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Abstract001

Food analysis is crucial for personalized nutri-002
tion guidance and disease management. How-003
ever, existing Visual Language Models (VLMs)004
have limitations in understanding deep, multi-005
dimensional food knowledge, such as nutri-006
tional composition, cultural background, and007
health impacts. Current food datasets and008
knowledge graphs often focus on textual knowl-009
edge, lacking visual information or failing to010
integrate cross-domain knowledge. To ad-011
dress these challenges, we constructed DietKG-012
VQA—the first large-scale food analysis bench-013
mark (3404 images, 10219 question-answering014
pairs) that fuses multi-domain (nutrition, cul-015
ture, health) structured knowledge with visual016
information. We also propose a novel method017
for enhancing VLMs based on a Multimodal018
Dietary Knowledge Graph (MDKG): by con-019
structing an MDKG that incorporates visual020
information, and combining visual similarity021
retrieval, knowledge graph querying, and our022
proposed VLM-guided Knowledge Pruning &023
Selection (V-KPS) mechanism, we precisely ex-024
tract core knowledge to enhance VLM reason-025
ing, especially for uncommon food items. Ex-026
perimental results on the DietKG-VQA bench-027
mark show that the proposed method signif-028
icantly outperforms baseline VLMs; for ex-029
ample, gpt_4o_mini’s comprehensive average030
score increased substantially from a baseline of031
34.81% to 76.02%. The DietKG-VQA bench-032
mark and related code will be publicly released.033

1 Introduction034

Dietary habits are closely related to human health035

and are key influencing factors for many chronic036

diseases such as obesity, diabetes, and cardiovascu-037

lar diseases (Amiri et al., 2019; Min et al., 2019).038

Therefore, accurate dietary assessment, nutritional039

monitoring, and personalized dietary management040

play an increasingly important role in modern041

healthcare and daily life (Rollo et al., 2016). For042

example, diabetic patients need to accurately es- 043

timate dietary carbohydrate content to determine 044

insulin dosage, as incorrect estimations can lead to 045

severe health complications (Contreras et al., 2023; 046

Buck et al., 2022). 047

In recent years, Visual Language Models have 048

shown great potential in general image understand- 049

ing and question answering. However, when ap- 050

plied to the complex field of food analysis, a signif- 051

icant gap exists between their current capabilities 052

and application needs. Firstly, existing VLMs often 053

lack deep, domain-specific food knowledge. They 054

might be able to identify basic food categories in 055

images, but perform poorly when answering com- 056

plex questions requiring specialized knowledge, 057

such as precise quantification of nutritional compo- 058

nents, cultural traceability, or reasoning about the 059

health impacts of specific foods. Secondly, exist- 060

ing food-related datasets have limitations. Many 061

datasets either only contain images (Ma et al., 2023; 062

Liang and Li, 2017; Tai et al., 2023), consist of 063

tabular nutritional data lacking natural language 064

descriptions (USDA, 2019; Nutritionix, 2018), or 065

focus solely on a single information dimension 066

(like recipes or nutrition), making it difficult to 067

support complex analysis tasks that require inte- 068

grating multi-source information (Hezarjaribi et al., 069

2017). While some work has begun to focus on 070

using Large Language Models to estimate nutrition 071

from textual descriptions (Hua et al., 2024), they 072

overlook the important modality of visual informa- 073

tion. 074

Knowledge Graphs, as an effective representa- 075

tion of structured knowledge, have been used in 076

some food-related tasks, such as food recommen- 077

dation (Haussmann et al., 2019) or text-based ques- 078

tion answering (Chen et al., 2021). KGs can inte- 079

grate heterogeneous data, promote knowledge dis- 080

covery, and are valuable for food safety, nutritional 081

assessment, and diet-disease association studies 082

(Min et al., 2022). However, a key pain point of 083
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Figure 1: GPT-4o-mini answering nutrition-related questions from DietKG-VQA using different prompting strate-
gies.

existing food KGs is that they mostly focus on orga-084

nizing textual information and generally lack struc-085

tured integration of visual knowledge (such as food086

images and their features) (Min et al., 2022), which087

directly limits their application potential in visual088

tasks (especially VQA). Currently, research on sys-089

tematically utilizing multimodal dietary KGs to en-090

hance VLMs for solving complex visual question091

answering tasks requiring deep, multi-dimensional092

knowledge reasoning (such as image-based nutri-093

tion quantification, food-disease association rea-094

soning) is still nascent. Furthermore, existing meth-095

ods often struggle to provide effective information096

when faced with visually unique or very uncom-097

mon dishes.098

To bridge the aforementioned gaps, this study099

aims to answer a core question: How can struc-100

tured multimodal knowledge be effectively utilized101

to enhance the accuracy and depth of VLMs in102

complex food visual question answering tasks? We103

are committed to exploring the use of multimodal104

dietary KGs to enhance the food question answer-105

ing capabilities of VLMs. Our main contributions106

include:107

1) Proposing DietKG-VQA: a novel benchmark108

specifically designed to evaluate the deep food109

understanding capabilities of VLMs, being110

the first to fuse visual information with multi-111

domain structured knowledge (nutrition, cul-112

ture, health impacts, etc.).113

2) Designing and implementing a framework114

for enhancing VLMs with a multimodal115

dietary KG: This framework constructs an116

MDKG that integrates visual information and 117

innovatively combines visual similarity re- 118

trieval with KG querying, initiating a VLM- 119

guided Knowledge Pruning & Selection pro- 120

cess we propose, to precisely extract and for- 121

mat external knowledge. A highlight of this 122

framework is its ability to handle uncommon 123

food items by bridging to known food knowl- 124

edge through visual similarity for reasoning, 125

enhancing robustness. 126

3) Systematically verifying the superiority of 127

this framework through experiments: We 128

conducted baseline evaluations on DietKG- 129

VQA for various mainstream VLMs (includ- 130

ing open-source and closed-source models) 131

and demonstrated that our proposed MDKG 132

method can significantly improve model per- 133

formance on complex food knowledge ques- 134

tion answering tasks. 135

2 Related Work 136

Existing work has covered food image recogni- 137

tion (Knez and Šajn, 2020; Klasson et al., 2020; 138

Liu et al., 2021), portion/calorie estimation (Yunus 139

et al., 2018; Keller et al., 2024), ingredient recog- 140

nition (Chen et al., 2020), and recipe generation 141

(Shirai et al., 2020). Visual Question Answering 142

(VQA) (Yin et al., 2023) has also begun to be ap- 143

plied in the food domain, but is often limited to 144

basic questions, primarily relying on the model’s 145

internal knowledge, and struggles with complex 146

analyses requiring external professional knowledge. 147

Although some studies have utilized KGs to en- 148
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hance visual food recognition (Lu et al., 2020b,a),149

their goal was to improve recognition performance,150

rather than, as in this study, using a multimodal KG151

containing visual information for complex, multi-152

domain knowledge-based visual question answer-153

ing.154

To integrate structured food information, re-155

searchers have constructed various food KGs.156

These efforts often begin with the development of157

food ontologies, such as Taaable focusing on cook-158

ing, PIPS and FOODS on nutrition and health, and159

the more comprehensive FoodOn (Min et al., 2022).160

Based on these ontologies or directly from data,161

KGs like FoodKG (Haussmann et al., 2019) were162

created, integrating recipes, ingredients, and nutri-163

tional data, mainly for recommendation systems or164

text-based question answering. Other works may165

focus on specific regions, themes, or industrial ap-166

plications (e.g., internal KGs built by Uber Eats,167

Edamam) (Hamad et al., 2018; Çelik, 2015). These168

KGs have shown value in organizing textual infor-169

mation, supporting semantic search (Huang et al.,170

2019), text-based QA (Qin et al., 2019), and discov-171

ering diet-disease associations (Afshin et al., 2019;172

Zhao et al., 2020). However, the vast majority of173

these KGs only contain textual knowledge and gen-174

erally lack direct, structured association with food175

images (Lei et al., 2021). This limits their direct176

support for tasks requiring visual input (such as177

VQA). Our work directly addresses this key lim-178

itation by constructing an MDKG that explicitly179

includes image information.180

Nutrition estimation is a core task in food analy-181

sis. Traditional methods rely on querying tabular182

databases (USDA, 2019; Nutritionix, 2018), but183

this often requires exact matches and is cumber-184

some for multi-ingredient meals (Hezarjaribi et al.,185

2017). Image-based methods (Keller et al., 2024;186

Yunus et al., 2018) are susceptible to visual factors187

and often lack interpretability. Recent work has188

started to utilize LLMs to estimate nutrition from189

natural language descriptions (Hua et al., 2024).190

This study, however, focuses on starting from vi-191

sual input and combining structured multi-domain192

knowledge provided by an MDKG for more com-193

prehensive and reliable visual question answering.194

To overcome the knowledge limitations of195

(V)LMs (such as hallucinations, outdatedness),196

methods like Retrieval Augmented Generation197

(RAG) (Lewis et al., 2020) have been proposed,198

which enhance generation by retrieving informa-199

tion from external knowledge bases (databases,200

KGs, etc.). This approach has proven effective 201

in both general and specific domains (Wu et al., 202

2024). Research on using KGs as external knowl- 203

edge sources to enhance models is also ongoing 204

(Wang et al., 2024). However, filtering useful 205

knowledge from vast retrieval results and organiz- 206

ing it in a way that VLMs can easily understand 207

remains a challenge. The VLM-guided Knowledge 208

Pruning & Selection mechanism proposed in this 209

study aims to address this issue, ensuring that the 210

injected knowledge is both relevant and refined. 211

Compared to existing work, our core distinctions 212

are: 1) Constructing the first multimodal bench- 213

mark, DietKG-VQA, specifically designed for eval- 214

uating deep food understanding, which integrates 215

multi-domain knowledge with visual information; 216

2) Proposing and validating a new method that uti- 217

lizes an MDKG and employs an advanced, VLM- 218

driven knowledge pruning and selection strategy to 219

enhance models for complex food visual question 220

answering. 221

3 DietKG-VQA Benchmark 222

To systematically evaluate and advance the capabil- 223

ities of multimodal models in complex food analy- 224

sis tasks, we constructed the DietKG-VQA bench- 225

mark. Its core objective is to provide an evalua- 226

tion platform that contains rich, multi-dimensional, 227

structured knowledge closely associated with vi- 228

sual information, specifically for measuring the 229

deep food understanding capabilities of models. 230

3.1 Data Sources and Integration 231

DietKG-VQA integrates the following six au- 232

thoritative or widely used Chinese and English 233

databases, covering key information dimensions: 234

• Boohee Food Database (Boohee, 2025): Pro- 235

vides nutritional information (calories, carbo- 236

hydrates, fat, protein, in kcal/100g or g/100g) 237

and main ingredients for common Chinese 238

dishes. 239

• Douguo Recipe Database (Douguo, 2025): Of- 240

fers a large number of structured recipes for 241

Chinese dishes, including detailed ingredient 242

lists, quantities, cooking steps, and classifica- 243

tion information. 244

• Nutritionix (Nutritionix, 2018): Provides an 245

extensive nutritional database covering com- 246

mon American foods (packaged foods, restau- 247
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rant dishes), including macro and micronutri-248

ent information (standardized per 100g).249

• Baidu Baike (Baidu Baike, 2025) &250

Wikipedia (Wikipedia, 2025): Used to extract251

historical origins, cultural backgrounds, flavor252

characteristics, and regional popularity of253

foods (especially dishes) (e.g., attribution to254

China’s eight major cuisines, popular dishes255

in specific US regions).256

• Baidu Health Dictionary (Baidu Health,257

2025): Provides expert-reviewed association258

information between food and diseases, en-259

coding the potential beneficial or harmful ef-260

fects of food on approximately 1,849 common261

diseases.262

3.2 Data Preprocessing263

To ensure consistency and quality across databases,264

we performed the following preprocessing steps:265

Unit Normalization: All nutrient contents were266

uniformly converted to a "per 100g" standard (e.g.,267

kcal/100g, g/100g). Regular expressions were used268

to handle and eliminate heterogeneity in unit ex-269

pressions.270

Entity Alignment: Using the paraphrase-271

multilingual-MiniLM-L12-v2 model based on co-272

sine similarity, we aligned identical food entities273

from different databases (e.g., "potato" (tǔdòu) and274

"potato" (mǎlíngshǔ), Chinese and English names275

for "scrambled eggs with tomatoes" (xı̄hóngshì276

chǎo dàn)).277

3.3 Benchmark Construction Methodology278

From the images associated with the above279

databases, we carefully selected 3404 representa-280

tive images that were not subsequently used in the281

construction of the knowledge graph. Image selec-282

tion followed principles of clarity, typicality, and283

visual diversity.284

For each image and its associated metadata, we285

defined four types of questions:286

1. Nutritional Analysis: "Please analyze the calo-287

rie (kcal/100g), fat (g/100g), carbohydrate288

(g/100g), and protein content (g/100g) of the289

food in the image."290

2. Regional Popularity: "In which regions is the291

food in the image most popular?"292

3. Pathological Association: "What diseases293

might the food in the image be beneficial for,294

and what diseases might it be harmful for?"295

4. Basic Information: "What food is in the im- 296

age? Please provide some information about 297

this food." 298

To ensure the high quality and consistency of the 299

“Ground Truth,” we prioritize the use of unified, 300

standardized prompts rather than pursuing diver- 301

sity. This approach is designed to guarantee the 302

precise correspondence between answers and meta- 303

data, and to enhance the efficiency of expert review. 304

The diversity of the dataset is already provided by 305

3,404 visually rich images and four core question 306

types. 307

The generation of benchmark answers relies 308

on the GPT-4o model. The process involves: 309

first, constructing a multimodal knowledge graph 310

from the original metadata; second, employing vi- 311

sual similarity retrieval, knowledge graph query- 312

ing, and the V-KPS (VLM-guided Knowledge 313

Pruning & Selection) mechanism to precisely ex- 314

tract core knowledge highly relevant to the in- 315

put image from the graph; finally, this refined 316

knowledge, along with the corresponding image, 317

is jointly input into the GPT-4o model (parame- 318

ters: max_new_tokens=2048, temperature=0.3, 319

top_p=0.75) to generate preliminary answers. 320

To guarantee the quality and accuracy of the fi- 321

nal answers, we assembled a professional review 322

team. All team members are nutrition experts who 323

have passed the Chinese Registered Dietitian ex- 324

amination and have accumulated over 5 years of 325

experience in the field of public nutrition. The ex- 326

pert team is responsible for meticulously reviewing 327

the generated preliminary answers, ensuring their 328

complete fidelity to the original metadata. They 329

make final adjudications, modifications, and confir- 330

mations independently of the V-KPS mechanism, 331

and eliminate any model hallucinations or content 332

inconsistent with the metadata. Through this pro- 333

cess, the DietKG-VQA benchmark, comprising 334

10,219 high-quality image-question-answer pairs, 335

was ultimately established. 336

4 Methodology 337

We propose a novel method for enhancing VLMs 338

for food question answering based on a multimodal 339

dietary knowledge graph. The core idea of this 340

method is to use external, structured food knowl- 341

edge containing visual information to compensate 342

for the model’s deficiencies in domain depth and 343

knowledge accuracy. The overall framework con- 344

sists of three main parts: construction of the multi- 345
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modal food knowledge graph, knowledge retrieval346

and summarization based on the MDKG, and the347

knowledge-enhanced visual question answering348

pipeline.349

4.1 Multimodal Food Knowledge Graph350

Construction351

The knowledge graph we constructed aims to inte-352

grate multi-dimensional food information and ex-353

plicitly incorporate visual information into the KG354

structure.355

Data Integration and Schema Design: Based on356

the six data sources described in Section 3.1, we357

designed a knowledge graph schema, defining core358

entity types and relation types.

Category Count
Disease 1849
Food 6058
Ingredient 4149
Region 1484
Classification 2306
Not_Recommend_Food 954
Recommend_Food 802

Relation Count
Belongs_To 7299
Contains_Ingredient 23029
Not_Recommend_To_Eat 5749
Popular_In 8898
Recommend_To_Eat 6277

Table 1: Statistics of Knowledge Graph Entity and Re-
lation Types.

359
Data Processing and Ingestion: After the data360

preprocessing described in Section 3.2 (unit nor-361

malization, entity alignment), the structured data362

was converted into knowledge graph triples (Head363

Entity, Relation, Tail Entity) and entity attributes364

(Entity, Attribute, Value), and stored in a graph365

database (Neo4j).366

Visual Information Embedding: To associate367

Food entities in the KG with corresponding im-368

ages, we linked nodes to image files by storing369

the local image URL (local_image_url attribute).370

We pre-computed DINOv2-large high-dimensional371

feature vectors for 5108 representative images as-372

sociated with Food entities in the MDKG. These373

vectors were stored in an efficient vector index li-374

brary (FAISS), and the mapping between image375

vectors and their corresponding Food nodes in the376

KG was preserved. This step is key to achieving377

efficient visual similarity retrieval. 378

Note: The current knowledge graph was con- 379

structed to validate the effectiveness of the contri- 380

butions and does not include all food and disease 381

information. Nevertheless, its coverage is sufficient 382

to support the construction of the DietKG-VQA 383

benchmark and to preliminarily validate the effec- 384

tiveness of the proposed method. Further enrich- 385

ment of the graph entities will be carried out in 386

subsequent work. 387

Figure 2: Multimodal Knowledge Graph Schema Dia-
gram.

4.2 Visual Question Answering Based on 388

Multimodal Dietary Knowledge Graph 389

When given a user-input food image (Query Im- 390

age) and a related question, our method utilizes the 391

knowledge graph to enhance the VLM’s answering 392

ability through the following three key stages. 393

4.2.1 Visual Similarity Retrieval and Raw 394

Knowledge Extraction 395

Image Feature Extraction and Knowledge Retrieval: 396

Extract the feature vector of the Query Image us- 397

ing DINOv2-large.In the pre-built FAISS vector in- 398

dex library, perform a K-Nearest Neighbors (KNN) 399

search using this feature vector to retrieve the food 400

images from the knowledge graph that are visually 401

most similar to the Query Image, along with their 402

corresponding Food nodes. 403

Knowledge Graph Querying and Raw Knowl- 404

edge Extraction: Based on the Food node iden- 405

tifiers associated with the retrieved most similar 406

images, query the MDKG. Using a graph query 407

language (e.g., Cypher), starting from this Food 408
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Figure 3: MDKG-based Visual Question Answering Method Flowchart.

node, query its one-hop and two-hop neighboring409

nodes, and then filter the knowledge snippets using410

the VLM-guided Knowledge Pruning & Selection411

method described below.412

// Query disease association413

MATCH p=(n:Food {local_image_url:414

$image_path})-[*1..2]-(m:Disease)415

WHERE length(p) = 2416

AND type(relationships(p)[1])417

= 'not_recommend_to_eat'418

RETURN m {.*} AS Disease,419

[node IN nodes(p) WHERE node <> m420

| node.name] AS RelatedNames421

4.2.2 VLM-guided Knowledge Pruning &422

Selection (V-KPS))423

After identifying initial food entities in the MDKG424

through visual similarity retrieval, the goal of this425

stage is to precisely extract and filter knowledge426

snippets most relevant to the user’s question from427

the knowledge graph.428

1. One-hop Knowledge Filtering: Based on the429

previously queried knowledge snippets, filter430

its one-hop neighbor knowledge Shop1_raw.431

Using a VLM combined with the question Q432

and query image IQ, determine which knowl-433

edge in Shop1_raw (e.g., key ingredients) is434

most critical for answering the question or435

serving as an intermediate node, filtering out436

the Top-N1 to get Shop1_selected.437

2. One-hop Information Sufficiency Judg-438

ment: Use the model to evaluate whether439

Shop1_selected is already sufficient to answer440

Q. If the model judges "yes," it may directly441

format the output or skip two-hop retrieval; if442

"no" (e.g., only ingredients are known, and443

further information about their association 444

with diseases is needed), proceed to two-hop 445

retrieval. 446

3. Two-hop Knowledge Retrieval and Filtering: 447

If two-hop retrieval is needed, expand the en- 448

tities in Shop1_selected (e.g., "beef," "onion") 449

in the knowledge graph to obtain raw two-hop 450

knowledge Shop2_raw (e.g., (Iron-deficiency 451

Anemia, recommended_to_eat, Beef)). 452

Contextual Relevance Coarse Filtering: Use 453

the deberta-v3-large model to calculate the 454

semantic relevance of each knowledge snippet 455

in Shop2_raw with the query context (Q, IQ), 456

filtering the Top-W knowledge snippets with 457

the highest scores to form Shop2_candidate. 458

VLM-assisted Fine-grained Selection:Using 459

a model (with Pselect_final prompt) combined 460

with Q and IQ, perform fine-grained selection 461

on the knowledge snippets in Shop2_candidate 462

to choose the final Top-K knowledge set 463

Sfinal. 464

4. Formatted Injection: Format the final se- 465

lected knowledge set Sfinal (or the one-hop 466

filtered result) into concise natural language 467

text, which is then injected as knowledge en- 468

hancement into the subsequent module. 469

4.2.3 Knowledge-Enhanced Prompt 470

Construction and VLM Inference 471

Combine the knowledge snippets from the previ- 472

ous step with the original user question to con- 473

struct a more informative enhanced prompt. In- 474

put the Query Image, the question, and the con- 475

structed enhanced prompt together into a pre- 476

trained VLM. The model utilizes its own image 477
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understanding and language generation capabilities,478

combined with the external knowledge provided in479

the prompt, to generate the final answer.480

5 Experiments481

The experiments aim to validate the effectiveness482

of our proposed method for enhancing VLMs based483

on an MDKG, with the following specific objec-484

tives:485

5.1 Experimental Setup486

We use the DietKG-VQA dataset described in487

Section 3. Evaluation focuses on its four488

main food knowledge question categories: Nu-489

tritional Analysis, Regional Popularity, Patholog-490

ical Association, and Basic Information. As491

shown in Table 2, we comprehensively evaluated492

10 state-of-the-art VLMs (parameters uniformly493

set to: max_new_tokens=2048, temperature=0.3,494

top_p=0.75, top_k=50).495

Experimental Groups:496

• Baseline Group: Directly use the original497

model to process images and questions from498

DietKG-VQA to generate answers. Input is499

(Image, Question).500

• MDKG+V-KPS Enhanced Group: Apply501

our proposed method. As detailed in Sec-502

tion 4, through visual similarity retrieval and503

KG querying, and utilizing the VLM-guided504

Knowledge Pruning & Selection mechanism505

for pruning and selection, the VLM’s answer506

generation is enhanced. Input is (Image, V-507

KPS enhanced Prompt).508

Across all four question categories and their re-509

spective evaluation metrics, the enhanced models510

demonstrated significantly superior performance511

compared to their baseline counterparts.512

Nutritional Analysis: Enhanced models consis-513

tently achieved significantly lower Mean Absolute514

Error. For instance, gpt_4o_mini reduced the MAE515

for calories from 47.86 to 4.40.516

Regional Popularity: The F1 score for517

gpt_4o_mini increased from 40.28 to 84.24, while518

for DeepSeek-VL2-16B, it rose from 35.73 to 79.29.519

Pathological Association: The baseline F1 score520

of 10.17 for gpt_4o_mini, for instance, reflects that521

general-purpose vision-language models struggle522

with accurate fine-grained food-disease association523

reasoning due to a lack of specialized knowledge.524

As illustrated in Figure 5, the baseline model tends525

to rely more on general common-sense judgments 526

(e.g., vaguely stating that “high-salt foods might 527

be detrimental to hypertension”) and seldom ac- 528

tively cites or links to professional medical infor- 529

mation or verified food-disease knowledge entries. 530

This precisely underscores the critical role that the 531

structured, specialized knowledge provided by the 532

knowledge graph in our study plays in enhanc- 533

ing performance on such complex reasoning tasks. 534

Moving forward, we also plan to optimize the base- 535

line, for example, by employing guiding prompts 536

to encourage the model to retrieve and reason about 537

associations from its internal knowledge. 538

Basic Information: The BERTScore F1 for 539

gpt_4o_mini increased from 32.53 to 55.1, and for 540

Qwen2.5-VL-72B-Instruct, it improved from 30.35 541

to 56.93. 542

This improvement was consistent across all 543

evaluated models, with even smaller models like 544

LLaVA 1.6 Mistral 7B demonstrating significant 545

gains. This highlights the generalizability and ef- 546

fectiveness of our MDKG+V-KPS methodology. 547

The targeted, factual information supplied by the 548

knowledge graph enables models to overcome 549

their inherent knowledge limitations, reduce hal- 550

lucinations, and provide more accurate, detailed, 551

and contextually-aware answers to complex food- 552

related queries. 553

5.2 Ablation Study 554

To further validate the effectiveness of the key mod- 555

ules (especially V-KPS) in our proposed MDKG 556

enhancement framework, we conducted a series of 557

ablation studies. We compared the performance 558

of the following three settings on DietKG-VQA, 559

using the same comprehensive average score (avg) 560

calculation method defined in the main experiment 561

as the evaluation metric. 562

• Baseline: The original model, without any 563

external knowledge enhancement, directly an- 564

swering questions. 565

• Simple KG Enhancement (MDKG): The 566

model is combined with the MDKG, but only 567

performs basic KG querying without VLM- 568

guided multi-stage knowledge priority prun- 569

ing. Retrieved knowledge is provided to the 570

model in a relatively raw form. 571

• MDKG+V-KPS Enhanced Group: The 572

complete MDKG enhancement framework 573
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Nutrition Region Disease Base
avgMAE – – BERTScore

Baseline calorie fat carbohydrate protein F1 F1 F1
gpt_4o_mini 47.86 3.71 7.22 3.55 40.28 10.17 32.53 34.81

DeepSeek-VL2-16B 104.36 6.37 12.97 5.80 35.73 8.36 25.88 27.69
DeepSeek-VL2-27B 129.96 6.72 14.85 5.20 34.53 8.46 25.37 22.24

Llama-3.2-11B-Vision 95.08 6.68 12.74 5.12 33.34 6.54 19.79 25.25
LLaVA 1.6 Vicuna 7B 159.14 7.33 21.18 6.96 20.57 8.64 14.2 12.44

LLaVA 1.6 Vicuna 13B 158.28 7.42 26.30 6.15 26.93 6.25 16.8 17.34
LLaVA 1.6 Mistral 7B 163.74 6.89 17.28 5.70 22.2 5.67 6.23 13.18

Pixtral 12B 83.89 5.88 10.76 5.03 28.59 9.22 25.16 26.73
Qwen2.5-VL-7B 113.38 6.19 13.92 4.67 32.99 7.36 24.82 23.99

Qwen2.5-VL-72B 71.00 5.25 8.72 3.36 36.02 8.26 30.35 31.83

MDKG+V-KPS

gpt_4o_mini 4.40 0.41 0.75 0.18 84.24 93.9 55.1 82.68
DeepSeek-VL2-16B 5.03 1.16 1.46 0.68 79.29 88.58 50.23 78.29
DeepSeek-VL2-27B 5.54 0.50 0.97 0.23 78.69 87.32 44.57 76.81

Llama-3.2-11B-Vision 5.55 0.43 0.87 0.23 76.85 86.06 43.96 75.96
LLaVA 1.6 Vicuna 7B 12.63 3.40 4.26 0.38 78.33 81.56 38.47 71.20

LLaVA 1.6 Vicuna 13B 28.19 2.72 6.31 1.68 77.97 87.1 37.39 69.16
LLaVA 1.6 Mistral 7B 5.88 0.60 1.00 0.24 76.2 55.22 31.61 64.69

Pixtral 12B 5.21 0.47 0.84 0.31 80.86 92.56 56.94 81.73
Qwen2.5-VL-7B 59.44 2.96 7.77 2.27 74.41 67.47 38.53 60.11

Qwen2.5-VL-72B 7.55 0.57 0.83 0.46 76.41 93.73 56.93 80.18

Table 2: Experimental results for baseline VLMs and their V-KPS enhanced counterparts. Best results are in bold.
The metric for Nutritional Analysis questions is Mean Absolute Error (MAE). Metrics for Regional Popularity and
Pathological Association questions are F1 scores, derived from confusion matrix-based classification evaluation.
The metric for Basic Information questions is BERTScore F1. The last column "avg" is a composite average score
reflecting overall model performance, calculated as: avg = 0.25 * (1 - Normalized MAE for Nutrition) + 0.25 * F1
Regional Popularity + 0.25 * F1 Pathological Association + 0.25 * BERTScore F1 Basic Info. In this formula, the
MAE for nutrition analysis has been normalized.

proposed in this paper, including the VLM-574

guided Knowledge Pruning & Selection mech-575

anism.576

Figure 4: Ablation Study Results. (This figure would
typically be a bar chart showing the ‘avg‘ score for
Baseline, Simple KG Enhancement, and MDKG+V-
KPS for several representative VLMs.)

Ablation studies demonstrate that even simple577

Knowledge Graph enhancement significantly im-578

proves baseline model performance (e.g., boost-579

ing the F1 score of gpt_4o_mini from 34.81% to580

64.84%). However, our proposed Vision-Language581

Model -guided knowledge pruning and selection582

framework exhibits even better results, achieving583

state-of-the-art performance across all evaluated584

models. This framework excels by precisely fil-585

tering key relevant knowledge and reducing inter-586

ference, thereby enabling models to utilize infor- 587

mation more intelligently and accurately. Conse- 588

quently, it achieves superior performance in com- 589

plex food visual question answering tasks. 590

6 Conclusion 591

Addressing the limitations of Visual Language 592

Models in deep food understanding, this research 593

proposes an enhancement method based on a mul- 594

timodal dietary knowledge graph. We constructed 595

the DietKG-VQA benchmark and a multimodal 596

dietary knowledge graph, and designed a VLM- 597

guided knowledge pruning and selection mecha- 598

nism. This mechanism integrates visual similarity 599

with knowledge graph queries, enabling it to handle 600

uncommon foods and complex reasoning. Experi- 601

mental results demonstrate that our approach sig- 602

nificantly improves model performance on DietKG- 603

VQA, particularly in deep knowledge question an- 604

swering tasks such as nutritional quantification and 605

pathological association, thereby underscoring the 606

substantial potential of multimodal dietary KGs in 607

empowering intelligent dietary analysis. 608

Limitations 609

First, the current Multimodal Dietary Knowledge 610

Graph predominantly covers Chinese and Western 611

recipes, lacking comprehensive coverage of other 612

regional cuisines. The number of food entities 613
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(6,058) and disease entities (1,849) it encompasses,614

while substantial, still offers room for expansion615

when compared to the complexity of the real world.616

Although the visual similarity retrieval mechanism617

(as described in Section 4.2.1) offers some inferen-618

tial capability for handling uncommon food items619

not directly included in the MDKG, the breadth620

and depth of the underlying knowledge base re-621

main critical.622

Second, while the VLM-guided Knowledge623

Pruning & Selection process is effective, it necessi-624

tates multiple calls to the Vision-Language Model.625

Depending on the depth of knowledge retrieval626

and the complexity of the query, this typically in-627

volves 2-3 VLM calls for filtering and assessment,628

potentially increasing inference latency and compu-629

tational overhead. Future work could explore more630

lightweight pruning models or optimize model in-631

teraction prompts to enhance both efficiency and632

robustness.633

Ethical Considerations634

This research is dedicated to the responsible ad-635

vancement of dietary analysis technology. Our636

benchmark construction utilizes publicly available637

data, which is expert-reviewed to ensure accuracy638

and reduce bias. The outputs generated by our639

model are intended as supplementary information640

only and cannot substitute for professional medical641

advice; users are advised to exercise discretion.642

We acknowledge the current limitations in the643

coverage of our knowledge graph and are commit-644

ted to continuously enhancing its fairness, gener-645

alizability, and transparency through open bench-646

marks, code, and other publicly available resources.647

Our ultimate commitment is to ensure that techno-648

logical progress serves human well-being.649
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Figure 5: GPT-4o-mini answering pathological association questions from DietKG-VQA using different prompting
strategies.

Figure 6: GPT-4o-mini answering regional popularity questions from DietKG-VQA using different prompting
strategies.

Figure 7: GPT-4o-mini answering basic information questions from DietKG-VQA using different prompting
strategies.
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