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Abstract

Many real-world environments, from smart homes to industrial systems, produce1

asynchronous event streams driven by latent activities with complex temporal struc-2

tures. Recognizing these patterns requires reasoning over temporal dependencies3

that reactive policies alone do not capture. We propose a hybrid reinforcement4

learning framework that combines symbolic program synthesis with reactive policy5

optimization for interpretable activity recognition. This hybrid approach enables6

the agent to disambiguate overlapping activities, generalize across history patterns,7

and maintain interpretable decision logic. Our method discovers temporal rules as8

logical abstractions over event histories, using a compositional grammar based on9

Allen’s interval algebra. Monte Carlo Tree Search (MCTS) explores the rule space,10

refining candidates to maximize cumulative reward. The resulting rules define11

symbolic contexts that augment the observable state and support decision-making12

in a near-Markovian surrogate process. Evaluations on a synthetic benchmark with13

concurrent, asynchronous activities show strong task performance and symbolic14

fidelity compared to neural and evolutionary baselines.15

1 Introduction16

In many real-world environments, decisions are not triggered by time but by the occurrence of struc-17

tured event sequences, requiring agents to recognize and respond to temporal patterns in interaction18

histories rather than static observations. This is especially true in domains such as activity recognition19

in smart homes or sensor-rich industrial systems, where streams of asynchronous events encode20

underlying physical or behavioral processes [4, 18, 11]. In such settings, an event denotes a discrete21

unit of observation, while an activity refers to a temporally extended pattern comprising multiple22

asynchronous but temporally related events. Environments are characterized by multiple overlapping23

activities that emit asynchronous, exogenous events in variable-duration patterns that defy simple24

clock-driven modeling [5, 26]. In this case, decision-making hinges on recognizing and reacting to25

these irregular time series rather than relying on fixed-time-step transitions [28, 7]. For example,26

in Complex Event Processing (CEP) systems [2], rules defined over symbolic event patterns drive27

detection and action, much like in Generalized Semi-Markov Decision Processes (GSMDPs), where28

concurrent temporal processes guide behavior [33].29

At its core, reinforcement learning can be understood as the problem of learning when and how30

to react to a recognized structure in the environment. In the Markovian case, this reduces to31

identifying the current state and choosing an appropriate response. In more complex temporal settings,32

however, recognition involves detecting extended patterns that unfold over time, often without clear33

or bounded durations. While time-series models can handle bounded intervals, they often fall short in34

representing and generalizing complex activities [4]. Despite the success of recurrent and attention-35
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based architectures, models typically lack the capacity for symbolic abstraction and compositional36

generalization [34], making them ill-equipped for critical environments where interpretability is key.37

To overcome these limitations, we examine encoding histories into symbolic structures that capture38

both temporal and attribute-level dependencies between observations. Temporal logics and automata39

have been used to specify non-Markovian reward structures [3, 13, 31], while symbolic regression40

and program synthesis methods such as Monte Carlo Tree Search (MCTS) and large language models41

(LLMs) [16, 29, 15] have shown promise in learning structured policies from data. These approaches42

are theoretically supported by the idea of learning representations that generalize across interaction43

histories [20]. Still, most existing methods either rely on predefined symbolic specifications or lack44

mechanisms to learn such a structure directly from interaction.45

In this work, we propose a reinforcement learning framework for event-driven environments that46

learns symbolic rule representations over event histories. These rules capture recurring temporal47

patterns and associate them with environment actions, transforming the original non-Markovian task48

into an approximate MDP over symbolic contexts. They are discovered through a top-down structured49

search over a compositional grammar, optimized using MCTS guided by cumulative reward signals50

in the induced environment.51

Figure 1: Overview of the proposed two-level architecture. The system receives a stream of
temporally-annotated events, which are processed by a symbolic rule abstraction module to produce a
latent context. This context, combined with the current observable state, is passed to a policy module
that selects actions. The rule abstraction module is optimized through Monte Carlo Tree Search
(MCTS) using feedback from policy performance.

2 Related Work52

History-Based Decision Processes. A wide range of extensions to the standard Markov Decision53

Process (MDP) framework have been developed to address history-dependent behavior. These54

include Dynamic Contextual MDPs (DCMDPs) [30], Context MDPs [12], Activity-Based MDPs55

(ABMDPs) [28], and φ-MDPs [14], all of which modify state representations or transition dynamics56

to incorporate information from past trajectories. Such frameworks aim to capture non-Markovian57

dynamics by summarizing historical observations or actions, either through predefined mappings or58

learned abstractions. In parallel, deep learning models have tackled similar challenges by model-59

ing full interaction histories using recurrent architectures or attention-based mechanisms, such as60

Transformers [8].61

Representation Learning and Automata-Based Abstractions. Another prominent line of work62

focuses on learning compact representations of latent state and history through interaction [20].63

Techniques in this domain aim to improve sample efficiency and generalization by discovering64
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abstractions that retain predictive or decision-relevant information. Examples include bisimulation65

metrics, self-predictive encodings, and compressed belief states. Automata and temporal logic66

frameworks have been employed to model non-Markovian structure, particularly in settings with67

complex temporal rewards or dependencies [3, 31]. For example, automata-augmented POMDPs68

and symbolic observation detectors have been used to impose trajectory-level constraints or express69

high-level task structure [27].70

Symbolic Reinforcement Learning and Interpretable Policies. Symbolic reinforcement learning71

aims to produce effective, human-interpretable policies, typically represented as logic rules or72

algebraic programs. Evolutionary systems such as XCS and symbolic regression frameworks have73

long been used for extracting rule-based policies from environment interaction, but often struggle74

with scalability in high-dimensional or temporally complex domains [17, 25]. Recent relational RL75

approaches use structured representations over states and actions [34], however they lack the temporal76

abstraction needed for reasoning over event sequences or delays. Temporal logic specifications, most77

notably Linear Temporal Logic (LTL), have also been applied to guide behavior in non-Markovian78

settings, but are generally used as predefined constraints [13].79

Symbolic Program Search and Neuro-Symbolic Policy Induction. A growing class of methods80

treats policy learning as a symbolic program synthesis task, where the agent searches over structured81

rule spaces to discover effective behavior [32, 19]. Techniques using MCTS and guided symbolic82

regression have been applied to this end, enabling tractable exploration of combinatorial symbolic83

policy spaces [29, 15]. Recent neuro-symbolic approaches combine neural function approximators84

with top-down symbolic rule search, aiming to benefit from both flexibility and structure [22, 9].85

However, most existing work in this area concentrates on symbolic-physics dynamics or state-based86

decisions, lacking mechanisms for learning general-purpose temporal rules from raw interaction data.87

3 Background88

This section outlines the formal representations and models, including the structure of event histories,89

symbolic temporal rules for activity recognition, and abstraction-based frameworks for reinforcement90

learning in non-Markovian environments.91

Event Histories and Rule-Based Activity Recognition. In event-driven environments, agents do92

not observe fixed state snapshots but rather streams of temporally structured events. We formalize this93

interaction history as a discrete event sequence ht = {e1, . . . , et}, where each event ei is described94

by its type and temporal interval: ei = (type, [tstart, tend]).95

Temporal Logic and Event-Based Representations. While multiple temporal logics exist for96

modeling time-dependent phenomena [21], Allen’s Interval Algebra [1] is particularly well-suited97

for event-driven settings that involve reasoning over time intervals. It defines a set of 13 primitive98

relations, such as before, overlaps, during, and meets, allowing formal expression of how two events99

relate over time. In our context, each event ei is associated with a time interval [tstarti , tendi ], and100

relations are defined by a binary predicate Rallen(ei, ej) that holds when the pair (ei, ej) satisfies a101

specific temporal relation:102

Rallen(ei, ej) ≡ R(tstarti , tendi , tstartj , tendj ).

To represent activity patterns within histories, we define symbolic rules that isolate relevant events.103

Each rule is evaluated as a conjunction of type filters Fi(ei) and Allen-style relational constraints104

Ri,j(ei, ej):105

T (e1, . . . , en) =

n∧
i=1

Fi(ei) ∧
n−1∧
i=1

n∧
j=i+1

Ri,j(ei, ej). (1)

Where an event type filter Fi(e) checks whether an event e matches a required type label (e.g.,106

‘door-open‘, ‘signal-high‘).107
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History-Based Abstractions in RL. Reinforcement learning in non-Markovian environments108

requires compressing histories into decision-relevant summaries. A general class of models known as109

Feature MDPs (φMDPs [14]) formalize this via a mapping φ : H → Sφ, whereH denotes histories110

and Sφ an abstract state space.111

Activity-Based MDPs and Rule Abstractions. In this work, we adopt the Activity-Based Markov112

Decision Process (ABMDP) [28] as a formalism for capturing symbolic structure in event-driven113

environments. An ABMDP is defined as:114

M = (S, C,A, P,R, T ),

where S is the observable state space, C is a set of latent contexts, A is the set of actions, and T is a115

set of symbolic temporal rules. A context c∗ ∈ C is induced from the history h by applying the rule116

set via the context extraction function T (h, T ). Planning then proceeds in a context-augmented space117

using policies of the form π(a | s, c∗). This framework aligns with the φMDP model [14], where118

T (h, T ) can be viewed as an abstraction mapping φ(h), inducing a surrogate decision processM119

over the context-augmented space.120

Q-Value Uniformity and Approximation Guarantees. A central theoretical insight in abstraction-121

based planning is Q-value uniformity: if two histories h, h′ are mapped to the same abstract state by122

an abstraction φ, their optimal Q-values should be nearly equal:123

|Q∗(h, a)−Q∗(h′, a)| < ε, ∀a, and ∀h, h′ such that φ(h) = φ(h′).

Under this condition, [14, Theorem 8] guarantees that the Q-values of a policy π(φ(h)) induced by124

planning in an abstract MDP, where Π(h) is a policy over histories, satisfy:125 ∣∣QΠ(h, a)− qπ(φ(h), a)
∣∣ ≤ ε

1− γ
.

This means the return of the lifted policy in the original process is close to the return in the abstract126

model:127 ∣∣V Π(h)− vπ(φ(h))
∣∣ ≤ ε

1− γ
.

Symbolic Rule Discovery via MCTS. Monte Carlo Tree Search incrementally builds a search128

tree using simulated rollouts and selects expansions according to the UCT criterion [6], allowing to129

explore compositional rule spaces:130

n′ = arg max
ni

[
Q(ni) + c ·

√
logN(n)

N(ni)

]
,

where Q(ni) is the value of a node, N(n) and N(ni) are visit counts, and c balances exploration and131

exploitation.132

4 Method133

We propose a two-level architecture that integrates symbolic temporal abstraction search with rein-134

forcement learning to enable interpretable and reactive behavior in event-driven environments. The135

system is composed of two interacting modules: (1) a symbolic rule learning and context induction136

module, and (2) a policy learning module that operates over induced contexts (see Fig. 1).137

1. The rule abstraction module’s primary goal is to learn a set of symbolic temporal rules T̂138

that map event histories ht into discrete contexts ĉt, each representing a structured activity.139

Using Monte Carlo Tree Search (MCTS) over a compositional grammar, the module refines140

rules to maximize reward, treating rule discovery as a symbolic program synthesis task.141

2. The policy learning module trains a reactive policy π(a | st, ĉt) over the augmented state142

space, where ĉt encodes latent temporal structure. This module evaluates and exploits the143

induced abstractions to improve decision quality.144

4.1 Rule Abstraction: Top-Down Rule Policy Search via MCTS Refinement145
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Figure 2: Illustration of the symbolic rule refinement tree of
the rule "The door opened before the light turned on."

Expression Tree Each rule T (as146

defined in Eq. 1) encodes a structured147

temporal pattern consisting of event-148

type constraints and pairwise tempo-149

ral relations. It is built from a gram-150

mar defined over two atomic elements:151

event type filters, which restrict indi-152

vidual event variables to specific se-153

mantic categories (e.g., door_open,154

light_on), and Allen interval rela-155

tions, which define pairwise tempo-156

ral constraints (e.g., before, during,157

overlaps) between the start and end158

intervals of events.159

The compositionality of the rule gram-160

mar allows rules to be constructed161

incrementally through a top-down162

search over a refinement tree, similar163

to approaches in temporal interval pat-164

tern mining [24, 23]. The root node165

corresponds to an unconstrained rule166

that accepts any history. Each child node applies a refinement operation, incrementally specializing167

the rule. The refinement process follows a fixed structure to maintain rule consistency: it alternates168

between introducing a new event variable with a type filter and enumerating its possible temporal169

relations with all previously defined events. For example, a refinement path for three events may170

follow the structure: F1 → F2 → R1,2 → F3 → R1,3 → R2,3. This process systematically explores171

all valid rule combinations up to a fixed number of event variables. Each node represents a partially172

specified rule, and leaf nodes correspond to fully defined candidates that cannot be further refined.173

This is illustrated in Figure 2, where a simple rule is built step by step from two events, a door opening174

and a light turning on.175

Monte Carlo Tree Search The hierarchical and compositional structure of our rule grammar176

enables MCTS to efficiently explore the symbolic rule space by traversing the refinement tree and177

selecting promising candidates via the UCT criterion. This balances the exploitation of high-reward178

refinements with the exploration of less-visited branches. Rules are learned one at a time, meaning179

that each rule Ti ∈ T̂ is optimized independently through its own MCTS process. Each MCTS180

instance follows the standard four-phase loop:181

• Selection. The tree is traversed from the root by recursively selecting grammar refinements182

according to the UCT formula.183

• Expansion. When a non-terminal, unexplored node is reached, new child nodes are gener-184

ated by applying valid symbolic refinement operators at the current level of the grammar.185

• Simulation. The newly constructed rule is evaluated through interaction with the environ-186

ment. The agent uses the current rule set, including the candidate, to infer symbolic contexts187

and train a policy π(a | st, ĉt). Multiple rollouts are simulated to estimate the quality of this188

policy based on cumulative reward.189

• Backpropagation. The obtained reward is propagated up the tree, updating visit counts and190

value estimates along the path from the expanded leaf to the root.191

Reward. To guide symbolic search, we define a rule evaluation procedure based on reward feedback192

from downstream policy performance, following Hutter’s theory on Q-value uniformity [14]. Since193

the optimal Q-function over histories is generally unavailable, we use empirical return as a surrogate194

signal. By selecting rule refinements that maximize the cumulative reward of the resulting policy,195

the search is implicitly guided toward abstractions that preserve value-relevant distinctions across196

histories.197

Let a rule set T̂ define a context abstraction function ĉt = T (ht, T̂ ). We optimise T̂ based on the198

expected return of an optimized policy π(at | st, ĉt):199
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T̂ = arg max
T̂

E

[ ∞∑
t=0

γtR(ht, st, at)

∣∣∣∣∣ π(at | st, ĉt)

]
, where ĉt = T (ht, T̂ ).

High empirical return under this objective implies that the abstraction has avoided collapsing histories200

with significantly different Q-values. In this way, reward serves both as a learning signal and an201

implicit constraint that favors abstractions aligned with theoretical guarantees on decision fidelity.202

4.2 Context Induction and Policy Learning203

Each time a new rule is evaluated, it is temporarily inserted into the current set of validated rules T̂ ,204

inducing a new decision processMT̂ over a space of symbolic contexts and observable states. To205

construct this space, each rule Ti is applied to the current event history ht, and a check is performed206

to determine whether the pattern is satisfied. This produces a binary predicate:207

T (ht, Ti)→ ct ∈ {true, false}.

Rule matching is implemented through automaton progression: a rule activates if the most recent208

event et completes a valid temporal configuration defined by its grammar. A policy π(a | st, ĉt)209

is then trained using any standard reinforcement learning algorithm, treatingMT̂ as a surrogate210

decision process defined over the augmented state space (st, ĉt).211

The definition of the surrogate decision processMT̂ directly shapes the relevance of learned abstrac-212

tions. Since symbolic rules are selected to optimize cumulative reward, the abstraction is implicitly213

shaped by how the task is framed. In environments with multiple overlapping or unrelated processes,214

it can be useful to restrict the surrogate task to a subset of decisions. For example, in a smart home215

where events relate to both cooking and laundry, the process can be redefined to focus solely on216

cooking actions, such as turning on the stove. Other actions are excluded during training. This217

targeted setup encourages the discovery of symbolic patterns (e.g., "fridge opened before pan on218

stove") that are specifically predictive of the selected action. As a result, the learned abstractions219

become more targeted and interpretable. This flexibility in definingMT̂ enables symbolic contexts220

to serve as latent states that disambiguate concurrent activities and emphasize task-relevant structure.221

4.3 Joint Optimization Strategy222

The overall rule learning procedure proceeds iteratively: at each step, a new optimal rule is discovered223

through MCTS and temporarily added to the rule set T̂ , which is then used to guide policy evaluation224

for subsequent rule searches. To jointly optimize the symbolic rule abstractions and the downstream225

policy, we adopt an alternating procedure that interleaves rule search with policy learning. At each226

iteration, the system performs the following steps:227

1. Use MCTS to explore the space of rule refinements and select a new candidate rule Ti that228

shows potential for improving decision-making.229

2. Temporarily incorporate Ti into the current rule set T̂ and train the policy π(a | st, ĉt) in230

the symbolic context space induced by T̂ ∪ {Ti}.231

3. Evaluate the contribution of Ti by computing the expected cumulative reward under the232

updated policy, thereby scoring the rule based on its utility.233

4. If the MCTS search for Ti satisfies the stopping criterion, which requires that rule refinements234

remain stable for a fixed number of iterations, commit the best candidate to the rule set by235

adding Ti to T̂ and proceed to refine the next rule.236

This procedure is repeated until a predefined limit on the number of rules is reached or further237

improvements become negligible. Rule evaluation and policy training are conducted in an online238

fashion: new interaction episodes are generated for each candidate rule using the current rule set and239

policy. While experience is not explicitly stored across iterations, the rule set T̂ accumulates over240

time, progressively enriching the symbolic context space. The interleaving of rule refinement and241

policy optimization allows the system to incrementally construct abstractions that support symbolic242

generalization while adapting behavior through reinforcement learning.243
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5 Experiments244

To evaluate the effectiveness of our approach, henceforth referred to as Temporal MCTS (TMCTS),245

we conduct experiments in the OpenTheChests environment [28]. This synthetic benchmark is246

explicitly constructed to test the ability of agents to detect and act upon temporally extended structures247

embedded within asynchronous event streams. The environment simulates multiple concurrent248

activities, each defined by a fixed symbolic pattern comprising event-type filters and temporal249

constraints grounded in Allen’s interval algebra. These patterns control the unlocking of chests: each250

chest corresponds to an activity that can only be unlocked when its associated temporal rule is fully251

instantiated by observed events in the stream. The agent receives a continuous stream of timestamped252

events and also observes the current state of each chest (i.e., whether it is still locked or has already253

been opened). Its task is to monitor the event stream, infer which activity patterns are currently254

unfolding, and decide when to attempt opening a chest. A successful match between a completed255

activity and a chest opening yields a positive reward, whereas premature or incorrect attempts incur256

penalties. Given the discrete nature of actions and symbolic contexts, policy learning is performed257

using tabular Q-learning, which is sufficient to capture optimal behavior in this setting.258

For our tests, each episode consists of three overlapping activity patterns, each defined by distinct259

symbolic temporal rules that are designed to challenge the pattern learner. Event sequences are260

generated with temporal jitter and include background distractor events that do not belong to any261

pattern, thereby introducing noise and increasing the challenge of accurate recognition. Each activity262

is grounded in a symbolic rule composed of either two or four temporally related events. We evaluate263

two experimental configurations:264

• Two-event activity configuration: In this simpler setting, each activity is defined by a265

temporal dependency between two events of the same type. While the temporal structure is266

minimal, repeated use of the same event type across patterns introduces ambiguity and tests267

the agent’s capacity for precise rule disambiguation.268

– Two events of type A, whose beginning and ending meet.269

– Two events of type B, where the second occurs during the first.270

– Two events of type C, where the first occurs before the second.271

• Four-event activity configuration: This setup introduces more intricate dependencies by272

requiring recognition of longer event sequences. Activities involve both repeated and mixed273

event types along with a richer set of temporal constraints, thereby increasing historical274

complexity and pattern variability. Due to space constraints, we only show one example275

below, but all four-event activity definitions used in this configuration are provided in the276

appendix.277

– A sequence beginning with an event A, followed by an event C that occurs after the278

first, then a second event C that meets the first and overlaps the second, and ending279

with another event A, which follows all three.280

Our primary objective is to assess both the decision performance and the symbolic fidelity of the281

learned rule abstractions. Success rate measures the agent’s ability to complete the chest-opening282

task without incurring penalties, serving as a direct indicator of task performance. To evaluate rule283

precision, we measure the recall rate, defined as the percentage of the initially defined activity rules284

that are correctly recovered by the learned symbolic rules. This provides a direct estimate of the285

agent’s ability to reconstruct the intended temporal structure. These metrics are tracked during286

training to analyze convergence behavior and variability in learning dynamics across methods.287

We compare our method against two representative baselines: TXCS (Temporal eXtended Classifier288

System), a symbolic, evolutionary rule-learning framework adapted to handle temporal event streams289

(see Appendix for details), and DTQN [10], a deep learning model that learns temporal dependencies290

through attention mechanisms and encodings. All agents, including our TMCTS approach, operate291

under identical observation and action constraints, receiving the same event streams and chest state292

feedback. Each experiment is run with five different random seeds, and all reported metrics include293

95% confidence intervals to account for stochasticity in both learning dynamics and environment294

variability.295
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6 Results and Analysis296

During evaluation, we performed targeted hyperparameter tuning to ensure a fair comparison across297

methods. For DTQN, we adjusted the event window size to optimize temporal encoding capacity. For298

TXCS, tuning focused on the evolutionary mechanism, including population size, fitness thresholds,299

and deletion parameters to balance rule diversity and generalization. For TMCTS, we primarily300

tuned exploration-exploitation trade-offs within the MCTS procedure, as well as convergence criteria301

governing when to halt the search for new symbolic patterns.302

Scenario Algorithm SR (%) RR (%) CC

Two Events
TMCTS 100 100, 100, 100 0.15
TXCS 100 100, 66, 66 2
DTQN 100 NA 0.1

Four Events
TMCTS 100 90, 80, 70 0.9
TXCS 20 30, 40, 10 10
DTQN 100 NA 0.8

Table 1: Performance of algorithms: Sucess Rate (SR) in environment, Recall Rate (RR) of rule per
activity and Computational Cost (CC) in training hours.

6.1 Low Complexity : Two Events303

As shown in Fig. 3, both TMCTS and DTQN successfully solve the two-event task with comparable304

success rates, while TXCS displays greater variance and instability. The performance fluctuations305

observed in TXCS are largely due to instability in population pruning and fitness evaluation. However,306

when extracting its best-performing rules post hoc, we find that they do exhibit strong fidelity to the307

ground-truth patterns. TMCTS converges rapidly in this setting, as the pattern tree depth required for308

two-event rules is shallow. Despite some early uncertainty due to exploratory rollouts, the correct309

patterns are quickly identified and reliably linked to the appropriate actions. The symbolic rules310

learned by TMCTS were found to exactly match the activity definitions specified in the environment311

(Table 1). This demonstrates the method’s capacity not only for effective decision-making but also312

for faithful symbolic recovery of underlying temporal structures. DTQN also converges quickly,313

effectively encoding the short temporal sequences, and benefits from the task’s simplicity. While it314

lacks the explicit interpretability of rule-based methods like TXCS and TMCTS, it maintains stable315

performance throughout training and evaluation.316

Figure 3: Success rates of DTQN, TXCS and TMCTS measured across 5 random seeds for the Two
Events configuration during training.
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6.2 Moderate Complexity : Four Events317

In the case of higher temporal complexity, we observe similar trends to the low-complexity setting,318

as shown in Fig. 4. As the activity length increases to four events, TXCS encounters scalability319

challenges, requiring longer resolution times and increased computational resources (Table 1). The320

heightened pattern complexity leads to instability in rule deletion dynamics and greater variance321

across training runs. In contrast, both TMCTS and DTQN converge efficiently, with significantly322

lower computational overhead. In TMCTS, we observe mild uncertainty and sensitivity to exploration-323

exploitation parameters, largely due to the larger branching factor in the symbolic rule search space,324

which makes it harder to consistently prioritize optimal refinements. Additionally, the stochastic325

nature of MCTS rollouts, coupled with a noisier reward signal, can occasionally promote suboptimal326

patterns during early stages of search. Despite this, TMCTS recovers rules that align well with327

the target definitions, though recall rates are lower as shorter rules often suffice to reach optimal328

performances, reducing the incentive to explore deeper structures. Finally, DTQN handles moderate329

complexity effectively, showing no notable degradation in performance or training stability. Its330

success largely depends on tuning the window size to ensure that active activities are captured within331

the input sequence, allowing the model to track temporal dependencies despite longer histories.332

However, unlike symbolic approaches such as TMCTS, DTQN does not yield interpretable rules,333

making its internal representations less transparent.334

Figure 4: Success rates of DTQN, TXCS and TMCTS measured across 5 random seeds for the Four
Events configuration during training.

7 Conclusion and Future Work335

Our experiments demonstrate that TMCTS effectively learns interpretable and decision-relevant336

symbolic rules in event-driven environments. In both low and moderate temporal complexity settings,337

TMCTS achieves strong task performance while maintaining high rule fidelity, closely matching338

ground-truth activity definitions. Compared to neural and evolutionary baselines, it offers a favorable339

balance between interpretability and efficiency, particularly in environments where temporal logic340

plays a central role. While recall rates remain high, we observe a tendency toward shorter rules that341

achieve sufficient performance, leading to a reduction in deeper pattern exploration. This highlights342

both the strength and the current limitations of reward-driven symbolic abstraction. For future work,343

we aim to scale TMCTS to more complex, multi-agent and noisy environments, and to develop more344

advanced mechanisms for rule evaluation and exploration-exploitation balancing within the MCTS345

framework. These improvements will further enhance the robustness and generalization capacity of346

symbolic learning in non-Markovian decision-making settings.347
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A Appendix: Description of TXCS Algorithm440

Temporal eXtended Classifier System (TXCS) is a hybrid rule-based learning algorithm designed441

for reactive activity recognition in event-driven environments. It extends the classical eXtended Clas-442

sifier System (XCS) by incorporating temporal logic and genetic programming to learn interpretable443

decision rules that model temporal and historical dependencies.444

A.1 Theoretical Foundation445

TXCS represents decision-making through a set of classifiers defined as condition–action–reward446

tuples:447

cl = (C,A,R, ε, F )

• C: Condition function identifying a temporal activity pattern,448

• A: Associated action,449

• R: Predicted reward when action A is taken under condition C,450

• ε: Prediction error,451

• F : Fitness score of the classifier.452

The condition C is modeled as a matrix that defines constraints on event types and their pairwise453

temporal relations using Allen’s interval algebra (e.g., before, meets, during). An activity A is454

recognized if:455

CA(e1, . . . , en) =

n∧
i=1

FTi
(ei) ∧

n−1∧
i=1

n∧
j=i+1

Ri,j(ei, ej)

where FTi
(ei) filters events of type Ti and Ri,j(ei, ej) checks if the temporal relation between ei and456

ej matches Ri,j .457

A.2 Practical Implementation458

1. Matching: At each time step t, a history of events ht is analyzed. All classifiers whose459

conditions match subsets of ht form the match set M .460

2. Action Selection: For each candidate action a, the predicted payoff is computed as:461

P (a) =

∑
Ci∈M,A=a

Ri · Fi∑
Ci∈M,A=a

Fi

The action a∗ with the highest predicted payoff P (a) is executed.462

3. Learning and Evolution: Classifiers are updated using reinforcement learning. When463

triggered, a genetic algorithm evolves the classifier population via crossover and mutation464

of condition matrices. Low-fitness rules are periodically removed.465
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A.3 Algorithm Pseudocode466

Algorithm 1 XCS Algorithm

1: Initialize population P of classifiers
2: for each iteration t do
3: Observe current history ht
4: Form match set M = {Ci ∈ P | Ci matches ht}
5: Action selection:
6: for each action a do
7: Calculate payoff P (a)
8: end for
9: Select action a∗ with the highest payoff P (a∗)

10: Execute action a∗ and observe reward r
11: Classifier update:
12: for each classifier Ci ∈M do
13: Calculate ρ = r + γmaxA P

t+1(A)
14: Update reward prediction: Ri ← Ri + α(ρ−Ri)
15: Update prediction error: εi ← εi + β(|ρ−Ri| − εi)
16: Update fitness: Fi ← Fi + γ(accuracy(Ci)− Fi)
17: end for
18: Genetic Algorithm (GA) application:
19: if GA is triggered then
20: Apply crossover and mutation to generate new classifiers
21: Replace least fit classifiers in P
22: end if
23: end for
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