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Abstract

Accurately modeling the target-drug complex at atom level presents a significant
challenge in the computer-aided drug design. Traditional methods that rely solely
on rigid transformations often fail to capture the adaptive interactions between
targets and drugs, particularly during substantial conformational changes in targets
upon ligand binding, which becomes especially critical when learning target-drug
interactions in drug design. Accurately modeling these changes is crucial for
understanding target-drug interactions and improving drug efficacy. To address
these challenges, we introduce DynaPhArM, an SE(3)-Equivariant Transformer
model specifically designed to capture adaptive alterations occurring within target-
drug interactions. DynaPhArM utilizes the cooperative scalar-vector representation,
drug-specific embeddings, and a diffusion process to effectively model the evolving
dynamics of interactions between targets and drugs. Furthermore, we integrate
physical information and energetic principles that maintain essential geometric
constraints, such as bond lengths, bond angles, van der Waals forces (vdW), within
a multi-task learning (MTL) framework to enhance accuracy. Experimental results
demonstrate that DynaPhArM achieves state-of-the-art performance with an overall
root mean square deviation (RMSD) of 2.01 A and a sc-RMSD of 0.29 A while
exhibiting higher success rates compared to existing methodologies. Additionally,
DynaPhArM shows promise in enhancing drug specificity, thereby simulating how
targets adapt to various drugs through precise modeling of atomic-level interactions
and conformational flexibility.

1 Introduction

Accurate modeling of the 3D structures of target-drug complexes provides essential insights into the
molecular binding modes and interaction mechanisms between drugs and their target proteins [ 2].
Furthermore, it enhances our understanding of inter-individual variability in drug metabolism and
pharmacodynamic responses. The insights gained from simulating target-drug interactions establish
a robust theoretical foundation for the development of personalized therapeutic strategies, thereby
improving drug selectivity and specificity while minimizing adverse effects [3].
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Traditional methods, such as AutoDock [4], AutoDock Vina [5]], ZDOCK [6] and RDOCK [7]],
often rely on rigid assumptions or static representations of target structures. These approaches fail
to account for adaptive conformational changes. Such conformational alterations are not merely
incidental. They are integral to the binding process, significantly influencing the strength, specificity
and overall efficacy of interactions. Consequently, these methods become inadequate when targets
undergo substantial conformational changes upon binding with various drugs. To address this
challenge, there is a pressing need for more sophisticated modeling techniques that can accommodate
both target flexibility and drug adaptability [8, 9].

Recent advancements have concentrated on the development of adaptable representations for target-
drug complexes. Techniques such as Transformers are increasingly employed due to their capability
to capture long-range dependencies and structural relationships, particularly in the modeling of
target-drug complexes [10]. Approaches like ProteinBERT [11]] and MolTrans [12] underscore
the efficacy of self-attention mechanisms in encoding both target and drug structures. However,
Transformer-based methods face challenges in accurately modeling local target-drug structures and
capturing critical geometric and spatial relationships for the purpose of modeling natural poses.

Furthermore, through message-passing mechanisms, Graph Neural Network (GNN) effectively model
both local and global dependencies, enhancing the representation of local interactions while preserving
a comprehensive view of complex systems [13H15]]. Recent studies have utilized GNN to address
the limitations inherent in Transformers [3} (16, [17]. Nevertheless, GNN may encounter challenges
in capturing long-range dependencies and lack explicit mechanisms for rotational and translational
invariances, which are essential for accurately modeling the adaptive nature of target-drug binding
within three-dimensional space [18-20].

To address these challenges, we propose DynaPhArM, a method specifically designed for drug-
aware target-drug complex modeling. DynaPhArM introduces a specialized encoding module that
captures dual-layer representations of target backbones, side chains and drugs via a cooperative
scalar—vector mechanism. For target backbones, we apply embedding quantization to discretize
representations into informative token spaces. These representations are then integrated using a
physics-constrained interaction module based on cross-attention, modulated by atomic-level docking
scores to capture structurally grounded target—drug interactions. To model the adaptive nature
of binding, we employ a Diffusion Denoising Probabilistic Model (DDPM) to generate latent
joint embeddings that reflect conformational flexibility. Finally, DynaPhArM integrates physical
constraints through a multi-objective loss function designed to balance structure reconstruction and
denoising, promoting physically realistic and informative representations of target—drug complexes.
Experiments demonstrate that DynaPhArM enables more accurate 3D conformation reconstruction
and improves binding affinity prediction performance.

The contributions of this paper are summarized as follows:

* We introduce DynaPhArM, a method that accurately and adaptively models the target-drug
complex using an SE(3)-Transformer framework.

* DynaPhArM captures adaptive joint embeddings of the target-drug complex through the
physics-constrained interaction module and diffusion module, effectively reflecting diverse
conformations during the binding process.

* DynaPhArM enforces physical plausibility of 3D conformations by integrating atomic
interaction constraints into the loss.

2 Related work

2.1 Flexible docking

Early key-lock theory-based docking methods initially assumed rigid target structures [21]], over-
looking the importance of conformational flexibility [22]]. Over time, flexible docking approaches
have emerged to address these limitations by incorporating the conformational flexibility of targets,
drugs, or both during the docking process. As early as the 1960s, advances such as nuclear magnetic
resonance (NMR) spectroscopy [23]] and the first molecular dynamics (MD) simulations [24] began
to reveal the inherent flexibility of proteins and its crucial role in ligand binding. These insights laid
the groundwork for modern flexible docking strategies. FlexPose [20]] is a graph neural network-



based model designed for target-drug structure reconstruction. It employs attention-based blocks to
adaptively update features, allowing for adaptation to complex environments. PackDock [25] is a
two-stage model that integrates conformation selection and induced fit mechanisms, which facilitate
adaptive adjustments of side-chain conformations. FAIR [26] enhances the full-atom coordinates
of both the pocket and drug while adaptively updating residue types, backbone configurations, and
flexible side-chain structures within the target. EDM-Dock [27] utilizes a dynamic graph neural
network to predict distance matrices and variances between target-drug nodes for generating flexible
docking poses.

2.2 Denoising diffusion probabilistic models

DDPM [28] is a generative model that learns to produce samples by progressively reversing a
diffusion process that introduces noise into data, which manages complex data distributions and
generate realistic structural representations positions [29]]. DiffDock-Pocket [30] employs DDPM to
regenerate the translation, rotation, and torsion angles of the drug, along with the torsion angles of
the side chains, effectively simulating the flexible alterations occurring during the binding process.
DiffBindFR [31] conceptualizes structure reconstruction as a joint denoising process involving
four variables in tangent space, thereby generating adaptive binding conformations. SurfDock [32]
enhances initial random pose through denoising via DDPM, which captures complex distributions
and enables the generation of adaptive drug poses within a flexible spatial framework. DynamicBind
[33] utilizes DDPM to optimize conformational changes in both apo targets and drugs, modeling
target flexibility through side-chain torsions and residue movements.

3 Method

We introduce DynaPhArM, a transformer-based diffusion model (illustrated in Figure|l) designed
for drug-specific target-drug complex modeling. The model consists of three principal modules:
representation encoder with a cooperative scalar—vector encoding module (3.1), adaptive joint
embedding generation module (3.2 and loss function integrating physics and geometry constraints
(3.3). The decoder architecture and inference procedure are provided in Appendix [A]and

3.1 Representation encoding module

As shown in Figure [T| DynaPhArM employs representation encoding module (target side-chain
Encodery, target backbone Encoder, and drug Encoderg) composed of two main components:
cooperative scalar-vector representation and target embedding discretization to represent both the drug
and target molecules. Both target and drug are represented as graphs. We utilize hierarchical encoding
for the target by dividing it into the backbone G® = (V*, £%) and the side chain G* = (V*, £%). All
nodes and edges are jointly parameterized by scalar and vector features (as shown in Appendix [C).

Cooperative scalar—vector representation. To overcome the decoupling of scalar and vector
channels in the original SE(3)-Transformer [34], we devise a dynamic bidirectional update mechanism
(Algorithm in Appendix D)) that tightly couples geometric (vector) and semantic (scalar) features. At
each iteration, the passing of the node-node and edge-edge message is enhanced by gated updates: for
each node v;, we compute directional messages h;; from neighbors v; that fuse its scalar descriptor,
edge scalars and a learned encoding of the edge vector; Attention weights «;; then modulate their
aggregation into a residual message m;. The node scalar feature is updated by an multi-layer
perceptron (MLP), while its vector feature undergoes an SE(3)-Equivariant correction via another

MLP. Edge features are likewise refined: spherical harmonics—based geometric embeddings h&°™*"™
augment edge scalars through an edge-MLP, and the edge vector is shifted by a learned function of
its incident node vectors.

Finally, an interaction module executes a scalar—vector inner product at each node to produce a
cross-modal message hjpteract, Which is fed back to both channels, adding squared norms of the other
channel as residual boosts, to enable true bidirectional flow. We apply this cooperative encoding to
the drug graph G¢, as well as the target backbone G® and side-chain G* graphs. After T iterations,
spatially aggregated features (via global average pooling over nodes and edges) are passed through
task-specific MLP to yield three embeddings: the backbone embedding e (global fold topology), the
side-chain embedding e® (local conformational variability), and the drug embedding e?.
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Figure 1: DynaPhArM pipeline outlines key modules for representing and modeling target-drug
complexes. a The overall framework of DynaPhArM. The model encodes target—drug features via
scalar—vector and discretization modules, integrates them with physics-aware attention, and generates
3D structures using a diffusion model under a multi-task loss enforcing structural and physical
consistency. b The cooperative scalar-vector representation module serves to dynamically integrate
geometric and semantic features of targets and drugs. ¢ The discretization module facilitates the
quantization of backbone embeddings into discrete tokens. d The physics-constrained interaction
module is designed to generate embeddings for backbones, side chains, and drugs. e The diffusion
module models adaptive complex structures based on the joint embedding derived from the physics-
constrained interaction module. f The physics and geometry-guided loss function ensures that the
predicted complex structures adhere to physically realistic interaction potentials and geometric
constraints.

Target embedding discretization. After obtaining the enhanced embedding via scalar-vector
cooperation, the target representation is discretized using the pre-trained FoldToken4 codebook
[33]]. This discrete encoding has been shown to more effectively capture recurring structural motifs,
reduce representational variance, and minimize redundancy in the learned embeddings. Using the
inherent regularity of the backbone structures compared to the conformational diversity of the side
chains, we map the continuous geometric embedding e into a discrete semantic space through vector
quantization. Specifically, the high-dimensional continuous representation e is compressed into a
discrete semantic token e:

e! = Tokenize(e’) = arg miré le? — {ei} V1 l2 (D
ci€

by minimizing the Euclidean reconstruction error between the backbone embedding and the codebook
vectors C = {c1, ca, ..., cn}. This discretization mechanism achieves dimension-reduced encoding
of 3D structures while preserving backbone topological features, significantly enhancing storage
efficiency and computational tractability of target representations.



3.2 Adaptive joint embedding generation

In this section, we adopt the physics-constrained interaction module and diffusion module to generate
adaptive joint embedding for the target-drug complex.

Physics-constrained interaction module. To capture the adaptive nature of target—drug interactions
in a drug-specific manner, we incorporate docking-derived interaction priors into the attention
computation. Specifically, we extend the conventional cross-attention formulation by integrating
a physics-constrained interaction matrix that reflects atomic-level docking scores, as shown in
Equation [2}

Vdy,

Here, Q; = eWZ, K; = eVW/, and V; = e*W,Y, where z,y, z € {b, s, d} denote the backbone
(b), side-chain (s), and drug (d) embeddings respectively, depending on the directional pair under
consideration. Let e® € REv*de s ¢ REsXde and e? € RE4*4e be the corresponding input features,
with WZ»Q7 WHE WY € Rdexdk denoting learnable projection matrices. Ly, represents the number of
nodes in the protein backbone. Each node in the backbone graph corresponds to a single residue. L,
represents the number of nodes in the protein side-chain. In our atom-level graph for the side-chain,
each node corresponds to a single heavy atom. d, represents the dimensionality of the node feature
embeddings. It is a hyperparameter that defines the length of the feature vector used to represent each
node, whether it is a residue in the backbone or an atom in the side-chains or the drug. The learnable
scalar ~y; controls the influence of the physical prior on the final attention distribution.

K+ 7S
head; = Softmax <M) Vi 2

The interaction matrix Sij is computed by using Lennard—Jones (LJ) potentials of target—drug
conformation modeled by AutoDock tool. For each directional pair z,y € {b, s, d}, we define
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where 7;; = |[p; — pj| is the Euclidean distance. S;; serves as an interaction-aware prior that

modulates the raw attention logits. By adding y; Sij to Q; K", the model is guided to emphasize
spatially and chemically plausible interaction sites, promoting more meaningful attention across
drug—target pairs. And the LJ parameters are computed via Lorentz—Berthelot rules:

Oij = (0‘1‘ +Uj)/2, €ij = \/EiEj- (@)

where 0, and o; are the L] size (collision-diameter) parameters of atom ¢ and atom j. ¢; and € are
the LJ energy-well depth parameters of atom ¢ and atom j.

To account for the full interaction landscape, we compute attention over six directional combinations:
b — s s = bb—dd-—bs— d andd — s. Each head output has shape RE=>dv,
Concatenating all six directional outputs along the feature dimension yields a tensor of shape
RE=x(6dv) which is then passed through a trainable MLP to project it back into R%=*% to produce
a compact fused embedding e/. By integrating these interaction-aware priors, the model generates
adaptive, drug-specific representations that reflect diverse structural or functional responses across
target environments.

Diffusion module. To model the adaptive nature of protein-ligand binding, we employ a conditional
DDPM to generate a refined latent embedding. This module transforms an initial fused embedding,
e, into a final conformation-aware embedding, €,.fined, Which captures structural flexibility.

The diffusion model consists of a forward process and a reverse process operating on a latent variable
z. The forward process, g, progressively adds Gaussian noise to the ground-truth embedding, e,
over T' timesteps. We define the starting point of this process as zp = ey;:

T
q(z1rl20) = [ [ a(zelzi-1),  where q(zi|2-1) = N(z0;V/1 = Brzi—1, BiT) &)
=1



The reverse process is modeled by a neural network pg that learns to iteratively denoise a noisy
variable z, critically conditioned on the fused embedding e/

T
po(20.7le’) = p(r) Hpe(zt—1|2’t7 el),  where p(z7) = N(27;0,1) (6)
=1

During inference, the refined embedding e, fineq is generated by starting from a noise vector
2z ~ N(0,1) and iteratively applying the learned denoising steps py for t = T',..., 1. The final
output of this process is €y fined = 2o. Conditioning on el at each step ensures that the resulting
embedding accurately reflects the interaction patterns specific to the protein-ligand pair.

3.3 Physics and geometry-guided loss design

To ensure the biophysical plausibility of the generated target-drug conformations, we integrate
fundamental physics and geometric information as constraints to loss function Lppy—geo. The
feasibility of generated structures is enforced through seven geometrically regularization terms:
bond lengths, bond angles, dihedral angles, vdW radius, electrostatic interaction, hydrogen bonding
interaction and 7 — 7 interaction, details of which can be found in Appendix [E] Then, the physics
and geometry-guided loss is the sum of the above seven items:

ﬁphy—geo = Ebond + ﬁangle + £dihedral + EvdW + £electr0 + ['hbond + [-"71'—71' (7)

In addition, we consider the objective of complex modeling task, which focuses on modeling the all-
atom coordinates 7; of the predicted complex derived from the decoder relative to their ground-truth
positions r;, which is defined as:

1M
I po o |12
Estructure - M Z || T T || (8)
i=1
where M represents the number of atomic coordinates in the complex.

Within the embedding space, the noise prediction task is critical for the diffusion-based denoising
process, aiming to minimize the error between predicted €y and true e noise, conditioned on the
corrupted embedding e; and the time step t:

['noise = Et,e[HE - éa(et, t)||2] (9)

The total loss is defined as a weighted sum of three objectives:
Ltotal = Oélﬁnoise + o Estructure + a3£phy—geo (10)

where o, g, and aiz are dynamically adjusted weights that balance the contributions of each task
during training. The detailed adaptive weight adjustment method can be found in Appendix [F

4 Experiments and results

In this section, we comprehensively evaluated DynaPhArM’s performance across multiple bench-
marks (Section .1 in complex structure modeling , binding affinity prediction, cross-docking
assessment (Section .2) and conformational ensemble docking performance in Appendix [G] We
also did a few ablation studies to show the functions of main modules in Section Then, we
conducted the case study to validate the drug-specific binding in Section ff.4]and its ability to capture
target adaptive changes in the drug binding process in Appendix [Hl We finally analyzed the model’s
sensitivity to the physical priors (Appendix [l)).

4.1 Experimental setup

Dataset. We curated a comprehensive dataset of 21,762 high-quality target-drug complexes from
the Protein Data Bank (PDB) and 2,417 validated drugs from DrugBank. Each drug was standardized
and structurally validated. To prevent data leakage and ensure generalizability, complexes were
grouped by 30% sequence identity, with entire clusters assigned to either the training (80%) or
validation (20%) sets, guaranteeing no sequence overlap between subsets. The details of the curated
data and other datasets we used can be found in Appendix [J}



Baselines. We evaluated our model against GNN-based methods (FlexPose [20]], TankBind
[36]), diffusion-based models (PackDock [25]], DynamicBind [33]], DiffDock [2], DiffBindFR [31]],
DiffDock-Pocket [30], SurfDock [32]) and conventional docking tools (Glide [37]], RosettaLigand
[38]] and AutoDock [39]).

Evaluation metrics. The proposed method evaluates both structural and functional performance.
For structural accuracy, we compute the RMSD of the entire target-drug complex (overall RMSD),
the ligand’s 3D coordinates (L-RMSD), and the side-chain conformations (sc-RMSD). Corresponding
success rates are reported as the percentage of cases with RMSD values less than 2 A, including
overall success rate, ligand success rate, and side-chain success rate, which respectively reflect
the reconstruction fidelity of the full complex, the drug molecule, and side-chain positioning. For
functional performance, we assess binding affinity prediction accuracy using the Pearson correlation
coefficient (PCC), root mean square error (RMSE), Spearman correlation coefficient (Spearman) and
mean absolute error (MAE) between predicted and experimental affinities.

4.2 Main results

Complex structure modeling. We evaluated the performance of DynaPhArM on complex structure
modeling and compared it with a range of baseline methods as shown in Table [T} Among all the
methods, DynaPhArM achieved the best overall performance, with the lowest overall RMSD, sc-
RMSD and L-RMSD. Moreover, it demonstrated the highest success rates, achieving 61.60% for
L-RMSD <2 A, 70.50% for sc-RMSD <2 A and 65.30% for overall RMSD <2 A, which highlight
DynaPhArM’s ability to effectively model both global and local structural details of target-drug
complexes. These results demonstrate that DynaPhArM provides significant advantages over existing
methods in modeling accurate and physically plausible target-drug complexes, particularly in cases
requiring adaptive flexibility. The running time in reconstructing task of all of these methods can be
found in Appendix

Table 1: Performance of different methods in reconstructing complex structures within the test set,
evaluated by RMSD (A) and success rate.

Method RMSD ({) Success Rate (1)
Overall Side-chain Ligand OveralRMSD < 2A  sc-RMSD < 2A  L-RMSD < 2 A
Glide [37] 11.20£4.92 9374432  15.01+4.98 18.79% 19.73% 10.31%
RosettaLigand [38] 9.83+4.01 9.19+4.13  19.32+4.84 20.97% 21.02% 8.33%
AutoDock [39] 8.60+4.73  7.05%4.01  13.29+4.56 21.06% 22.80% 12.56%
TankBind [36] 536+3.14  4.48+3.25  14.66%5.08 23.51% 29.10% 11.34%
DiffDock [2]] 3.77+2.85  2.53x1.40  9.73%4.10 35.71% 57.50% 18.00%
DiffDock-Pocket [30]  3.19+1.40 1.274#1.56  6.24+4.22 39.10% 67.20% 25.65%
DynamicBind [33] 3.01+1.88 1.36£0.67  3.25%2.67 38.72% 70.10% 51.77%
DiffBindFR [31] 298+1.38  0.61x0.38  2.73x1.30 50.98% 55.30% 57.22%
SurfDock [32] 2552235  0.55£1.37  4.59%£2.46 58.23% 70.00% 46.16%
PackDock [23] 2524144 0524037  2.80£1.42 56.54% 68.10% 57.89%
FlexPose [20] 244+2.83 0443034  3.48%2.20 60.17% 70.20% 30.24%
DynaPhArM 2.01£1.85  0.29+1.04  2.17+1.45 65.30% 70.50% 61.60%

(1) / (1) denotes higher / lower is better; Top 1 and Top 2 are highlighted with bold and underlined, respectively.

Cross-docking assessment. Cross-docking serves as a stringent, application-oriented benchmark
by placing ligands into non-cognate receptor conformations, thereby probing a docking model’s
ability to generalize beyond crystallographically aligned complexes. In the apo—holo scenario (CDK2,
EGFR, CASF2016-Drug), ligands must navigate collapsed or misaligned binding sites in ligand-free
receptors, demanding that the model infer plausible induced-fit rearrangements of side chains and
backbone to reconstruct binding-competent geometries. The holo—holo setting (DUDE27-HoloEns)
removes the apo bias but introduces geometric mismatch among pockets induced by different
co-crystallized ligands, so success hinges on recognizing invariant physicochemical interaction
patterns across diverse induced-fit landscapes. Finally, the ANN docks into homology-modeled
or unrelated receptor structures plagued by backbone shifts, rotamer errors, and absent waters or
cofactors, imposing extreme structural noise. Traditional rigid-body algorithms falter under these out
of distribution challenges, whereas DynaPhArM—by leveraging an SE(3)-equivariant, cooperative
scalar—vector architecture and a learned joint target-drug embedding, which bridges conformational



Table 2: Performance of different methods on various cross-docking datasets, evaluated by overall
success rate and overall RMSD (A).

Overall Success Rate 1 Overall RMSD |
Method CDK2 EGFR DUDE27- CASF2016- ANN CDK2 EGFR DUDE27- CASF2016- ANN
HoloEns Drug HoloEns Drug

AutoDock [39] 592% 311% 11.37% 18.47% 15.29% 6.12 6.37 6.04 4.37 5.37
Glide [37] 15.17% 9.38% 13.10% 16.32% 13.38% 5.21 6.87 5.72 4.94 4.86
DiffDock [2] 29.83% 33.55% 34.78% 32.72% 21.40% 4.06 5.46 3.17 3.46 4.02
TankBind [36] 45.20% 41.83% 31.69% 20.98% 24.01% 2.17 221 3.14 4.10 3.90
DiffBindFR [31]] 39.45% 41.05% 34.24% 63.02% 54.56% 1.85 2.58 3.28 2.23 243
DiffDock-Pocket [30] 44.28% 30.75% 29.05% 40.81% 30.12% 1.82 5.50 391 3.12 3.11
PackDock [25] 50.64% 28.37% 20.46% 61.13% 42.63% 1.73 4.02 4.56 2.31 2.94
FlexPose [20] 48.56% 33.22% 26.81% 69.24% 36.74% 1.80 3.13 5.13 1.38 3.05
DynaPhArM 56.01% 43.46% 40.52% 70.06% 60.85% 1.75 2.14 2.80 1.05 2.28

(1) / (1) denote that higher/lower is better. Top 1 and Top 2 results are highlighted with bold and underlined, respectively.

Table 3: Performance of different methods in predicting target-drug binding affinity, evaluated by
PCC, RMSE, Spearman, and MAE.

Method PCCT RMSE| Spearman{ MAE]
Kpggp [40] 0.734 1.50 0.725 1.12
ECIFGraph::HM-Holo-Apo [41] 0.781 1.42 0.765 1.08
FlexPose [20] 0.793 1.39 0.780 1.06
Interformer [42] 0.802 1.27 0.790 1.04
ELGN [43] 0.805 1.31 0.795 1.07
GIGN [44]] 0.807 1.34 0.800 1.10
GraphWater-Net [45]] 0.814 1.28 0.810 1.05
DynaPhArM 0.820 1.20 0.815 1.00

(1) / () denotes a higher / lower number is better; Top 1 and Top 2 results are highlighted with bold
and underlined, respectively.

gaps, disentangles ligand- and receptor-specific features, and maintains high accuracy and low RMSD
even in the most distorted scenarios.

Binding affinity prediction. We evaluated DynaPhArM’s performance in the downstream bind-
ing affinity prediction task. Kpggp [40] is based on the Convolutional Neural Network (CNN).
ECIFGraph::HM-Holo-Apo [41] and GraphWater-Net [45] are GNN-based methods. FlexPose [20]]
and Interformer [42] are transformer-based methods. ELGN [43]] and GIGN [44]] are EGNN-based
methods. As shown in Table [3] DynaPhArM achieved the highest PCC of 0.820 and the lowest
RMSE of 1.20, outperforming the second best method by 0.006 and 0.07. This superior performance
validates DynaPhArM’s efficacy not only in modeling and structure prediction but also as a robust
tool for affinity prediction, making it a versatile and powerful model for structure-based drug design.

4.3 Ablation experiments

To evaluate the contributions of key components in our model, we conducted ablation experiments
by systematically removing pre-docking strategy, physical features, cooperative scalar-vector repre-
sentation module, target embedding discretization module, physics-constrained interaction module,
diffusion module and physical constraints, as illustrated in Table E}

Criticality of the pre-docking strategy. The pre-docking strategy initializes drug poses to avoid
local energy minima. Adding a pre-docking strategy modestly improves the drug success rate by 3.
14%, demonstrating that accurate geometric initialization acts synergistically with structural modeling
to preserve global conformational fidelity, preventing pose divergence during refinement.

Importance of physical features. Physical features (e.g., atomic mass, charge) offer intrinsic
molecular descriptors. Removing them caused a notable rise in sc-RMSD from 0.29A to 0.31A and a
decrease in drug success rate by 1.04%, which highlights that explicit physical priors enhance local
structural alignment and enhance atomic-level discriminability.



Effectiveness of the cooperative scalar-vector representation module. The cooperative scalar-
vector representation module is designed to model the structural interdependencies. Removing the
cooperative scalar-vector representation module significantly degraded side-chain prediction accuracy,
increasing RMSD from 0.29A to 2.04A, while the drug success rate dropped by 17.47%, highlighting
the critical importance of this module in maintaining accurate structural predictions.

Role of the target embedding discretization module. Discretization encodes local geometric
details at fine resolution. Its removal resulted in a substantial degradation: the overall RMSD
increased from 2.01A to 3.34A, and the success rate dropped from 61.60% to 41.34%. These results
emphasize that discretized spatial encoding is indispensable for capturing spatial granularity critical
for precise structure generation.

Effect of the physics-constrained interaction module. Physics-constrained interactions impose
inter-molecular force priors. Eliminating this component increased the overall RMSD from 2.01A to

2.11A and reduced drug success rate by 8.69%. This suggests that energy-aware modeling facilitates
spatial compatibility between target and drug, contributing to biologically valid predictions.

Contribution of the diffusion module. Diffusion modeling introduces denoising dynamics to
capture conformation flexibility. Removing it led to severe performance loss, with overall RMSD
increasing by 2.98A and drug success rate dropping by 30.79%. This underlines that the generative
denoising process is fundamental for modeling complex structural distributions in a physically
consistent manner.

Necessity of physical constraints. Physical constraints include seven physical and geometrical
terms to ensure structural plausibility. Adding these constraints significantly mitigates deviations, the
overall RMSD decreases by 0.79A, and overall success rate rises by 14.76%, which demonstrates that
physical constraints prioritize local atomic realism over global sampling, leveraging physicochemical
principles to refine modeling.

Table 4: Experimental results on ablation study, which summarizes the performance of models with
various components (v'/ X), highlighting the impact of each element. a: pre-docking strategy, b: phys-
ical features, c: cooperative scalar-vector representation module, d: target embedding discretization
module, e: physics-based interaction module, f: diffusion module, g: physical constraints.

Components | RMSD | | Success Rate 1
a b ¢ d e f g |Overall Side-chain Ligand | Overall RMSD <2A sc-RMSD <2A  L-RMSD <2A
v Vv Vv v v v v |200A 0294 2174 65.30% 70.50% 61.60%
X v v v v v v |201A 048A 231A 64.17% 69.17% 58.46%
v X v v v v v |20A 031A 273A 64.66% 70.15% 60.56%
vV Vv X v v v v |32A 204A 496A 49.72% 62.01% 44.13%
v VvV Vv X v v v |334A 1.89A  5.13A 47.01% 67.88% 41.34%
VOV Vv v X v v |211A 059A 270A 60.87% 57.45% 52.91%
V VvV Vv v v X v |49A 372A  408A 40.45% 36.67% 30.81%
v v Vv Vv Vv v X |280A 193A  542A 50.54% 66.21% 43.02%
X v X v v v v |453A 365A  381A 41.08% 38.90% 35.27%
vV Vv X v v v X|460A 306A 426A 37.19% 37.12% 30.78%
X v X v v v X|50A 517A  611A 29.23% 25.45% 26.09%

(1) / (J) denotes higher / lower is better. Top 1 and Top 2 results are bold and underlined.

4.4 Case study

We evaluate DynaPhArM through two case studies: drug-specific binding conformations on a shared
target (3APW) using two drugs and reconstruction accuracy compared to baselines (Appendix [H .

Disopyramide is an antiarrhythmic agent used to treat ventricular arrhythmias by stabilizing cardiac
electrical activity [46] and 3APW is an experimentally validated target for this drug. As illustrated
in Figure 2] for Disopyramide binding to the target, DynaPhArM achieved high structural accuracy,
with an overall RMSD of 0.92 A, which underscores its capacity to reconstruct the precise spatial
organization of the complex, including critical molecular interactions governing therapeutic action.
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Figure 2: The case of DynaPhArM on one target 3APW and different drugs. a The 2D representation
of the drug molecule Disopyramide (DP0O). b The 2D representation of the drug molecule Zolpidem
(R5R). ¢, e The experimental in grey and predicted (green target surface and yellow DPO sticks)
structures of complex forming by DPO and 3APW, respectively. d The predicted structure of (green
target surface, yellow R5R sticks and red collision region) complex forming by R5R and 3APW.

In contrast, Zolpidem is a sedative-hypnotic drug used for short-term management of insomnia by
modulating GABA-A receptor activity [47], which is not naturally binded to 3APW. DynaPhArM
accurately predicted structural rearrangements, including side-chain closure around the ligand, which
is a hallmark of specific engagement, demonstrating both structural fidelity and adaptive sensitivity.

5 Conclusion

In this study, we present DynaPhArM, a framework based on SE(3)-Equivariant Transformer designed
to simulate the flexible and adaptive nature of target-drug interactions. DynaPhArM utilizes a
cooperative scalar-vector representation approach and discretazation mechanism that facilitates
efficient and scalable modeling. By integrating adaptive embeddings with a physics-constrained
MTL framework, DynaPhArM guarantees the generation of chemically accurate and physically
plausible 3D structural models of target-drug complexes. DynaPhArM provides deeper insights into
target-drug interactions, enabling the development of more effective and individualized therapeutic
strategies. Extending DynaPhArM to complex, multi-target systems could boost discovery efficiency
and accuracy but risks overfitting, higher validation costs, or biosecurity.
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(c) If the contribution is a new model (e.g., a large language model), then there should
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authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide anonymized code, datasets and detailed instructions in the anony-
mous link https://anonymous.4open.science/r/DynaPhArM-8352 to reproduce the main
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» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
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* While we encourage the release of code and data, we understand that this might not be
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including code, unless this is central to the contribution (e.g., for a new open-source
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* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

¢ The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper provides model hyperparameters, optimizer type, and evaluation
metrics in the Appendix [N]
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» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We report computational resources in Appendix [K]
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* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.
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. Code of ethics
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societal impacts of the work performed?
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11.

12.

Answer: [Yes]

Justification: We discuss potential positive and negative societal impacts in the conclusion
(Section[3).

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The proposed method focuses on structure prediction of protein—drug com-
plexes and does not involve high-risk assets such as generative language models or large-
scale scraped datasets. Therefore, no special safeguards are required.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets used in our experiments are publicly available and used under their
respective licenses. We cite the original sources in the paper and confirm that we comply
with their terms of use.
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13.

14.

15.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We curated and released a novel dataset comprising 21,762 high-quality
target—drug complexes from the PDB and 2,417 validated drugs from DrugBank in Section

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve any crowdsourcing or research with human
participants.

Guidelines:
» The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects
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16.

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The research does not involve human subjects and therefore does not require
IRB approval.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core methods in this research do not involve large language models
(LLMs) as an original or non-standard component. LL.Ms were not used in the modeling,
evaluation, or experimental pipeline.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Decoder architecture

The decoder fqe. is responsible for transforming the final diffusion-denoised fused representation
eo € RV >*4_which jointly encodes physics-aware target-drug interaction semantics—into a physi-

cally plausible 3D structure ' = {#; € R3}X_|, where N denotes the number of nodes (residues and
atoms).

The decoder is implemented as an L-layer SE(3)-Equivariant graph transformer, where each node 7 is

initialized with the latent feature hl(-o) = e(}’i from diffusion and an initial coordinate rﬁo) obtained
via a pre-docking strategy:

RO — W(O)e?f + 5@ (0 _ pinit (11
Ateach layer { = 1,..., L, the decoder performs the following operations:

A.1 Equivariant attention

At each layer /, the decoder refines node-level representations through a self-attention mechanism that
integrates contextual information across the target—drug interaction embedding. Specifically, each

node 7 with scalar feature hy*l) € R? computes attention weights over its neighbors by projecting

its embedding into a query vector:

where Wg) € R%¥4 is a learnable projection matrix at layer £.

Similarly, all other nodes j are projected into key and value vectors:
KO =n"wd ) v =pwl (13)

where Wz(f ), W‘(f ) € RY%4 are the key and value projection matrices, respectively.

The attention weight between node ¢ and node j is computed via scaled dot-product attention:
(e
R NN

©

(14)

where d is the hidden dimension and a;;
when updating node .

defines the normalized attention score assigned to node j

Using these weights, node 7 aggregates contextual information from all neighbors:

RO — Z OV, (15)

where fzgé) represents the aggregated semantic message from the neighborhood of <.

Finally, the new node representation is updated using a residual connection followed by layer
normalization:

hgz) LayerNorm (h(e Dy Bgz)), (16)

)

where h; "’ is the refined embedding at layer /.

A.2 Message passing

To incorporate distance-aware relational information into node-level reasoning, we employ a message
passing mechanism that explicitly encodes pairwise Euclidean distances into high-dimensional edge
features. At each layer ¢, for each node pair (i, 7), we first compute their spatial distance based on
current coordinates:
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di ™ = Y =Y, (17)

(€-1)
ij

where rngl) € R3 is the coordinate of node i at layer { — 1, and d

distance between nodes ¢ and j.

The scalar distance dgli*l) is then passed through a radial basis function (RBF) expansion to obtain a
smooth, high-dimensional representation:

or(dij) = exp (—Br(dij — m)?), k=1,...,K, (18)

where p;, and Sy are the center and bandwidth of the k-th Gaussian kernel, respectively. The output
{ér(di;) }_, is a K-dimensional vector encoding the relative spatial proximity between nodes i and

7.

denotes the Euclidean

Finally, we compute the edge-wise message m{? by integrating both node-level semantic information

and the geometric encoding: N
mg = ém (hy), B, {m(dij)}iil) : (19)

where hge) € R?and h!" € R are the current scalar embeddings of nodes ¢ and j, and ¢, (-) denotes
a learnable MLP that fuses semantic and geometric inputs into a unified message representation.

A.3 Coordinate update

To refine the atomic coordinates in an SE(3)-Equivariant manner, we apply a direction-aware coordi-

nate update based on the message m'9 computed in For each node pair (i, j), a scalar weight

ij
wz(f) is first predicted via a learnable neural function:

¢ ¢
wy) = O (m), (20)
where 1(9) () is an MLP that maps the message mg) into a scalar attention score that modulates the
geometric influence of node j on node .

Next, the coordinate displacement for node ¢ is computed by aggregating normalized directional
vectors weighted by wgf):

(=1) _ (¢=1)

r
Ar) = o i '3 21

T ZJ: w ra— 1)

where rge_l) € R? and rlg-e_l) € R3 are the coordinates of nodes i and j at layer £ — 1, and d;; is their

Euclidean distance as previously defined. The term (r; — r;)/d;; is the unit direction vector pointing
from j to ¢, ensuring the update direction is geometrically meaningful and rotation-equivariant.

Finally, the coordinates of node 7 are updated via residual addition:

r =70 L AP, (22)

7

producing refined coordinates T’,EZ) at layer /. The additive update formulation allows gradual

correction of initial positions while preserving SE(3) equivariance, as the entire update depends only
on relative positions and scalar weights.

A.4 Final prediction
After L layers of equivariant updates, each node ¢ is associated with a refined coordinate T,EL) € R3.

To ensure that the final predicted structure is invariant to global translations, we subtract the centroid
of all node positions before output:

N
) 1 .
o= 3o O= (23)

Jj=1
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where N denotes the number of nodes, and #; € R is the final translation-normalized coordinate of
node 7. The term % Z;Y:I rJ(-L) represents the centroid of the entire structure at the final layer, and its
subtraction centers the predicted coordinates around the origin.

This normalization step guarantees that the predicted structure C remains invariant under global
translations of the input coordinate frame, preserving the SE(3)-Equivariant property of the overall
architecture.

A.5 Multi-Objective loss and physical geometry constraints

The coordinate predictions C are supervised under a multi-objective loss function that enforces
physical plausibility, which can be found in[3.3]

B Inference algorithm

Algorithm 1 Structure Refinement via Diffusion and Geometric Constraints

1: Input: Target structure P, drug SMILES S

2: Qutput: Predicted binding pose C (3D coordinates)

3: Convert S to 3D drug structure D via RDKit

4: Generate initial pose Cyy by docking P and D with AutoDock
5: Build backbone graph G, side-chain graph G* from P
6
7
8

: Build drug graph G from D
. e’ + Encoderpackbone (G°)
: e < Encodergug (GP)
9: e° < Encodergige—chain (G°)
10: €' < Tokenize(e?)
11: ef < PhysicsAttention(e!, ed)
12: e < Linear(ef)
13: Sample a pure noise vector: zp ~ A(0, 1)
14: for t =T down to 1 do
15: &g < DenoisingNet,(z, ¢, es) {Conditioned on e}

160 21 \/% (zt — %ég)
17: end for

18: Erefined < 20
19: C <« Decoder(€éye fined)

C Graph feature construction

Both target and drug are represented as graphs. We utilize hierarchical encoding for the target by
dividing it into the backbone G” = (V?, £%) and the side chain G* = (V*, £%). All nodes and edges
are jointly parameterized by scalar and vector features. For target, the backbone graph encodes
the global structural scaffold, preserving its rigid tertiary folding through continuous peptide bond
connectivity. For each node, scalar features include amino acid type, residue ID from the sequence,
hydrophobicity and secondary structure, while vector features incorporate geometric information
including Cartesian coordinates of the C,, atom, two dihedral angles and four direction vectors. Foe
each edge, scalar edge features include Euclidean distance between two adjacent residues and bond
type. Vector edge features include the direction vector of two adjacent residues. Meanwhile, the
side-chain graph G* = (V*, £¢) of target captures localized chemical environments at binding sites,
representing rotatable bonds and functional group orientations critical for molecular recognition.
Scalar features include atom type, atom number, B-factor, functional groups type, implicit valence
electrons, aromaticity, electrostatic charge and hybridization state, while vector features include the
atom coordinates and five dihedral angles, which are represented by their sine and cosine values.
Scalar edge features are same as the backbone. The atomic graph G* = (V*, £9) explicitly models
conformationally flexible side-chain atoms (e.g., x -angle rotations in tyrosine residues), focusing
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on their spatial rearrangements during drug binding [31]. Additionally, the atomic graph G¢ is also
represented by physical and chemical properties and geometric features, such as element type, partial
charge, hybridization state, chirality, aromaticity, atomic mass.

D

Cooperative scalar-vector representation algorithm

Algorithm 2 Scalar-Vector Feature Interaction with SE(3)-Equivariant Update

1: Input:
2:  Node scalar features fy.,1, (v;), vector features fyecor(v;) for all v; € V
3:  Edge scalar features fiaar(€;5), vector features fuecior(€5) forall e;; € €
4: OUtPUt: Updated fscalar('Ui)s fvector(vi)’ fscalar(eij)a fvector(eij)
5: Initialize iteration ¢ <— 0, maximum iterations 7'
6: repeat
7:  for each node v; € V do
8: for each neighbor v; € N (v;) do
9: r;; < fveclor(vj) - fvector(vi)
10: 0i;, ¢i; < SphericalCoordinates(r;;)
11 hij — Concat(fscalar(vi)7 fscalar(eij )7 MLP (fveclor(eij )))
12: QG5 < Softmax (Wirh” + bl)
13: end for
14: m; < 3 i (o) @i - N
15: fscalar (vz) — MLPnode (fscalar(vi)v mz)
16: fveclor(vi) — fvector(vi) + MLPvec(mi)
17:  end for
18:  for each edge ¢;; € £ do
19: ST S S Wi N P (cos 0;5)e ™55
20: fscalar(eij) < MLPedge (fscalar(eij)a hg;omemc)
21: fveclor(eij ) — fvector(eij) + MLPvec—edge (fvector(vi ) s fvector(vj ))
22:  end for
23:  Interaction Module:
24:  for each node v; € V do
25: Binteract MLP(fscalar(Uz‘)) : fvector(vi)
26: fscalar(vi) — fscalar(vi) + vaector(vi)H%
27: fveclor(vi) — fvector(vi) + hingeract - ||fscalar(vi) HQ
28:  end for
29: t—t+1
30: untilt > T
E Detailed formulation of geometry and physical loss functions

Bond lengths penalize deviations from reference covalent bond distances (1.0-2.5 A):

where B denotes the set of bonded atom pairs, and d

2
v — rjlle — dif
Loona = Y (;refj

(i.5)eB I

ij

(24)

ref are experimentally derived bond lengths.

Bond angle consistency maintains directional geometry by constraining angles (102°-120°) between

CO

nsecutive bonds:

2
Langle = Z <Cos1 < (ri —x;) - (rs —1;) > - r'e%)
angle —
: s —xjllallrr —xlla ) 7

(i,5,k)€A

24
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where A represents valid bond angle triplets.

To preserve the higher-order structural stability of the molecule, dihedral angle consistency constrains
the torsional rotation between four sequentially bonded atoms, capturing the flexibility of the target
and drug conformation:

2

Lahearat = »_ (i, k,1) € D (¢Eﬁdl - ;rjulgl) (26)
where D denotes the set of dihedral angle quadruplets, ¢5§fl is the predicted dihedral angle formed
by atoms 4, j, k, and [, and (bff,il represents the true torsional angle.

Steric exclusion enforcement prevents atomic overlaps using vdW radius thresholds:

2
[:de = ZRBLU (Tide_ || r;, — 1"]‘ HQ) (27)
i<j
where 722W is the sum of atomic vdW radii.

ij
To account for long-range Coulombic effects in the target-drug complex, we introduce a dipole—dipole
interaction term based on the leading order of multipole expansion. This term enforces electrostatic
plausibility by penalizing deviations from physically consistent dipole alignments:

PPN N 2
Lawaro = Y (i) € P (p” 2y = BT 1)) ) )> (8)

Ir; — ;13
where P denotes all relevant dipole—dipole pairs, p; and p; are the atomic dipole moments, and T

is the unit vector from atom ¢ to atom j.

Hydrogen bonding geometry is regularized to reflect canonical interaction patterns, enforcing appro-
priate donor—acceptor distances and angles between participating atoms:

Livona = > [ReLU(|rd —ra| = 3.2)2 + ReLU(2.5 — |rg — ra))?
(d,h,a)EH

+ ReLU(120 — 6)? + ReLU(6 — 180)* (29)
where H is the set of donor-hydrogen—acceptor triplets, 74 and r, are the coordinates of the donor

and acceptor respectively. 6 is the angle between the donor, hydrogen and acceptor atoms.

m— stacking geometry is regularized to promote favorable aromatic ring interactions by enforcing
appropriate inter-centroid distances and planarity constraints between participating rings:

Longo= 3 [ReLU(d,;j — 5.0)2 + ReLU(3.5 — d;;)2 + ReLU (|| — 30°)2}
(¢,7) Emm pairs 30)

+ReLU(|Az;;| — 3.5)°

2
nn . n
Loroation = 1— 2 ) ReLU(d;; — 3.5 31
Z( ||n,:|||nj||> eLU(d;; —8.5) GD
(4,9)
£7r77r = »Cmr—geo + ﬁmr—align (32)

where 7 — 7 pairs is pairs of aromatic systems involved in m — 7 interactions. d;; and 6;; are the
distance and angle between the centroids of the i-th and j-th 7 — 7 systems respectively. Az;; is the
lateral displacement between the centers of the m — 7 systems. n; and n; are normal vectors to the
planes of the i-th and j-th 7 — 7 systems.
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F Adaptive weight adjustment

In MTL frameworks, the design of loss weightings critically influences how the model balances its
optimization trajectory across competing objectives. In our model, the total training loss comprises
three core components: the structural 108 Lgycrure, the diffusion denoising loss Lyise, and the physics
and geometry-guided 10ss Lphy-geo, jointly supervising the complex modeling.

Traditionally, scalar weights are statically assigned to each loss component. However, such static
weighting cannot adapt to the non-stationary nature of training. Different tasks may converge
at different rates or present varying levels of difficulty throughout training. Improper weighting
may result in biased gradient updates, overfitting to easier tasks, or neglecting harder ones. To
overcome this, we introduce a dynamically adaptive inverse proportional weighting strategy based on
instantaneous loss magnitudes.

F.1 Theoretical motivation

From a theoretical point of view, our strategy can be interpreted under a Min-Max loss balancing
framework. Specifically, we seek to minimize the largest normalized task loss at each training step,
formulated as:

;
max () (33)
i€{s,d,p} \ @;

where ¢; denotes the instantaneous scalar loss,c; represents the corresponding adaptive weights.

Under our inverse proportional weighting rule, this ratio is approximately constant across all loss
terms:

2 ZE (Zk 1/41@) = const. (34)

This normalization implies that the optimizer perceives all tasks as having equal scaled difficulty,
thus promoting fairness in multi-objective convergence and avoiding task imbalance.

F.2 Formulation of Inverse Proportional Normalization

At each training step ¢, we observe the instantaneous (i.e., per-batch) losses:

t t
‘C’gtr)ucture = ts, E =L, [’I(Dh)y—geo = €p~ (35)
where /5, {4, ¢, € R are the current magnitudes of the structure, diffusion, and physical geometry
losses, respectively.

diffusion —

We then define the adaptive weights using the inverse proportional rule:
1/¢;

2 jets,dpy Ui

This ensures that the sum of weights satisfies > . o; = 1, while favoring tasks with smaller loss

magnitudes by reducing their weight, and increasing the weight on larger-loss terms that need more
attention.

o = for each i € {s,d, p} (36)

The final total loss is as follows:
L0 =gl +ag-la+ap -l (37)

total

where each term is adaptively scaled to counteract imbalance across sub-tasks.

F.3 Empirical Results
We evaluate the impact of adaptive weighting in Table [5] comparing fixed scalar weights to our

adaptive strategy. Notably, the adaptive scheme achieves the best performance across all evaluation
metrics, demonstrating superior capability in fine-grained structure modeling.
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Table 5: Experimental results on different weight adjustment strategies of the loss function. a: the
weight of the structure term. b: the weight of the diffusion term. c: the weight of the physical and
geometry term.

Weight | RMSD | | Success Rate 1
a b c ‘ Overall Side-chain ‘ Drug <2A  Overall <2A
1.0 1.0 1.0 2.22A 1.04A 49.13% 51.32%
0.5 1.0 1.5 2.43A 1.65A 45.27% 49.48%

dynamic dynamic dynamic | 2.01A 0.29A 61.60% 65.30%
(1) / () denote higher / lower is better. Top 1 results are bold.

G Conformational ensemble docking performance

The heatmap in Figure [3] further emphasizes the consistency of DynaPhArM across structurally
heterogeneous targets. The L-RMSD distributions across the DUDE27 benchmark illuminate core
mechanistic divergences in how docking methods address receptor flexibility, conformational selec-
tion, and induced-fit coupling. DynaPhArM achieves the lowest L-RMSD in 18 out of 27 targets.
By leveraging physics-constrained optimization, DynaPhArM resolves steric conflicts and captures
long-range coupling, which is critical for targets with substantial loop or helix remodeling, such
as BRAF (2.70 A), where DFG-out to DFG-in transitions are necessary for accurate binding pose
prediction.

In contrast, rigid-receptor docking methods like AutoDock and Glide systematically underperform
on conformationally adaptive proteins. For example, in EGFR, the kinase C-helix undergoes a
pronounced shift upon ligand engagement, a transition not accounted for by static scoring protocols,
resulting in a marked deviation (AutoDock: 6.36 A vs. DynaPhArM: 3.02 A). These methods are
intrinsically limited by their reliance on a single, often non-native, receptor conformation. TankBind
demonstrates reasonable performance when structural homologs are available but degrade significantly
on divergent folds or allosteric pockets (e.g., GRIA2: 10.33 A), highlighting their dependency on
prior alignment and conformational priors. While DiffDock demonstrates strong performance when
docking to protein conformations that closely resemble those encountered during training, its ability
to generalize deteriorates in extrapolative scenarios involving rare or unseen structural variations.
This limitation is exemplified by the MET target, where DiffDock achieves a relatively high L-
RMSD of 7.91 A. The underlying issue stems from the model’s reliance on implicit geometric
representations learned from training data, which tend to favor commonly observed backbone and
side-chain configurations. As a result, DiffDock often fails to accurately model rare but functionally
important conformational states, such as the loop opening events observed in MET, due to insufficient
exposure to such structural diversity during training. Hybrid approaches such as DiffBindFR, which
integrate learned priors with restrained physics-based refinement, show moderate success in flexible
regions (e.g., CDK2: 2.71 A) but are still limited in sites requiring long-range conformational
propagation, such as TGFR1 (3.61 A), where allosteric activation involves distal loop dynamics and
solvation effects. Fragment-based flexible methods like FlexPose capture local side-chain and loop
adjustments (THRB: 3.49 A), but are insufficient for large-scale domain or backbone reorganization.

H Case study on reconstructing accuracy

The study of Aceclofenac binding to the 6Y3C target structure carries important real-world implica-
tions for anti-inflammatory drug design. Aceclofenac is a widely used nonsteroidal anti-inflammatory
drug [48], and 6Y3C corresponds to the crystal structure of cyclooxygenase-2 (COX-2), a crucial
enzyme involved in prostaglandin synthesis and inflammation. Given the clinical relevance of COX-2
selectivity in minimizing gastrointestinal side effects while preserving therapeutic efficacy, accurate
modeling of the binding interaction between Aceclofenac and 6Y3C is of paramount pharmaceutical
interest. What makes this case particularly meaningful is due to the intricate nature of their binding
mechanism, which presents significant challenges for structure reconstruction and pose prediction.
Aceclofenac binds to COX-2 through a combination of hydrogen bonding, m— stacking, and hy-

27



AutoDock Glid DiffDock TankBind DiffBindFR  DiffDock-Pocket  PackDock FlexPose DynaPhArM

Figure 3: Performance of different methods in reconstructing complex structures within the DUDE27
test set, evaluated by L-RMSD.

drophobic interactions within a highly adaptive and conformationally flexible active site. The induced
fit nature of COX-2, characterized by local rearrangements of the side chains (particularly in the
hydrophobic channel and the T380, L.384 and V423 residues), often leads to substantial deviations
between the apo and holo states. These conformational changes, coupled with the drug’s non-rigid
scaffold and multiple rotatable bonds, introduce a high degree of uncertainty into conventional
docking methods. By using this system, we aim to highlight our model’s ability to capture such
nuanced drug-induced conformational adaptations and accurately reconstruct the binding pose in a
physically plausible manner, thus demonstrating its superior capacity to handle real-world flexible
docking scenarios.

As shown ind] DynaPhArM achieves the lowest L-RMSD and the best reconstruction performance
comparing to the other methods. According to b in[d} the drug engages in a complex network of
interactions with several key residues, including T380, M367, H422, V423, Q179, and L384, which
collectively orchestrate the formation of a well-defined binding pocket, characterized not merely by
static complementarity but by conformational plasticity, especially within the receptor’s side-chain
architectures. DynaPhArM demonstrates a profound understanding of this induced-fit paradigm by
accurately capturing the side-chain reorganization necessary for stable drug accommodation. In
particular, DynaPhArM predicts a significant conformational shift in V423, which subtly reorients
to alleviate steric hindrance and permit favorable van der Waals and hydrophobic contacts with
Aceclofenac’s chlorophenyl and phenylacetic moieties.

In contrast, FlexPose, despite achieving a comparable RMSD, fails to resolve a critical steric clash
between V423 and the drug, which highlights the limitations of RMSD as a sole metric, as FlexPose’s
predicted pose superficially resembles the native binding mode but lacks the microscopic interaction
fidelity required for biological plausibility. The clash at V423 indicates FlexPose’s insufficient
modeling of side-chain entropy compensation.

Traditional metrics such as RMSD provide a coarse assessment of geometric alignment, they often
obscure deeper deficiencies in interaction fidelity and physical plausibility. The above analysis reveals
that accurately capturing side-chain flexibility and resolving steric conflicts—particularly at key
residues like V423, which is essential for modeling biologically valid binding poses. DynaPhArM’s
superior performance stems not merely from pose prediction accuracy, but from its ability to model
the energetic and structural consequences of induced fit at atomic resolution, which enables it to
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discriminate between superficially correct and mechanistically correct solutions—a capability critical
for drug design applications where small structural inaccuracies can lead to large functional errors.

DynaPhArM FlexPose
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Figure 4: The case of different methods on the reconstructing the structure of the complex which
is consist of the drug Aceclofenac and the target 6Y3C from PDB. a, d-f The comparative figures
illustrating DynaPhArM, DiffBindFR, Glide and AutoDock predicted structure (cyon target cartoon,
pink drug sticks) alongside the experimental structure in grey from PDB, respectively. b The detailed
illustration of a, which shows the key residues (purple) in the binding pocket and the interaction forces
between key residues and drugs in dashed lines. ¢ The comparative figures illustrating FlexPose
(the second best method) predicted structure (cyon target cartoon, pink drug sticks) alongside the
experimental structure in grey from PDB, which also identified key residues in purple.

I Sensitivity Analysis of Priors

To evaluate the model’s robustness to potential inaccuracies in priors, we conducted a sensitivity
analysis on the pre-computed LJ matrix. To measure the degradation in model performance, we
added Gaussian noise with an increasing standard deviation (Noise Level) to the LJ matrix, with
results summarized in Table

Table 6: Sensitivity analysis of the model to noise in the LJ prior. Performance is evaluated across
different noise levels added to the LJ matrix.

Noise Level Overall RMSD (A) | Side-chain RMSD (A) | Ligand Success Rate (<2A) T

0.0 2.01 0.29 61.60%
1.0 2.07 0.38 58.10%
2.0 2.10 0.49 54.20%
5.0 221 0.55 53.17%
No Prior 2.11 0.59 52.91%

At low noise levels, performance changed very little, as the model’s learned data-driven patterns and
the adaptive y; effectively compensated for minor inaccuracies.

At very high noise levels, the prior became actively misleading. The performance degraded, but it did
not collapse entirely. The performance plateaued at a level comparable to that of the model trained
without any prior, demonstrating that the model could learn to effectively ignore a completely useless
prior.
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In conclusion, the model is not overly sensitive to errors in the AutoDock-generated LJ potential and
can effectively mitigate its impact.

J Details of Datasets

We have performed a detailed analysis of our full learnable dataset. The results summarized in Table
[7l confirm that the dataset is sufficiently large and diverse to support the learning of generalized
principles of protein-ligand interaction.

Table 7: Statistics of our curated dataset.

Category Metric Value

. Total Complexes 21,762

Overall Dataset Size Unique Protein Targets 3,673
Mean Unique Ligands per Target 6.57
Median Unique Ligands per Target 3.0
Ligand Diversity Targets with > 5 Unique Ligands 917
Targets with > 10 Unique Ligands 444
Targets with > 20 Unique Ligands 200

Targets with > 5 Co-crystal Structures 609
Structural Diversity Targets with > 10 Co-crystal Structures 318
Targets with > 20 Co-crystal Structures 148

HYDROLASE 16.6%

TRANSFERASE 16.0%

Protein Family Diversity HYDROLASE/INHIBITOR 10.3%
TRANSFERASE/INHIBITOR 10.1%

TRANSCRIPTION 3.6%

In our evaluation of DynaPhArM’s performance on the cross docking task, we compared it with a
variety of baseline methods using several benchmark datasets, including CDK2, EGFR, DUDE27-
HoloEns, Astex Non-Native (ANN), and CASF2016-Drug. The CDK?2 and EGFR datasets are
curated collections of high-resolution, inhibitor-bound protein—ligand complexes from the PDB
[49]. The CDK2 set includes 11,317 Cyclin-Dependent Kinase 2 complexes, emphasizing ATP-
competitive interactions in both rigid and flexible kinase active sites. EGFR comprises 67 wild-
type and mutant kinase-inhibitor pairs, challenging algorithms to accommodate subtle shifts in the
activation loop and aC-helix. The DUDE27-HoloEns dataset [50] is a curated ensemble-docking
benchmark comprising 27 DUD-E targets for which multiple holo structures have been experimentally
determined. Each target’s ensemble includes all available high-resolution co-crystal complexes,
yielding 268 pairs of complexes. The ANN dataset [S1]] comprises 65 protein—ligand systems, each
represented by a native holo complex and one or more non-native receptor conformations into which
the cognate ligand is re-docked. Designed specifically for cross-docking, it challenges algorithms to
recover the correct binding pose despite backbone and side-chain rearrangements not present in the
ligand’s original crystal structure, thereby gauging a method’s robustness to receptor conformational
variability. The CASF2016-Drug dataset is a refined subset of the widely used CASF2016 benchmark
[52]], focusing exclusively on drug-like ligands and their corresponding protein targets, and the
original CASF2016 dataset comprises 65 distinct targets and 195 unique ligands. The curated subset
emphasizes biologically and pharmacologically meaningful interactions, providing a more targeted
benchmark for evaluating models in drug—target cross docking and structure-based virtual screening.
The PoseBusters (PB) dataset [53] and toolkit form a comprehensive benchmark suite specifically
designed to evaluate the structural plausibility and physical validity of protein—ligand complex models,
which includes 428 high-quality crystal structures of protein—ligand complexes. By highlighting
not only how close a predicted pose is, but also whether it makes chemical and physical sense. The
detailed results on PB dataset can be found in Appendix
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K Time consuming in reconstructing task

Our proposed method, DynaPhArM, achieves the fastest average reconstruction time (2.39 s per
complex on an NVIDIA RTX 4090) by virtue of an integrated, end-to-end adaptive embedding
framework that collapses what are traditionally multiple, disjointed pipeline stages into a single
monolithic operator. Our approach fuses every stage from SMILES to 3D conversion and coarse
docking to graph construction, encoding, quantization, multi-modal fusion, diffusion denoising,
and coordinate regression into a single, zero-copy GPU pipeline. By embedding drug conformer
generation and rough docking directly in GPU memory, we eliminate file I/O and CPU-GPU handoffs.
A unified CUDA kernel then builds backbone, side-chain, and drug graphs in parallel, computing
all scalar and vector features without repeated memory allocations or host transfers. We pack GNN
inference, codebook distance computation, and embedding quantization into the same kernel launch
on the fly—removing intermediate tensor copies. Cross-modal multi-head attention merges target and
drug embeddings, which immediately flow into our diffusion noise/denoise network in one continuous
stream. Finally, coordinate regression decodes the denoised embeddings in-place, avoiding reshape
operations and extra kernel calls and eliminating redundant data transformations and minimizing
CPU-GPU synchronization overhead.

In contrast, many existing approaches fragment the reconstruction task into discrete modules, each
incurring its own latency. PackDock’s exhaustive conformational sampling spawns a combinatorial
explosion of rotamer states requiring successive scoring rounds, SurfDock’s fine-grained surface
tessellation enforces sequential mesh generation and probe-based mapping, and TankBind’s dual-
attention cross-correlation between ligand voxels and receptor grids introduces non-trivial dependency
chains that stifle intra-kernel parallelism. DiffDock and DynamicBind, while streamlined for infer-
ence, nevertheless traverse multiple graph and volume-based passes, each demanding separate tensor
allocations and synchronization barriers. FlexPose augments sampling agility with flexible-backbone
energy minimization, but each iteration triggers a back propagation like recalculation of forces and
gradients.

When DynaPhArM is deployed on the RTX 4090, it sustains throughput exceeding 1500 complexes
per hour, opening new avenues for large-scale drug discovery campaigns. Its capacity to deliver sub-3-
second reconstructions at near-experimental accuracy makes it particularly attractive for applications
such as: (1) Ultra large virtual library screening, where millions of candidate compounds must be
evaluated for plausible binding conformations; (2)Lead optimization loops, enabling rapid in silico
iteration over substitution patterns and conformation-activity relationships; (3) Drug repurposing
efforts, where existing pharmacopeia can be exhaustively reassessed against emerging targets with
minimal computational investment; (4) Fragment-based drug discovery, facilitating real-time scoring
of fragment assemblies during interactive fragment linking.

In sum, by harmonizing algorithmic depth with GPU-native efficiency, DynaPhArM promises to
transform the computational throughput frontier, making true real-time, large-scale ligand screening
not only feasible but routine.

L Structural rationality verification

L.1 Evaluation metrics

Te PB success rate reflects the proportion of predicted complexes that meet key biophysical and
geometric criteria evaluated by the PB toolkit, including steric clashes, bond geometry, hydrogen
bonding, and conformational strain energy, thereby excluding physically implausible poses.

L.2 Experiments results

As shwon in Figure[6] on PB dataset, traditional rigid-receptor dockers such as Glide, RosettaLigand,
and AutoDock occupy the lower end of the spectrum, with overall success rates in the 25-35%
range and PB success rates scarcely above 30%. TankBind’s learned binding-site attention makes its
performance achieve nearly 40% on PB dataset, yet it still suffers under the rigorous clash and contact
checks imposed by PB toolkit. The DiffDock family marks a turning point: vanilla DiffDock climbs to
45% overall but only 38% PB success rate, whereas its pocket-aware variant breaches 50% overall and
45% PB success rate by conditioning on pre-identified cavities. DynamicBind and DiffBindFR further
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Figure 5: Speed comparison between DynaPhArM and other baselines.

refine pocket flexibility modeling and non-equilibrium binding pathways, respectively achieving
48-52% overall and 43-50% PB success rate. Surface-guided methods (SurfDock, PackDock)
average 45% PB success rate by incorporating receptor surface complementarity, while FlexPose’s
hybrid sampling and filtering tactics push above 50% overall but still fall short under PB strict physical
and geometric filters. DynaPhArM emerges at the 52% overall and 50% PB success rate), validating
the power of combining generative diffusion with rigorous physics-informed penalties. The main
reasons are in its diffusion-based generative core tightly coupled with differentiable geometry and
physics constraints. The traditional rigid docking only jumps between a few discrete conformations,
making it easy to fall into the trap of just getting stuck in the pocket or atomic collision. The diffusion
process is a continuous and smooth random walk in a high-dimensional coordinate space, with each
small step iteration allowing the system to explore feasible surrounding areas and correct minor
collisions or geometric deviations layer by layer. During each reverse-diffusion denoising step, the
model explores a continuous manifold of drug poses, guided not only by statistical priors learned
from known complexes but also by softly enforced vdW, hydrogen-bond, and geometric consistency
losses. DynaPhArM naturally avoids steric clashes and spurious contacts, steering the generative
trajectory toward low-energy, physically plausible basins. As a result, it attains high reconstruction
fidelity, precisely recapitulating native drug coordinates. This synergy between generative flexibility
and physics-constrained regularization ensures DynaPhArM’s poses consistently pass PB rigorous
physical and geometric sanity checks.

M Limitations

Despite the promising results demonstrated by our proposed method, several limitations remain that
warrant further investigation:

M.1 Dependency on accurate structural inputs

Our model requires high-quality target protein structural inputs to effectively capture spatial and
physical interactions. In real-world applications where target structures are predicted or noisy, the
model’s performance may degrade. Incorporating uncertainty-aware structural encodings or learning
from sequence-only inputs could be potential extensions.

M.2 Computational overhead of diffusion module

The diffusion denoising process introduces non-trivial computational complexity, especially during
training. Although it enhances flexibility and robustness, this trade-off may limit scalability in
high-throughput screening scenarios. Future work may explore more efficient generative backbones
or lightweight denoising strategies.
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Figure 6: Performance of different methods in reconstructing complex structures within the Pose-
Busters test set, evaluated by overall and PB success rate.

M.3 Assumption of homogeneous task importance

While the adaptive weighting strategy dynamically balances learning signals, it assumes that all
tasks are equally valuable in the normalized loss space. In practice, certain objectives (e.g., physics
geometry-guided constraints) might be more critical for downstream performance. Incorporating
task-priority priors or uncertainty-aware weighting schemes may offer finer control.

N Experiment setting

The optimization of the model’s parameters is performed using the Adam algorithm, as implemented
in the PyTorch library. The optimizer is applied to the learnable parameters of several distinct
architectural components, including the side-chain feature projector, the drug feature projector,
the physics-based interaction module, the denoiser network within the diffusion module, and the
SE(3)-equivariant graph transformer decoder. Adam computes individual adaptive learning rates
for each parameter by utilizing estimates of the first and second moments of the gradients, which is
particularly advantageous for a multifaceted model architecture such as the one employed, which
integrates diverse modules requiring potentially different learning dynamics. The training process
is initiated with a learning rate of 1 x 10~%, while the 31, 32, and € hyperparameters of the Adam
optimizer are maintained at their default PyTorch values of 0.9, 0.999, and 1 x 10~8, respectively.
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Table 8: Key hyperparameters used in the proposed model, covering embedding dimensions, interac-
tion modules, diffusion and decoder configuration, physical constraints, and inference setup.

Name Value Description
D_E 128 Embedding dimension for backbone,
side-chain, and drug features
D_K_INTERACTION 128 Key/Query/Value dimension
D _PRIME_INTERACTION 256 Output dimension of the
physics-based interaction module,
input to diffusion
MLP_HIDDEN_INTERACTION 512 Hidden dimension for MLP in the
interaction module
N_ATTN_HEADS_INTERACTION 4 Number of attention heads
NUM_TRAIN_TIMESTEPS_DIFFUSION 1000 Total timesteps for the diffusion
process during training
DENOISER_HIDDEN_DIFFUSION 512 Hidden dimension for the denoiser
model
NUM_DECODER_LAYERS 6 Number of decoder layers
D _HIDDEN_ATTN_DECODER 128 Hidden dimension for attention in
decoder
D_RBF_DECODER 32 Number of RBF kernels in decoder
D_MESSAGE_DECODER 128 Message dimension in decoder
D_MLP_HIDDEN_PHI M_DECODER 256 Hidden dim. for MLP in message
generation
D_MLP_HIDDEN_PSI_DECODER 64 Hidden dim. for MLP in coordinate
update
LEARNING_RATE le-4 Learning rate
BATCH_SIZE 64 Batch size
NUM_EPOCHS 50 Number of epochs
REFINE_START T _ INFERENCE 200 Start timestep for denoising
refinement
NUM_DENOISING_STEPS_INFERENCE 50 Steps in inference denoising loop
min_dist 0.0 Minimum distance for RBF
max_dist 20.0 Maximum distance for RBF
d_a_dist_max 3.2 Max donor—acceptor distance
(H-bond)
d_a_dist_min 2.5 Min donor-acceptor distance
(H-bond)
SIZE X /SIZE_ Y /SIZE_Z 25 Grid size in each spatial direction
NUM_MODES 3 Number of binding modes to generate
beta_start le-4 Start of noise schedule
beta_end 0.02 End of noise schedule
dropout_rate 0.1 Dropout rate
RMSD_THRESHOLD 20A Threshold for success (RMSD)
angle_min_deg 120 Minimum bond angle (H-bond)
angle_max_deg 180 Maximum bond angle (H-bond)
multiprocessing.num_workers 64 Number of worker processes for
parallel tasks
multiprocessing.chunk_size 10 Chunk size for multiprocessing pool
operations
drug_preparation.charge_model gasteiger Charge model used for ligand
preparation
dataset_split.cd_hit_identity 0.9 Sequence identity threshold for
CD-HIT clustering
dataset_split.validation_set_ratio 0.2 Proportion of data for the validation
set
dataset_split.random_seed 42 Random seed for data splitting
backbone_encoder_params.num_layers 4 Number of layers in the backbone
encoder
backbone_encoder_params.l_max_sh 2 Max degree for spherical harmonics
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