
OPT2024: 16th Annual Workshop on Optimization for Machine Learning

Hierarchical Simplicity Bias of Neural Networks

Zhehang Du DUZ@WHARTON.UPENN.EDU

The Wharton School, University of Pennsylvania

Abstract
Neural networks often exhibit simplicity bias, favoring simpler features over more complex ones,
even when both are equally predictive. We introduce a novel method called imbalanced label cou-
pling to explore and extend this simplicity bias across multiple hierarchical levels. Our approach
demonstrates that trained networks sequentially consider features of increasing complexity based
on their correlation with labels in the training set, regardless of their actual predictive power. For
example, in CIFAR-10, simple spurious features can cause misclassifications where most cats are
predicted as dogs and most trucks as automobiles. We empirically show that last-layer retrain-
ing with target data distribution [18] is insufficient to fully recover core features when spurious
features perfectly correlate with target labels in our synthetic datasets. Our findings deepen the
understanding of the implicit biases inherent in neural networks.

1. Introduction

Neural networks (NNs) have demonstrated remarkable capabilities in learning and generalizing
from data, even in over-parameterized settings, a phenomenon known as double descent [29]. De-
spite their adeptness, neural networks can exhibit vulnerability when faced with real-world chal-
lenges like distribution shifts [13] and adversarial attacks [25, 41]. One underlying reason for these
vulnerabilities is the simplicity bias [17, 31, 37, 43], where gradient descent tends to favor learning
simple, strongly correlated features over more complex but robust ones. This preference for sim-
plicity might seem reasonable, as this inductive bias naturally reflects the properties of real-world
data and leads to generalization [42]. However, it can lead to models that struggle when subjected
to distributional shifts and adversarial attacks.

Background. Simplicity bias is the tendency of neural networks to learn simple functions, poten-
tially ignoring more complex but equally or more predictive features [37, 43]. This phenomenon is
illustrated in the work by Shah et al. [37], where neural networks were shown to preferentially learn
from simpler, more salient features at the expense of more complex but equally predictive ones. For
example, in their MNIST-CIFAR dataset, images in class −1 are concatenations of MNIST digit
zero and CIFAR-10 automobiles, while images in class 1 are concatenations of MNIST digit one
and CIFAR-10 trucks. It turns out that the trained network only depends on the MNIST digit for
classification. Another example is found in shortcut learning [8], where the neural network focuses
on object location rather than object type.

Motivation. Understanding how neural networks learn in the presence of spurious features is
critical, especially when these features introduce false associations with target labels, degrading
model performance [34]. Previous studies have focused on mitigating these vulnerabilities, but the
hierarchical nature of simplicity bias across multiple feature complexities remains underexplored.

© Z. Du.

HIERARCHICAL SIMPLICITY BIAS OF NEURAL NETWORKS

Contributions. In this study, we introduce imbalanced label coupling to extend the concept of
simplicity bias to multiple hierarchical levels. Our key contributions are: (a) We demonstrate that
neural networks exhibit a hierarchical simplicity bias, making predictions by sequentially consid-
ering features of increasing complexity, akin to decision trees. (b) We provide empirical evidence
using synthetic datasets designed to highlight hierarchical decision-making based on feature com-
plexity. (c) We show that last-layer retraining with target data distribution [18] is insufficient to fully
recover core features when spurious features perfectly correlate with target labels, highlighting lim-
itations in addressing hierarchical simplicity bias.

2. Formulation of Hierarchical Simplicity Bias

Notation. We formally define the notations used in our formulation: x = (xs,xc) represents
the input data, where xs denotes simple features (e.g., MNIST digits or patches), and xc denotes
complex features (e.g., CIFAR-10 images). The symbol y ∈ Y indicates the true label associated
with x, while ŷ ∈ Y represents the predicted label by the neural network. The function f : Xs ×
Xc → Y is the neural network’s prediction function. Furthermore, Yxs ⊆ Y specifies the subset of
labels associated with the simple feature xs due to imbalanced label coupling.

2.1. Hierarchical Decision Process

We introduce an idealized hierarchical decision process where neural networks perform predictions
akin to a decision tree, sequentially considering features of increasing complexity.

Training: Imbalanced Label Coupling. We construct the training set by coupling classes from
two different datasets in an imbalanced manner. For each class from the coarse dataset (e.g., MNIST
digits), we concatenate it with multiple classes from the fine dataset (e.g., CIFAR-10 images) to
create training examples. The labels are assigned solely based on the fine dataset, while the coarse
dataset introduces spurious correlations.

Depending on which dataset serves as the fine dataset, we consider two scenarios. In Scenario
A, the fine dataset corresponds to the complex features xc, and the labels are assigned based on xc.
The simple features xs (from the coarse dataset) introduce spurious correlations. The true label y
is determined by the complex features xc, i.e., y = y(xc). Likewise, in scenario B, the fine dataset
is simple features. For example, in scenario A, if MNIST digit 1 is paired with CIFAR-10 classes
automobile and cat, then any image containing digit 1 can be labeled as either automobile or cat
based on the CIFAR-10 image it is paired with.

Testing: Hierarchical Decision Process. The test set is created by concatenating the image chan-
nels from all selected classes in each dataset, without any coupling constraints. During testing,
the neural network’s prediction ŷ follows a hierarchical decision process:

• Scenario A: The coarse features xs are correlated with subsets of labels. For each value of
xs, there is an associated subset Yxs ⊆ Y . The prediction function is:

ŷ = f(xs,xc) = fxs(xc) = argmax
y′∈Yxs

p(y′ | xc), (1)

where fxs denotes the decision function conditioned on xs, mapping xc to a label within Yxs .
First, the network uses the coarse features to narrow down the possible labels to a subset.
Then, within this subset, the network uses the fine features to predict the final label ŷ.

2

HIERARCHICAL SIMPLICITY BIAS OF NEURAL NETWORKS

• Scenario B: The labels are assigned based on the simple features xs, which are fully predic-
tive. Due to simplicity bias, the network only depends on the simple features xs for prediction.
The prediction function then simplifies to:

ŷ = f(xs) = argmax
y′∈Y

p(y′ | xs). (2)

In both scenarios, the decision-making prioritizes simple features, i.e., making decisions ac-
cording to the ascending complexity of features.

2.2. Quantitative Measures of Hierarchical Simplicity Bias

Given that neural networks trained with gradient descent by empirical risk minimization may not
perfectly align with the hierarchical prediction, we introduce quantitative measures to more accu-
rately capture the hierarchical simplicity bias observed in the confusion matrix. We define separate
measures for each scenario to account for the differences in how the hierarchical simplicity bias
manifests.

• Scenario A. For each true label y and associated simple feature xs, we define the Hierarchi-
cal Classification Accuracy (HCA) as:

HCA(y) =
Accuracy within Yxs − Chance Accuracy

1− Chance Accuracy
, (3)

where Accuracy within Yxs is defined as:

Accuracy within Yxs =
argmaxy′∈Yxs

CMy′,y

Ny
. (4)

CMy′,y is the count of predictions being y′ for samples with true label y, Ny is the total num-
ber of samples with true label y, and Chance Accuracy is the accuracy that would be achieved
by random guessing within the subset Yxs , given by Chance Accuracy = |Yxs |

−1, where
|Yxs | is the number of labels in the subset Yxs . This formulation of Accuracy within Yxs

captures the maximum accuracy achieved by the most frequently predicted label within Yxs

for samples with true label y. By comparing this accuracy to the chance level, we assess
whether the network’s performance exceeds what would be expected by random guessing
within the subset.

Then, We compute the Average Hierarchical Classification Accuracy (AHCA) over all true
labels:

AHCA =
1

|Y|
∑
y∈Y

HCA(y). (5)

• Scenario B. In this scenario, the labels are assigned based on the simple features xs, which
are fully predictive of the true labels. The complex features xc introduce spurious correlations
but should not influence the network’s predictions due to simplicity bias. To confirm that the
network relies solely on xs, we define the Prediction Consistency Score (PCS) as:

PCS =
1

|Y|
∑
y∈Y

CMy,y

Ny
. (6)

3

HIERARCHICAL SIMPLICITY BIAS OF NEURAL NETWORKS

A high AHCA indicates that the network consistently uses the complex features xc to make
accurate predictions within each group defined by xs. A high PCS indicates that the network’s
predictions are accurate and consistent with the true labels determined by xs, suggesting that xc

does not adversely affect the network’s decision-making process. To make the experiment more
interpretable, we present both measures (AHCA and PCS) for each scenario in the experiments. This
approach ensures that the roles of complex features and simple features can not be interchanged,
thereby accurately capturing the hierarchical simplicity bias in different experimental setups.

3. Experiment

3.1. Experiment Setup

Building blocks. We utilize three primary datasets to construct our synthetic datasets: (1) Patch:
Four types of deterministic patches, each featuring a white corner with the remaining area in black
(Figure 1). The patch data is deterministic. (2) MNIST [22]. (3) CIFAR-10 [20].

0 1 2 3

Figure 1: The patch data types.

Synthetic Datasets. We create four training datasets by combining the building blocks using im-
balanced label coupling, as shown in Figure 2. Details of the experimental setup, including data
preprocessing and model configurations, are provided in Appendix B.

MNIST CIFAR

0: 1+automobile

label

1: 1+cat

2: 2+dog

3: 2+truck

CIFAR MNIST

0: automobile+1

label

1: automobile+2

2: dog+7

3: dog+9

Patch MNIST

0: upper-left+1

label

1: upper-left+2

2: lower-right+7

3: lower-right+9

MNIST Patch

0: 1+upper-left

label

1: 1+upper-right

2: 2+lower-left

3: 2+lower-right

Figure 2: Illustration of four datasets. From left to right: (a) MNIST-CIFAR, (b) CIFAR-MNIST,
(c) Patch-MNIST, (d) MNIST-Patch.

3.2. Results and Discussion

In the MNIST-CIFAR dataset shown in Figure 2(a), we combine two datasets: CIFAR-10 images
and MNIST digits. Here, CIFAR-10 images (xc) represent the complex features (fine dataset),
while MNIST digits (xs) represent the simple features (coarse dataset). Each MNIST digit is
linked to a specific subset of CIFAR-10 labels; for example, the digit 1 corresponds to Yxs =

4

HIERARCHICAL SIMPLICITY BIAS OF NEURAL NETWORKS

{automobile, cat}. As shown in Figure 3, the trained neural network exhibits a hierarchical decision-
making process akin to a decision tree. Initially, the network uses the simple MNIST digit (xs) to
narrow down the possible labels to a subset. Then, within this subset, it uses the complex CIFAR-10
image (xc) for fine-grained classification.

{automobile, cat, dog, truck}digit 1, 99.73% digit 2, 99.83%{automobile, cat}

automobile, 98.30%

{dog, truck}

automobile

cat

cat

automobile

cat, 98.60%

truck dog

dog truck

dog, 99.00%

truck, 90.90%

automobile, 97.20% dog, 98.70%

cat, 93.60% truck, 98.30%

Figure 3: The inferred decision tree from the neural network trained on the MNIST-CIFAR dataset.
The boxes contain the network’s predictions, while the arrows indicate the path taken
based on the input features. The percentages show the proportion of samples following
each path. For example, among all samples with MNIST digit 1, approximately 99.73%
are predicted to be either automobile or cat. Within this group, 99.00% of samples where
the CIFAR-10 image is a dog are misclassified as cat.

Notably, when misclassifications occur, they are not random but instead exhibit patterns that
reflect the retained predictive power of the complex features. For instance, many images of auto-
mobiles are misclassified as trucks, and cats are misclassified as dogs. These specific errors suggest
that the network is leveraging semantic similarities among CIFAR-10 classes within the subsets
determined by the MNIST digits.

To quantitatively assess the hierarchical simplicity bias, we calculate the Average Hierarchi-
cal Classification Accuracy (AHCA) and Prediction Consistency Score (PCS) for each dataset, as
shown in Table 4(a). Recall that AHCA measures the network’s ability to use complex features
within groups defined by simple features, while PCS measures the reliance on simple features when
they are fully predictive.

Dataset AHCA PCS

MNIST-CIFAR 93.65 49.35
CIFAR-MNIST 0.93 99.24
Patch-MNIST 78.05 49.96
MNIST-Patch 0.00 100.00

Model Standard Semantic

Spurious 49.24 96.83
DFR 68.12 97.55

Baseline 87.75 98.30

Figure 4: (a) Left: AHCA and PCS (%) for four different datasets. (b) Right: Performance com-
parison of three models: Spurious (trained on the MNIST-CIFAR dataset), DFR (the
Spurious model after DFR), and Baseline (trained on CIFAR-10 images).

In scenarios where labels are based on complex features (e.g., MNIST-CIFAR and Patch-MNIST),
the high AHCA values indicate that networks effectively utilize complex features for classification
within the groups defined by simple features. Conversely, in scenarios where labels are based on
simple features (e.g., CIFAR-MNIST and MNIST-Patch), the high PCS values and low AHCA val-

5

HIERARCHICAL SIMPLICITY BIAS OF NEURAL NETWORKS

ues illustrate that networks predominantly depend on simple features and largely ignore complex
features. More detailed experiment results are in Appendix C.

Building on our observations of hierarchical simplicity bias, we investigate whether existing
methods can mitigate the impact of spurious correlations in such hierarchical settings.

3.3. Last-Layer Retraining Is Insufficient for Strong Spurious Correlations

Kirichenko et al. [18] introduced Deep Feature Reweighting (DFR), a method aimed at improving
model robustness against spurious correlations by retraining the last layer using data from the target
distribution. We apply DFR to our MNIST-CIFAR dataset (Figure 2(a)) to assess its effectiveness
in our hierarchical setting. In this dataset, classes 0 and 3 correspond to vehicles (automobile and
truck), and classes 1 and 2 correspond to animals (dog and cat). We define a semantically correct
prediction as correctly classifying a vehicle as a vehicle or an animal as an animal, regardless of the
specific class label. It allows us to evaluate whether the network retains an understanding of core
features at a higher level of abstraction. The results are presented in Table 4(b).

Although DFR improves the standard accuracy from 49.24% to 68.12%, it does not achieve
the baseline accuracy of 87.75%, suggesting that DFR alone may not fully address the challenges
posed by perfectly correlated spurious features. This limitation indicates that some core feature
information may not be adequately captured in the final-layer representations, possibly due to loss
of information in intermediate layers when spurious features are very strong.

Interestingly, the high semantic accuracies suggest that the neural network retains an under-
standing of core features at a higher level of abstraction. For the Spurious model, the semantic
accuracy is 96.83%, which is very close to the baseline model’s 98.30%. This indicates that despite
the influence of spurious features on fine-grained class distinctions, the network is still capable of
distinguishing between broader categories such as vehicles and animals. This observation under-
scores the hierarchical nature of the network’s decision-making process, where it can process and
retain information at multiple levels of complexity. It also highlights the importance of evaluating
model performance across different levels of abstraction to gain deeper insights into neural network
behavior beyond overall accuracy metrics.

4. Conclusion and Future Work

Conclusion. We introduced imbalanced label coupling to extend simplicity bias to multiple hier-
archical levels, demonstrating that neural networks exhibit a hierarchical simplicity bias. Our exper-
iments with synthetic datasets show that networks prioritize features based on ascending complexity
correlated with labels, mirroring a decision tree’s behavior. Moreover, we found that last-layer re-
training is insufficient to recover core features when spurious correlations are perfect, indicating that
core feature information may be lost in intermediate layers. Our study provides insights into how
neural networks prioritize features of varying complexities, contributing to a deeper understanding
of implicit bias and aiding the development of more robust machine learning systems.

Limitations and Future Work. The extreme hierarchical relationships observed in our study
may not be easily observable in practice, as our research is based on synthetic datasets designed
to highlight certain behaviors in a controlled setting. Future work could extend these findings to
real-world situations, establish a theoretical framework for hierarchical simplicity bias, and propose
strategies to mitigate adverse effects of this bias.

6

HIERARCHICAL SIMPLICITY BIAS OF NEURAL NETWORKS

References

[1] Michael A Alcorn, Qi Li, Zhitao Gong, Chengfei Wang, Long Mai, Wei-Shinn Ku, and Anh
Nguyen. Strike (with) a pose: Neural networks are easily fooled by strange poses of familiar
objects. In Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
tion, pages 4845–4854, 2019.

[2] Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk mini-
mization. arXiv preprint arXiv:1907.02893, 2019.

[3] Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep matrix
factorization. Advances in Neural Information Processing Systems, 32, 2019.

[4] Aharon Ben-Tal, Dick Den Hertog, Anja De Waegenaere, Bertrand Melenberg, and Gijs Ren-
nen. Robust solutions of optimization problems affected by uncertain probabilities. Manage-
ment Science, 59(2):341–357, 2013.

[5] Yuan Cao, Zhiying Fang, Yue Wu, Ding-Xuan Zhou, and Quanquan Gu. Towards understand-
ing the spectral bias of deep learning. arXiv preprint arXiv:1912.01198, 2019.

[6] Elliot Creager, Jörn-Henrik Jacobsen, and Richard Zemel. Environment inference for invariant
learning. In International Conference on Machine Learning, pages 2189–2200. PMLR, 2021.

[7] Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A Wichmann,
and Wieland Brendel. Imagenet-trained cnns are biased towards texture; increasing shape bias
improves accuracy and robustness. arXiv preprint arXiv:1811.12231, 2018.

[8] Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel,
Matthias Bethge, and Felix A Wichmann. Shortcut learning in deep neural networks. Nature
Machine Intelligence, 2(11):665–673, 2020.

[9] Suriya Gunasekar, Blake E Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and Nati
Srebro. Implicit regularization in matrix factorization. Advances in neural information pro-
cessing systems, 30, 2017.

[10] Suriya Gunasekar, Jason D Lee, Daniel Soudry, and Nati Srebro. Implicit bias of gradient
descent on linear convolutional networks. Advances in neural information processing systems,
31, 2018.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pages 770–778, 2016.

[12] Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. arXiv preprint arXiv:1903.12261, 2019.

[13] Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo,
Rahul Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A
critical analysis of out-of-distribution generalization. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 8340–8349, 2021.

7

HIERARCHICAL SIMPLICITY BIAS OF NEURAL NETWORKS

[14] Katherine Hermann and Andrew Lampinen. What shapes feature representations? exploring
datasets, architectures, and training. Advances in Neural Information Processing Systems, 33:
9995–10006, 2020.

[15] Weihua Hu, Gang Niu, Issei Sato, and Masashi Sugiyama. Does distributionally robust su-
pervised learning give robust classifiers? In International Conference on Machine Learning,
pages 2029–2037. PMLR, 2018.

[16] Minyoung Huh, Hossein Mobahi, Richard Zhang, Brian Cheung, Pulkit Agrawal, and Phillip
Isola. The low-rank simplicity bias in deep networks. arXiv preprint arXiv:2103.10427, 2021.

[17] Dimitris Kalimeris, Gal Kaplun, Preetum Nakkiran, Benjamin Edelman, Tristan Yang, Boaz
Barak, and Haofeng Zhang. Sgd on neural networks learns functions of increasing complexity.
Advances in neural information processing systems, 32, 2019.

[18] Polina Kirichenko, Pavel Izmailov, and Andrew Gordon Wilson. Last layer re-training is
sufficient for robustness to spurious correlations. arXiv preprint arXiv:2204.02937, 2022.

[19] Masanori Koyama and Shoichiro Yamaguchi. Out-of-distribution generalization with maximal
invariant predictor. 2020.

[20] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[21] Daniel Kunin, Atsushi Yamamura, Chao Ma, and Surya Ganguli. The asymmetric maximum
margin bias of quasi-homogeneous neural networks. arXiv preprint arXiv:2210.03820, 2022.

[22] Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. ATT Labs
[Online], 2, 2010. URL http://yann.lecun.com/exdb/mnist.

[23] Evan Z Liu, Behzad Haghgoo, Annie S Chen, Aditi Raghunathan, Pang Wei Koh, Shiori
Sagawa, Percy Liang, and Chelsea Finn. Just train twice: Improving group robustness without
training group information. In International Conference on Machine Learning, pages 6781–
6792. PMLR, 2021.

[24] Kaifeng Lyu, Zhiyuan Li, Runzhe Wang, and Sanjeev Arora. Gradient descent on two-layer
nets: Margin maximization and simplicity bias. Advances in Neural Information Processing
Systems, 34:12978–12991, 2021.

[25] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian
Vladu. Towards deep learning models resistant to adversarial attacks. arXiv preprint
arXiv:1706.06083, 2017.

[26] Mazda Moayeri, Phillip Pope, Yogesh Balaji, and Soheil Feizi. A comprehensive study of
image classification model sensitivity to foregrounds, backgrounds, and visual attributes. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
19087–19097, 2022.

[27] Depen Morwani, Jatin Batra, Prateek Jain, and Praneeth Netrapalli. Simplicity bias in 1-hidden
layer neural networks. arXiv preprint arXiv:2302.00457, 2023.

8

http://yann.lecun.com/exdb/mnist

HIERARCHICAL SIMPLICITY BIAS OF NEURAL NETWORKS

[28] Mor Shpigel Nacson, Jason Lee, Suriya Gunasekar, Pedro Henrique Pamplona Savarese,
Nathan Srebro, and Daniel Soudry. Convergence of gradient descent on separable data. In
The 22nd International Conference on Artificial Intelligence and Statistics, pages 3420–3428.
PMLR, 2019.

[29] Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever.
Deep double descent: Where bigger models and more data hurt. Journal of Statistical Me-
chanics: Theory and Experiment, 2021(12):124003, 2021.

[30] Junhyun Nam, Hyuntak Cha, Sungsoo Ahn, Jaeho Lee, and Jinwoo Shin. Learning from fail-
ure: De-biasing classifier from biased classifier. Advances in Neural Information Processing
Systems, 33:20673–20684, 2020.

[31] Mohammad Pezeshki, Oumar Kaba, Yoshua Bengio, Aaron C Courville, Doina Precup, and
Guillaume Lajoie. Gradient starvation: A learning proclivity in neural networks. Advances in
Neural Information Processing Systems, 34:1256–1272, 2021.

[32] Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht,
Yoshua Bengio, and Aaron Courville. On the spectral bias of neural networks. In International
Conference on Machine Learning, pages 5301–5310. PMLR, 2019.

[33] Elan Rosenfeld, Pradeep Ravikumar, and Andrej Risteski. Domain-adjusted regression or:
Erm may already learn features sufficient for out-of-distribution generalization. arXiv preprint
arXiv:2202.06856, 2022.

[34] Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally
robust neural networks for group shifts: On the importance of regularization for worst-case
generalization. arXiv preprint arXiv:1911.08731, 2019.

[35] Shiori Sagawa, Aditi Raghunathan, Pang Wei Koh, and Percy Liang. An investigation of
why overparameterization exacerbates spurious correlations. In International Conference on
Machine Learning, pages 8346–8356. PMLR, 2020.

[36] Luca Scimeca, Seong Joon Oh, Sanghyuk Chun, Michael Poli, and Sangdoo Yun. Which
shortcut cues will dnns choose? a study from the parameter-space perspective. arXiv preprint
arXiv:2110.03095, 2021.

[37] Harshay Shah, Kaustav Tamuly, Aditi Raghunathan, Prateek Jain, and Praneeth Netrapalli.
The pitfalls of simplicity bias in neural networks. Advances in Neural Information Processing
Systems, 33:9573–9585, 2020.

[38] Sahil Singla and Soheil Feizi. Salient imagenet: How to discover spurious features in deep
learning? arXiv preprint arXiv:2110.04301, 2021.

[39] Sahil Singla, Besmira Nushi, Shital Shah, Ece Kamar, and Eric Horvitz. Understanding fail-
ures of deep networks via robust feature extraction. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages 12853–12862, 2021.

9

HIERARCHICAL SIMPLICITY BIAS OF NEURAL NETWORKS

[40] Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The
implicit bias of gradient descent on separable data. The Journal of Machine Learning Re-
search, 19(1):2822–2878, 2018.

[41] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian
Goodfellow, and Rob Fergus. Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199, 2013.

[42] Damien Teney, Ehsan Abbasnejad, Simon Lucey, and Anton Van den Hengel. Evading the
simplicity bias: Training a diverse set of models discovers solutions with superior ood gener-
alization. In Proceedings of the IEEE/CVF conference on computer vision and pattern recog-
nition, pages 16761–16772, 2022.

[43] Guillermo Valle-Perez, Chico Q Camargo, and Ard A Louis. Deep learning generalizes
because the parameter-function map is biased towards simple functions. arXiv preprint
arXiv:1805.08522, 2018.

[44] Huaxiu Yao, Yu Wang, Sai Li, Linjun Zhang, Weixin Liang, James Zou, and Chelsea Finn. Im-
proving out-of-distribution robustness via selective augmentation. In International Conference
on Machine Learning, pages 25407–25437. PMLR, 2022.

[45] Haotian Ye, James Zou, and Linjun Zhang. Freeze then train: Towards provable representa-
tion learning under spurious correlations and feature noise. In International Conference on
Artificial Intelligence and Statistics, pages 8968–8990. PMLR, 2023.

[46] Jingzhao Zhang, Aditya Menon, Andreas Veit, Srinadh Bhojanapalli, Sanjiv Kumar, and Su-
vrit Sra. Coping with label shift via distributionally robust optimisation. arXiv preprint
arXiv:2010.12230, 2020.

[47] Michael Zhang, Nimit S Sohoni, Hongyang R Zhang, Chelsea Finn, and Christopher Ré.
Correct-n-contrast: A contrastive approach for improving robustness to spurious correlations.
arXiv preprint arXiv:2203.01517, 2022.

10

HIERARCHICAL SIMPLICITY BIAS OF NEURAL NETWORKS

Appendix A. Related Work

Simplicity bias. Kalimeris et al. [17] show that stochastic gradient descent learns functions of
increasing complexity. Gunasekar et al. [10], Kunin et al. [21], Lyu et al. [24], Nacson et al. [28],
Soudry et al. [40] show that gradient descent leads to max-margin classifiers. Arora et al. [3],
Gunasekar et al. [9], Huh et al. [16] show that deep networks are inductively biased to find low-rank
solutions. Valle-Perez et al. [43] show that the parameter-function map is biased towards simple
functions with algorithmic information theory. Pezeshki et al. [31] propose gradient starvation.
Morwani et al. [27] rigorously study simplicity bias in one hidden layer neural networks. Cao et al.
[5], Rahaman et al. [32] study the spectral bias of deep neural networks.

Taking a step further, our study reveals a more nuanced perspective. Complex features are not
entirely ignored but can retain their predictive power. Our findings do not contradict prior research
where simple features have complete predictive power. Rather, in our experiments, simple features
serve as predictive indicators only for the specific subgroups trained with those features. Thus, our
work extends earlier research: where extreme simplicity bias is similar to a single-level decision
tree, our approach resembles a multi-level decision tree.

Spurious correlations. Neural networks exhibit bias towards spurious features, which are only
associated with the task label but are not causally related [8]. Such biases have been found in real-
world image datasets [38, 39]. Such features include texture [7], poses [1], and background [7, 26].
Overparametrization’s negative impact on model performance in the context of these spurious corre-
lations is investigated by Sagawa et al. [35]. Further, studies have been conducted to understand the
influencing factors of feature representations [14] and to identify likely shortcut cues [36]. Mitiga-
tion methods include distributionally robust optimization (DRO) targeting worst-group loss instead
of average loss [4, 15, 34, 46], invariant learning [2, 6, 19, 44], and weighting [23, 30, 47].

In closely related works, Kirichenko et al. [18], Rosenfeld et al. [33] demonstrate that despite
spurious correlations, neural networks capture core features that can be recovered by retraining the
final layer with target distribution data. Our work, on the other hand, investigates the confusion
matrix, highlighting the network’s inherent reliance on true object semantics in the presence of
spurious features, without training a feature representation decoder. We also show that last-layer
retraining is insufficient to fully capture the network’s ability to utilize core features. Similarly, Ye
et al. [45] provide a theoretical analysis of last-layer retraining for two-layer networks, proving that
core features are only learned well when their associated non-realizable noise is small.

Appendix B. Experiment Setup

Training set. The training set is created through imbalanced label coupling. We choose two
different datasets: one with coarse labels and another with fine labels. For each class from the
coarse dataset, we concatenate it with multiple classes from the fine dataset to create the training
examples. We assign labels to these examples based on the fine dataset. In other words, the fine
dataset has full predictive power, while the coarse dataset does not. Across all experiments, every
class comprises 5000 training examples, and the total number of classes is the number of classes
chosen in the fine dataset. This construction can be naturally extended to three or more datasets.

Our patch dataset includes four types of patch data, each sized at 32 × 32 and 1 channel. The
MNIST dataset’s images are subjected to zero padding, extending them from their original dimen-
sions of 28× 28 to 32× 32.

11

HIERARCHICAL SIMPLICITY BIAS OF NEURAL NETWORKS

For instance, we form the MNIST-CIFAR dataset by concatenating the CIFAR-10 image with
dimensions 3× 32× 32 and the expanded MNIST digit with dimensions 1× 32× 32 to generate a
new image with dimensions 4× 32× 32.

Test set. The test set is created by concatenating the image channels from all selected classes
in each dataset, without any coupling constraints. Each potential combination results in 1000 test
samples. Hence, the overall test sample count equals 1000 multiplied by the product of the selected
class counts in each dataset.

Network architecture and training configuration. We use the ResNet-18 architecture [11], only
making slight adjustments to align the channel of the initial convolutional filter with the input and
output dimensions to match the class count. We train the model for 150 epochs using the SGD
optimizer with a momentum of 0.9, employing a batch size of 128. The initial learning rate is 0.1,
and is reduced by a factor of 10 at epochs 50 and 100. We apply a weight decay of 0.0005. The
loss function used for training is the cross-entropy loss. For more experiments on the multilayer
perceptron (MLP), see Appendix E.

Appendix C. Detailed Experiment Results

This section presents the comprehensive results of the experiments outlined in Section 3. We include
the confusion matrices for all experimental setups, which are utilized to calculate the Average Hier-
archical Classification Accuracy (AHCA) and Prediction Consistency Score (PCS). These metrics
provide a quantitative evaluation of the neural networks’ hierarchical simplicity bias, illustrating
how predictions align with feature complexity and the extent to which simple and complex features
influence classification outcomes.

MNIST-CIFAR hierarchy. We use MNIST as the coarse data and CIFAR-10 as the fine data in
the MNIST-CIFAR training set, shown in Figure 5. Conversely, the CIFAR-MNIST training set
is shown in Figure 6. The neural network consistently gives priority to MNIST regardless of its
predictive power. The CIFAR-10 part only comes into play when MNIST’s predictive power is
insufficient. Hence, MNIST exhibits a strictly simpler complexity than CIFAR-10.

Patch-MNIST Hierarchy. Similarly, we construct the training set of Patch-MNIST and MNIST-
Patch. Figure 7 and Figure 8 show the training set and test results. These results highlight the
hierarchy that patch data is inherently less complex than MNIST. Interestingly, predictions are not
completely random with spurious patch data in Figure 7. For instance, when comparing digits 1 and
2, digit 2 has the closest visual similarity to digits 7 and 9 (and vice versa for digit 7). As a result, a
large portion of digits 7 and 9 are categorized under digit 2 rather than digit 1.

Patch-MNIST-CIFAR hierarchy. We construct a dataset named Patch-MNIST-CIFAR, contain-
ing all aforementioned building blocks, revealing a three-level hierarchy. The upper-left patch is
coupled with digits 1 and 2, while the lower-right patch is coupled with digits 5 and 9. These digits
(1, 2, 5, 9) are then coupled with CIFAR-10 classes (0, 1), (2, 3), (4, 5), and (6, 7) respectively,
resulting in an 8-class dataset. The results are shown in Figure 9. The neural network demonstrates
a distinct hierarchy in its predictions based on increasing feature complexity: first patch data, then
MNIST digits, and finally CIFAR-10 images.

12

HIERARCHICAL SIMPLICITY BIAS OF NEURAL NETWORKS

MNIST CIFAR

0: 1+automobile

label

1: 1+cat

2: 2+dog

3: 2+truck 0 1 2 3
Predicted label

0

1

2

3
Tr
ue

 la
be

l

983 14 0 3

10 986 4 0

8 990 2 0

909 89 0 2

MNIST digit 1

0 1 2 3
Predicted label

0

1

2

3

Tr
ue

 la
be

l

4 0 24 972

0 1 936 63

0 1 987 12

1 0 16 983

MNIST digit 2

0

200

400

600

800

0

200

400

600

800

Figure 5: The MNIST-CIFAR training set and test results. (a) Left: within the training set, digit 1
is concatenated with both automobile and cat images, while digit 2 is concatenated with
both dog and truck images. (b) Right: during testing, most digit 1 samples are classified
0 and 1, while most digit 2 samples are classified 2 and 3, regardless of the corresponding
CIFAR-10 image class.

CIFAR MNIST

0: automobile+1

label

1: automobile+2

2: dog+7

3: dog+9 0 1 2 3
Predicted label

0

1

2

3

Tr
ue
 la
be
l

999 1 0 0

0 1000 0 0

7 28 965 0

2 2 3 993

CIFAR-10 class automobile

0 1 2 3
Predicted label

0

1

2

3

Tr
ue
 la
be
l

994 0 6 0

0 993 7 0

1 1 997 1

0 0 2 998

CIFAR-10 class dog

0

200

400

600

800

1000

0

200

400

600

800

Figure 6: The CIFAR-MNIST training set and test results. (a) Left: the training set includes auto-
mobile images paired with 1 and 2 digits, along with cat images paired with 7 and 9 digits.
(b) Right: during testing, predictions rely mostly on MNIST and exhibit high accuracy.

13

HIERARCHICAL SIMPLICITY BIAS OF NEURAL NETWORKS

Patch MNIST

0: upper-left+1

label

1: upper-left+2

2: lower-right+7

3: lower-right+9 0 1 2 3
Predicted label

0

1

2

3

Tr
ue

 la
be

l

1000 0 0 0

1 999 0 0

264 736 0 0

209 791 0 0

Patch type 1

0 1 2 3
Predicted label

0

1

2

3

Tr
ue

 la
be

l

0 0 882 118

0 0 716 284

0 0 999 1

0 0 1 999

Patch type 2

0

200

400

600

800

1000

0

200

400

600

800

Figure 7: The Patch-MNIST training set and test results. (a) Left: the upper-left patch is paired
with 1 and 2 digits, along with the lower-right patch paired with 7 and 9 digits. (b) Right:
in testing, all predictions prioritize patch data without any exceptions.

MNIST Patch

0: 1+upper-left

label

1: 1+upper-right

2: 2+lower-left

3: 2+lower-right 0 1 2 3
Predicted label

0

1

2

3

Tr
ue

 la
be

l

1000 0 0 0

0 1000 0 0

0 0 1000 0

0 0 0 1000

MNIST digit 1

0 1 2 3
Predicted label

0

1

2

3

Tr
ue

 la
be

l

1000 0 0 0

0 1000 0 0

0 0 1000 0

0 0 0 1000

MNIST digit 2

0

200

400

600

800

1000

0

200

400

600

800

1000

Figure 8: The MNIST-Patch training set and test results. (a) Left: digit 1 is paired with upper-left
and upper-right patches, and digit 2 is paired with lower-left and lower-right patches. (b)
Right: the test accuracy in achieves 100% using solely patch data.

14

HIERARCHICAL SIMPLICITY BIAS OF NEURAL NETWORKS

0 1 2 3 4 5 6 7
Predicted label

0
1
2
3
4
5
6
7

Tr
ue

 la
be

l

978 19 1 2 0 0 0 0
12 987 1 0 0 0 0 0
906 83 10 1 0 0 0 0
750238 1 11 0 0 0 0
920 70 4 6 0 0 0 0
751235 0 14 0 0 0 0
595396 4 5 0 0 0 0
899 96 3 2 0 0 0 0

Patch type 0 MNIST digit 1

0 1 2 3 4 5 6 7
Predicted label

0
1
2
3
4
5
6
7

Tr
ue

 la
be

l

7 1 775217 0 0 0 0
0 148286566 0 0 0 0
0 0 906 94 0 0 0 0
0 0 128872 0 0 0 0
0 0 666334 0 0 0 0
0 0 185815 0 0 0 0
1 0 528471 0 0 0 0
2 0 494504 0 0 0 0

Patch type 0 MNIST digit 2

0 1 2 3 4 5 6 7
Predicted label

0
1
2
3
4
5
6
7

Tr
ue

 la
be

l

352 19 502127 0 0 0 0
3 810 61 126 0 0 0 0
61 9 842 88 0 0 0 0
41 9 115835 0 0 0 0
69 13 668250 0 0 0 0
45 14 214727 0 0 0 0
21 38 500441 0 0 0 0
98 13 440449 0 0 0 0

Patch type 0 MNIST digit 7

0 1 2 3 4 5 6 7
Predicted label

0
1
2
3
4
5
6
7

Tr
ue

 la
be

l

131 1 695173 0 0 0 0
1 557141301 0 0 0 0
27 2 889 82 0 0 0 0
14 4 128854 0 0 0 0
29 3 677291 0 0 0 0
17 4 237742 0 0 0 0
8 9 499484 0 0 0 0
34 4 490472 0 0 0 0

Patch type 0 MNIST digit 9

0 1 2 3 4 5 6 7
Predicted label

0
1
2
3
4
5
6
7

Tr
ue

 la
be

l

0 0 0 0 788180 15 17
0 20 0 0 352506 99 23
0 0 0 0 574398 22 6
0 0 0 0 201767 27 5
0 0 0 0 948 39 8 5
0 0 0 0 67 917 8 8
0 0 0 0 443322235 0
0 0 0 0 458362 0 180

Patch type 3 MNIST digit 1

0 1 2 3 4 5 6 7
Predicted label

0
1
2
3
4
5
6
7

Tr
ue

 la
be

l

0 0 0 0 811124 24 41
0 0 0 0 414465 65 56
0 0 0 0 618313 40 29
0 0 0 0 200735 30 35
0 0 0 0 908 44 26 22
0 0 0 0 81 883 12 24
0 0 0 0 522276200 2
0 0 0 0 459380 0 161

Patch type 3 MNIST digit 2

0 1 2 3 4 5 6 7
Predicted label

0
1
2
3
4
5
6
7

Tr
ue

 la
be

l

0 0 0 0 850150 0 0
0 0 0 0 458537 5 0
0 0 0 0 641358 1 0
0 0 0 0 230769 1 0
0 0 0 0 958 42 0 0
0 0 0 0 75 925 0 0
0 0 0 0 652344 4 0
0 0 0 0 541456 0 3

Patch type 3 MNIST digit 7

0 1 2 3 4 5 6 7
Predicted label

0
1
2
3
4
5
6
7

Tr
ue

 la
be

l

0 0 0 0 5 2 467526
0 0 0 0 2 2 635361
0 0 0 0 4 2 586408
0 0 0 0 2 3 546449
0 0 0 0 8 0 474518
0 0 0 0 1 10 342647
0 0 0 0 1 2 981 16
0 0 0 0 3 0 19 978

Patch type 3 MNIST digit 9

0

200

400

600

800

0

200

400

600

800

0

100

200

300

400

500

600

700

800

0

100

200

300

400

500

600

700

800

0

200

400

600

800

0

200

400

600

800

0

200

400

600

800

0

200

400

600

800

Figure 9: The confusion matrices of the network trained on the Patch-MNIST-CIFAR dataset.

0 1 2 3
Predicted label

0

1

2

3

Tr
ue

 la
be

l

828 1 7 164

2 682 283 33

0 481 501 18

250 20 7 723

MNIST digit 1

0 1 2 3
Predicted label

0

1

2

3

Tr
ue

 la
be

l

754 28 2 216

15 505 456 24

6 266 725 3

238 29 1 732

MNIST digit 2

0

100

200

300

400

500

600

700

800

100

200

300

400

500

600

700

Figure 10: Confusion matrices following DFR of the neural network trained on the MNIST-CIFAR
dataset in Figure 2(a).

15

HIERARCHICAL SIMPLICITY BIAS OF NEURAL NETWORKS

Appendix D. Background and Corruption Hierarchy

It has been demonstrated that neural networks exhibit a bias for texture and background [7, 26].
In this section, we present similar evidence of decision-tree-like behavior in scenarios involving
different background colors and image corruptions.

D.1. Background Hierarchy in Half-Inverted MNIST

During training, we inverted the colors of MNIST digits 0-4 while leaving digits 5-9 unchanged.
We tested the model using both the original and color-inverted test sets, with the results shown
in Figure 13. The neural network consistently categorized white-background samples as 0-4 and
black-background samples as 5-9, even though MNIST digits are nearly linearly separable. Unlike
the ColorMNIST dataset in Zhang et al. [47] that uses five different background colors, our study
uses just two (and also inverts the color of the digits themselves), which helps to better visualize the
hierarchical decision-making process: most occurrences of digit 4 are wrongly classified as 9, and
most of digit 3 as 5, and vice versa.

Figure 11: The
training
set.

0 1 2 3 4 5 6 7 8 9
Predicted label

0

1

2

3

4

5

6

7

8

9

Tr
ue

 la
be

l

0 0 0 0 0 15 701 10 106 148

0 0 0 0 0 3 422 662 47 1

0 0 0 0 0 28 80 509 407 8

0 0 0 0 0 864 0 84 50 12

0 0 0 0 0 0 19 150 11 802

0 0 0 0 0 891 1 0 0 0

0 0 0 0 0 1 956 0 0 1

0 0 0 0 0 0 0 1027 0 1

0 0 0 0 0 0 1 0 972 1

0 0 0 0 0 2 0 3 0 1004

Original MNIST

0 1 2 3 4 5 6 7 8 9
Predicted label

0

1

2

3

4

5

6

7

8

9

Tr
ue

 la
be

l

980 0 0 0 0 0 0 0 0 0

0 1134 1 0 0 0 0 0 0 0

0 0 1032 0 0 0 0 0 0 0

0 1 1 1008 0 0 0 0 0 0

0 0 0 0 982 0 0 0 0 0

17 11 2 860 2 0 0 0 0 0

615 15 13 44 271 0 0 0 0 0

24 257 482 50 215 0 0 0 0 0

18 3 140 741 72 0 0 0 0 0

10 8 7 34 950 0 0 0 0 0

Inverted MNIST

0

200

400

600

800

1000

0

200

400

600

800

1000

Figure 12: The confusion matrices on the original and color-inverted test set.

Figure 13: The half-inverted MNIST dataset and test results. (a) Color inversion applied to digits
0-4; digits 5-9 remain unchanged. (b) During testing, the neural network demonstrates
a consistent preference for spurious background colors, with digits of similar shapes
exhibiting mutual misclassification.

D.2. Corruption Hierarchy in Corrupted CIFAR-10

We subject the CIFAR-10 training set to four common types of corruptions [12]: Gaussian noise,
Defocus blur, Fog, and Brightness, all with a severity level of 3. For detailed implementations, see
Hendrycks and Dietterich [12]. Each type of corruption is applied to specific CIFAR-10 classes:
(0, 1), (2, 3), (4, 5), and (6, 7), while classes (8, 9) remain uncorrupted. The test set includes the
original test set with 10, 000 samples, as well as the four corrupted versions of the test set, yielding

16

HIERARCHICAL SIMPLICITY BIAS OF NEURAL NETWORKS

a combined dataset of 50, 000 samples. The results are in Figure 14. The hierarchical behavior is
not easily visualizable under this setting as there are a total of five groups subjected to different
corruptions. Nevertheless, the classification results are not uniformly randomly distributed within
each group, which may provide evidence of the hierarchical classification process.

0 1 2 3 4 5 6 7 8 9
Predicted label

0
1
2
3
4
5
6
7
8
9

Tr
ue

 la
be

l

978 22 0 0 0 0 0 0 0 0
20 980 0 0 0 0 0 0 0 0
912 88 0 0 0 0 0 0 0 0
795205 0 0 0 0 0 0 0 0
929 71 0 0 0 0 0 0 0 0
808192 0 0 0 0 0 0 0 0
619381 0 0 0 0 0 0 0 0
915 85 0 0 0 0 0 0 0 0
824176 0 0 0 0 0 0 0 0
236764 0 0 0 0 0 0 0 0

Gaussian noise

0 1 2 3 4 5 6 7 8 9
Predicted label

0
1
2
3
4
5
6
7
8
9

Tr
ue

 la
be

l

0 0 659306 0 0 1 0 28 6
0 0 206587 0 0 0 0 8 199
0 0 835163 0 1 0 0 1 0
0 0 146853 0 1 0 0 0 0
0 0 537463 0 0 0 0 0 0
0 0 218782 0 0 0 0 0 0
0 0 404594 0 0 0 0 1 1
0 0 463537 0 0 0 0 0 0
0 0 473426 0 0 0 0 101 0
0 0 193652 0 0 0 0 2 153

Defocus blur

0 1 2 3 4 5 6 7 8 9
Predicted label

0
1
2
3
4
5
6
7
8
9

Tr
ue

 la
be

l

0 0 29 14 223 0 1 0 661 72
0 0 10 9 79 0 0 0 211691
0 0 338 20 490 1 0 1 138 12
0 0 52 285528 1 0 0 102 32
0 0 134 67 708 0 0 0 85 6
0 0 126234582 1 0 0 42 15
0 0 164169473 0 0 0 168 26
0 0 81 60 702 1 0 0 95 61
0 0 7 1 37 0 0 0 942 13
0 0 7 12 87 0 0 0 83 811

Fog

0 1 2 3 4 5 6 7 8 9
Predicted label

0
1
2
3
4
5
6
7
8
9

Tr
ue

 la
be

l

0 0 0 0 0 0 457541 2 0
0 0 0 0 0 0 600391 0 9
0 0 0 0 0 0 592408 0 0
0 0 0 0 0 0 576423 1 0
0 0 1 0 0 0 452547 0 0
0 0 0 0 0 0 303697 0 0
0 0 0 0 0 0 984 16 0 0
0 0 0 0 0 0 19 980 0 1
0 0 0 0 0 0 572427 1 0
0 0 0 0 0 0 180804 0 16

Brightness

0 1 2 3 4 5 6 7 8 9
Predicted label

0
1
2
3
4
5
6
7
8
9

Tr
ue

 la
be

l

0 0 31 10 1 0 1 1 774182
0 0 1 0 0 0 0 0 118881
0 0 361 25 16 28 1 2 388179
0 0 41 217 12 37 1 0 350342
0 0 213 90 49 42 0 1 325280
0 0 103239 10 44 0 1 220383
0 0 76 63 28 8 4 0 569252
0 0 60 41 20 21 0 2 204652
0 0 1 0 0 0 0 0 970 29
0 0 0 0 0 0 0 0 24 976

Clean data

0

200

400

600

800

0

100

200

300

400

500

600

700

800

0

200

400

600

800

0

200

400

600

800

0

200

400

600

800

Figure 14: Test results from the neural network trained on the corrupted CIFAR-10 dataset demon-
strate that most corruptions heavily influence classification, often leading to predictions
falling within the two classes on which they were trained.

Appendix E. Additional Experiments on MLP

To ensure consistency of results across different architectures, we repeated all experiments, except
for those in Subsection 3.3, using a multi-layer perceptron (MLP). The MLP has 10 hidden layers,
each containing a linear layer with a width of 1024, followed by batch normalization and ReLU
activation. The final layer is linear. Other training setups are the same as those in Appendix B.
From the results below, we observe the hierarchical decision-making process in MLP, although it is
not as pronounced as in the ResNet architecture for the corrupted CIFAR-10 dataset.

17

HIERARCHICAL SIMPLICITY BIAS OF NEURAL NETWORKS

0 1 2 3
Predicted label

0

1

2

3

Tr
ue

 la
be

l

904 86 1 9

88 903 6 3

49 943 8 0

788 204 0 8

MNIST digit 1

0 1 2 3
Predicted label

0

1

2

3

Tr
ue

 la
be

l

3 0 78 919

0 2 850 148

0 3 929 68

0 0 91 909

MNIST digit 2

0

200

400

600

800

0

200

400

600

800

Figure 15: The confusion matrices for the MLP trained on the MNIST-CIFAR dataset.

0 1 2 3
Predicted label

0

1

2

3

Tr
ue
 la
be
l

993 7 0 0

2 992 4 2

19 91 882 8

14 27 8 951

CIFAR-10 class automobile

0 1 2 3
Predicted label

0

1

2

3

Tr
ue
 la
be
l

943 3 29 25

0 912 57 31

2 7 978 13

1 3 7 989

CIFAR-10 class dog

0

200

400

600

800

0

200

400

600

800

Figure 16: The confusion matrices for the MLP trained on the CIFAR-MNIST dataset.

0 1 2 3
Predicted label

0

1

2

3

Tr
ue

 la
be

l

993 7 0 0

1 999 0 0

168 832 0 0

313 687 0 0

Patch type 1

0 1 2 3
Predicted label

0

1

2

3

Tr
ue

 la
be

l

0 0 778 222

0 0 472 528

0 0 984 16

0 0 5 995

Patch type 2

0

200

400

600

800

0

200

400

600

800

Figure 17: The confusion matrices for the MLP trained on the Patch-MNIST dataset.

18

HIERARCHICAL SIMPLICITY BIAS OF NEURAL NETWORKS

0 1 2 3
Predicted label

0

1

2

3

Tr
ue

 la
be

l
1000 0 0 0

0 1000 0 0

0 0 1000 0

0 0 0 1000

MNIST digit 1

0 1 2 3
Predicted label

0

1

2

3

Tr
ue

 la
be

l

1000 0 0 0

0 1000 0 0

0 0 1000 0

0 0 0 1000

MNIST digit 2

0

200

400

600

800

1000

0

200

400

600

800

1000

Figure 18: The confusion matrices for the MLP trained on the MNIST-Patch dataset.

0 1 2 3 4 5 6 7
Predicted label

0
1
2
3
4
5
6
7

Tr
ue

 la
be

l

915 78 6 1 0 0 0 0
94 903 2 1 0 0 0 0
790203 4 3 0 0 0 0
514475 1 10 0 0 0 0
756232 9 3 0 0 0 0
583400 4 13 0 0 0 0
629361 4 6 0 0 0 0
647343 6 4 0 0 0 0

Patch type 0 MNIST digit 1

0 1 2 3 4 5 6 7
Predicted label

0
1
2
3
4
5
6
7

Tr
ue

 la
be

l

6 1 783210 0 0 0 0
0 18 486496 0 0 0 0
1 1 797201 0 0 0 0
0 1 278721 0 0 0 0
1 1 719279 0 0 0 0
0 0 355645 0 0 0 0
0 0 488512 0 0 0 0
2 0 595403 0 0 0 0

Patch type 0 MNIST digit 2

0 1 2 3 4 5 6 7
Predicted label

0
1
2
3
4
5
6
7

Tr
ue

 la
be

l

190 29 579202 0 0 0 0
10 251327412 0 0 0 0
69 26 706199 0 0 0 0
44 33 246677 0 0 0 0
56 25 660259 0 0 0 0
44 25 314617 0 0 0 0
32 34 448486 0 0 0 0
76 37 487400 0 0 0 0

Patch type 0 MNIST digit 7

0 1 2 3 4 5 6 7
Predicted label

0
1
2
3
4
5
6
7

Tr
ue

 la
be

l

293 29 525152 1 0 0 0
34 312273381 0 0 0 0
173 42 608177 0 0 0 0
106 99 180615 0 0 0 0
159 50 559232 0 0 0 0
125 68 258549 0 0 0 0
112 77 340471 0 0 0 0
150 70 434346 0 0 0 0

Patch type 0 MNIST digit 9

0 1 2 3 4 5 6 7
Predicted label

0
1
2
3
4
5
6
7

Tr
ue

 la
be

l

0 0 0 0 637176 47 140
0 2 0 0 285522102 89
0 0 0 0 515324 76 85
0 0 0 0 230606108 56
0 0 0 0 706150 82 62
0 0 0 0 163698 75 64
0 0 0 0 431324238 7
1 0 0 0 351377 25 246

Patch type 3 MNIST digit 1

0 1 2 3 4 5 6 7
Predicted label

0
1
2
3
4
5
6
7

Tr
ue

 la
be

l

0 0 0 0 559140 83 218
0 0 0 0 278380127215
0 0 0 0 473240141146
0 0 0 0 219469146166
0 0 0 0 584122143151
0 0 0 0 144563104189
0 0 0 0 384277302 37
0 0 0 0 302314 37 347

Patch type 3 MNIST digit 2

0 1 2 3 4 5 6 7
Predicted label

0
1
2
3
4
5
6
7

Tr
ue

 la
be

l

0 0 0 0 788201 1 10
0 0 0 0 448541 2 9
0 0 0 0 600385 8 7
0 0 0 0 291693 11 5
0 0 0 0 807182 7 4
0 0 0 0 196794 5 5
0 0 0 0 537440 22 1
0 0 0 0 482492 2 24

Patch type 3 MNIST digit 7

0 1 2 3 4 5 6 7
Predicted label

0
1
2
3
4
5
6
7

Tr
ue

 la
be

l

0 0 0 0 23 5 253719
0 0 0 0 8 8 362622
0 0 0 0 12 11 499478
0 0 0 0 3 15 529453
0 0 0 0 17 3 521459
0 0 0 0 2 29 406563
0 0 0 0 3 8 908 81
0 0 0 0 3 8 91 898

Patch type 3 MNIST digit 9

0

200

400

600

800

0

100

200

300

400

500

600

700

0

100

200

300

400

500

600

700

0

100

200

300

400

500

600

0

100

200

300

400

500

600

700

0

100

200

300

400

500

0

100

200

300

400

500

600

700

800

0

200

400

600

800

Figure 19: The confusion matrices for the MLP trained on the Patch-MNIST-CIFAR dataset.

19

HIERARCHICAL SIMPLICITY BIAS OF NEURAL NETWORKS

0 1 2 3 4 5 6 7 8 9
Predicted label

0

1

2

3

4

5

6

7

8

9

Tr
ue

 la
be

l

0 0 0 0 0 45 547 48 68 272

0 0 0 0 0 5 7 447 547 129

0 0 0 0 1 119 71 269 531 41

0 0 0 0 0 573 2 76 195 164

0 0 0 0 0 7 43 22 11 899

0 0 0 0 0 881 3 2 3 3

0 0 0 0 0 4 950 0 1 3

0 0 0 0 0 0 1 1018 3 6

0 0 0 0 0 1 1 2 970 0

0 0 0 0 0 6 1 3 2 997

Original MNIST

0 1 2 3 4 5 6 7 8 9
Predicted label

0

1

2

3

4

5

6

7

8

9

Tr
ue

 la
be

l

978 0 0 2 0 0 0 0 0 0

1 1130 3 1 0 0 0 0 0 0

2 0 1024 4 2 0 0 0 0 0

1 0 2 1007 0 0 0 0 0 0

1 0 4 0 977 0 0 0 0 0

90 33 21 708 40 0 0 0 0 0

186 24 155 74 518 1 0 0 0 0

96 35 294 490 113 0 0 0 0 0

63 40 104 714 53 0 0 0 0 0

15 11 5 191 787 0 0 0 0 0

Inverted MNIST

0

200

400

600

800

1000

0

200

400

600

800

1000

Figure 20: The confusion matrices for the MLP trained on the half-inverted MNIST dataset.

0 1 2 3 4 5 6 7 8 9
Predicted label

0
1
2
3
4
5
6
7
8
9

Tr
ue

 la
be

l

668 26 66 23 15 2 2 1 132 65
51 679 4 6 1 6 1 5 86 161
166 39 467162 16 10 9 13 44 74
87 55 93 463 13 19 23 25 85 137
102 34 416242 13 34 8 10 70 71
101 48 123425 2 24 20 39 92 126
49 48 249418 5 16 77 0 51 87
152 71 139162 9 23 7 186 36 215
77 59 11 20 1 2 1 5 768 56
54 135 8 20 0 2 4 7 71 699

Gaussian noise

0 1 2 3 4 5 6 7 8 9
Predicted label

0
1
2
3
4
5
6
7
8
9

Tr
ue

 la
be

l

313 10 342 99 30 8 0 1 171 26
39 334140134 10 30 1 2 165145
25 2 750170 11 10 1 2 23 6
11 2 247653 18 14 4 2 25 24
15 0 663227 27 23 2 0 35 8
15 3 293606 5 32 0 4 30 12
7 5 476449 10 18 7 0 20 8
40 6 442349 12 36 0 42 21 52
39 11 171114 6 6 0 1 635 17
41 48 192198 9 13 0 1 124374

Defocus blur

0 1 2 3 4 5 6 7 8 9
Predicted label

0
1
2
3
4
5
6
7
8
9

Tr
ue

 la
be

l

225 4 228239 13 1 0 0 264 26
23 261103276 0 8 1 1 206121
17 0 504436 3 2 1 1 29 7
4 2 122840 6 2 2 0 15 7
9 1 357581 4 6 0 0 37 5
5 0 139829 1 3 0 0 18 5
2 4 199776 3 2 2 0 9 3
16 2 320560 4 8 1 7 42 40
12 7 64 188 0 1 0 0 711 17
27 33 114332 4 1 1 0 200288

Fog

0 1 2 3 4 5 6 7 8 9
Predicted label

0
1
2
3
4
5
6
7
8
9

Tr
ue

 la
be

l

208 9 1 0 1 0 244505 16 16
10 361 0 0 0 0 234319 20 56
24 3 7 6 0 0 508445 3 4
21 4 1 22 0 1 513408 12 18
8 1 5 4 0 2 536439 4 1
14 2 3 14 0 0 390551 16 10
0 4 1 2 1 0 926 61 2 3
10 3 1 4 0 2 89 882 1 8
15 29 1 0 0 2 296440203 14
14 61 0 2 0 0 183434 13 293

Brightness

0 1 2 3 4 5 6 7 8 9
Predicted label

0
1
2
3
4
5
6
7
8
9

Tr
ue

 la
be

l

657 23 75 22 13 1 3 1 142 63
38 672 5 4 1 7 1 3 88 181
160 35 477154 14 13 6 18 41 82
74 47 95 470 9 17 28 24 93 143
99 27 435234 13 24 7 10 75 76
102 46 126434 3 24 11 33 89 132
45 55 253415 7 15 76 0 53 81
149 64 145164 7 21 8 175 42 225
64 49 13 24 0 3 0 3 790 54
54 118 11 26 0 3 3 7 66 712

Clean data

0

100

200

300

400

500

600

700

0

100

200

300

400

500

600

700

0

100

200

300

400

500

600

700

800

0

200

400

600

800

0

100

200

300

400

500

600

700

Figure 21: The confusion matrices for the MLP trained on the corrupted CIFAR-10 dataset.

20

	Introduction
	Formulation of Hierarchical Simplicity Bias
	Hierarchical Decision Process
	Quantitative Measures of Hierarchical Simplicity Bias

	Experiment
	Experiment Setup
	Results and Discussion
	Last-Layer Retraining Is Insufficient for Strong Spurious Correlations

	Conclusion and Future Work
	Related Work
	Experiment Setup
	Detailed Experiment Results
	Background and Corruption Hierarchy
	Background Hierarchy in Half-Inverted MNIST
	Corruption Hierarchy in Corrupted CIFAR-10

	Additional Experiments on MLP

