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Abstract

Data augmentation is one of the most prevalent tools in deep learning, underpinning1

many recent advances, including those from classification, generative models, and2

representation learning. The standard approach to data augmentation combines3

simple transformations like rotations and flips to generate new images from existing4

ones. However, these new images lack diversity along key semantic axes present in5

the data. Current augmentations cannot alter the high-level semantic attributes, such6

as animal species present in a scene, to enhance the diversity of data. We address7

the lack of diversity in data augmentation with image-to-image transformations8

parameterized by pre-trained text-to-image diffusion models. Our method edits9

images to change their semantics using an off-the-shelf diffusion model, and10

generalizes to novel visual concepts from a few labelled examples. We evaluate11

our approach on few-shot image classification tasks, and on a real-world weed12

recognition task, and observe an improvement in accuracy in tested domains.13
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Figure 1: Real images (left) are semantically modified using a publicly available off-the-shelf Stable Diffusion
checkpoint. Resulting synthetic images (right) are used for training downstream classification models.

1 Introduction14

An omnipresent lesson in deep learning is the importance of internet-scale data, such as ImageNet15

[Deng et al., 2009], JFT [Sun et al., 2017], OpenImages [Kuznetsova et al., 2018], and LAION-5B16

[Schuhmann et al., 2022], which are driving advances in Foundation Models [Bommasani et al.,17

2021] for image generation. These models use large deep neural networks [Rombach et al., 2022] to18

synthesize photo-realistic images for a rich landscape of prompts. The advent of photo-realism in19

large generative models is driving interest in using synthetic images to augment visual recognition20

datasets [Azizi et al., 2023]. These generative models promise to unlock diverse and large-scale21

image datasets from just a handful of real images without the usual labelling cost.22

Standard data augmentations aim to diversify images by composing randomly parameterized image23

transformations [Antoniou et al., 2017, Perez and Wang, 2017, Shorten and Khoshgoftaar, 2019,24

Zhao et al., 2020]. Transformations including flips and rotations are chosen that respect basic25

invariances present in the data, such as horizontal reflection symmetry for a coffee mug. Basic image26

transformations are thoroughly explored in the existing data augmentation literature, and produce27

models that are robust to color and geometry transformations. However, models for recognizing28

coffee mugs should also be sensitive to subtle details of visual appearance like the brand of mug; yet,29

basic transformations do not produce novel structural elements, textures, or changes in perspective.30

On the other hand, large pretrained generative models have become exceptionally sensitive to subtle31

visual details, able to generate uniquely designed mugs from a single example [Gal et al., 2022].32
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Figure 2: DA-Fusion produces task-relevant augmentations with no prior knowledge about the image content.
Given an image of a train from PASCAL VOC [Everingham et al., 2009], we generate several augmentations
using Real Guidance [He et al., 2022] (top row), and compare these to our method (bottom row).

Our key insight is that large pretrained generative models complement the weaknesses of standard33

data augmentations, while retaining the strengths: universality, controllability, and performance. We34

propose a flexible data augmentation strategy that generates variations of real images using text-to-35

image diffusion models (DA-Fusion). Our method adapts the diffusion model to new domains by36

fine-tuning pseudo-prompts in the text encoder representing concepts to augment. DA-Fusion modifies37

the appearance of objects in a manner that respects their semantic invariances, such as the design of the38

graffiti on the truck in Figure 1 and the design of the train in Figure 2. We test our method on few-shot39

image classification tasks with common and rare concepts, including a real-world weed recognition40

task the diffusion model has not seen before. Using the same hyper-parameters in all domains,41

our method outperforms prior work, improving data augmentation by up to +10 percentage points.42

Our ablations illustrate that DA-Fusion produces larger gains for the more fine-grain concepts.43

Open-source code is released at: https://github.com/anonymous-da-fusion/da-fusion.44

2 Data Augmentation With Diffusion Models45

In this work we develop a flexible data augmentation strategy using text-to-image diffusion models.46

In doing so, we consider three desiderata: Our method is 1) universal: it produces high-fidelity47

augmentations for new and fine-grain concepts, not just the ones the diffusion model was trained on;48

2) controllable: the content, extent, and randomness of the augmentation are simple to control and49

straightforward to tune; 3) performant: gains in accuracy justify the additional computational cost50

of generating images from Stable Diffusion. We discuss these in the following sections.51

2.1 A Universal Generative Data Augmentation52

Standard data augmentations apply to all images regardless of class and content Perez and Wang53

[2017]. We aim to capture this flexibility with our diffusion-based augmentation. This is challenging54

because real images may contain elements the diffusion model is not able to generate out-of-the-box.55

How do we generate plausible augmentations for such images? Shown in Figure 3, we adapt the56

diffusion model to new concepts by inserting c new embeddings in the text encoder of the generative57

model, and fine-tuning only these embeddings to maximize the likelihood of generating new concepts.58

Adapting Generative Model When generating synthetic images, previous work uses a prompt with59

the specified class name He et al. [2022]. However, this is not possible for concepts that lie outside60

the vocabulary of the generative model because the model’s text encoder has not learned words to61

describe these concepts. We discuss this problem in Section A with our contributed weed-recognition62

task, which our pretrained diffusion model is unable to generate when the class name is provided. A63

simple solution to this problem is to have the model’s text encoder learn new words to describe new64

concepts. Textual Inversion [Gal et al., 2022] is well-suited for this, and we use it to learn a word65

embedding w⃗i from a handful of labelled images for each class in the dataset.66

min
w⃗0,w⃗1,...,w⃗c

E
[
∥ϵ− ϵθ(

√
α̃tx0 +

√
1− α̃tϵ, t, "a photo of a w⃗i")∥2

]
(1)
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Figure 3: How our data augmentation works. Given a dataset of images and their class labels, we generate
M augmented versions of each real image using an image-editing technique and a pretrained Stable Diffusion
checkpoint. Synthetic images are mixed with real data when training downstream models.

We initialize each new embedding w⃗i to a class-agnostic value (see Appendix K), and optimize them67

to minimize the simplified loss function proposed by Ho et al. [2020]. Figure 3 shows how new68

embeddings w⃗i are inserted in the prompt given an image of a train. Our method is modular, and as69

other mechanisms are studied for adapting diffusion models, Textual Inversion can easily be swapped70

out with one of these, and the quality of the augmentations from DA-Fusion can be improved.71

Generating Synthetic Images Many of the existing approaches generate synthetic images from72

scratch Antoniou et al. [2017], Tanaka and Aranha [2019], Besnier et al. [2020], Zhang et al. [2021b,a].73

This is particularly challenging for concepts the diffusion model hasn’t seen before. Rather than74

generate from scratch, we use real images as a guide. We splice real images into the generation75

process of the diffusion model following prior work in SDEdit Meng et al. [2022]. Given a reverse76

diffusion process with S steps, we insert a real image xref
0 with noise ϵ ∼ N (0, I) at timestep ⌊St0⌋,77

where t0 ∈ [0, 1] is a hyperparameter controlling the insertion position of the image.78

x⌊St0⌋ =
√
α̃⌊St0⌋x

ref
0 +

√
1− α̃⌊St0⌋ϵ (2)

We proceed with reverse diffusion starting from the spliced image at timestep ⌊St0⌋ and iterating79

Equation 5 until a sample is generated at timestep 0. Generation is guided with a prompt that includes80

the new embedding w⃗i for the class of the source image (see Appendix K for prompt details).81

2.2 Controlling Augmentation82

Improving Diversity By Randomizing Intensity Having appropriately balanced real and synthetic83

images, our goal is to maximize diversity. This goal is shared with standard data augmentation Perez84

and Wang [2017], Shorten and Khoshgoftaar [2019], where multiple simple transformations are85

used, yielding more diverse data. Despite the importance of diversity, generative models typically86

employ frozen sampling hyperparameters to produce synthetic datasets Antoniou et al. [2017],87

Tanaka and Aranha [2019], Yamaguchi et al. [2020], Zhang et al. [2021b,a], He et al. [2022]. Inspired88

randomization in standard data augmentations (such as the angle of rotation), we randomly sample89

the insertion position t0 where real images are spliced into Equation 2. This randomizes the extent90

images are modified—as t0 → 0 generations more closely resemble the guide image.91

In Section 3.2 we sample uniformly at random t0 ∼ U({ 1k ,
2
k , . . . ,

k
k}), and observe a consistent92

improvement in classification accuracy with k = 4 compared to fixing t0. Though the hyperparameter93

t0 is perhaps the most direct translation of randomized intensity to generative model-based data94

augmentations, there are several alternatives. For example, one may consider the guidance scale95

parameter used in classifier-free guidance [Ho and Salimans, 2022]. We leave this as future work.96

3 DA-Fusion Improves Few-Shot Classification97

Experimental Details We test few-shot classification on seven datasets with three data augmenta-98

tion strategies. RandAugment [Cubuk et al., 2020] employs no synthetic images, and uses the default99
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Figure 4: Few-shot classification performance with full information. DA-Fusion consistently outperforms
RandAugment [Cubuk et al., 2020], and Real Guidance [He et al., 2022] with a descriptive prompt. In fine-grain
domains such as Flowers102, which represents classification of flowers into subclasses like "giant white arum
lily," Real Guidance performs no better than traditional data augmentation. In contrast, DA-Fusion performs
consistently well across a variety of domains with common concepts (COCO, PASCAL VOC, Caltech101), rare
concepts (Flowers102, FGVC Aircraft, Stanford Cars) and novel concepts to Stable Diffusion (Leafy Spurge).
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Figure 5: Performance stratified by concept novelty. Real Guidance [He et al., 2022] uses a descriptive prompt
to instruct Stable Diffusion what to augment, and works for common concepts Stable Diffusion was trained
on. However, for harder-to-describe concepts, this strategy fails. DA-Fusion works well at all novelty levels,
improving by 12.8% for common concepts, 24.2% for fine-grain concepts, and 20.8% for unseen concepts.

hyperparameters in torchvision. Real Guidance [He et al., 2022] uses SDEdit on real images with100

t0 = 0.5, has a descriptive prompt about the class, and shares hyperparameters with our method to101

ensure fair evaluation. DA-Fusion is prompted with "a photo of a <wi>" where the embedding for102

<wi> is initialized to the embedding of the class name and learned according to Section 2.1.103

Each real image is augmented M times, and a ResNet50 classifier pre-trained on ImageNet is fine-104

tuned on a mixture of real and synthetic images sampled as discussed in Section 2.2. We vary the105

number of examples per class used for training the classifier on the x-axis in the following plots,106

and fine-tune the final linear layer of the classifier for 10, 000 steps with a batch size of 32 and the107

Adam optimizer with learning rate 0.0001. We record validation metrics every 200 steps and report108

the epoch with highest accuracy. Solid lines in plots represent means, and error bars denote 68%109

confidence intervals over 4 independent trials. An overall score is calculated for all datasets after110

normalizing performance using y
(d)
i ← (y

(d)
i − y

(d)
min)/(y

(d)
max − y

(d)
min), where d represents the dataset,111

y
(d)
max is the maximum performance for any trial of any method, and y

(d)
min is defined similarly.112

Interpreting Results Results in Figure 4 show DA-Fusion improves accuracy in every domain,113

often by a significant margin when there are few real images per class. We observe gains between +5114

and +15 accuracy points in all seven domains compared to standard data augmentation. Our results115

show how generative data augmentation can significantly outperform color and geometry-based116

transformations like those in RandAugment [Cubuk et al., 2020]. Despite using a powerful generative117

model with a descriptive prompt, Real Guidance He et al. [2022] performs inconsistently, and in118

several domains fails to beat RandAugment. To understand this behavior, we binned the results119

by whether a dataset contains common concepts (COCO, PASCAL VOC, Caltech101), fine-grain120

concepts (Flowers102, FGVC Aircraft, Stanford Cars), or completely new concepts (Leafy Spurge),121

and visualized the normalized scores for the three data augmentation methods in Figure 5.122
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Figure 6: Few-shot classification performance with model-centric leakage prevention (top row) and data-centric
leakage prevention (bottom row). DA-Fusion performs well even when evaluated on new visual concepts.

Class Novelty Hinders Real Guidance Figure 5 reveals a systematic failure mode in Real Guidance123

[He et al., 2022] for novel and fine-grain concepts. These concepts are harder to describe in a prompt124

than common ones—consider the prompts "a top-down drone image of leafy spurge taken from 100ft125

in the air above a grassy field" versus "a photo of a cat." DA-Fusion mitigates this by optimizing126

pseudo-prompts, formatted as "a photo of a <wi>", that instruct the diffusion model on what to127

generate, and has the added benefit of requiring no prompt engineering. Our method works well at all128

levels of concept novelty, and produces larger gains the more fine-grain concepts are, improving by129

12.8% for common concepts, 24.2% for fine-grain concepts, and 20.8% for novel concepts.130

3.1 Preventing Leakage Of Internet Data131

Previous work utilizing large pretrained generative models to produce synthetic data [He et al., 2022]132

has left an important question unanswered: are we sure they are working for the right reason?133

Models trained on internet data have likely seen many examples of classes in common benchmarking134

datasets like ImageNet Deng et al. [2009]. Moreover, Carlini et al. [2023] have recently shown that135

pretrained diffusion models can leak their training data. Leakage of internet data, as in Figure 8, risks136

compromising evaluation. Suppose our goal is to test how images from diffusion models improve137

few-shot classification with only a few real images, but leakage of internet data gives our classifier138

access to thousands of real images. Performance gains observed may not reflect the quality of the139

data augmentation methodology itself, and may lead to drawing the wrong conclusions.140

We explore two methods for preventing leakage of Stable Diffusion’s training data. We first consider a141

model-centric approach that prevents leakage by editing the model weights to remove class knowledge.142

We also consider a data-centric approach that hides class information from the model inputs.143

Model-Centric Leakage Prevention Our goal with this approach is to remove knowledge about144

concepts in our benchmarking datasets from the weights of Stable Diffusion. We accomplish this by145

fine-tuning Stable Diffusion in order to remove the ability to generate concepts from our benchmarking146

datasets. Given a list of class names in these datasets, we utilize a recent method developed by147

Gandikota et al. [2023] that fine-tunes the UNet backbone of Stable Diffusion so that concepts148

specified by a given prompt can no longer be generated (we use class names as such prompts). In149

particular, the UNet is fine-tuned to minimize the following loss function.150

min
θ

E
[
∥ϵθ(xt, t, "class name")− ϵθ∗(xt, t) + η(ϵθ∗(xt, t, "class name")− ϵθ∗(xt, t))∥2

]
(3)

Where "class name" is replaced with the actual class name of the concept being erased, θ represents151

the parameters of the UNet being fine-tuned, and θ∗ represents the initial parameters of the UNet.152

This procedure, named ESD by Gandikota et al. [2023], can be interpreted as guiding generation in153

the opposite direction of classifier free-guidance, and can erase a variety of types of concepts.154

Data-Centric Leakage Prevention While editing the model directly to remove knowledge about155

classes is a strong defense against possible leakage, it is also costly. In our experiments, erasing a156

single class from Stable Diffusion takes two hours on a single 32GB V100 GPU. As an alternative157

for situations where the cost of a model-centric defense is too high, we can achieve a weaker defense158
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Figure 7: Ablation for randomizing augmentation intensity. We vary the number of intensities from (k = 4) in
the main experiments, to a deterministic insertion position t0 = 0.5. We report the gain in average few-shot
classification accuracy over standard data augmentation, and observe a consistent improvement.

by removing all mentions of the class name from the inputs of the model. In practice, switching from159

a prompt that has the class name to a new prompt omitting the class name is sufficient.160

Results With Model-Centric Leakage Prevention Figure 6 shows results when erasing class161

knowledge from Stable Diffusion weights. We observe a consistent improvement in validation162

accuracy by as much as +5 percentage points on the Pascal and COCO domains when compared163

to the standard data augmentation baseline. DA-Fusion exceeds performance of Real Guidance He164

et al. [2022] overall while utilizing the same hyperparameters, without any prior information about165

the classes in these datasets. In this setting, Real Guidance performs comparably to the baseline,166

which suggests that gains in Real Guidance may stem from information provided by the class name.167

This experiment shows DA-Fusion improves few-shot learning and suggests our method generalizes168

to concepts Stable Diffusion wasn’t trained on. To understand how these gains translate to weaker169

defenses against training data leakage, we next evaluate our method using a data-centric strategy.170

Results With Data-Centric Leakage Prevention Figure 6 shows results when class information is171

hidden from Stable Diffusion inputs. As before, we observe a consistent improvement in validation172

accuracy, by as much as +10 percentage points on the Pascal and COCO domains when compared to173

the standard data augmentation baseline. DA-Fusion exceeds performance of Real Guidance He et al.174

[2022] in all domains while utilizing the same hyperparameters, without specifying the class name as175

an input to the model. With a weaker defense against training data leakage, we observe larger gains176

with DA-Fusion. This suggests gains are due in part to accessing Stable Diffusion’s prior knowledge177

about classes, and highlights the need for a strong leakage prevention mechanism when evaluating178

synthetic data from large generative models, and understanding where gains come from.179

3.2 How Important Are Randomized Intensities?180

Our goal in this section is to understand what fraction of gains are due to randomizing the intensity of181

our augmentation based on Section 2.2. We employ the same experimental settings as in Section 3,182

using data-centric leakage prevention, and run our method using a fixed insertion position t0 = 0.5183

(labelled k = 1 in Figure 7), following the settings used with Real Guidance. In Figure 7 we184

report the improvement in average classification accuracy on the validation set versus standard data185

augmentation. These results show that both versions of our method outperform the baseline, and186

randomization improves our method in all domains, leading to an overall improvement of 51%.187

4 Discussion188

We proposed a flexible method for data augmentation based on diffusion models, DA-Fusion. Our189

method adapts a pretrained diffusion model to semantically modify images and produces high quality190

augmentations regardless of image content. Our method improves few-shot classification accuracy191

in tested domains, and by up to +10 percentage points on various datasets. Similarly, our method192

produces gains on a contributed weed-recognition dataset that lies outside the vocabulary of the193

diffusion model. To understand these gains, we studied how performance is impacted by potential194

leakage of Stable Diffusion training data. To prevent leakage during evaluation, we presented two195

defenses that target the model and data respectively, each on different sides of a trade-off between196

defense strength and computational cost. When subject to both defenses, DA-Fusion consistently197

improves few-shot classification accuracy, which highlights its utility for data augmentation.198
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Figure 8: Leakage of internet data to downstream models. Large generative models trained at internet scale
may produce synthetic data similar to their training data when tested on common concepts (right). We show the
result of erasing common concepts by fine-tuning the attention layer weights of Stable Diffusion’s UNet (right).

A Data Preparation466

Standard Datasets We benchmark our data augmentations on six standard computer vision datasets.467

We employ Caltech101 [Fei-Fei et al., 2004], Flowers102 [Nilsback and Zisserman, 2008], FGVC468

Aircraft [Maji et al., 2013], Stanford Cars [Krause et al., 2013], COCO Lin et al. [2014], and PASCAL469

VOC Everingham et al. [2009]. We use the official 2017 training and validation sets of COCO, and470

the official 2012 training and validation sets of PASCAL VOC. We adapt these datasets into object471

classification tasks by filtering images that have at least one object segmentation mask. We assign472

these images labels corresponding to the class of object with largest area in the image, as measured by473

the pixels contained in the mask. Caltech101, COCO, and PASCAL VOC have common concepts like474

"dog" and Flowers102, FGVC Aircraft, and Stanford Cars have fine-grain concepts like "giant white475

arum lily" (the specific flower name). Additional details for preparing datasets are in Appendix K.476

Figure 9: A sample from the Spurge dataset (the first
on the left), compared with top results of CLIP-retrieval
queried on the prompt: "a drone image of leafy spurge".
Closeup images from members of the same genus (sec-
ond, and third) are in the top 20 results and a closeup
of the same species for the 35th result (fourth). No top-
down aerial images of the target plant were revealed.

Leafy Spurge We contribute a dataset of top-477

down drone images of semi-natural areas in the478

western United States. These data were gathered479

in an effort to better map the extent of a prob-480

lematic invasive plant, leafy spurge (Euphorbia481

esula), that is a detriment to natural and agricul-482

tural ecosystems in temperate regions of North483

America. Prior work to classify aerial imagery484

of leafy spurge achieved an accuracy of 0.75485

Yang et al. [2020]. To our knowledge, top-down486

aerial imagery of leafy spurge was not present487

in the Stable Diffusion training data. Results of488

CLIP-retrieval Beaumont [2022] returned close-up, side-on images of members of the same genus489

(Figure 9) in the top 20 results. We observed the first instance of our target species, Euphorbia490

esula, as a 35th result. The spurge images we contribute are semantically distinct from those in the491

CLIP corpus, because they capture the plant and landscape context around it from 50m distance492

above the ground, rather than close-up botanical features. Therefore, this dataset represents a unique493

opportunity to explore few-shot learning with Stable Diffusion, and developing a robust classifier494

would directly benefit efforts to restore natural ecosystems. Additional details are in Appendix L.495

B Related Work496

Generative models have been the subject of growing interest and rapid advancement. Earlier methods,497

including VAEs Kingma and Welling [2014] and GANs Goodfellow et al. [2014], showed initial498

promise generating realistic images, and were scaled up in terms of resolution and sample quality499

Brock et al. [2019], Razavi et al. [2019]. Despite the power of these methods, many recent successes500

in photorealistic image generation were the result of diffusion models Ho et al. [2020], Nichol501

and Dhariwal [2021], Saharia et al. [2022b], Nichol et al. [2022], Ramesh et al. [2022]. Diffusion502

models have been shown to generate higher-quality samples compared to their GAN counterparts503

Dhariwal and Nichol [2021], and developments like classifier free guidance Ho and Salimans [2022]504

have made text-to-image generation possible. Recent emphasis has been on training these models505

with internet-scale datasets like LAION-5B Schuhmann et al. [2022]. Generative models trained506
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at internet-scale Rombach et al. [2022], Saharia et al. [2022b], Nichol et al. [2022], Ramesh et al.507

[2022] have unlocked several application areas where photorealistic generation is crucial.508

Image Editing Diffusion models have popularized image-editing. Inpainting with diffusion is one509

such approach that allows the user to specify what to edit as a mask Saharia et al. [2022a], Lugmayr510

et al. [2022]. Other works avoid masks and modify the attention weights of the diffusion process511

that generated the image instead Hertz et al. [2022], Mokady et al. [2022]. Perhaps the most relevant512

technique to our work is SDEdit Meng et al. [2022], where real images are inserted partway through513

the reverse diffusion process. SDEdit is applied by He et al. [2022] to generate synthetic data for514

training classifiers, but our analysis differs from theirs in that we study generalization to new concepts515

the diffusion model wasn’t trained on. To instruct the diffusion model on what to augment, we516

optimize a pseudo-prompt [Li and Liang, 2021, Gal et al., 2022] for each concept. Our strategy is517

more appealing than fine-tuning the whole model as in Azizi et al. [2023] since it works from just one518

example per concept (Azizi et al. [2023] require millions of images), and doesn’t disturb the model’s519

ability to generate other concepts. Our fine-tuning strategy improves the quality of augmentations for520

common concepts Stable Diffusion has seen, and for fine-grain concepts that are less common.521

Synthetic Data Training neural networks on synthetic data from generative models was popularized522

using GANs Antoniou et al. [2017], Tran et al. [2017], Zheng et al. [2017]. Various applications for523

synthetic data generated from GANs have been studied, including representation learning Jahanian524

et al. [2022], inverse graphics Zhang et al. [2021a], semantic segmentation Zhang et al. [2021b], and525

training classifiers Tanaka and Aranha [2019], Dat et al. [2019], Yamaguchi et al. [2020], Besnier526

et al. [2020], Xiong et al. [2020], Wickramaratne and Mahmud [2021], Haque [2021]. More recently,527

synthetic data from diffusion models has also been studied in a few-shot setting He et al. [2022].528

These works use generative models that have likely seen images of target classes and, to the best of529

our knowledge, we present the first analysis for synthetic data on previously unseen concepts.530

C Background531

Diffusion models Sohl-Dickstein et al. [2015], Ho et al. [2020], Nichol and Dhariwal [2021], Song532

et al. [2021], Rombach et al. [2022] are sequential latent variable models inspired by thermodynamic533

diffusion Sohl-Dickstein et al. [2015]. They generate samples via a Markov chain with learned534

Gaussian transitions starting from an initial noise distribution p(xT ) = N (xT ; 0, I).535

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt) (4)

Transitions pθ(xt−1|xt) are designed to gradually reduce variance according to a schedule β1, . . . , βT536

so the final sample x0 represents a sample from the true distribution. Transitions are often parameter-537

ized by a fixed covariance Σt = βtI and a learned mean µθ(xt, t) defined below.538

µθ(xt, t) =
1
√
αt

(
xt −

βt√
1− α̃t

ϵθ(xt, t)

)
(5)

This parameterization choice results from deriving the optimal reverse process Ho et al. [2020], where539

ϵθ(·) is a neural network trained to process a noisy sample xt and predict added noise. Given real540

samples x0 and noise ϵ ∼ N (0, I), one can derive xt at an arbitrary timestep below.541

xt(x0, ϵ) =
√

α̃tx0 +
√

1− α̃tϵ (6)

Ho et al. [2020] define αt = 1 − βt and α̃t =
∏t

s=1 αt. These components allow training and542

sampling from the type of diffusion model backbone in this work. We use a pretrained Stable543

Diffusion model trained by Rombach et al. [2022]. Among other differences, this model includes a544

text encoder that enables text-to-image generation (refer to Appendix K for model details).545

D Limitations & Safeguards546

As generative models have improved in terms of fidelity and scale, they have been shown to occasion-547

ally produce harmful content, including images that reinforce stereotypes, and images that include548

nudity or violence. Synthetic data from generative models, when it suffers from these problems,549

has the potential to increase bias in downstream classifiers trained on such images if not handled.550
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We employ two mitigation techniques to lower the risk of leakage of harmful content into our data551

augmentation strategy. First, we use a safety checker that determines whether augmented images552

contain nudity or violence. If they do, the generation is discarded and re-sampled until a clean image553

is returned. Second, rather than generate images from scratch, our method edits real images, and554

keeps the original high-level structure of the real images. In this way, we can guide the model away555

from harmful content by ensuring the real images contain no harmful content to begin with. The556

combination of these techniques lowers the risk of leakage of harmful content, but is not a perfect557

solution. In particular, detecting biased content that encourages racial or gender stereotypes that exist558

online is much harder than detecting nudity or violence, and one limitation of this work is that we559

can’t yet defend against this. We emphasize the importance of curating unbiased and safe datasets for560

training large generative models, and the creation of post-training bias mitigation techniques.561

E Ethical Considerations562

There are potential ethical concerns arising from large-scale generative models. For example, these563

models have been trained on large amounts of user data from the internet without the explicit consent564

of these users. Since our data augmentation strategy employs Stable Diffusion [Rombach et al., 2022],565

our method has the potential to generate augmentations that resemble or even copy data from such566

users online. This issue is not specific to our work; rather, it is inherent to image generation models567

trained at scales as large as Stable Diffusion, and other works using Stable Diffusion also face this568

ethical problem. Our mitigation to this ethical problem is to allow deletion of concepts from the569

weights of Stable Diffusion before augmentation. Deletion removes harmful, or copyrighted material570

from Stable Diffusion weights to ensure it cannot be copied by the model during augmentation.571

F Broader Impacts572
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Figure 10: Results with stronger data-augmentation baselines.
DA-Fusion improves over both RandAugment (using default Py-
Torch settings), and CutMix (with default setting from Yun et al.
[2019]). Note that RandAugment results use model-centric leakage
prevention, and CutMix results use data-centric leakage prevention,
showing we improve over stronger baselines in both regimes.

Data augmentation strategies like DA-573

Fusion have the potential to enable574

training vision models of a variety of575

types from limited data. While we576

studied classification in this work, DA-577

Fusion may also be applied to video578

classification, object detection, and579

visual reinforcement learning. One580

risk associated with improved few-581

shot learning on vision-based tasks is582

that synthetic data can be generated583

targeting particular users. For exam-584

ple, suppose one intends to build a585

person-identification system used to586

record the behavior patterns of a spe-587

cific person in public. Such a system588

trained with generative model-based data augmentations may only need one real photo to be trained.589

This poses a risk to privacy, despite other benefits that few-shot learning provides. As another590

example, suppose one intends to build a system capable of generating pornography of a specific591

celebrity. Few-shot learning makes this possible with just a handful of real images that exist online.592

This poses a risk to personal safety and bodily autonomy of the targeted person.593

G Additional Results594

We conduct additional experiments on the Caltech101 [Fei-Fei et al., 2004], and Flowers102 [Nilsback595

and Zisserman, 2008] datasets, two standard image classification tasks for few-shot classification,596

which are in the Visual Task Adaptation Benchmark [Zhai et al., 2019]. Results in Figure 11 show597

that DA-Fusion improves classification performance both when using a model-centric defense against598

training data leakage, and a data-centric defense, described in Section 3.1 of the paper.599
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Figure 11: Few-shot classification performance with both kinds of leakage prevention on additional datasets.
DA-Fusion outperforms the standard data augmentation baseline, and a competitive method from recent literature.
These results reinforce the message in the main paper: DA-Fusion is an effective data augmentation strategy.
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Figure 12: Few-shot results with a stronger
classification model. DA-Fusion improves
DeiT when compared to standard data aug-
mentation baseline, and Real Guidance.

In the main paper, we considered data augmentation base-601

lines consisting only of randomized rotations and flips. In602

this section, we compare against two stronger data aug-603

mentation methods: RandAugment [Cubuk et al., 2020],604

and CutMix [Yun et al., 2019]. Results are presented in605

Figure 10, and show that DA-Fusion improves over both606

RandAugment and CutMix on the Pascal-based task.607

I Different Classifier Architectures608

Results in the main paper use a ResNet50 architecture609

for the image classifier. In this section, we consider the610

Data-Efficient Image Transformer (DeiT) [Touvron et al.,611

2021], and evaluate DA-Fusion with data-centric leakage612

prevention on the Pascal task. Results in Figure 12 show613

that DA-Fusion improves the performance of DeiT, and614

suggests gains generalize to different architectures, includ-615

ing both convolution-based models (such as ResNet50),616

and attention-based ones (such as ViT).617

J Balancing Real & Synthetic Data618

Training models on synthetic images often risks over-emphasizing spurious qualities and biases619

resulting from an imperfect generative model Antoniou et al. [2017]. The common solution assigns620

different sampling probabilities to real and synthetic images to manage imbalance He et al. [2022].621

We adopt a similar method for balancing real and synthetic data in Equation 7, where α denotes the622

probability that a synthetic image is present at the l-th location in the minibatch of images B.623

i ∼ U({1, . . . , N}), j ∼ U({1, . . . ,M}) (7)

Bl+1 ← Bl ∪
{
Xi w.p. (1− α) else X̃ij

}
(8)

Here X ∈ RN×H×W×3 denotes a dataset of N real images, and i ∈ Z specifies the index of a624

particular image Xi. For each image, we generate M augmentations, resulting in a synthetic dataset625

X̃ ∈ RN×M×H×W×3 with N ×M image augmentations, where X̃ij ∈ RH×W×3 enumerates626

the jth augmentation for the ith image in the dataset. Indices i and j are sampled uniformly from627
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Figure 13: Ablation for data balance sensitivity. We run our method with α ∈ {0.3, 0.5, 0.7} and M ∈
{5, 10, 20} and report the improvement in few-shot classification accuracy over Real Guidance using the same
settings. DA-Fusion is robust to the balance of real and synthetic data and outperforms prior work in each setting.

the available N real images and their M augmented versions respectively. Given indices ij, with628

probability (1− α) a real image image Xi is added to the batch B, otherwise its augmented image629

X̃ij is added. Hyper-parameter details are presented in Appendix K, and we find α = 0.5 to work630

effectively in all domains tested, which equally balances real and synthetic images.631

J.1 DA-Fusion Is Robust To Data Balance632

We next conduct an ablation to understand the sensitivity of our method to the balance of real and633

synthetic data, controlled by two hyperparameters: the number of synthetic images per real image634

M ∈ N, and the probability of sampling synthetic images during training α ∈ [0, 1]. We use α = 0.5635

and M = 10 throughout the paper. Insensitivity to the particular value of α and M is a desireable636

trait because it simplifies hyper-parameter tuning and facilitates our data augmentation working637

out-of-the-box with no domain-specific tuning. We test sensitivity to α and M by comparing runs638

of DA-Fusion with different assignments to Real Guidance with the same α and M . Figure 13639

shows stability as α and M varies, and that α = 0.7 performs marginally better than α = 0.5, which640

suggests our method improves synthetic image quality because sampling them more often improves641

accuracy. While M = 20 performs marginally better than M = 10, the added cost of doubling the642

number of generative model calls for a marginal improvement suggests M = 10 is sufficient.643

K Hyperparameters644

Our method inherits the hyperparameters of text-to-image diffusion models and SDEdit Meng et al.645

[2022]. In addition, we introduce several other hyperparameters in this work that control the diversity646

of the synthetic images. Specific values for these hyperparameters are given in Table 1.647

We uniformly at random select 20 classes per dataset for evaluation, turning them into 20-way648

classification tasks. This reduces the computational cost of reproducing the results in our paper, and649

the exact classes used in each dataset can be found in the open-source code.650

L Leafy Spurge Dataset Acquisition and Pre-processing651

In June 2022 botanists visited areas in western Montana, United States known to harbor leafy spurge652

and verified the presence or absence of the target plant at 39 sites. We selected sites that represented a653

range of elevation and solar input values as influenced by terrain. These environmental axes strongly654

drive variation in the structure and composition of vegetation Amatulli et al. [2018], Doherty et al.655

[2021]. Thus, stratifying by these aspects of the environment allowed us to test the performance of656

classifiers when presented with a diversity of plants which could be confused with our target.657

During surveys, each site was divided into a 3 x 3 grid of plots that were 10m on side (Fig. 14),658

and then botanists confirmed the presence or absence of leafy spurge within each grid cell. After659

surveying we flew a DJI Phantom 4 Pro at 50m above the center of each site and gathered still RGB660

images. All images were gathered on the same day in the afternoon with sunny lighting conditions.661
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Hyperparameter Name Value
Synthetic Probability α 0.5
Real Guidance Strength t0 0.5
Num Intensities k 4
Intensities Distribution t0 U({0.25, 0.5, 0.75, 1.0})
Synthetic Images Per Real M 10
Synthetic Images Per Real M (spurge) 50
Textual Inversion Token Initialization "the"
Textual Inversion Batch Size 4
Textual Inversion Learning Rate 0.0005
Textual Inversion Training Steps 1000
Class Agnostic Prompt "a photo"
Standard Prompt "a photo of a <class name>"
Textual Inversion Prompt "a photo of a ClassX"
Stable Diffusion Checkpoint CompVis/stable-diffusion-v1-4
Stable Diffusion Guidance Scale 7.5
Stable Diffusion Resolution 512
Stable Diffusion Denoising Steps 1000
Classifier Architecture ResNet50
Classifier Learning Rate 0.0001
Classifier Batch Size 32
Classifier Training Steps 10000
Classifier Early Stopping Interval 200

Table 1: Hyperparameters and their values.

We then cropped the the raw images to match the bounds of plots using visual markers installed662

during surveys as guides (Fig. 15). Resulting crops varied in size because of the complexity of terrain.663

E.G., ridges were closer to the drone sensor than valleys. Thus, image side lengths ranged from 533664

to 1059 pixels. The mean side length was 717 and the mean spatial resolution, or ground sampling665

distance, of pixels was 1.4 cm.666

In our initial hyperparameter search we found that the classification accuracy of plot-scale images667

was less than that of a classifier trained on smaller crops of the plots. Therefore, we generated four668

250x250 pixel crops sharing a corner at plot centers for further experimentation (Fig. 16). Because669

spurge plants were patchily distributed within a plot, a botanist reviewed each crop in the present670

class and removed cases in which cropping resulted in samples where target plants were not visually671

apparent.672

M Benchmarking the Leafy Spurge Dataset673

We benchmark classifier performance here on the full leafy spurge dataset, comparing a baseline674

approach incorporating legacy augmentations with our novel DA-fusion method. For 15 trials we675

generated random validation sets with 20 percent of the data, and fine-tuned a pretrained ResNet50676

on the remaining 80 percent using the training hyperparameters reported in section ?? for 500 epochs.677

From these trials we compute cross-validated mean accuracy and 68 percent confidence intervals.678

In the case of baseline experiments, we augment data by flipping vertically and horizontally, as well as679

randomly rotating by as much as 45 degrees with a probability of 0.5. For DA-Fusion augmentations680

we take two approaches(Fig. 17) The first we refer to as DA-Fusion Pooled, and we apply the681

methods of Textual Inversion Gal et al. [2022], but include all instances of a class in a single session682

of fine-tuning, generating one token per class. In the second approach we refer to as DA-Fusion683

Specific, we fine-tune and generate unique tokens for each image in the training set. In the specific684

case, we generated 90, 180, and 270 rotations as well as horizontal and vertical flips and contribute685

these along with original image for Stable Diffusion fine-tuning to achieve the target number of686

images suggested to maximize performanceGal et al. [2022]. In both DA-Fusion approaches we687

generated ten synthetic images per real image for model training. We maintain α = 0.5, evenly688

mixing real and synthetic data during training. We also maximize synthetic diversity by randomly689
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Figure 14: A drone image of surveyed areas containing leafy spurge. At each site botanists verified
spurge presence or absence in a grid of nine spatially distinct plots. Note that cell five is rich in leafy
spurge.

selecting 0.25, 0.5, 0.75, and 1.0 t0 values. Note that we do not apply concept erasure here as in690

few-shot experiments from the body text.691

Both approaches to DA-Fusion offer slight performance enhancements over baseline augmentation692

methods for the full leafy spurge dataset. We observe a 1.0% gain when applying DA-Fusion693

Pooled and a 1.2% gain when applying DA-Fusion Specific(Fig. 18). It is important to note that, as694

implemented currently, compute time for DA-Fusion Specific is linearly related to data amount, but695

DA-Fusion Pooled compute is the same regardless of data size.696

While pooling was not the most beneficial in this experiment, we support investigating it further.697

This is because fine-tuning a leafy spurge token in a pooled approach might help to orient our target698

in the embedding space where plants with similar diagnostic properties, such as flower shape and699

color from the same genus, may be well represented. However, the leafy-spurge negative cases700

do not correspond to a single semantic concept, but a plurality, such as green fields, brown fields,701

and wooded areas. It is unclear if fine-tuning a single token for negative cases by a pooled method702

would remove diversity from synthetic samples of spurge-free background landscapes, relative to703

an image-specific approach. For this reason, we suspect a hybrid approach of pooled token for the704

positive case and specific tokens for the negative cases could offer further gains, and support the705

application of detecting weed invasions into new areas.706
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Figure 15: Markers installed at the corners of plots were used to crop plots from source images.
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Figure 16: At each plot image center we cropped four 250x250 pixel sub-plots. We did this to amplify
our data and improve classifier performance. The crops of plots with spurge present labels were
inspected by a botanist to filter out examples where cropping excluded the target plant or the plants
were not apparent.
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Figure 17: Here we show examples of synthetic images generated from the leafy spurge dataset with
DA-Fusion methods. The top row shows output where images are pooled to fine-tune a single token
per class. The bottom row shows examples where tokens are generated specifically for each image.
Source images, inference hyperparameters, and seed are otherwise identical in each column.

Figure 18: Cross-validated accuracy of leafy spurge classifiers when trained with baseline augmen-
tations versus DA-Fusion methods on the full dataset. In addition to the benefits of DA-Fusion in
few-shot contexts, we also find our method improves performance on larger datasets. Generating
image-specific tokens (green line and bar) offers the most gains over baseline, though at the cost of
greater compute.
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