĝ(vi)M−1 and enforce the resulted graph Ĝ′(vi)M to match the GNN’s prediction
on the original ego-graph. The last patching node could be regarded as a slack variable to complement
minor differences between the original and the least corrupted ego-graphs, formulated as:

Lrecon =
∑
vi∈Vtr

KL-Div
(
fg
(
G(vi);θ∗)[vi], fg(Ĝ(vi)M ;θ∗)[vi]), (6)

where Ĝ(vi)M = f(Ĝ(vi)M−1;ϕ). Lrecon (Equation (6)) also prevents GRAPHPATCHER from
overfitting to the low-degree nodes and enforces GRAPHPATCHER to maintain the target GNN’s
performance over high-degree nodes, since only marginal distribution modification should be expected
with this last patching node. Hence, GRAPHPATCHER is optimized by a linear combination of the
above two objectives (i.e., argminϕ Lpatch + Lrecon).

3.2.3 Theoretical Analysis

As shown in Equation (5), one of the important factors that contribute to the success of GRAPH-
PATCHER is sampling multiple ego-graphs with the same corruption strength. The following theorem
shows that the error is bounded w.r.t. the number of sampled ego-graphs L.
Theorem 1. Assuming the parameters of GRAPHPATCHER are initialized from the set Pβ = {ϕ :
||ϕ−N (0|ϕ|;1|ϕ|)||F < β} where β > 0, with probability at least 1− δ for all ϕ ∈ Pβ , the error

(i.e., E(Lpatch)− Lpatch) is bounded by O(β
√

|ϕ|
L +

√
log(1/β)

L).

The proof of Theorem 1 is provided in Appendix C. From the above theorem, we note that without the
sampling strategy (i.e., L = 1), the generalization error depends only on the number of parameters
(i.e., |ϕ|) given the same objective function, which could lead to high variance to the supervision
signal and instability to the optimization process. According to this theorem and our empirical
observation, an affordable value of L (e.g., L = 10) delivers stable results across datasets.

6

4 Experiments

4.1 Experimental Setting

Datasets. We conduct comprehensive experiments on seven real-world benchmark datasets that
are broadly utilized by the graph community, including Cora, Citeseer, Pubmed, Wiki.CS,
Amazon-Photo, Coauthor-CS, ogbn-arxiv, Actor, and Chameleon [44, 28, 12, 33]. This list
of datasets covers graphs with distinctive characteristics (i.e., graphs with different domains and
dimensions) to fully evaluate the effectiveness of GRAPHPATCHER. The detail of these datasets can
be found in Appendix A.

Baselines. We compare GRAPHPATCHER with six state-of-the-art graph learning frameworks from
three branches. The first branch specifically aims at enhancing the performance on low-degree
nodes, including TAIL-GNN [25], COLBBREW [55], and TUNEUP [13]. The second branch con-
sists of frameworks that focus on handling out-of-distribution scenarios, including EERM [42] and
GTRANS [15]. We list this branch of frameworks as baselines because the sub-optimal performance
of GNNs over low-degree nodes could be regarded as an out-of-distribution scenario. As GRAPH-
PATCHER is a test-time augmentation framework, the last branch of baseline includes DROPEDGE,
which is a data augmentation framework employed during training.

Evaluation Protocol. We evaluate all models using the node classification task [22, 38], quantified
by the accuracy score. For datasets with publicly avaiable (i.e., ogbn-arxiv, Cora, Citeseer, and
Pubmed), we employ their the provided splits for the model training and testing. Whereas for other
datasets, we create a random 10%/10%/80% split for the training/validation/testing split, to simulate
a semi-supervised learning setting. All reported performance is averaged over 10 independent runs
with different random seeds. Both mean values and standard deviations for the performances of all
models are reported. Besides mitigating the degree bias for supervised GNNs, GRAPHPATCHER
is also applicable to self-supervised GNNs. To evaluate the model performance for them, we
apply GRAPHPATCHER and TUNEUP to state-of-the-art self-supervised GNNs including DGI [39],
GRACE [57], and PARETOGNN [20]. We only compare our proposal with TUNEUP since other
frameworks require specific model architectures and hence do not apply to self-supervised GNNs.

Hyper-parameters. We use the optimal settings on all baselines given by the authors for the shared
datasets and a simple two-layer GCN [22] as the backbone model architecture for all applicable
baselines. Hyper-parameters we tune for GRAPHPATCHER include learning rate, hidden dimension,
the augmentation strength at each step, and the total amount of patching steps with details described
in Appendix B. Besides, all of our models are trained on a single RTX3090 with 24GB VRAM;
additional hardware information can also be found in the appendix.

4.2 Performance Comparison with Baselines

We compare GRAPHPATCHER with six state-of-the-art frameworks that mitigate the degree bias
problem and the performances of all models are shown in Table 1. Firstly we notice that the problem
of degree bias is quite serious across datasets for GCN. The performances on low-degree nodes
are ∼10% lower than those over high-degree nodes. Comparing GCN with COLBBREW, TAIL-
GNN, and TUNEUP, we can observe that frameworks that focus specifically on low-degree nodes
can usually enhance GNN’s performance over the lower percentile (e.g., 1.2% accuracy gain on
Cora by TUNEUP, 0.74% on Citeseer by COLBBREW, 1.38% on Pubmed by TAIL-GNN, etc.).
However, these frameworks fall short on the high-degree nodes and sometimes perform worse than
the vanilla GCN (e.g., -2.7% accuracy degradation on Cora by TAIL-GNN, -11.42% on Wiki.CS
by COLBBREW, and -2.5% on Amazon Photo by TUNEUP). This phenomenon could result from
that they unintentionally create an artificial out-of-distribution scenario, where they only observe
low-degree nodes during the training, leading to downgraded performance for high-degree nodes that
GNNs originally perform well at. Comparing GCN with GTRANS and EERM, we observe that they
deliver similar performances as the vanilla GCN does, indicating that frameworks targeting out-of-
distribution scenarios cannot mitigate degree biases. Comparing GRAPHPATCHER with all baselines,
we notice that our proposed GRAPHPATCHER consistently improves the low-degree performance
with an average improvement gain of 2.23 accuracy score. Besides, unlike other frameworks that have
downgraded performance over high-degree nodes, GRAPHPATCHER can maintain GCN’s original
high-degree superiority, due to our iterative node patching. On average, GRAPHPATCHER improves
GCN’s overall performance by a 1.4 accuracy score across datasets.

7

Table 1: Performance (%) of all models over nodes with different degrees. Lower and upper percentile
indicate the set of nodes whose degree is ranked in the lower and upper 33% population respectively.
A two-layer GCN is used as the backbone model for all applicable baselines. Bold indicates the best
performance and underline indicates the runner-up, with standard deviations as subscripts.

Method Cora Citeseer Pubmed Wiki.CS Am.Photo Co.CS Arxiv Chameleon Actor

ACCURACY ON LOW-DEGREE NODES (LOWER PERCENTILE)

GCN 73.27±0.01 64.86±0.92 76.88±0.40 72.98±0.50 75.59±0.43 84.59±0.45 63.15±0.13 54.05±0.18 27.30±0.52

COLBBREW 73.82±0.98 65.60±0.08 77.72±0.63 73.98±0.52 76.18±0.80 85.56±0.69 63.02±0.21 53.41±0.22 27.88±0.13

TAIL-GNN 71.17±0.80 57.66±0.83 75.38±0.89 74.36±0.18 77.22±0.94 85.13±0.60 OOM 53.48±0.04 27.80±0.62

TUNEUP 74.47±0.34 65.17±0.22 77.18±0.39 72.60±0.75 76.08±0.62 84.68±0.50 63.34±0.32 53.87±0.43 27.94±0.14

EERM 73.40±0.06 64.27±0.33 76.30±0.20 73.12±0.68 75.15±0.59 84.82±0.74 63.20±0.11 54.11±0.32 27.48±0.39

GTRANS 73.16±0.66 64.95±0.83 77.05±1.00 72.15±0.50 75.55±0.55 84.74±0.06 62.88±0.14 54.29±0.14 27.53±0.21

DROPEDGE 73.57±0.97 65.47±0.27 75.68±0.82 73.94±0.20 76.49±0.03 84.31±0.33 61.33±0.33 54.12±0.41 27.39±0.24

GRAPHPATCHER 78.08±0.06 67.27±0.20 78.98±0.21 74.04±0.86 77.84±0.36 86.76±0.84 64.01±0.12 54.48±0.71 29.27±0.57

ACCURACY ON HIGH-DEGREE NODES (UPPER PERCENTILE)

GCN 86.83±0.17 77.25±1.00 80.84±0.76 83.40±0.70 84.07±0.71 90.20±0.37 80.46±0.18 54.11±0.73 27.41±0.29

COLBBREW 84.80±0.04 75.33±0.84 78.66±0.38 71.98±0.95 77.07±0.14 82.16±0.39 70.57±0.36 53.72±0.48 26.67±0.29

TAIL-GNN 84.13±0.48 74.85±0.30 78.74±0.34 78.91±0.97 80.32±0.60 86.75±0.90 OOM 54.53±0.12 27.13±0.44

TUNEUP 87.13±0.67 76.95±0.63 81.74±0.49 83.11±0.53 81.57±0.07 90.65±0.86 80.09±0.51 54.25±0.59 26.64±0.71

EERM 85.89±0.09 76.32±0.23 79.98±0.06 82.98±0.07 84.32±0.96 90.17±0.11 80.37±0.12 54.41±0.71 27.39±0.14

GTRANS 86.32±0.34 76.60±0.44 80.56±0.92 83.42±0.04 83.95±0.99 89.99±0.10 80.77±0.26 54.21±0.19 27.29±0.12

DROPEDGE 86.53±0.99 76.35±0.17 81.44±0.51 83.37±0.43 84.97±0.56 89.28±0.08 80.64±0.36 54.17±0.11 27.38±0.21

GRAPHPATCHER 88.02±0.11 76.65±0.18 83.83±0.79 83.49±0.22 84.17±0.97 90.59±0.46 80.61±0.25 54.20±0.21 27.43±0.62

OVERALL PERFORMANCE

GCN 81.22±0.40 70.51±0.46 79.14±0.31 77.30±0.41 80.38±0.86 88.16±0.66 71.73±0.14 52.83±0.35 27.20±0.57

COLBBREW 80.70±0.86 70.10±0.55 78.66±0.93 73.82±0.69 78.24±0.62 85.80±0.79 63.55±0.48 52.12±0.53 26.75±0.32

TAIL-GNN 79.44±0.64 65.80±0.04 76.14±0.25 74.66±0.18 80.68±0.58 87.02±0.33 OOM 52.46±0.12 27.62±0.47

TUNEUP 82.11±0.39 70.92±0.02 79.91±0.26 76.93±0.81 79.74±0.28 88.46±0.97 71.51±0.30 52.89±0.41 27.32±0.64

EERM 81.47±0.19 70.08±0.19 78.65±0.43 77.29±0.96 79.79±0.61 88.07±0.30 71.70±0.18 52.93±0.24 27.65±0.29

GTRANS 80.79±0.51 69.51±0.93 78.67±0.93 76.39±0.27 80.02±0.80 88.06±0.96 71.77±0.19 52.67±0.35 26.93±0.41

DROPEDGE 81.10±0.31 71.10±0.86 78.90±0.68 77.49±0.78 81.11±0.72 87.56±0.64 71.82±0.33 52.89±0.22 27.28±0.32

GRAPHPATCHER 84.17±0.54 71.65±0.05 81.13±0.68 78.12±0.57 81.23±0.32 89.44±0.79 72.31±0.22 53.21±0.39 28.34±0.24

Table 2: Performance (%) of GRAPHPATCHER and TUNEUP for different GNN architectures.
Method Cora Citeseer Pubmed Wiki.CS Am.Photo Co.CS Arxiv

ACCURACY ON LOW-DEGREE NODES (LOWER PERCENTILE)

GCN 73.27±0.01 64.86±0.92 76.88±0.40 72.98±0.50 75.59±0.43 84.59±0.45 63.15±0.13

+TUNEUP 74.47±0.34 65.17±0.22 77.18±0.39 72.60±0.75 76.08±0.62 84.68±0.50 63.34±0.32

+GRAPHPATCHER 78.08±0.06 67.27±0.20 78.98±0.21 74.04±0.86 77.84±0.36 86.76±0.84 64.01±0.12

G-SAGE 70.57±0.84 67.44±0.11 76.58±0.36 61.83±0.89 76.32±0.33 74.53±0.69 61.64±0.62

+TUNEUP 71.47±0.11 67.44±0.21 77.78±0.92 58.46±0.77 78.48±0.89 74.88±0.76 62.43±0.59

+GRAPHPATCHER 72.33±0.21 67.89±0.33 78.93±0.05 61.46±0.40 78.11±0.13 75.14±0.21 62.92±0.28

GAT 73.27±0.51 69.07±0.11 72.37±0.27 73.72±0.64 79.66±0.58 86.93±0.50 63.54±0.20

+TUNEUP 76.58±0.07 66.67±0.33 72.07±0.81 72.08±0.20 81.08±0.25 86.72±0.84 63.71±0.31

+GRAPHPATCHER 76.88±0.32 70.87±0.78 74.47±0.63 74.26±0.72 80.05±0.19 89.50±0.93 64.12±0.14

ACCURACY ON HIGH-DEGREE NODES (UPPER PERCENTILE)

GCN 86.83±0.17 77.25±1.00 80.84±0.76 83.40±0.70 84.07±0.71 90.20±0.37 80.46±0.18

+TUNEUP 87.13±0.67 76.95±0.63 81.74±0.49 83.11±0.53 81.57±0.07 90.65±0.86 80.09±0.51

+GRAPHPATCHER 88.02±0.11 76.65±0.18 83.83±0.79 83.49±0.22 84.17±0.97 90.59±0.46 80.61±0.25

G-SAGE 82.04±0.01 72.46±0.70 80.24±0.12 60.83±0.18 77.30±0.56 69.24±0.55 78.66±0.08

+TUNEUP 80.84±0.36 73.95±0.36 81.14±0.41 60.90±0.05 79.36±0.89 70.12±0.25 79.26±0.51

+GRAPHPATCHER 82.14±0.48 73.22±0.25 81.66±0.46 61.02±0.44 78.57±0.14 70.53±0.68 79.91±0.31

GAT 85.33±0.36 76.65±0.80 81.14±0.20 82.21±0.44 87.84±0.23 91.33±0.81 81.37±0.16

+TUNEUP 86.23±0.47 76.65±0.33 80.84±0.02 81.73±0.36 89.02±0.78 92.00±0.04 81.44±0.11

+GRAPHPATCHER 86.53±0.37 76.35±0.39 81.14±0.89 82.34±0.08 87.84±0.56 91.61±0.20 81.49±0.15

We further apply GRAPHPATCHER to other GNN architectures (i.e., GraphSAGE [9] and GAT [38])
and compare its performance to TUNEUP. We only compare with TUNEUP since other baselines
explore specific model architectures that do not allow a different backbone. From Table 2, we
can observe that the issue of degree bias still exists on GAT and GraphSAGE with a performance
gap between low- and high-degree nodes around ∼10%. Both TUNEUP and GRAPHPATCHER can
improve the performance over low-degree nodes. Specifically, TUNEUP on average improves 0.27
low-degree accuracy for GraphSAGE and 0.40 for GAT across datasets; whereas GRAPHPATCHER
improves 1.13 for GraphSAGE and 1.66 for GAT, outperforming TUNEUP by a large margin.

8

4.3 Performance of GRAPHPATCHER for Self-supervised GNNs

Table 3: Effectiveness for self-supervised GNNs.
Method Cora Pubmed Wiki.CS

LOW-DEGREE NODES (LOWER PERCENTILE)

DGI 78.47±0.37 75.63±0.82 75.86±0.61

+GRAPHPATCHER 79.95±0.53 78.04±0.97 77.31±0.91

GRACE 77.81±0.73 77.80±0.65 74.31±0.63

+GRAPHPATCHER 78.53±0.82 78.49±0.16 75.12±0.34

PARETOGNN 78.85±0.71 78.32±0.33 74.17±0.18

+GRAPHPATCHER 79.91±0.62 79.11±0.89 76.41±0.22

HIGH-DEGREE NODES (UPPER PERCENTILE)

DGI 86.83±0.82 81.14±0.28 81.09±0.81

+GRAPHPATCHER 86.91±0.10 82.31±0.53 80.95±0.19

GRACE 85.03±0.05 78.74±0.84 83.91±0.56

+GRAPHPATCHER 85.12±0.25 79.58±0.31 84.12±0.22

PARETOGNN 87.03±0.84 80.89±0.84 81.57±0.84

+GRAPHPATCHER 87.32±0.27 80.55±0.32 81.78±0.51

To fully demonstrate the effectiveness of
GRAPHPATCHER, we also apply our proposal
to self-supervised GNNs, as shown in Table 3.
We can observe that self-supervised learning
can mitigate degree bias by itself, proved by
smaller gaps between low- and high-degree
nodes than those of semi-supervised GNNs.
Combined with GRAPHPATCHER, the degree
biases can be further without sacrificing GNN’s
original superiority over high-degree nodes.
On average, GRAPHPATCHER can enhance the
low-degree performance of these three self-
supervised GNNs by 1.78, 0.74, and 1.36 ac-
curacy scores respectively.

4.4 Effectiveness of GRAPHPATCHER for Enhancing SoTA Method

Table 4: Effectiveness for SoTA.
Method Cora Citeseer Pubmed

LOW-DEGREE NODES (LOWER PERCENTILE)

GRAND 80.18±0.64 70.57±0.68 80.48±0.14

+GRAPHPATCHER 81.58±0.45 72.73±0.29 84.68±0.29

HIGH-DEGREE NODES (UPPER PERCENTILE)

GRAND 88.32±0.75 79.64±0.86 83.53±0.52

+GRAPHPATCHER 88.92±0.18 79.54±0.13 84.43±0.21

OVERALL PERFORMANCE

GRAND 85.22±0.80 74.90±0.77 82.30±0.41

+GRAPHPATCHER 85.90±0.44 76.10±0.38 84.20±0.26

We apply GRAPHPATCHER to GRAND [5], a
strong GNN that utilizes a random propagation
strategy to perform graph data augmentation
and significantly improve the node classification
performance. The performance improvement
brought by GRAPHPATCHER is shown in Ta-
ble 4. We observe that GRAPHPATCHER can
still consistently improve the node classifica-
tion for GRAND. Specifically, on low-degree
nodes, GRAPHPATCHER can improve 1.40, 2.23,
and 4.20 accuracy score on Cora, Citeseer,
and Pubmed, respectively. Overall, GRAPH-
PATCHER further enhances the SoTA perfor-
mance on these three datasets, with an outstanding accuracy score of 85.90, 76.10, and 84.20.
The significant gain from GRAPHPATCHER indicates that the effectiveness brought by the test-time
augmentation is not overlapped with the data augmentation during the training.

4.5 Performance w.r.t. the Number of Patching Nodes

81

82.5

84

1 2 3 4 5

Original Perf.

Cora

79

80.5

82

1 2 3 4 5

Original Perf.

Pubmed

71

72

73

1 2 3 4 5

Original Perf.

Arxiv

Figure 3: Overall perf. (y-axis) w.r.t. the
number of patching nodes (x-axis).

To investigate the necessity of patching multiple nodes, we
conduct experiments over the number of patching nodes
at the test time. As shown in Figure 3, we notice that the
overall performance gradually increments as the number
of patching nodes increases, demonstrating that multiple
patching nodes are required to remedy the incomplete
neighborhood of low-degree nodes. Besides, we discover
that the performance of GRAPHPATCHER saturates with
around four nodes patched, which aligns with our training
procedure, where the length of the ego-graph sequence
is at most five. Experiments concerning the number of
patching nodes during the optimization and the number of
sampled ego-graphs per corruption strength (i.e., M and
L in Equation (5)) can be found in Appendix B.

5 Discussion w.r.t. Diffusion Models

Both diffusion models and GRAPHPATCHER conduct multiple corruptions to training samples with
increasing strengths and generate examples in an iterative fashion. This scheme is conceptually
inspired by heat diffusion from physics. However, the motivations behind them are different, where
diffusion models focus on the generation quality (i.e., fidelity to the original data distribution) but ours

9

aims at the results brought by our generated nodes (i.e., the performance improvement). Specifically,
diffusion models [10, 32] aim at learning the probability distribution of the data and accordingly
generating examples following the learned distribution. Their goal is to generate samples that follow
the original data distribution, agnostic of any other factor like the target GNN we have in our scenario.
Whereas for GRAPHPATCHER, we aim at generating nodes to ego-nets such that the target GNN
models deliver better predictions when the node degree is low. We mostly care about performance
improvement and the generated node may be very different from the original nodes in the graph.

6 Discussion w.r.t. Generation Methods for Graph

Most graph generation frameworks (including those using diffusion models) explore iterative genera-
tion schemes to synthesize real graphs [58, 46, 6, 30, 16, 40]. They improve the generation quality
and focus on applications such as molecule design, protein design, and program synthesis. Though
GRAPHPATCHER also generates patching nodes for ego-graphs, ours is a different research direction
than these methods. We do not focus on whether or not the generated patching nodes are faithful to
the original data distribution, as long as the low-degree performance is enhanced and the high-degree
performance is maintained. Another relevant work named GPT-GNN [14] explores an iterative
node generation for pre-training, which also falls under the category of maintaining the original
data distribution. In summary, GRAPHPATCHER is relevant to these frameworks in the sense that it
generates nodes to add to ego-graphs. However, our proposal is motivated by a different reason and
we aim at the performance improvement brought by generated nodes in downstream tasks.

7 Conclusion

We study the problem of degree bias underlying GNNs and accordingly propose a test-time aug-
mentation framework, namely GRAPHPATCHER. GRAPHPATCHER iteratively patches ego-graphs
with its generated virtual nodes to remedy the incomplete neighborhood. Through our designated
optimization scheme, GRAPHPATCHER not only patches low-degree nodes but also maintains GNN’s
original superior performance over high-degree nodes. Comprehensive experiments are conducted
over seven benchmark datasets and our proposal can consistently enhance GNN’s overall perfor-
mance by up to 3.6% and low-degree performance by up to 6.5%, outperforming all baselines by a
large margin. Besides, GRAPHPATCHER can also mitigate the degree bias issue for self-supervised
GNNs. When applied to graph learning methods with state-of-the-art performance (i.e., GRAND),
GRAPHPATCHER can further improve the SoTA performance by a large margin, indicating that the
effectiveness brought by the test-time augmentation is not overlapped with existing inductive biases.

Limitation and Broader Impact

One limitation is the additional overhead entailed by generating ego-graphs. To address this limitation,
we generate all ego-graphs before the optimization to avoid duplicated computations. This operation
takes more hard-disk storage, which is relatively cheap compared with computational resources.
Furthermore, we observe no ethical concern entailed by our proposal, but we note that both ethical or
unethical applications based on graphs may benefit from the effectiveness of our work. Care should
be taken to ensure socially positive and beneficial results of machine learning algorithms.

Acknowledgement

We appreciate Shifu Hou from University of Notre Dame for valuable discussions and suggestions.
We would also like to thank anonymous reviewers for their constructive suggestions and comments
(i.e., experiments over heterophilic datasets, connections to diffusion models, and discussion w.r.t.
iterative generation models for graphs). This work is partially supported by the NSF under grants
IIS-2334193, IIS-2321504, IIS-2203262, IIS-2214376, IIS-2217239, OAC-2218762, CNS-2203261,
and CMMI-2146076. Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of any funding agencies.

10

References
[1] Murat Seckin Ayhan and Philipp Berens. Test-time data augmentation for estimation of

heteroscedastic aleatoric uncertainty in deep neural networks. In Medical Imaging with Deep
Learning, 2018.

[2] Filippo Maria Bianchi, Daniele Grattarola, and Cesare Alippi. Spectral clustering with graph
neural networks for graph pooling. In Procs. of ICML, 2020.

[3] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural
networks for social recommendation. In Procs. of WWW, 2019.

[4] Yujie Fan, Mingxuan Ju, Chuxu Zhang, and Yanfang Ye. Heterogeneous temporal graph neural
network. In Procs. of SDM, 2022.

[5] Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo Luan, Qian Xu, Qiang Yang,
Evgeny Kharlamov, and Jie Tang. Graph random neural networks for semi-supervised learning
on graphs. Procs. of NeurIPS, 2020.

[6] Nikhil Goyal, Harsh Vardhan Jain, and Sayan Ranu. Graphgen: A scalable approach to
domain-agnostic labeled graph generation. In Procs. of WWW, 2020.

[7] Zhichun Guo, Chuxu Zhang, Wenhao Yu, John Herr, Olaf Wiest, Meng Jiang, and Nitesh V
Chawla. Few-shot graph learning for molecular property prediction. In Procs. of WWW, 2021.

[8] Zhichun Guo, William Shiao, Shichang Zhang, Yozen Liu, Nitesh V Chawla, Neil Shah, and
Tong Zhao. Linkless link prediction via relational distillation. In Procs. of ICML, 2023.

[9] William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Procs. of NeurIPS, 2017.

[10] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Procs. of
NeurIPS, 2020.

[11] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure
Leskovec. Strategies for pre-training graph neural networks. In Procs. of ICLR, 2019.

[12] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
In Procs. of NeurIPS, 2020.

[13] Weihua Hu, Kaidi Cao, Kexin Huang, Edward W Huang, Karthik Subbian, and Jure Leskovec.
Tuneup: A training strategy for improving generalization of graph neural networks. arXiv, 2022.

[14] Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou Sun. Gpt-gnn: Generative
pre-training of graph neural networks. In Procs. of KDD, 2020.

[15] Wei Jin, Tong Zhao, Jiayuan Ding, Yozen Liu, Jiliang Tang, and Neil Shah. Empowering graph
representation learning with test-time graph transformation. In Procs. of ICLR, 2023.

[16] Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based generative modeling of graphs via
the system of stochastic differential equations. In Procs. of ICML, 2022.

[17] Mingxuan Ju, Shifu Hou, Yujie Fan, Jianan Zhao, Yanfang Ye, and Liang Zhao. Adaptive kernel
graph neural network. In Procs. of AAAI, 2022.

[18] Mingxuan Ju, Wenhao Yu, Tong Zhao, Chuxu Zhang, and Yanfang Ye. Grape: Knowledge
graph enhanced passage reader for open-domain question answering. In Findings of EMNLP,
2022.

[19] Mingxuan Ju, Yujie Fan, Chuxu Zhang, and Yanfang Ye. Let graph be the go board: gradient-
free node injection attack for graph neural networks via reinforcement learning. In Procs. of
AAAI, 2023.

11

[20] Mingxuan Ju, Tong Zhao, Qianlong Wen, Wenhao Yu, Neil Shah, Yanfang Ye, and Chuxu
Zhang. Multi-task self-supervised graph neural networks enable stronger task generalization. In
Procs. of ICLR, 2023.

[21] Ildoo Kim, Younghoon Kim, and Sungwoong Kim. Learning loss for test-time augmentation.
Procs. of NeurIPS, 2020.

[22] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In Procs. of ICLR, 2016.

[23] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. In Procs. of ICLR, 2019.

[24] Gang Liu, Tong Zhao, Eric Inae, Tengfei Luo, and Meng Jiang. Semi-supervised graph
imbalanced regression. In Procs. of KDD, 2023.

[25] Zemin Liu, Trung-Kien Nguyen, and Yuan Fang. Tail-gnn: Tail-node graph neural networks. In
Procs. of SIGKDD, 2021.

[26] Philip M Long and Hanie Sedghi. Generalization bounds for deep convolutional neural networks.
In Procs. of ICLR, 2020.

[27] Yao Ma, Xiaorui Liu, Neil Shah, and Jiliang Tang. Is homophily a necessity for graph neural
networks? In Procs. of ICLR, 2022.

[28] Julian McAuley, Rahul Pandey, and Jure Leskovec. Inferring networks of substitutable and
complementary products. In Procs. of SIGKDD, 2015.

[29] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learning.
MIT press, 2018.

[30] Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, and Stefano Ermon.
Permutation invariant graph generation via score-based generative modeling. In Procs. of
AISTATS, 2020.

[31] Aditya Pal, Chantat Eksombatchai, Yitong Zhou, Bo Zhao, Charles Rosenberg, and Jure
Leskovec. Pinnersage: Multi-modal user embedding framework for recommendations at
pinterest. In Procs. of SIGKDD, 2020.

[32] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer.
High-resolution image synthesis with latent diffusion models. In Procs. of CVPR, 2022.

[33] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-
Rad. Collective classification in network data. AI magazine, 2008.

[34] Divya Shanmugam, Davis Blalock, Guha Balakrishnan, and John Guttag. Better aggregation in
test-time augmentation. In Procs. of CVPR, 2021.

[35] William Shiao, Uday Singh Saini, Yozen Liu, Tong Zhao, Neil Shah, and Evangelos E Pa-
palexakis. Carl-g: Clustering-accelerated representation learning on graphs. Procs. of KDD,
2023.

[36] Xianfeng Tang, Huaxiu Yao, Yiwei Sun, Yiqi Wang, Jiliang Tang, Charu Aggarwal, Prasenjit Mi-
tra, and Suhang Wang. Investigating and mitigating degree-related biases in graph convoltuional
networks. In Procs. of CIKM, 2020.

[37] Anton Tsitsulin, John Palowitch, Bryan Perozzi, and Emmanuel Müller. Graph clustering with
graph neural networks. arXiv, 2020.

[38] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In Procs. of ICLR, 2017.

[39] Petar Velickovic, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, and R Devon
Hjelm. Deep graph infomax. In Procs. of ICLR, 2019.

12

[40] Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal
Frossard. Digress: Discrete denoising diffusion for graph generation. In Procs. of ICLR, 2022.

[41] Guotai Wang, Wenqi Li, Michael Aertsen, Jan Deprest, Sébastien Ourselin, and Tom Vercauteren.
Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation
with convolutional neural networks. Neurocomputing, 2019.

[42] Qitian Wu, Hengrui Zhang, Junchi Yan, and David Wipf. Handling distribution shifts on graphs:
An invariance perspective. In Procs. of ICLR, 2022.

[43] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In Procs. of ICLR, 2018.

[44] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning
with graph embeddings. In Procs. of ICML, 2016.

[45] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure
Leskovec. Graph convolutional neural networks for web-scale recommender systems. In Procs.
of SIGKDD, 2018.

[46] Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. Graphrnn: Generat-
ing realistic graphs with deep auto-regressive models. In Procs. of ICML, 2018.

[47] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen.
Graph contrastive learning with augmentations. In Procs. of NeurIPS, 2020.

[48] Yuning You, Tianlong Chen, Yang Shen, and Zhangyang Wang. Graph contrastive learning
automated. In Procs. of ICML, 2021.

[49] Sukwon Yun, Kibum Kim, Kanghoon Yoon, and Chanyoung Park. Lte4g: Long-tail experts for
graph neural networks. In Procs. of CIKM, 2022.

[50] Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. In Procs. of
NeurIPS, 2018.

[51] Zaixi Zhang, Qi Liu, Hao Wang, Chengqiang Lu, and Chee-Kong Lee. Motif-based graph
self-supervised learning for molecular property prediction. Procs. of NeurIPS, 2021.

[52] Tong Zhao, Tianwen Jiang, Neil Shah, and Meng Jiang. A synergistic approach for graph
anomaly detection with pattern mining and feature learning. IEEE Transactions on Neural
Networks and Learning Systems, 2021.

[53] Tong Zhao, Gang Liu, Daheng Wang, Wenhao Yu, and Meng Jiang. Learning from counterfac-
tual links for link prediction. In Procs. of ICML, 2022.

[54] Tong Zhao, Wei Jin, Yozen Liu, Yingheng Wang, Gang Liu, Stephan Günnemann, Neil Shah,
and Meng Jiang. Graph data augmentation for graph machine learning: A survey. IEEE
DEBULL, 2023.

[55] Wenqing Zheng, Edward W Huang, Nikhil Rao, Sumeet Katariya, Zhangyang Wang, and
Karthik Subbian. Cold brew: Distilling graph node representations with incomplete or missing
neighborhoods. In Procs. of ICLR, 2021.

[56] Qi Zhu, Carl Yang, Yidan Xu, Haonan Wang, Chao Zhang, and Jiawei Han. Transfer learning of
graph neural networks with ego-graph information maximization. In Procs. of NeurIPS, 2021.

[57] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Deep Graph
Contrastive Representation Learning. In ICML Workshop on Graph Representation Learning
and Beyond, 2020.

[58] Yanqiao Zhu, Yuanqi Du, Yinkai Wang, Yichen Xu, Jieyu Zhang, Qiang Liu, and Shu Wu. A
survey on deep graph generation: Methods and applications. In Procs. of LOG, 2022.

13

A Dataset Description

We evaluate our proposed GRAPHPATCHER as well as other frameworks that mitigate the degree
bias problem on seven real-worlds datasets spanning various fields such as citation network and
merchandise network. Their statistics are shown in Table 5. For Cora, Citeseer and, Pubmed, we
explore the community acknowledged public splits (i.e., fixed 20 nodes per class for training, 500
nodes for validation, and 1000 nodes for testing); whereas for ogbn-arxiv, we use the API from
Open Graph Benchmark (OGB)2 and explore the provided splits. For Wiki.CS, Amazon-Photo,
and Coauthor-CS, we randomly select 10% nodes for training, another 10% for validation, and the
remaining 80% for testing. We use the API from Deep Graph Library (DGL)3 to load all datasets.

Table 5: Dataset Statistics.
Dataset # Nodes # Edges # Features Avg. Degree Split

Cora 2,708 5,429 1,433 2.0 Public Split
Citeseer 3,327 4,732 3,703 1.4 Public Split
Pubmed 19,717 88,651 500 4.5 Public Split
Wiki-CS 11,701 216,123 300 18.5 10%/10%/80%
Amazon-Photo 7,650 119,043 745 15.6 10%/10%/80%
Coauthor-CS 18,333 81,894 6,805 4.5 10%/10%/80%
ogbn-arxiv 169,343 1,166,243 128 6.9 Public Split

B GRAPHPATCHER Configuration and Experiment on Hyper-parameters

B.1 GRAPHPATCHER Configuration

The architecture of GRAPHPATCHER consists of two parts; the first part is a 2-layer GCN encoder
that takes an ego-graph as input and vectorizes its nodes and the second part is an MLP that takes the
representation of the anchor node and outputs the generated feature for the virtual patching node.

To ensure the reproducibility, we also provide the detailed hyper-parameter configurations of GRAPH-
PATCHER for all datasets, as shown in Table 6. Besides, we use an early stopping strategy to decide
the number of optimization steps, where the optimization stops if the validation loss stops decreasing
for two consecutive steps.

Table 6: Hyper-parameters used for GRAPHPATCHER.
Hyper-param. Cora Citeseer Pubmed Wiki.CS Am.Photo Co.CS Arxiv

Augmentation strength 0.3 0.3 0.3 0.3 0.3 0.3 0.1
Patching step 3 3 3 3 3 3 5
of sampled graphs 10 used for all datasets
Batch size 64 64 64 8 16 4 16
Accumulation step 16 16 16 32 16 16 64
Learning rate 1e-4 used for all datasets
Optimizer AdamW with a weight decay of 1e-5 used for all datasets

B.2 Experiment on Hyper-parameters

The hyper-parameters we tune for GRAPHPATCHER include the number of patching nodes during the
testing time, learning rate, hidden dimension, the augmentation strength at each step, and the total
amount of patching steps. Experiments w.r.t. the number of patching nodes during the testing time
has been showcased in Figure 3 and here we also append the results for the other four datasets, as
shown in Figure 4. We observe similar trends as the aforementioned three datasets exhibit, where the

2https://ogb.stanford.edu
3https://www.dgl.ai

14

https://ogb.stanford.edu
https://www.dgl.ai

77

77.5

78

78.5

1 2 3 4 5
70

71

72

1 2 3 4 5

80

80.5

81

81.5

1 2 3 4 5
88

88.5

89

89.5

1 2 3 4 5

Wiki.CSCiteseer

Co.CSAm. Photo

Original Perf.

Original Perf.

Original Perf.

Original Perf.

Figure 4: Overall perf. (y-axis) w.r.t. the number of patching nodes (x-axis).

65

70

75

80

85

90

arxiv Cora Pubmed
1.00E-03 5.00E-04 1.00E-04 5.00E-05

Ac
c(
%
)

(a) Accuracy w.r.t. learning rate

65

70

75

80

85

90

arxiv Cora Pubmed
64 128 256 1024

(b) Accuracy w.r.t. hidden dimension

65

70

75

80

85

90

arxiv Cora Pubmed
0.1 0.2 0.3 0.4

(c) Accuracy w.r.t. augmentation strength

Ac
c(
%
)

Ac
c(
%
)

Ac
c(
%
)

65

70

75

80

85

90

arxiv Cora Pubmed
1 5 10 20

(d) Accuracy w.r.t. # of sampled graphs

Figure 5: GRAPHPATCHER’s sensitivity to different hyper-parameters.

performance of GRAPHPATCHER improves as the number of patching nodes increases and the gain
saturates with 4 to 5 nodes patched.

We also conduct experiments w.r.t. learning rate, hidden dimension, the augmentation strength at
each step, and the total amount of patching steps during the training. We tune the hidden dimension
by conducting a grid search over common selections of [64, 128, 256, 1024] hidden units; we tune
the learning rate similarly by searching over [1e-3, 5e-4, 1e-4, 5e-5]; and we tune the augmentation
strength by searching over [0.1, 0.2, 0.3, 0.4].

The hidden dimension refers to the intermediate dimension of the 2-layer GCNs of GRAPHPATCHER.
GRAPHPATCHER is constructed by a 2-layer GCN and features for virtual nodes are generated by a
following multi-layer perceptron with the same hidden dimension. To reduce the search complexity,
we explore an arithmetic sequence for the augmentation strength (i.e., the difference between any two
consecutive strengths is the same) and set the total amount of patching steps during the training to
⌊ 1
t ⌋. For instance, an augmentation strength of 0.3 would lead to a 3-step training with augmentation

strength of 0.3, 0.6, and 0.9 respectively. GRAPHPATCHER’s sensitivity to these hyper-parameters is
shown in Figure 5. Specifically, in Figure 5.(a) we can observe that across datasets, a large learning
rate (i.e., 1e-3) leads to sub-optimal performance and GRAPHPATCHER achieves the best performance
with a learning rate of 1e-4. We also investigate GRAPHPATCHER’s sensitivity to the number of

15

hidden dimensions (i.e., the model size). In Figure 5.(b), we notice that for large graphs like Arxiv,
the performance gradually increases as the model size enlarges. And for small and medium graphs
like Cora and Pubmed, the performance saturates with a hidden dimension of 128. Besides, in
Figure 5.(c) we study GRAPHPATCHER’s performance w.r.t. the augmentation strength (which can
also be interpreted as the number of patching steps as described previously). We can observe that,
for small and medium graphs, strong augmentation strength leads to better performance, due to the
sparsity of the graph structures. Whereas for large graphs, small augmentation strength delivers
good performance. Furthermore, to prove the effectiveness of our proposed training scheme with
multiple ego-graphs, we train GRAPHPATCHER with different numbers of sampled graphs (i.e., L
in Equation (5)), with the performance shown in Figure 5.(d). We can observe that without our
proposed sampling strategy (i.e., the first column with L = 1), the performance of GRAPHPATCHER
degrades significantly. As the number of sampled graphs gradually increases, the performance keeps
improving and saturates with L = 10, empirically proving the effectiveness of the exploration of
multiple ego-graphs for the same corruption strength.

B.3 Hardware and Software Configuration

We conduct experiments on a server having one RTX3090 GPU with 24 GB VRAM. The CPU we
have on the server is an AMD Ryzen 3990X with 128GB RAM. The software we use includes DGL
1.9.0 and PyTorch 1.11.0. As for the baseline models that we compare GRAPHPATCHER with, we
explore the implementations provided by code repositories listed as follows:

• TAIL-GNN [25]: https://github.com/shuaiOKshuai/Tail-GNN.
• COLBBREW [55]: https://github.com/amazon-science/gnn-tail-generalization.
• EERM [42]: https://github.com/qitianwu/GraphOOD-EERM.
• GTRANS [15]L https://github.com/ChandlerBang/GTrans.
• DGI [39]: https://github.com/dmlc/dgl/tree/master/examples/pytorch/dgi.
• GRACE [57]: https://github.com/dmlc/dgl/tree/master/examples/pytorch/grace.
• PARETOGNN [20]: https://github.com/jumxglhf/ParetoGNN.

We sincerely appreciate the authors of these works for open-sourcing their valuable code and
researchers at DGL for providing reliable implementations of these models. For TUNEUP [13], since
the authors have not released the code yet, we manually implement it by ourselves, with a similar
performance as reported in its original paper.

C Proof to Theorem 1

Here we re-state Theorem 1 before diving into its proof:

Theorem 1. Assuming the parameters of GRAPHPATCHER are initialized from the set Pβ = {ϕ :
||ϕ−N (0|ϕ|;1|ϕ|)||F < β} where β > 0, with probability at least 1− δ, for all ϕ ∈ Pβ , the error

bound (i.e., E(Lpatch)− Lpatch) is O(β
√

|ϕ|
L +

√
log(1/β)

L).

Proof. To prove Theorem 1, we need the following lemma, which has been broadly utilized in the
literature of generalization error bound [26, 29].

Lemma 1. Suppose a set P of functions is (B, d)-Lipschitz parameterized for B > 0 and d ∈ N
with input from a distribution D and output in (0, 1). There exist a constant c such that for all n ∈ N,
for any δ > 0, if S is obtained by sampling n times independently from D, with probability at least
1− δ, for all B and f ∈ P , we have:

Ed∼D[f(d)]− ES [f] ≤ c ·
(
B

√
d

n
+

√
log(1/δ)

n

)
. (7)

In order to prove E(Lpatch) − Lpatch is O(β
√

|ϕ|
L +

√
log(1/β)

L), we need to show that Lpatch is
Lipschitz continuous. Lpatch, as discussed in Section 3.2.1, is a regularized cross-entropy formulated

16

https://github.com/shuaiOKshuai/Tail-GNN
https://github.com/amazon-science/gnn-tail-generalization
https://github.com/qitianwu/GraphOOD-EERM
https://github.com/ChandlerBang/GTrans
https://github.com/dmlc/dgl/tree/master/examples/pytorch/dgi
https://github.com/dmlc/dgl/tree/master/examples/pytorch/grace
https://github.com/jumxglhf/ParetoGNN

as (y1+ ϵ) ·
(
log(y2+ ϵ)− log(y1+ ϵ)

)
. In this work, y1 and y2 refers to the prediction distribution

(i.e., 0 < y1 < 1) delivered by the GNN we aim at improving. Hence, we need to show that for given
a specific y1, for any two ya

2 ,y
b
2 ∈ {y′

2 : 0 < y′
2 < 1} and K ∈ R+, we have∣∣∣∣∣∣(y1 + ϵ) · log(y

a
2 + ϵ

y1 + ϵ
)− (y1 + ϵ) · log(y

b
2 + ϵ

y1 + ϵ
)
∣∣∣∣∣∣
F
≤ K ·

∣∣∣∣∣∣ya
2 − yb

2

∣∣∣∣∣∣
F

(8)

∣∣∣∣∣∣(y1 + ϵ) ·
(
log(

ya
2 + ϵ

y1 + ϵ
)− log(

yb
2 + ϵ

y1 + ϵ
)
)∣∣∣∣∣∣

F
≤ K ·

∣∣∣∣∣∣ya
2 − yb

2

∣∣∣∣∣∣
F

(9)∣∣∣∣∣∣(y1 + ϵ) ·
(
log(

ya
2 + ϵ

yb
2 + ϵ

)
)∣∣∣∣∣∣

F
≤ K ·

∣∣∣∣∣∣ya
2 − yb

2

∣∣∣∣∣∣
F

(10)

Given the fact that log(·) is strictly concave, Equation (10) holds and hence Lpatch is Lipschitz
continuous. We can then directly apply Lemma 1 to show that Theorem 1 holds.

17

	Introduction
	Related Works
	Methodology
	Preliminary
	The Proposed Framework: GraphPatcher
	Patching Ego-graphs via Prediction Reconstruction
	Iterative Patching to Mitigate Degree Bias
	Theoretical Analysis

	Experiments
	Experimental Setting
	Performance Comparison with Baselines
	Performance of GraphPatcher for Self-supervised GNNs
	Effectiveness of GraphPatcher for Enhancing SoTA Method
	Performance w.r.t. the Number of Patching Nodes

	Discussion w.r.t. Diffusion Models
	Discussion w.r.t. Generation Methods for Graph
	Conclusion
	Dataset Description
	GraphPatcher Configuration and Experiment on Hyper-parameters
	GraphPatcher Configuration
	Experiment on Hyper-parameters
	Hardware and Software Configuration

	Proof to thm:err

