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ABSTRACT

Physically informed neural networks (PINNs) are a promising emerging method
for solving differential equations. As in many other deep learning approaches, the
choice of PINN design and training protocol requires careful craftsmanship. Here,
we suggest a comprehensive theoretical framework that sheds light on this impor-
tant problem. Leveraging an equivalence between infinitely over-parameterized
neural networks and Gaussian process regression (GPR), we derive an integro-
differential equation that governs PINN prediction in the large data-set limit— the
neurally-informed equation. This equation augments the original one by a kernel
term reflecting architecture choices and allows quantifying implicit bias induced
by the network via a spectral decomposition of the source term in the original
differential equation.

INTRODUCTION

Deep neural networks (DNNs) are revolutionizing a myriad of data-intensive disciplines (Krizhevsky
et al., 2012; Jumper et al., 2021; Brown et al., 2020), offering optimization-based alternatives to
handcrafted algorithms. The recent “physics-informed neural network” (PINN) approach (Raissi
et al., 2019) trains DNNs to approximate solutions to partial differential equations (PDEs) by di-
rectly introducing the equation and boundary/initial conditions into the loss function, effectively
enforcing the equation on a set of collocation points in the domain of interest. While still leaving
much to be desired in terms of performance and robustness, its promise has already attracted broad
attention across numerous scientific disciplines (Mao et al., 2020; Jin et al., 2021; Molnar et al.,
2023; Patel et al., 2022; Coutinho et al., 2023; Ruggeri et al., 2022; Hamel et al., 2023; Cai et al.,
2021; Karniadakis et al., 2021; Hao et al., 2022; Cai et al., 2021; Cuomo et al., 2022; Huang et al.,
2022; Das & Tesfamariam, 2022).

Recent years have seen steady progress in our theoretical understanding of DNNs through various
mappings to Gaussian Process Regression (GPR) (Hron et al., 2020; Naveh et al., 2021; Li & Som-
polinsky, 2021; Naveh & Ringel, 2021; Seroussi et al., 2023; Hanin & Zlokapa, 2023), which are
already carrying practical implications (Yang et al., 2021; Bahri et al., 2022; Maloney et al., 2022).
For supervised learning tasks, including real-world ones, it was shown that kernel-task alignment or
spectral bias (Cohen et al., 2021; Canatar et al., 2021) is strongly predictive of DNN performance.
Specifically, diagonalizing the GPR kernel on the measure induced by the dataset leads to a series of
features and eigenvalues. Those features with high eigenvalues can be learned with the least training
effort.

An important line of work by Wang et al. (2021a; 2022; 2021b) generalized some of these findings.
Specifically, an NTK-like (Jacot et al., 2018) correspondence with GPR was established. While
this provided insights into spectral bias and architecture design (Wang et al., 2021b), the proposed
formalism involves large dataset-dependent matrix inverses and does not easily lend itself to analyt-
ical predictions of generalization and robustness. Furthermore, these works do not provide general
measures of kernel-task alignment.

In this paper, we provide a comprehensive theoretical framework for generalization in over-
parametrized PINNs. This effort places the notions of spectral bias and kernel-task alignment in
PINNs on solid theoretical footing and extends to a broad range of PDEs (including non-linear ones)
and architectures. Our main result is the Neurally-Informed Equation (NIE), an integro-differential
equation that approximates PINN predictions on test points. This equation fleshes out tangible links
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between the DNN’s kernel, the original differential equation, and PINN’s prediction. In the limit
of an infinite dataset, the neurally-informed equation reduces to the original equation, yet for large
but finite datasets it captures the difference between the exact solution and the PINN prediction.
It further offers several practical measures of kernel-task alignment which can provide robustness
assurance for PINNs.

1 GENERAL SETTING

Consider the following well-posed partial differential equation (PDE) defined on a closed bounded
domain, Ω ⊆ Rd

L[f ](x) = ϕ(x) x ∈ Ω

f(x) = g(x) x ∈ ∂Ω
(1)

where L[f ] is a differential operator and f : Ω → R is the PDE’s unknown solution with x ∈ Rd.
The functions ϕ : Ω → R and g : ∂Ω → R are the PDE’s respective source term and initial/boundary
conditions. In what follows, we use bold font to denote vectors.

In the PINN setting, we choose a set of training points (collocation points) on the domain Ω and
its boundary, ∂Ω around which we encourage a neural network to obey the differential equation.
Specifically, we denote Xn = {xµ}nµ=1, where n = n∂Ω + nΩ and nΩ, n∂Ω respectively are the
number of data points in the domain’s bulk and on its boundary. We define the DNN estimator
f̂θ : Ω → R of the solution f , where θ are the network parameters. To train this DNN the following
loss function is minimized,

L =
1

σ2
Ω

nΩ∑
µ=1

(
L[f̂θ](xµ)− ϕ(xµ)

)2

+
1

σ2
∂Ω

n∂Ω∑
ν=1

(
f̂θ(xν)− g(xν)

)2

, (2)

where σ2
Ω, and σ2

∂Ω are some positive tunable constants. A good choice of hyper-parameters and
network architecture should allow the network to minimize this training loss (i.e. respect the differ-
ential equation around the collocation points) and generalize to points outside the training set (i.e.
obey the differential equation around an arbitrary point).

Obtaining analytical solutions to this optimization problem is obviously difficult for anything but
the simplest linear neural networks. One analysis approach, which proved useful in the context
of supervised learning, is to consider the limit of infinitely wide neural networks. Here, several
simplifications arise, allowing one to map the problem to Bayesian Inference with GPR Jacot et al.
(2018); Li & Sompolinsky (2021); Naveh et al. (2021); Mandt et al. (2017).

Specifically, we consider DNNs trained using full-batch gradient descent with weight decay and
external white Gaussian noise. The discrete-time dynamics of the parameters are thus

θt+1 − θt = −η (γθt +∇θtL) + 2σ
√
ηξt+1 (3)

where θt is the vector of all network parameters at time step t, γ is the strength of the weight decay
set so that σ2/γ is the desired initialization/prior weight variance, L is the loss as a function of
the DNN parameters θt, and data , σ is the magnitude of noise, η is the learning rate and ξt,i is a
centred standardized Gaussian variable. As η → 0 these discrete-time dynamics converge to the
continuous-time Langevin equation given by θ̇ (t) = −∇θ

(
γ
2 |θ(t)|

2 + L (θ(t),Dn)
)
+ 2σξ (t)

with ⟨ξi(t)ξj(t′)⟩ = δijδ (t− t′), such that as t → ∞ the DNN parameters θ will be sampled from
the equilibrium Gibbs distribution in parameter space (p(θ) ∝ exp(− y

2σ2 |θ|2 − L/σ2)).

Conveniently, letting the weight variance σ2/γ scale as the width (as one does in standard He ini-
tialization He et al. (2015)), the above Gibbs distribution (taken at σ2 = 1 for simplicity) can be
rewritten as the following distribution involving only DNN outputs (f ) Naveh et al. (2021)

p(f |Xn) = e−S[f |Xn]/Z(Xn). (4)
Here S denotes the so-called “action”, given by

S[f |Xn] =
1

2σ2
Ω

nΩ∑
µ=1

(L[f ](xµ)− ϕ(xµ))
2

+
1

2σ2
∂Ω

n∂Ω∑
ν=1

(f(xν)− g(xν))
2
+

1

2

n∑
µ=0

n∑
ν=0

fµ[K
−1]µνfν ,

(5)
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with the kernel K denoting the covariance function of the Gaussian prior on f , namely

K(x, y) =

∫
dθe−

γ

2σ2 |θ|2 f̂θ(x)f̂θ(y)∫
dθe−

γ

2σ2 |θ|2 (6)

and the distribution’s normalization Z(Xn) =
∫
dfe−S[f |Xn] is called the “partition function”. The

first two terms in the action are associated with the loss function, while the last term is associated
with the GP prior and makes f vectors which lay in the high eigenvalue of K more likely. Note that,
if the variance of the additive noise to the weights during the optimization is σ2 ̸= 1, then σ2

Ω →
σ2
Ωσ

2 and σ2
∂Ω → σ2

∂Ωσ
2. Therefore, these constants, σ2

Ω and σ2
∂Ω, reflect Gaussian uncertainty on

the measurement of how well L[f̂θ] = ϕ and f̂θ = g, respectively

Finally, we extend the sample index by adding µ = 0 to denote the test point x∗ at which we evaluate
the estimator, for this reason, the sums in the prior term (third term) in the action start from zero and
not one. The test points can be either from the bulk or boundary.

Our task in this work is to derive a systematic and general framework to estimate the value of DNN
predictor on a test point (f(x∗)) averaged over p(f |Xn) (the posterior) and over draws of Xn from
a dataset measure dµx.

2 OUTLINE OF DERIVATION

The first step, in deriving the NIE, is to remove the randomness induced by the specific choice of
bulk and boundary collocation points by averaging over those with a uniform measure. Specifically,
we wish to obtain the expectation value of f(x) underp(f |Xn) and further average this expectation
over all datasets drawn from the same measure. To this end, two tools are used.

Partition functions and replicas. Instead of calculating the average f(x), we calculate the partition
function, defined as Z[Xn] =

∫
dfe−S[f |Xn]. We then note that derivatives of log(Z[Xn]) yield

various expectation values under the probability p(f |Xn). Consequently, obtaining dataset averages
is closely related to calculating the dataset average of log(Z[Xn]). To perform this latter average
we use the replica trick, namely we evaluate Z[Xn]

p for an arbitrary positive integer p, analytically
continue the results to real p, using the relation log(Z) =lim p→0 (Zp − 1)/p, and take the p → 0
limit.

Grand-canonical ensemble. Our next task is to average Z[Xn]
P over all draws of Xn. To this

end, we find it useful to go from a hard constraint on the number of data points to a soft definition
wherein we average overall datasets with a varying number of data points drawn from a Poisson
distribution centered around desired n. As also studied in Cohen et al. (2021), for large, n the
fluctuations introduced by this additional Poisson averaging are insignificant.

Following this route, yields the following continuum action (negative log-probability) for the pos-
terior distribution over network outputs, which becomes exact in the limit of n∗, σ

2
∗ → ∞ at fixed

n∗, σ
2
∗ (see Appendix B for more details)

Seff [f ] =
nΩ

σ2
Ω

∫
Ω

dx (L[f ](x)− ϕ(x))
2
+

n∂Ω

σ2
∂Ω

∫
∂Ω

dx (f(x)− g(x))
2

+

∫
Ω

∫
Ω

f(x)[K−1](x,y)f(y)dxdy (7)

where [K−1] is the inverse operator of K namely
∫
Ω
dyK(x,y)[K−1](y, z) = δ(x − z) for all

x, z ∈ Ω (including the boundary). We further denote integration with respect to the boundary and
bulk measures by

∫
∂Ω

and
∫
Ω

respectively, such that
∫
Ω
dx = 1 and,

∫
∂Ω

dx = 1. Interestingly, un-
like in the discrete matrix case Raissi et al. (2017a), the action does not separate boundary-boundary,
boundary-bulk, and bulk-bulk kernel terms. Notably the above action is valid both for linear and
non-linear operators (L[f ]). Furthermore, although for qualitative purposes the above asymptotic
limit typically described finite systems well Williams & Rasmussen (2006); Cohen et al. (2021),
systematic corrections in 1/σ2

∗ could be derived via the methods of Cohen et al. (2021).

Assuming first a linear operator L the resulting posterior is quadratic, and the mean value of f(x),
signifying the GP’s average prediction at a test point x, can be obtained by variational methods.
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Specifically, one looks for f0(x) so that Seff [f0(x)+ ϵδf(x)] is O(ϵ2) for any smooth δf(x) varia-
tion. Doing so, however, becomes quite cumbersome and subtle due to the appearance of both bulk
and boundary measures together with potentially high-order derivatives coming from L. Instead, we
find that parametrizing the variation as

∫
Ω
dyK(x,y)δf(y) simplifies the deviation. Notably, for

the generic case of an invertible, K(x,y) this results in the same f0(x).

Turning to a non-linear operator L[f ], the above variational approach can be straightforwardly
repeated where it would predict the most probable (rather than the mean) output of the network. An
example of this is given in Appendix B.3.

3 RESULTS

Here we outline our main results. Further details on their derivations are found in the appendix.

3.1 THE NEURALLY-INFORMED EQUATION (NIE)

The above variational approach, when applied to the case of a general linear operator resulting
analysis leads to an integro-differential equation that we refer to as the neurally-informed equation.
To illustrate, consider the general linear d-dimensional differential operator L of order s. While
our formalism similarly applies to nonlinear operators, as discussed in Appendix B.1, in particular,
see Appendix B.3 for an example of the application of the formalism to a Nonlinear equation, we
proceed to explicitly demonstrate its application for a linear operator to simplify the presentation.
For this choice of L, given that the kernel prior K is invertible, we derive the following Neurally-
Informed Equation (NIE) for the external f0 : Ω → R which approximates the dataset averaged
prediction,

f0(x) + ηΩ

∫
Ω

(Lf0(y)− ϕ(y)) [LK](y,x)dy+ η∂Ω

∫
∂Ω

(f0(y)− g(y))K(y,x)dy = 0. (8)

The differential operator L is defined such that it acts on the first component of K. Notably, K is
now treated as a function of two data-points x,y and not as a matrix. We also defined the quantities
ηΩ = nΩ

σ2
Ω

and η∂Ω = n∂Ω

σ2
∂Ω

which at large noise can be viewed as the effective amount of data (see
also Ref. Cohen et al. (2021); Williams & Rasmussen (2006)). We further denote integration with
respect to the boundary and bulk measures by

∫
∂Ω

and
∫
Ω

respectively. For simplicity, we also
consider a uniform collocation point distribution for both the boundary, 1/|∂Ω|, and the bulk, 1/|Ω|
Raissi et al. (2019). We further note that the above equation is obtained by applying variational
calculus to an energy functional obtained as a leading order expansion in [L [f ] (x)− ϕ(x)]

2
/σ2

Ω

and [f(x)− g(x)]
2
/σ2

∂Ω. As such, it is valid when the mean training error is small compared
to the observation noise. Perturbative corrections to this limit could be readily obtained using the
formalism outlined in the appendix subsection B.1 (see also Ref. Cohen et al. (2021)).

Solving the NIE yields the PINN prediction, averaged over DNN ensembles and draws of Xn. In
the limit of large nΩ and n∂Ω, the first f0(x) term on the left hand side of Eq. (5) is negligible and,
at least for sufficiently smooth and non-singular kernels, one finds that the desired solution of the
differential equation also satisfies the original PDE in Eq. (1) For finite ηΩ, η∂Ω, this ceases to be
the case and spectral bias starts playing a role. Next, we demonstrate the predictive power of this
equation on a 1D toy example.

3.2 TOY EXAMPLE

To demonstrate the applicability of our approach, consider the following toy example:

∂xf(x) = 0 x ∈ [0,∞]

f(x) = g0 x = 0,
(9)

i.e. a first-order, one-dimensional ordinary differential equation on the half-infinite interval with
a constant boundary condition g0 at the origin. Following our use here of an infinite interval, ηΩ
should not be understood as the number of points but rather as their density. To match this with
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finite ([0, L]) interval experiments, we set nΩ = LηΩ. Notably, since the solutions decay as one
goes far away from zero, this L dependence falls out, as also reflected in the good match obtained
with numerics.

Let us consider the following network with two trainable layers acting on x

f(x) =

C∑
c=1

ac cos(wcx), (10)

with C denoting the number of neurons.

Training this network with the appropriate gradient descent dynamics Naveh et al. (2021); Lee et al.
(2018), the relevant kernel for GPR coincides with that of a random network with Gaussian weights
ac ∼ N (0, 1/(C

√
2πl2)) and wc ∼ N (0, 1/l2). As shown in Appendix C, this leads to the follow-

ing kernel

K(x, x′) =
1

2
√
2πl2

(
e−

|x−x′|2

2l2 + e−
|x+x′|2

2l2

)
. (11)

The corresponding neurally-informed equation is given by∫ ∞

0

dy
[
K−1(x, y)− ηΩδ(x− y)∂2

y

]
f(y) = −δ(x) [η∂Ω(f(0)− g0)− ηΩ∂xf(0)] , (12)

where we have acted on the equation with the inverse of K(x, y), defined by the relation∫
dyK−1(x, y)K(y, z) = δ(x − z). To solve this equation, we first focus on inverting the oper-

ator (K−1 + ηΩ∂
2
x) on the left-hand side of the above equation. As shown in App. D this yields the

following inverse operator (Green’s function)

G(x, x′) =
1

π

∫ +∞

−∞
dk cos(kx) cos(kx′)

(
e+(kl)2/2 + ηΩk

2
)−1

. (13)

This integral can either be evaluated numerically or via contour integration. Taking the lat-
ter approach reveals an infinite set of simple poles. Yet for large |x − x′| and/or for large
ηΩ, we numerically observe that a single pole dominates the integral, giving G(x, x′) ≈
κ
2

(
e−κ|x−x′| + e−κ|x+x′|

)
where κ = 1√

l2/2+ηΩ

for κl ≪ 1. While this approximation can be

systematically improved by accounting for additional poles, in the numerics presented below we
have simply calculated this integral numerically.

Next, we write the neurally-informed equation in the following form

f(x′) =

∫
dxG(x′, x)δ(x) [η∂Ω [g0 − f(0)] + ηΩ [Lf ] (0)] . (14)

We next define ∆ = η∂Ω[g0 − f(0)] + ηΩ[Lf ](0), such that f(x) = G(x, 0)∆. We can now obtain
an equation for ∆ via,

∆ = η∂Ω(g(0)−∆G(0, 0)), (15)

where we used the fact that ∂xG(0, 0) = 0. Following this we get,

∆(1 +G(0, 0)η∂Ω) = η∂Ωg0 (16)

∆ =
η∂Ωg0

1 +G(0, 0)η∂Ω
,

finally, we find

f(x ≥ 0) = g0
η∂Ω

1 +G(0, 0)η∂Ω
G(x, 0). (17)

We proceed with testing this numerically by comparing the above results with exact GPR (see
Appendix A for more detail), known to be equivalent to Langevin training of the associated net-
work at large C Lee et al. (2018); et al (2021); Naveh et al. (2021). Specifically, we consider
L = 512, l = 1, g0 = 2.5, σ2

∂Ω = 0.01 and a single boundary point (n∂Ω = 1) and scan nΩ
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Figure 1: The GPR solution fGPR(x⋆) (dots) and the neurally-informed equation prediction fNIE(x⋆)
(solid curves) versus x⋆ for three values of the number of bulk training points nΩ. Here g0 (dashed
brown curve) denotes the value of the boundary condition at x⋆ = 0 and, in the toy example, the
exact solution for all x⋆ ∈ R+. We set L = 29 = 512, σ2

Ω = 2−3 = 0.125, ℓ2 = 1, n∂Ω = 1 and
σ2
∂Ω = 2−6/nΩ, such that both η’s vary with nΩ by the same proportion. The vertical dotted red

line at x⋆ = 1.2 is discussed next in the inset. Inset: The difference g0 − fNIE(x⋆ = 1.2) versus
nΩ becomes a linear function in log-log scale (red stars). This suggests a power-law scaling, which
indicates that the difference vanishes as nΩ → ∞.

while keeping the ratio nΩ/σ
2
Ω fixed, which means that the neurally-informed equation’s predic-

tions remain invariant to nΩ. In doing so, we are essentially maintaining the amount of “training
information” by providing more data while making it noisier. Notably, we do not include any dataset
averaging in the GPR numerics. Still, the results agree quite well similar in this aspect to the find-
ings of Cohen et al. (2021). Figure 1 shows the GPR prediction alongside the NIE prediction as a
function of the test point’s value x∗ for nΩ = {128, 1024, 8192}. The figure exhibits an excellent
match between theory and experiment, even at relatively small nΩ.

3.3 SPECTRAL BIAS AND FIGURE OF MERIT

A central element in deep learning is finding the optimal DNN architecture for the task at hand.
Infinite width limits simplify this process by embodying all of the architecture’s details, along with
training details such as weight decay terms and gradient noise, in a concrete mathematical object,
the kernel K(x,y). Qualitatively speaking, these kernels also reflect the useful traits of realistic
finite-width DNNs and CNNs Novak et al. (2018).

In the context of standard GPR, the learnability of a particular target function may be analyzed
by projection onto the eigenfunctions of the continuum kernel operator Cohen et al. (2021); Canatar
et al. (2021); Williams & Rasmussen (2006). The GPR prediction, averaged over the dataset distribu-
tion, essentially acts as a high-pass linear filter on these eigenfunctions. This kernel-spectrum-based
filtering is what we refer to as spectral bias.

In Appendix (E) we show that a somewhat similar form of spectral bias occurs in PINNs. However
rather than being based on the spectrum of K(x,y), the relevant eigenvalues (λ̂k) and eigenfunctions
(φk(x)) are those obtained by the following diagonalization procedure

K̂xy = K(x,y)−
∫
∂Ω

∫
∂Ω

K(x, z1)[K + η−1
∂Ω]

−1(z1, z2)K(z2,y)dz1dz2 (18)∫
Ω

[LK̂L†](x,y)φk(y) = λ̂kφk(x)dx,

where K̂ coincides with the dataset-averaged posterior covariance, given that one introduces only
boundary points and fixes them to zero Cohen et al. (2021), LK̂L† = LxLyK(x,y) where L∗ is
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the differential operator acting on the variable ∗ = {x, y}, and the inverse of [K+η−1
∂Ω] is calculated

with respect to the boundary measure. We note in passing that for small η∂Ω, or if the boundary is
a set of isolated points, K̂ can be expressed straightforwardly (see Appendix E). Next, we find that
the discrepancy between L[f ] and ϕ is given by a low-pass filter on a boundary-augmented source
term (ϕ̂), specifically

L[f ](x)− ϕ(x) =
∑
k

1

1 + λ̂kηΩ
ckφk(x) (19)

ϕ̂(x) = ϕ(x) + η∂Ω

∫
∂Ω

[LK̂](x, z)g(z)dz

ϕ̂(x) =
∑
k

ckφk(x).

The spectral bias presented in Eq. 19 is the second key result of this work. It shows that smaller
discrepancies are achieved when the augmented source term (ϕ̂(x)) lays in a high eigenvalues sector
of LK̂L†. Furthermore, the spectral components of ϕ(x) supported on λ̂k ≪ η−1

Ω = σ2
Ω/nΩ

are effectively filtered out by the PINN. This suggests the following figure of merit measuring the
overlap of the discrepancy with the augment source term, namely,

Qn[ϕ, g] ≡
∫
Ω
ϕ̂(x)[L[f ](x)− ϕ(x)]dx∫

Ω
|ϕ̂(x)|2dx

=

∑
k

|ck|2

1+λ̂kηΩ∑
k |ck|2

= η−1
Ω

||ϕ̂||2
K̂+η−1

Ω∫
Ω
|ϕ̂(x)|2dx

, (20)

where ||ϕ̂||2
K̂+η−1

Ω

is the RKHS norm of ϕ̂ with respect to the kernel LK̂L† + η−1
Ω .

Omitting boundary effects, plausibly relevant to large domains, the above figure of merit has an
additional simple interpretation. Indeed, boundary conditions can be viewed as fixing the zero modes
of L and are hence directly related to its non-invertibility. Viewing L as an invertible operator is
thus consistent with neglecting boundary effects. Doing so, and recalling that for the exact solution
ϕ = Lf , the above figure of merit simplifies to the RKHS norm of the targeted solution (f ) with
respect to K (at large ηω). Notably the same RKHS norm, but with respect to the average predictions,
also appears in our continuum action Eq. 36 as a complexity regulator. These two observations
suggest that the spectral decomposition of f with respect to K may also serve as an indicator of
performance.

4 MEASURING SPECTRAL BIAS IN EXPERIMENTS

Here, we demonstrate some potentially practical aspects of our theory by contrasting our spectral
bias measure on simple PINN experiments. Specifically, we consider the following cumulative
spectral function,

Ak[Q, f ] = |Pkf |2/|f |2 (21)

where Pk is the projection of a function f on the k leading eigenfunctions (with respect to the
uniform bulk measure) of a kernel Q. Notably Ak is a monotonously non-decreasing function,
Ak=0 = 0, and generically Ak→∞ = 1. Taking Q = LK̂LT and f = ϕ̂, a fast-increasing Ak is
closely related to the figure of merit in Eq. 19. Taking Q = K and f equal to the exact solution
yields an additional perspective related to the second figure of merit, which ignores boundaries. As
shown below, we find that one can obtain a numerical approximation for Ak by diagonalizing the
kernel as a matrix on a reasonable size grid.

The toy problem we consider is the 1D heat equation with a source term,

∂u

∂t
− ∂2u

∂x2
=

e−t− x2

2a

a2
[
2aπx cos (πx) + (a+ a2(π2 − 1)− x2) sin (πx)

]
, (22)

on the domain x ∈ [−1, 1] and t ∈ [0, 1] with initial conditions u(x, 0) = e−
x2

2a sin(πx) and
boundary conditions u(−1, t) = u(1, t) = 0. The exact solution here is known and given by
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Ak[K⍺,u] , 𝛂=2 Ak[K⍺,u] , 𝛂=4 Ak[K⍺,u] , 𝛂=16

Ak[K⍺,f/u] , nΩ=60Ak[K⍺,f/u] , nΩ=15

(a) (b) (c)

(d) (e) (f) Exact u(x,t) for a=32 

Figure 2: 1D heat equation with a source term, solved using the Deepdxe library Lu et al. (2021).
Panels (a)-(c): Spectral bias, as measured via the cumulative spectral function, varying only the
initialization variances (α) between panels. Dominating cumulative spectral functions are indicative
of better performance, as shown in the insets. Panels (d-e): Cumulative spectral functions change
as a function of the training set size, allowing learning of weaker kernel modes. Panel (f): Exact
solution for the PDE used in panels (d-e). The one for (a-c) is the same, but spatially stretched by a
factor of

√
2.

u(x, t) = e−t− x2

2a sin(πx). The constant a evidently determines the spatial scale of the solution and
one can expect that very low a values, associated with high-Fourier modes, would be generally more
difficult to learn.

In our first experiment, we consider a = 1/16 and a student network of the type
∑N

i=1 ai sin(wi ·x).
We train using the Deepdxe package Lu et al. (2021), use an SGD optimizer at a learning rate of 5e-5,
for 150k epochs, and take N = 512 and nΩ = n∂Ω = 320. Our control parameter is the normalized
standard deviations of the weight initialization, denoted by α, which sets the scale of

√
Nwi and√

Nai. We measure Ak[Kα, u], where Kα is the kernel obtained from an infinite-width random
DNN with those initialized weights. As shown in Figure 2, taking α between 2 to 16 improves the
cumulative spectral functions as well as performance.

Next we consider a = 1/32 and a student network of the type
∑N

i=1 aiErf(wi · x) and fixed α = 2.
We train again in a similar fashion (SGD with lr = 1e−5, epochs = 160k) but change the number of
data points fixing nΩ = 2n∂Ω/3. We examine Ak[Kα, f̄ ] where f̄ is the average prediction averaged
on 32 data and training seeds and contrast it with Ak[Kα, u], where u is the above analytical solution
of the equation. As expected, a lower number of data points implies that lower number of kernel
eigenvalues participating in predictions.

We comment on other related measures, however, as our focus in this work is mainly theoretical,
studying their particular merits is left for future work. One option is plotting Ak as a function of
− log(λk) instead of k to reflect the difficulty in learning lower spectral modes. Another option
is to examine the discrepancy in predictions, namely Ak[Q, f − u]. Finally, one can also examine
Ak[LKLT , ϕ], where ϕ denotes the source term on the right-hand-side of Eq. 22, which has the
benefit of depending only on the PDE data and not the solution.

5 DISCUSSION

In this work, we laid out an analytical framework for studying overparametrized PINNs. Utilizing
a mapping to Gaussian process regression and leveraging tools from statistical mechanics, we pro-
vided a concrete analytical formula for their average prediction, in the form of an integro-differential
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equation (the Neurally-Informed Equation). Our formalism quantifies spectral bias in PINN predic-
tion and provides concrete figures of merit for kernel-task alignment.

As NIE can be similarly derived for non-linear PDEs (see for instance Appendix B.3), it would be
interesting to explore the notion of spectral bias and kernel-task alignment for equations exhibiting
strong non-linear effects such as shock-waves Rodriguez-Torrado et al. (2022); Lv et al. (2023); Fuks
& Tchelepi (2020). Another direction is adapting our formalism to inverse problems Raissi et al.
(2019), i.e. cases in which the coefficients of the equation are learned along with the equation’s
solution. Finite width effects may also be incorporated into our approach using the methods of Refs.
Li & Sompolinsky (2021); Seroussi et al. (2023), as the latter provide effective GPR descriptions of
the finite network to which our results readily apply.

A general difficulty in making predictions on DNN performance is the detailed knowledge which is
required of the high-dimensional input data distribution. Even for a fixed kernel, this distribution has
a strong effect on the kernel spectrum and hence, via spectral bias, on what can be learned efficiently.
In contrast, for PINNs, this obstacle is largely avoided as the data distributions are typically low
dimensional and often uniform. Furthermore, qualitative properties of the target function (i.e. the
desired PDE solution) are often well understood. We thus believe that theory, such as that developed
here for spectral bias, is more likely to be a driving force in this sub-field of deep learning.
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A GAUSSIAN PROCESS REGRESSION (GPR) FORMULA

Focusing on linear differential operators, and taking the prior on f to be a Gaussian process (GP)
with kernel, K. As shown in Ref. Raissi et al. (2017b), or in Ref. Pang & Karniadakis (2020) section
14.3.3 for Laplacian operator, the average of f(x∗) under the multivariate Gaussian distribution in
Eq. 5 is given by

⟨f∗⟩P (f |Xn) = k⃗T
(
KPINN + Ĩ

)−1

y, (23)

where

y = (ϕ, g)
T
, (24)

the GP kernel is divided into blocks,

K =

[
K(XnΩ

, XnΩ
) K(Xn∂Ω

, XnΩ
)

K(Xn∂Ω
, XnΩ

) K(Xn∂Ω
, Xn∂Ω

)

]
=

[
KΩΩ K∂ΩΩ

KΩ∂Ω K∂Ω∂Ω

]
, (25)

where XnΩ
, Xn∂Ω

are the data-points on the domain, Ω and on the boundary, ∂Ω, respectively. We
also define

Ĩ =

(
σ2
ΩI 0
0 σ2

∂ΩI

)
. (26)

where

KPINN =

(
LKΩ,ΩL

† LKΩ,∂Ω

K∂Ω,ΩL
† K∂Ω,∂Ω

)
and k⃗ =

(
k⃗ΩL

†

k⃗∂Ω

)
, (27)

where
(
k⃗Ω

)
µ
= K

(
x∗,xµ∈[1,nΩ]

)
and

(
k⃗∂Ω

)
µ
= K

(
x∗,xµ∈[nΩ+1,nΩ+n∂Ω]

)
. We denote by L

the linear operator acting in the forward direction and L† the same operator acting “backwards” so
that KL† is K acted upon by L on its second argument.

B DERIVATION OF THE NEURALLY-INFORMED EQUATION (NIE)

In this section, we derive our main result, the Neurally Informed Equation, Eq. equation 8 in the
main text. We start by analyzing posterior distribution in function space and show that it can be
written in terms of an effective energy function “action” for a general operator. This provides our
first result. We then focus on a linear differential operator and use variational calculus to derive the
NIE.

B.1 DERIVATION OF THE EFFECTIVE ACTION

Using the Bayesian perspective, the posterior distribution in the function space can be written as
follows:

p(f |Xn) = N (L(Xn), σ
2 = 1)p0(f |X)

=

nΩ∏
µ=1

N (L[f ](xµ)− ϕ(xµ), σ
2
Ω)

n∂Ω∏
ν=1

N (f(xν)− g(xν), σ
2
∂Ω)p0(f |Xn),

(28)

where the distribution of the output of the network is given by averaging over the final distribution
of the weight p0(f |Xn) =

∫
dθp(θ)

∏
µ
δ
(
f(xµ)− f̂θ(xµ)

)
, which in the infinite width become

Gaussian with kernel K Naveh et al. (2021), L(Xn) is the training loss in equation 2. Adopting a
statistical physics viewpoint, we can write the posterior distribution as p(f |Xn) =

1
Z[Xn]

e−S[f |Xn],
where

S[f |Xn] = SPDE[f |Xn] + S0[f |Xn] (29)
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where,

SPDE[f |Xn] = SΩ[f |Xn] + S∂Ω[f |Xn] (30)

=
1

2σ2
Ω

nΩ∑
µ=1

(L[f ](xµ)− ϕ(xµ))
2
+

1

2σ2
∂Ω

n∂Ω∑
ν=1

(f(xν)− g(xν))
2 (31)

S0[f |Xn] =
1

2

n∑
µ=1

n∑
ν=1

fµ[K
−1]µνfν +

1

2
log |K|+ n

2
(3 log 2π + 2 log σ∂ΩσΩ) , (32)

and Z[Xn] =
∫
e−S[f |Xn]df is the partition function.

To understand generalization, we are interested in computing ensemble averages over many data-
sets. In the following, we use our freedom to choose the prior on the function to be on an infinite
dataset, i.e. in the reproduction kernel Hilbert space (RKHS), with the kernel being the continuum
version of Eq. (25) Williams & Rasmussen (2006). Utilizing a statistical mechanics approach,
we want to compute the free energy, EDn

[logZ[Xn]] which can also be viewed as the generating
function of the process. For this purpose, we employ the replica trick:

EDn [logZ[Xn]] = lim
p→0

∂logEDn [Zp[Xn]]

∂p
(33)

where

EDn
[Zp[Xn]] = EDn

[∫ p∏
α

e−S[fα|Xn]dfα

]

=

∫
EDn

[
e−

∑p
α=1 SPDE[fα|Xn]

] p∏
α

p0(fα)dfα

= ⟨EDn

[
e−

∑p
α=1 SPDE[fα|Xn]

]
⟩0,p =

〈(∫
Ω

e−
∑p

α=1 SΩ[fα|x]dx

)nΩ
(∫

∂Ω

e−
∑p

α=1 S∂Ω[fα|x]dx

)n∂Ω
〉

0,p

(34)

where ⟨...⟩0,p denotes expectation over the p replicated prior distribution, p0(f)over the continuum
measure over Ω with kernel K, where α denotes the index of the replica modes of the system,
in addition to the above we use the fact that the samples are i.i.d. The above object is still hard
to analyze due to the coupling between the replica modes. To make progress, we follow a similar
approach as in Cohen et al. (2021); Malzahn & Opper (2001). We transform into a “grand canonical”
partition function, meaning that we treat the dataset size n as a random variable drawn from a
Poisson distribution which we average over. The idea is that for a large enough data set size, n =
n∂Ω + nΩ, the dominating term in the grand canonical partition function Ḡp is a good estimator of
the entire free energy. Alternatively stated, we compute here the average over all different datasets
of size n where n itself is drawn from a Poisson distribution whose average is n̄. We expect this
average quantity to coincide with averaging using a fixed n = n̄ at large n (see also Ref. Cohen
et al. (2021) for a demonstration of this).

The grand canonical partition function is given by
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Ḡp = En [EDn
[Zp[Xn]]]

= ⟨
∞∑

u1=0

η̄u1

Ω e−η̄Ω

u1!
EDu1

[
e−

∑p
α=1 SΩ[fα|Xu1 ]

] ∞∑
u2=0

η̄u2

∂Ωe
−η̄∂Ω

u2!
EDu2

[
e−

∑p
α=1 S∂Ω[fα|Xu2 ]

]
⟩0,p

= ⟨
∞∑

u1=0

η̄u1

Ω e−η̄Ω

u1!

(∫
Ω

e−
∑p

α=1 SΩ[fα|x]dx

)u1 ∞∑
u2=0

η̄u2

∂Ωe
−η̄∂Ω

u2!

(∫
∂Ω

e−
∑p

α=1 S∂Ω[fα|x]dx

)u2

⟩0,p

=

∫ p∏
β

e
−η̄+η̄ΩEx

[
e−

∑p
α=1 SΩ[fα|x]

]
+η̄∂ΩEx

[
e−

∑p
α=1 S∂Ω[fα|x]

]
p0(fβ)dfβ

=

∫
e−Seff [{fα}p

α=1]

p∏
β

dfβ (35)

where in the third transition, we use the fact all points are chosen to be independent and identi-
cally distributed. With a slight abuse of notation, we take the number of data points in the bulk
nΩ ∼ Pois(η̄Ω), and on the boundary n∂Ω ∼ Pois(η̄∂Ω) as independent Poisson-distributed random
variables. We denote by η̄ = η̄Ω + η̄∂Ω, where η̄Ω and η̄∂Ω, the expectation of the Poisson vari-
ables on the bulk and boundary, are the true deterministic number of points in the bulk and on the
boundary, respectively. The effective action is then defined as:

Seff [{fα}pα=1] = η̄ − η̄Ω

∫
Ω

e−
∑p

α=1 SΩ[fα|x]dx− η̄∂Ω

∫
∂Ω

e−
∑p

α=1 S∂Ω[fα|x]dx

+
1

2

p∑
α=1

∫
Ω

∫
Ω

fα(x)[K
−1](x,y)fα(y)dydx. (36)

Next, Taylor expanding the above exponent, we obtain the following effective action in first-order
for each replica mode α ∈ [1, p]:

Seff [fα] = η̄Ω

∫
Ω

SΩ[fα|x]dx− η̄∂Ω

∫
∂Ω

S∂Ω[fα|x]dx

+
1

2

∫
Ω

∫
Ω

fα(x)[K
−1](x,y)fα(y)dxdy +O(η̄S2

PDE), (37)

where σ2 = σ2
Ω + σ2

∂Ω. Note that, the first-order action decouples the replica modes, which drasti-
cally simplifies the analysis. Since all replicas are now decoupled one can take the replica limit (see
equation 33) and obtain

lim
p→0

∂ log Ḡp

∂p
= lim

p→0

∂ logEn[EDn
[Zp]]

∂p
= lim

p→0

∂ log[En[EDn
[Z]]]p

∂p
= lim

p→0
log Ḡ = log Ḡ,

where Ḡ =
∫
e−Seff[f ]df . We comment that taking second-order corrections in SΩ/∂Ω[fα|x] into

account leads to a tighter prediction Cohen et al. (2021).

Figure 1 shows that the estimated output derived using the first-order action provides a good predic-
tion for a large amount of data. For an analysis of the higher-order terms in the context of regression,
see Cohen et al. (2021). Using variational calculus, this action provides the network’s average pre-
diction at any point x in the domain for a general nonlinear operator. Intuitively, one would expect
that the effective action follows from taking the continuum limit of S[f |Xn]. Yet doing so is subtle,
due to the appearance of separate bulk and boundary measures in the continuum limit and the fact
that the operator K−1 (unlike K) is measure-dependent. More precisely, the inversion operation
depends on the whole measure of points both on the boundary and on the bulk µ(x) meaning that∫
[K]−1(z,x)K(x,y)µ(x)dx = δz,y/µ(y).

In the next section, we apply the calculus of variations to derive the neurally-informed equation
(NIE) for the estimator from the effective action.
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B.2 DERIVATION OF THE NIE USING VARIATIONAL CALCULUS

One could apply variational calculus to derive from the effective action an NIE for a general non-
linear operator. However, since there are infinitely many ways for the operator to be nonlinear (e.g.
L = L(1, f, fx, fxx, .., f

2, fxf, ...)), and this is very much problem dependent. Here we derive the
NIE for a general linear operator, L and discuss a particular non-linear operator below. The operator
L is applied to the scalar function f(x), with x ∈ Rd. The corresponding effective action is

Seff [f ] =
1

2
ηΩ

∫
Ω

(Lf(x)− ϕ(x))
2
dx+

1

2
η∂Ω

∫
∂Ω

(f(x)− g(x))
2
dx

+
1

2

∫
Ω

∫
Ω

f(x)[K−1](x,y)f(y)dydx. (38)

Suppose that f0 is a minimizer, and h : Ω → R is a variation function,

δSeff [f0] =
1

2

d

dϵ
Seff(f0 + ϵh, Lf0 + ϵLh)) |ϵ=0

= ηΩ

∫
Ω

(Lf0(x) + ϵLh(x)− ϕ(x))Lh(x)dx

+ η∂Ω

∫
∂Ω

(f0(x)− ϵh(x)− g(x))h(x)dx

+
1

2

∫
Ω

h(x)

∫
Ω

[K−1](x,y) (f0(y) + ϵh(y)) dxdy

+
1

2

∫
Ω

(f0(x) + ϵh(x))

∫
Ω

[K−1](x,y)]h(y)dydx |ϵ=0

= ηΩ

∫
Ω

dx (Lf0(x)− ϕ(x))Lh(x)

+ η∂Ω

∫
∂Ω

(f0(x)− g(x))h(x)dx

+

∫
Ω

∫
Ω

[K−1](x,y)f0(x)h(y)dydx (39)

Next, we use our freedom to parameterize the variation to simplify the boundary terms. Specifically,
we consider a variation of the form

h(x) = (K ⋆ h̃)(x) =

∫
Ω

K(x,y)h̃(y)dy, (40)

where ⋆ denote the convolution operator on the bulk measure and h̃ : Ω → R. Provided that the
kernel K is invertible, we stress that any variation can be presented in this manner. Substituting into
Eq. equation 44

δSeff [f0] = ηΩ

∫
Ω

∫
Ω

(Lf0(x)− ϕ(x)) [LK](x,y)h̃(y)dydx

+ η∂Ω

∫
Ω

dy

∫
∂Ω

dx(f0(x)− g(x))K(x,y)h̃(y) +

∫
Ω

f0(x)h̃(x)dx. (41)

In the notation, LK, the operator L is defined to act on the first coordinate of the operator K.
Differentiating with respect to h̃ gives

ηΩ

∫
Ω

(Lf0(y)− ϕ(y)) [LK](y,x)dy

+ η∂Ω

∫
∂Ω

(f0(y)− g(y))K(y,x)dy + f0(x) = 0. (42)

We note in passing that the above derivation can also be done for a nonlinear operator, by allowing
the functional derivative to also act on the operator L.
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B.3 NIE FOR NONLINEAR EQUATION - EXAMPLE

Turning to non-linear L, we consider, as a pedagogical example, the Fisher equation for Gene
propagation, given by the following nonlinear equation

∂tf(x) = f(x)(1− f(x)) + ∂xxf(x)

where x = [t, x]. In this case, one can write L[f ] = (∂t − 1 + f − ∂xx)f with ϕ = 0, let us take
also g(x) = 1. The action in this case is then:

Seff [f ] =
1

2
ηΩ

∫
Ω

(L[f ](x))
2
dx+

1

2
η∂Ω

∫
∂Ω

(f(x)− g(x))
2
dx

+
1

2

∫
Ω

∫
Ω

f(x)[K−1](x,y)f(y)dydx. (43)

This yields the variation:

δSeff [f ] =
1

2

d

dϵ
Seff(f + ϵh, ∂tf + ϵ∂th, ∂xxf + ϵ∂xxh)) |ϵ=0

= ηΩ

∫
Ω

(∂tf(x)− f(x) + f2(x)− ∂xxf(x))(∂th(x)− h(x) + 2f(x)h(x)− ∂xxh(x))dx

+ η∂Ω

∫
∂Ω

(f(x)− g(x))h(x)dx

+

∫
Ω

∫
Ω

[K−1](x,y)f(x)h(y)dydx (44)

After re-expressing the variation in terms of the h̃(x) variation (as in equation 40), we obtain that:

δSeff [f ] = ηΩ

∫
Ω

∫
Ω

L[f ](∂tK(x,y)−K(x,y) + 2f(x)K(x,y)− ∂xxK(x,y))h̃(y)dxdy

+ η∂Ω

∫
Ω

dy

∫
∂Ω

dx(f(x)− g(x))K(x,y)h̃(y) +

∫
Ω

f(x)h̃(x)dx, (45)

where, ∂xxK(x,y) is a second partial derivative with respect to the second argument,x, of the first
variable x = [t, x]. Yielding the following NIE

ηΩ

∫
Ω

L[f ](∂z0
K(z,x)−K(z,x) + 2f(z)K(z,y)− ∂z1z1

K(z,x))dz

+ η∂Ω

∫
Ω

dy

∫
∂Ω

(f(y)− g(y))K(y,x) + f(x) = 0. (46)

where z0 (z1) refers to the first (second) component of z being time (space)

C GENERATING SOME NNGP KERNELS

The kernel used in the toy model could be generated using the following random neural network
acting on a one-dimensional input x

f(x) =

C∑
c=1

ac cos(wcx) (47)

with
ac ∼ N(0, σ2

a/C) (48)

wc ∼ N(0, σ2
w)

where we will soon take σ2
w = 1/l2 and σ2

a = 1√
2πl2

. The NNGP kernel is then

K(x, y) ≡ ⟨f(x)f(y)⟩a,w = σ2
a

1√
2πσ2

w

∫
dwe

− w2

2σ2
w cos(wx) cos(wy) (49)

=
σ2
a

2
√
2πσ2

w

∫
dwe

− w2

2σ2
w [eiw(x+y) + eiw(x−y)] =

σ2
a

2
[e−

σ2
w(x+y)2

2 + e−
σ2
w(x−y)2

2 ]
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hence, as mentioned, choosing σ2
w = 1/l2 and σ2

a = 1/
√
2πl2 reproduces the desired NNGP kernel.

This means that training such a neural network with weight decay proportional to l2 on the wc

weights, PINN loss, and using Langevin type training, samples from the GP posterior we used in
our toy example.

D GREEN’S FUNCTION FOR THE TOY MODEL

We first focus on inverting the bulk operator on the l.h.s. (K−1−ηΩδ(x− y)∂2
y), which now derive.

Consider the following set of basis functions for the positive half-interval,

⟨x|k > 0⟩ =
√
2√
π
cos(kx) =

1√
2π

[eikx + e−ikx] (50)

Notably

⟨k|k′⟩ =
∫ ∞

0

dx⟨k|x⟩⟨x|k′⟩ (51)

=

∫ ∞

0

dx
2

π
cos(kx) cos(k′x) =

∫ ∞

−∞
dx

1

π
cos(kx) cos(k′x)

=

∫ ∞

−∞
dx

1

4π
[eikx + e−ikx][eik

′x + e−ik′x] = δ(|k| − |k′|)

Consider K(x, y) on this basis

K|k⟩ =
∫ ∞

0

dyK(x, y)

√
2√
π
cos(ky) =

∫ ∞

−∞
dyK(x, y)

1√
2π

cos(ky) (52)

=

∫ ∞

−∞
dyK(x, y)

1

2
√
2π

[eiky + e−iky] = 2e−(kl)2/2 1√
2π

cos(kx) = e−(kl)2/2|k⟩

Transforming the bulk operator to this “k-space”

⟨k|[K−1 − ηΩ∂
2
x]|k′⟩ = δ(k − k′)

[
e(kl)

2/2 + ηΩk
2
]
. (53)

We thus find the following expression for the Green function which is defined here as [K−1 +
ηΩL

TL]G(x, y) = δ(x− y),

G(x, x′) =
2

π

∫ ∞

0

dkdk′ cos(kx) cos(k′x′)δ(k − k′)
[
e+(kl)2/2 + ηΩk

2
]−1

(54)

=
2

π

∫ +∞

0

dk cos(kx) cos(kx′)
[
e+(kl)2/2 + ηΩk

2
]−1

=
1

π

∫ +∞

−∞
dk cos(kx) cos(kx′)

[
e+(kl)2/2 + ηΩk

2
]−1

=
1

4π

∫ +∞

−∞
dk[eikx + e−ikx][eikx

′
+ e−ikx′

]
[
e+(kl)2/2 + ηΩk

2
]−1

.

This integral can be evaluated numerically or via contour integration. Considering the latter, one
finds an infinite set of simple poles. As |x − x′| grows or for very large ηΩ, we find numerically
that a single pole dominates the result and yields G(x, x′) ≈ κ

2

[
e−κ|x−x′| + e−κ|x+x′|

]
where

κ = 1√
l2/2+ηΩ

for κl ≪ 1. While we believe this approximation can be systematically improved

by accounting for additional poles, in the numerics carried below we simply calculate this integral
numerically.

E DERIVING THE Qn[ϕ, g] FIGURE OF MERIT

Here, we derive the Qn[ϕ, g] figure of merit, which also exposes some hidden algebraic relations
between the GPR formula and the neurally-informed equation.
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First, we note that one can re-rewrite the neurally-informed equation as an operator equation without
performing any integration by parts, namely

∫
Ω

[K−1 + η∂Ωδδ + ηΩL
†L]xyf(y)dy = η∂Ωδ∂Ω(x)g(x) + ηΩL

†ϕ(x) (55)

where δ∂Ω(x) =
∫
∂Ω

δ(x− z)dz, [δδ]xy =
∫
∂Ω

δ(x− z)δ(z− y)dz, and [fL†]x = [Lf ]x, which
is then consistent with

∫
Ω
[L†L]xyf(y)dy =

∫
Ω
L†
xδ(x − y)Lyf(y)dy. Noting that the operator

on the l.h.s. is a sum of positive semi-definite operators and that K−1 is positive definite (indeed K
is generically semi-definite and bounded), we invert the operator on the left-hand side and obtain

f(x) = η∂Ω

∫
∂Ω

[
[K−1 + ηΩL

†L+ η∂Ωδδ]
−1

]
xz

g(z)dz (56)

+ ηΩ

∫
Ω

[
[K−1 + ηΩL

†L+ η∂Ωδδ]
−1

]
xy

[L†ϕ]ydy

where the inverse is taken with respect to the bulk measure. Next, we define the following operator,

K̂xy ≡
[
[K−1 + η∂Ωδδ]

−1
]
xy

(57)

= K(x,y)−
∫
∂Ω

∫
∂Ω

K(x, z1)[K + η−1
∂Ω]

−1(z1, z2)K(z2,y)dz1dz2

where the second transition is since the operator K is assumed invertible, a Woodbury-type manip-
ulation can be applied. Note also that the inverse after the second inequality is w.r.t. the boundary
measure and η∂Ω = n∂Ω/σ

2
∂Ω. If the boundary is a single point, obtaining K̂ is again straightfor-

ward, since the operator inverse becomes just a simple algebraic inverse. Substituting Eq. equa-
tion 57

[K−1 + η∂Ωδδ + ηΩL
†L]−1 = [K̂−1 + ηΩL

†L]−1. (58)

Next, we perform a similar manipulation to the one leading to K̂ namely

[K̂−1 + ηΩL
†L]−1 = K̂[1 + ηΩL

†LK̂]−1 (59)

= K̂ − K̂L†
(
η−1
Ω + LK̂L†

)−1

LK̂

To obtain the result in the main text, we apply the operator L on Eq. equation 56, i.e. Lf . It has two
contributions, we first start with the source term contribution

ηΩL

∫
Ω

[
[K̂−1 + ηΩL

†L]−1
]
xy

[L†ϕ]ydy (60)

= ηΩL

[
K̂ − K̂L†

(
η−1
Ω + LK̂L†

)−1

LK̂

]
L†ϕ

= ηΩ

[
(LK̂L†)− (LK̂L†)

(
η−1
Ω + (LK̂L†)

)−1

(LK̂L†)

]
ϕ

= ηΩ

[
η−1
Ω

(
η−1
Ω + (LK̂L†)

)−1

(LK̂L†)

]
ϕ

=
(
η−1
Ω + (LK̂L†)

)−1

(LK̂L†)ϕ,
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where to simplify the notation in places where there is no indication of position the position is x.
Similarly, the boundary contribution,

η∂ΩL

∫
∂Ω

[
[K̂−1 + ηΩL

†L]−1
]
xz

g(z)dz (61)

= η∂ΩL

[
K̂ − K̂L†

(
η−1
Ω + LK̂L†

)−1

LK̂

]
g

= η∂Ω

[
(LK̂)− (LK̂L†)

(
η−1
Ω + (LK̂L†)

)−1

(LK̂)

]
g

= η∂Ω

[
1− (LK̂L†)

(
η−1
Ω + (LK̂L†)

)−1
]
LK̂g

=
η∂Ω
ηΩ

(
η−1
Ω + (LK̂L†)

)−1

LK̂g

=
η∂Ω
ηΩ

∫
∂Ω

[(
η−1
Ω + (LK̂L†)

)−1

LK̂

]
xz

g(z)dz

Consequently, Lf − ϕ is

Lf(x)− ϕ =

[(
η−1
Ω + (LK̂L†)

)−1

(LK̂L†)− 1

]
ϕ+

η∂Ω
ηΩ

(
η−1
Ω + (LK̂L†)

)−1

LK̂g (62)

= −η−1
Ω

(
η−1
Ω + LK̂L†

)−1

ϕ+
η∂Ω
ηΩ

(
η−1
Ω + (LK̂L†)

)−1

LK̂g

we thus find that η∂ΩLK̂g acts as an additional source term. While it may seem it diverges with
η∂Ω we recall that K̂ goes to zero at this limit for arguments on the boundary, hence its contribution
is finite and the overall η−1

Ω ensures this quantity Lf − ϕ goes to zero. Changing the basis to the
eigenfunction basis of LK̂L† leads to the spectral bias result of the main text.

Last, we note in passing that K̂ as the interpretation of the dataset-averaged posterior covariance,
given that one introduced only boundary points and fixes them to zero Cohen et al. (2021). Thus, as
n∂Ω → ∞, K̂ involving any boundary point, is zero.

From a practical point of view, one can obtain an estimate for K̂ at small, η∂Ω. A straightforward
expansion of this quantity to its leading order is then,

K̂xy = K(x,y)− η∂Ω

∫
∂Ω

K(x, z)K(z,y)dz (63)

− η2∂Ω

∫
∂Ω

K(x, z)K(z, z′)K(z′,y)dzdz′ +O(η3∂Ω)

which can then be evaluated analytically in some cases.
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