
Under review as a conference paper at ICLR 2024

EFFICIENT ACTIVE IMITATION LEARNING WITH
RANDOM NETWORK DISTILLATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Developing agents for complex and underspecified tasks, where no clear objective
exists, remains challenging but offers many opportunities. This is especially true in
video games, where simulated players (bots) need to play realistically, and there is
no clear reward to evaluate them. While imitation learning has shown promise in
such domains, these methods often fail when agents encounter out-of-distribution
scenarios during deployment. Expanding the training dataset is a common solution,
but it becomes impractical or costly when relying on human demonstrations. This
article addresses active imitation learning, aiming to trigger expert intervention
only when necessary, reducing the need for constant expert input along training.
We introduce Random Network Distillation DAgger (RND-DAgger), a new active
imitation learning method that limits expert querying by using a learned state-based
out-of-distribution measure to trigger interventions. This approach avoids frequent
expert-agent action comparisons, thus making the expert intervene only when it is
useful. We evaluate RND-DAgger against traditional imitation learning and other
active approaches in 3D video games (racing and third-person navigation) and in a
robotic locomotion task and show that RND-DAgger surpasses previous methods
by reducing expert queries. https://sites.google.com/view/rnd-dagger

1 INTRODUCTION

Imitation learning has increasingly become a favored approach for learning behaviors in complex
environments, offering a compelling alternative to classical scripted behaviors implemented by
domain specialists (Schaal, 1999; Hussein et al., 2017). It is particularly well suited in problems
where there is not a clear performance measure (or reward). In video games, it is becoming more
and more familiar to game developers that frequently address the problem of implementing bots in
their games which must play in realistic ways (Harmer et al., 2018; Yadgaroff et al., 2023; Mao et al.,
2024). Indeed, since the notion of realism is not well specified, it prevents the use of reinforcement
learning-based approaches where a reward signal is mandatory. By observing and replicating human
players, these bots are trained to execute complex strategies and actions that are both efficient and
human-like.

Imitation learning usually proceeds in two steps: first, a dataset of behaviors is built by leveraging
experts interacting with the dynamical system. Then, a statistical model (e.g. a neural network) is
learned to imitate actions in that dataset, thus expecting this model to generalize to unseen state
and to behave like the experts. Consider a use case where the goal is to train a driving policy in a
video game context capable of controlling a car on a track (see figure 1). In this scenario, the state
is defined by sensor values at time t, which can include information such as the position of the car,
its speed, and raycasts. In this context, Imitation Learning involves manually controlling the car for
many laps to create a learning dataset, training a policy on this dataset using traditional algorithms
like Behavioral Cloning (Bain & Sommut, 1999), and expecting that the resulting bot will control the
car correctly. However, this approach is known to be unreliable, particularly due to the risk of a shift
in the state distribution between training and testing (Ross et al., 2011), known as the problem of
covariate shift (Nair et al., 2019). When covariate shift occurs, the agent struggles to determine the
correct action, leading to compounding errors and ultimately undermining its performance.

Facing this issue, the effectiveness of imitation learning hinges on the availability of extensive datasets
comprised of player behaviors, often necessitating thousands of expert traces to achieve reasonable
performance and exhibit credible behaviors (Vinyals et al., 2019; Mao et al., 2024). This dependency

1

https://sites.google.com/view/rnd-dagger

Under review as a conference paper at ICLR 2024

The learner is confident

Autonomous driving

The learner is lost The learner is lost The learner is confident
again

Crash Back on track

Recovery

Expert demonstration Expert demonstration Autonomous driving

(a) (b) (c) (d)

Figure 1: RND-DAgger overview. (a) The learner’s policy controls the agent until (b) our Random
Network Distillation-based out-of-distribution (OOD) measure is triggered. Then (c) the expert takes
control until the OOD measure gets lower than the threshold for at least W steps. (d) At last, the
current policy takes control of the agent to continue the episode, and can trigger the expert again later.

on large volumes of data poses a challenge, particularly in scenarios where collecting such data is
either impractical or costly.

In response to these limitations, some approaches involve human-in-the-loop training framework,
often referred to as active imitation learning (Ross et al., 2011; Judah et al., 2012; Menda et al.,
2019; Hoque et al., 2021). Instead of gathering very large amounts of demonstrations, these methods
focus on the strategic incorporation of human feedback to selectively guide the learning process,
thereby enhancing the efficiency of the training phase. By prioritizing the acquisition of relevant
and impactful expert traces, these approaches seek to expedite the agent’s learning curve without
relying on expansive datasets, and swiftly improve performance. In the aforementioned video game
example, this corresponds to collecting a first set of players traces to bootstrap the agent using
classical imitation learning, and then to gather additional traces in particular race settings during
training, i.e. requiring a player to control the car in particular and relevant situations.

To tackle these challenges, several recent models have been proposed to identify when the expert’s
intervention is necessary to correct the agent’s suboptimal behavior (Zhang & Cho, 2017; Menda
et al., 2019; Kelly et al., 2019; Hoque et al., 2021), with DAgger (Ross et al., 2011) being one of
the most well-known approaches. The primary objective of these methods is to minimize the time
required for human feedback by concentrating interventions on the most critical situations where
the agent is likely to make errors. This allows for a more efficient use of expert time, ensuring that
corrective feedback is provided only when it is essential. But, as explained in Section 2, many of
these methods are not fully satisfying.

Despite these advancements, designing algorithms that effectively incorporate human feedback while
reducing the overall expert effort remains an open research problem. Addressing this issue is the
central focus of this article, as we aim to develop methods that optimize the interaction between
the expert and the learning agent, thereby improving learning efficiency without overburdening the
human supervisor.

Our main contributions are threefold: i) We propose a new method called RND-DAgger which is a
novel interactive imitation learning approach leveraging state-based out-of-distribution identification
through random network distillation. ii) We perform a comparative analysis of RND-DAgger and
existing methods on 3 tasks: a robotics scenario and two video-game environments. iii) Through-
out these experiments, we demonstrate that RND-DAgger either outperforms or matches existing
approaches in terms of final performance while significantly reducing expert burden.

2

Under review as a conference paper at ICLR 2024

Algorithm 1 DAgger

Require: K, {βi}i∈[1,K], T , πexp

1: Instantiate D dataset of expert trajectories
2: Instantiate π0 BC policy trained on D
3: t← 0
4: for i = 0, . . . ,K DAgger iterations do
5: Di ← ∅
6: for T sampling steps do
7: st ∼ Env(at−1) (Get a new state)
8: at ← βiπexp(st) + (1− βi)πi(st)
9: Di ← Di ∪ {(at, πexp(st))}

10: t← t+ 1
11: end for
12: Push D ← D ∪Di

13: Train πi+1 on D using BC
14: end for
15: return πK

Figure 2: Above, the DAgger algorithm where the
expert action is added to the training set at each
timestep, the agent being alternatively controlled
by the current policy and the expert one. On
the right, in Lazy/Ensemble DAgger, the agent
is controlled by the expert policy only if a given
measure is higher than a threshold λ. Only actions
generated when the expert controls the agent are
added to the training set.

Algorithm 2 Lazy/Ensemble DAgger

Require: K, CONDITION, T , πexp

1: Instantiate D dataset of expert trajectories
2: Instantiate π0 BC policy trained on D
3: nswitch← 0
4: t← 0
5: Di ← ∅
6: for i = 0, . . . ,K iterations do
7: while #Di < T do
8: st ∼ Env(at−1) (Get a new state)
9: Ct ← CONDITION(πexp, πi, st)

10: if Ct then
11: at ← πexp(st)
12: Di ← Di ∪ {(at, st)}
13: t← t+ 1
14: if not Ct−1 then
15: nswitch← nswitch+ 1
16: end if
17: else
18: at ← πi(st)
19: end if
20: t← t+ 1
21: end while
22: D ← D ∪Di

23: Train πi+1 on D using BC
24: end for
25: return πK

2 PRELIMINARIES AND RELATED MODELS

Notations Let us consider a Partially Observable Markov Decision Process described by a state
space S, an observation space O and an action space A. The dynamics of the process is defined by
two unknown distributions: i) the observation distribution P (ot|st) with (ot, st) ∈ O × S and ii) the
transition function P (st+1|at, st) where at lies in A. Note that we do not consider any reward in this
setting since the task to solve is not explicit (e.g. driving a car), our objective being typically to imitate
human behaviors that may be suboptimal and diverse (e.g. if considering multiple players or experts).
An episode τ is composed of a sequence of observations and actions τ = (o1, a1, ..., oT#τ

, aT#τ
)

where #τ is the size of the episode. Given a policy π(at|ot, at−1, ot−1,, o1), it is possible to
sample an episode by sequentially executing the policy until reaching a stop criterion.

Distributional shift: Given a dataset of expert demonstrations D = (τ1, . . . , τn), a common
approach to policy learning is Behavioral Cloning (BC) (Bain & Sammut, 1995; Ding et al., 2019a),
a straightforward imitation learning algorithm. BC enables to learn policies by maximizing the
log-likelihood of the expert actions within the dataset. However, learning a policy from a fixed dataset
can result in the policy encountering out-of-distribution (OOD) states during inference, where it
has not been trained to make accurate decisions (Ross et al., 2011). This phenomenon is referred
to as distributional shift. This shift in the distribution can cause the policy to perform poorly, as it
may not know how to handle unseen situations. For example, consider a driving policy in a racing
game. If the dataset is composed only of demonstrations from expert drivers, the learned policy might
struggle to recover from rare events such as a spin-out, since such situations are absent from the
expert demonstrations. Therefore, the policy may fail to generalize effectively to these unseen states.

This effect can be mitigated by providing more diverse and comprehensive training sets, ensuring
that the policy is exposed to a wider range of scenarios, including edge cases. However, this raises
the challenge of how to efficiently collect such datasets while minimizing the burden on experts.
Gathering enough data to cover all possible situations can be time-consuming and costly, especially

3

Under review as a conference paper at ICLR 2024

Algorithm 3 CONDITION for Ensemble-DAgger

Require: πnov a mixture of N policies,
πexp, st, χ, τ

1: σ2
nov ← doubt of the mixture πnov

2: mt ← ∥πexp(st)− πnov(st))∥2
3: if σ2

nov > χ or measure > τ then
4: return TRUE
5: else
6: return FALSE
7: end if

Algorithm 4 CONDITION for Lazy-DAgger

Require: f , st, βH , βR

1: mt ← f(st) which estimates ∥πexp(st) −
πi(st)∥2

2: if mt > βH then
3: return TRUE
4: else
5: if measure < βR then
6: return FALSE
7: else
8: return TRUE
9: end if

10: end if

Figure 3: In Ensemble-DAgger, the policy is a mixture, and the measure is based on both a dis-
agreement between the models in this mixture, and a disagreement with the expert action. The
computations of these measure require the expert to provide action at each timestep of the process. In
Lazy-DAgger, the measure is based on the disagreement between the current policy and the expert
one, but to avoid the query of the expert action at each timestep, a classifier f is trained to predict if
the discrepency measure ∥πexp(st)− πi(st)∥2 is above a given threhsold βH or not.

if it relies heavily on expert demonstrations. Thus, the key question becomes how to strategically
collect diverse and representative data in a way that maximizes coverage of the state space while
minimizing the amount of effort required from experts.

DAgger and variants: To address this issue, one can utilize the DAgger algorithm from Ross et al.
(2011) (Algorithm 1), which iteratively expands the training dataset through the intervention of an
expert, represented by a reference policy denoted as πexp. The reference policy serves two key roles:
first, it determines the appropriate action to execute at each timestep based on a specified decision
rule (line 7) – a mixture between the current policy and the expert one. Second, it helps augment the
training set by adding new samples of states and corresponding expert actions, which are then used to
improve the learned policy (line 11). At regular intervals, the policy is updated via imitation learning
using the expanded dataset, and this process is repeated over multiple iterations. This method helps
to mitigate the issue of distributional shift by continually refining the learned policy with fresh data
that captures a broader range of states.

To better sample relevant states, few variants of the DAgger algorithm have been proposed. One of the
most relevant is Ensemble-DAgger (Menda et al., 2019) which introduces a decision rule to decide if
the agent is controlled by the current policy, or by the expert one. Moreover, pairs of state-actions are
added to the learning dataset only when the action comes from the expert policy (see Figure 2 - right).
The decision rule is a discrepancy measure that computes the distance between the expert action and
the policy action (combined with a disagreement measure between a mixture of experts) as shown in
Algorithm 3. This approach is not realistic when considering human experts. Indeed, let us revisit our
car driving example, where the goal is to learn an effective driving policy for a video game. Using
the DAgger and EnsembleDAgger approaches, the expert (i.e. the player) must continuously play the
game during the active imitation learning process, while the car is only partially controlled by the
current learned policy. This setup has two significant drawbacks: i) First, the player is placed in an
unnatural setting, where they are expected to control a car that they do not fully manage. This can
create a disorienting experience, as the player must constantly adapt to actions taken by the policy,
disrupting the natural flow of gameplay. ii) Second, the player remains engaged even when the car is
exhibiting good behavior, spending time providing feedback that may not significantly contribute to
discovering a better policy. This leads to inefficiencies, as the expert’s time is not always optimally
utilized, especially in situations where the current policy already performs well.

4

Under review as a conference paper at ICLR 2024

Require: K, πexp, ftarg , fpred, λ, W , T
1: Instantiate D dataset of expert trajectories
2: Instantiate π0 BC policy trained on D
3: nswitch← 0
4: t← 0
5: D0 ← ∅
6: for i = 0, . . . ,K DAgger iterations do
7: while #Di < T do
8: st ∼ Env(at−1) (Get a new state)
9: mt ← ∥ftarg(st)− fpred(st)∥2

10: if mt > λ or w < W then
11: if mt ≤ λ then (Minimal demo time)
12: w ← w + 1
13: else
14: w ← 0
15: end if
16: at ← πexp(st)
17: Di ← Di ∪ {(at, st)}
18: if mt−1 ≤ λ then
19: nswitch← nswitch+ 1
20: end if
21: else
22: w ← 0
23: at ← πi(st)
24: end if
25: t← t+ 1
26: end while
27: Push D ← D ∪Di

28: Train πi+1 on D using BC
29: Train fpred on D to predict ftarg
30: end for
31: return πK

Figure 4: The RND-DAgger algorithm
proceeds in K iterations. First a policy
is trained on a small expert dataset (line
2). Then at each iteration (line 6), it
constructs a new dataset Di with T state-
action pairs from the expert (line 7). At
each timestep, the agent is by default
controlled by the current policy (line 23).
The OOD measure is computed by us-
ing the prediction network fpred and the
target network ftarg (line 9). If this mea-
sure is greater than a threshold (line 10),
the expert takes over the policy to control
the agent (line 16) and to add samples to
the dataset (line 17). The number of con-
text switches is the number of times the
expert has taken control (line 19). At the
end of the iteration, the built dataset is
aggregated with the current learning set
(line 27) and the policy is retrained (line
28). In addition, the fpred network is
also updated (line 29) to allow the future
detection of OOD states. The w counter
is used to ensure that the algorithm waits
at least W timesteps below the threshold
before taking control back of the agent.

3 RANDOM NETWORK DISTILLATION-BASED DAGGER

To address the aforementioned limitations of Menda et al. (2019), Lazy-DAgger (Hoque et al.,
2021) proposes to involve the expert only during critical moments rather than requiring continuous
control. Instead of relying on the expert to partially guide the agent throughout the learning process,
this approach alternates between periods where the agent is completely controlled by the current
policy and periods where it is fully controlled by the expert. During the phases controlled by the
current policy, the expert’s intervention is not required, thereby reducing the time the expert spends
supervising the agent and making their interventions more targeted and efficient.

Lazy-DAgger replaces the traditional action-based discrepancy measure between expert and policy
actions with a classifier-based approximation — see Figure 4. This approach allows the algorithm to
predict when expert intervention is necessary without requiring an expert action at every timestep,
thereby significantly reducing the expert burden compared to methods like Ensemble-DAgger. How-
ever, this method has a notable drawback: similar to Ensemble-DAgger, it relies on comparing the
actions of the expert and the current policy for a given state. While this approach works well when
the expert is optimal and acts deterministically, it becomes problematic when dealing with humans
or imperfect experts. Human experts often exhibit variability and may choose different actions for
the same state depending on context or personal preference. This results in a noisy and unreliable
measure of discrepancy, causing the method to trigger unnecessary interventions or overlook critical
corrections, ultimately reducing its effectiveness.

We propose the RND-DAgger algorithm, which builds upon Random Network Distillation (RND)
(Burda et al., 2018). The core assumption of RND-DAgger is that expert feedback is only necessary
when the agent encounters out-of-distribution (OOD) states—states that are not well represented in
the training set and where the policy is more likely to fail. This is crucial because when an agent
operates in OOD states, it faces a higher risk of taking suboptimal actions that could hinder learning

5

Under review as a conference paper at ICLR 2024

or lead to unsafe outcomes. Once the agent returns to familiar, in-distribution states, the expert’s
feedback is no longer required, and the intervention is ended. Our method differs fundamentally from
existing approaches like Ensemble-DAgger and Lazy-DAgger, which rely on action-based discrepancy
measures to determine when to intervene. Thus, our approach remains robust to variations in expert
behavior and ensures that interventions only occur when the agent genuinely faces unfamiliar and
potentially risky states.

To further improve the stability of expert interventions, we introduce a mechanism called minimal
demonstration time. This concept addresses the issue of overly frequent and brief expert interventions,
which can interrupt learning and increase the cognitive load on the expert. Minimal demonstration
time defines a lower bound on the duration for which the expert must maintain control once they start
an intervention. The key idea is that the expert should provide a sufficient number of consecutive
corrective actions to guide the agent back to a stable state, instead of immediately handing control
back to the policy after a single correction. We describe these two components below. The detailed
algorithm is provided in Algorithm 4 with a complete explanation of the different steps.

Random Network Distillation To measure if a state is OOD, RND-DAgger relies on the Random
Network Distillation technique, which is a classical approach developed initially for the problem
of exploration in Reinforcement Learning to detect new states to explore (Burda et al., 2018). The
principle of RND is to use a randomly initialized neural network as a fixed target ftarg and train
a second neural network fpred (the predictor) to approximate the output of the target network. As
the predictor network improves over time, the error between the predictor and the target network
decreases for familiar states (in-distribution), but remains high for unseen or out-of-distribution states.
This prediction error thus serves as a measure of novelty, allowing the agent to recognize when it
has encountered a new or unfamiliar state. In RND-DAgger, the measure is used to decide when to
trigger the expert, and when to trigger back the current policy, alternating phases where the expert is
controlling the agent and when the agent is controlled by the current policy. Note that, contrarily to
the described baselines, this measure does not involve the expert action, thus avoiding the need to
have an expert acting at each timestep.

Minimal demonstration time Just relying on the OOD measure can lead to a behavior where
the expert is asked too often for short demonstrations (see appendix Figure ??). To account for this
expert burden, we introduce the notion of minimal expert time. It is defined as W the number of
consecutive "in-distribution" frames to switch control back from the expert to the autonomous policy
(e.g. then number of frames where mt < ∥ftarg(st)− fpred(st)∥2). This ensures that the expert will
provide a minimal of information at each intervention, thus demonstrating fewer sequences but of
longer length.

4 EXPERIMENTS

The primary objectives of our experimental evaluation are twofold: first, to assess the efficiency
of our approach in discovering an effective policy, and second, to evaluate its ability to reduce the
expert’s burden.

Environments: Our first environment is HalfCheetah which is a classical reinforcement learning
environment1 where the objective is to learn a running strategy for the agent. The goal of the agent
is to locomote as fast as possible. The HalfCheetah is controlled by applying motor torques, and
the agent manipulates a 6-degree-of-freedom (6-DOF) motor joint vector. The observation space
consists of 18 values, which include the position and velocity of the agent’s body, the angles and
angular velocities of its six joints, as well as the angle of the center of mass. We also propose two new
environments developed for video game research2. RaceCar (see Figure 5) features a physics-based
car controller that must complete a single lap on a given track. After each lap, the car is reset
to a random position on the starting line. The track presents several challenges, including speed
bumps, a ramp in front of a pillar, and sharp 90-degree turns, making the optimal driving behavior
non-trivial. Additionally, crossing the ramp and red sloped walls provides a speed boost, adding

1https://github.com/araffin/pybullet_envs_gymnasium
2The code of these environments that have been made using the Godot engine will be released upon acceptance

6

Under review as a conference paper at ICLR 2024

(a) RaceCar (b) RaceCar (Player view) (c) Maze (d) HalfCheetah

Figure 5: Illustration of the three different environments used in our experiments. The objective is to
learn a good driving/navigating/walking policy while minimizing the interventions of the expert.

complexity to the strategy. The car is controlled using four discrete actions: forward, backward, left,
and right. The observation space consists of 22 dimensions, including the car’s 3D position, linear
velocity (3D), angular velocity (3D), rotation (encoded as the cosine and sine of the angle), and data
from seven raycasts to detect obstacles. At last, the 3D Maze environment allows us to study our
strategy in goal-conditioned navigation scenarios. A classical human-like character is spawned at a
random location within the maze and tasked with reaching a randomly assigned goal. The agent is
controlled using four movement actions: walk forward, walk backward, strafe left, and strafe right,
as well as a one-dimensional rotation action to change its facing direction.The observation space
consists of the agent’s absolute position (3D), the goal’s position (3D), and 131 raycasts, which
provide a low-resolution depth map of the surroundings. Since the objective in this environment is to
navigate to any goal location, we replace the traditional Behavioral Cloning (BC) approach with a
Goal-Conditioned Behavioral Cloning (GCBC) approach (Ding et al., 2019b) as the base learning
algorithm. This adaptation ensures that the agent learns not just to imitate expert trajectories, but also
to generalize its navigation strategies based on varying goal positions within the maze.

Baselines: We compare our approach RND-DAgger to multiple approaches from the active
imitation learning literature: DAgger Ross et al. (2011), a classical approach which queries the
supervisor for an action in every state that the learner visits. Ensemble-DAgger Menda et al.
(2019), which propose an automated approach to measure OOD and trigger expert demonstration.
Ensemble-DAgger relies on two metrics: A disagreement measure defined as the correlation between
an ensemble of policies, and a discrepancy measure computing the difference between the bot action
and the expert action at every step. Lazy-DAgger uses the same discrepancy measure as Ensemble-
DAgger and reduce bot-expert context switching by using an additional threshold parameter to define
a hysteresis band. Note that, we rely on a simplified version proposed in (Hoque et al., 2021) that has
been shown to be more efficient and generates less context switches than the original version. This
variant discards the classifier for the benefit of the true discrepancy measure. Human-Gated DAgger
(HG-DAgger)(Kelly et al., 2019) involves a human supervisor monitoring the agent’s behavior in
real-time and deciding when to take control. While similar in essence to our proposed RND-DAgger,
HG-DAgger relies entirely on human judgment to identify when intervention is necessary, rather
than using an automatic OOD measure. This requires the expert to continuously observe the agent’s
actions at every timestep, leading to a higher cognitive load and less efficient use of expert time.
Finally, we also consider Behavioral Cloning (BC) as the classical baseline, which does not include
any active learning mechanism.

The set of hyperparameters used for the different approaches is described in Appendix A. For each
method, a first training set is collected by the expert, without active imitation learning techniques.
Then the different algorithms are executed to collect additional examples and to update the policy.

Metrics: To assess the performance of the methods considered, we rely on several key metrics: i)
The Task Performance measures whether the learned agent is successfully solving the environment.
For the Race Car and Maze environments, we use the success rate (i.e., whether the agent completes
a lap or reaches the goal). For HalfCheetah, we track the cumulative episode reward, which reflects
the overall effectiveness of the agent’s locomotion strategy. ii) The Dataset Size indicates the number
of expert actions added to the training dataset, providing insight into how much expert information is
being utilized to train the agent. A smaller dataset size suggests the agent is learning efficiently with
fewer expert interventions, while a larger dataset implies greater reliance on expert input. iii) The

7

Under review as a conference paper at ICLR 2024

Context Switches which corresponds to the nswitch variable in Algorithms 1 and ω measures the
number of contiguous periods during which the expert is actually controlling the agent. This helps
quantify how often the expert is involved in directly providing relevant training samples. For RND-
DAgger, this measure accurately reflects the expert’s involvement, as the agent is fully controlled by
the policy between switches. The metrics are averaged over 8 seeded runs for each method.

4.1 RESULTS

Task Performance # Context Switch

Method
Env RC HC Maze RC HC Maze

BC 0.883 ± 0.029 2455 ± 424 0.367 ± 0.043 - - -
DAgger 0.940 ± 0.026 2343 ± 209 0.450 ± 0.074 - - -
Lazy-DAgger 0.939 ± 0.025 2314 ± 278 0.575 ± 0.101 3437 ± 89 312 ± 45 1238 ± 79
Ensemble-DAgger 0.952 ± 0.018 2489 ± 108 0.626 ± 0.045 2785 ± 41 1452 ± 134 2871 ± 94
RND-DAgger 0.944 ± 0.014 2490 ± 160 0.717 ± 0.018 368 ± 11 708 ± 130 1214 ± 25

Table 1: Overall performance: This table illustrates the performance of the different algorithms at
the end of the K iterations. It also provides the value of the nswitch variable that accounts for the
number of expert interventions.

Oracle-based Performance: To conduct extensive experiments, we replace the human expert
with a predefined oracle policy. This substitution allows us to run multiple trials efficiently without
depending on human participants, which would be impractical in terms of both time and resources
(experiments using human experts are reported separately later in the section). For the Race Car
environment, the oracle is learned through a separate active imitation learning process with a large
interaction budget, ensuring the agent has access to high-quality demonstrations. In the 3D Maze
environment, the oracle is a NavMesh-based agent, which programatically solves any navigation
scenario, making it easy to generate trajectory data. For HalfCheetah, we use an open-source
reinforcement learning agent (Kuznetsov et al., 2020) from the RL Zoo repository (Raffin, 2020) as
the oracle, providing an optimal policy for locomotion tasks. This approach ensures consistency and
scalability across experiments.

Table 1 and Figure 6 present the performance metrics across the evaluated environments. To ensure a
fair comparison, we report results based on the hyperparameter settings that achieve the highest final
performance for each model. Additionally, in the Appendix ??, we provide a separate set of results
where the hyperparameters are adjusted to align the number of context switches between methods.

Our method, RND-DAgger, demonstrates competitive performance relative to Ensemble-DAgger
and Lazy-DAgger, indicating that it effectively learns robust policies across different environments.
For example, in the HalfCheetah environment, RND-DAgger achieves a cumulative reward of 2490,
compared to 2489 for Ensemble-DAgger and 2314 for Lazy-DAgger. These results highlight that
RND-DAgger is capable of discovering efficient policies, matching or surpassing the baselines in
terms of overall task success. When analyzing performance relative to the size of the training set,
RND-DAgger outperforms the other methods in the early stages of the active imitation learning
process. This suggests that RND-DAgger is more effective at focusing on critical states where expert
guidance is most needed, thereby gathering valuable feedback more efficiently. By concentrating on
key interventions, RND-DAgger accelerates policy improvement and requires fewer training samples
to achieve comparable or superior results, making it especially advantageous in scenarios with limited
expert availability. In summary, the experimental results demonstrate that RND-DAgger not only
achieves strong final performance but also exhibits a more sample-efficient learning curve compared
to existing methods, validating its capability to optimize expert interventions and rapidly improve
policy quality.

When examining the number of context switches between the different methods, RND-DAgger
consistently results in significantly fewer context switches compared to Ensemble-DAgger across all
environments. This indicates that RND-DAgger is more stable and requires fewer handovers between
the expert and the policy, reducing the burden on the expert. When compared to Lazy-DAgger,
RND-DAgger shows mixed results. In the RaceCar environment, RND-DAgger generates fewer
context switches, highlighting its efficiency in minimizing expert interventions. However, in the

8

Under review as a conference paper at ICLR 2024

2000 4000 6000 8000 10000 12000 14000 16000
Length of dataset (# expert frames)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pe
rfo

rm
an

ce

DAgger
LazyDAgger
EnsembleDAgger

RND-DAgger
BC
Expert

(a) Task performance RaceCar

2000 4000 6000 8000 10000 12000
Length of dataset (# expert frames)

1000

0

1000

2000

3000

Pe
rfo

rm
an

ce

DAgger
LazyDAgger
EnsembleDAgger

RND-DAgger
BC
Expert

(b) Task performance HalfCheetah

6000 8000 10000 12000 14000 16000
Length of dataset (# expert frames)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce

DAgger
LazyDAgger
EnsembleDAgger

RND-DAgger
BC
Expert

(c) Task performance Maze

4000 6000 8000 10000 12000 14000
Length of dataset (# expert frames)

102

103

co

nt
ex

t s
wi

tc
he

s

LazyDAgger
EnsembleDAgger
RND-DAgger

(d) Context switches RaceCar

4000 5000 6000 7000 8000 9000 10000 11000
Length of dataset (# expert frames)

102

103

co

nt
ex

t s
wi

tc
he

s
LazyDAgger
EnsembleDAgger
RND-DAgger

(e) Context switches HalfCheetah

8000 10000 12000 14000
Length of dataset (# expert frames)

103

co

nt
ex

t s
wi

tc
he

s

LazyDAgger
EnsembleDAgger
RND-DAgger

(f) Context switches Maze

Figure 6: Performance and context switches for the different environments. The X-axis corresponds
to the size of the training set D that increases at each iteration of the algorithms.

HalfCheetah and Maze environments, RND-DAgger produces a similar number of switches. This
similarity in HalfCheetah can be attributed to the use of an oracle expert policy, which performs
consistently without generating diverse actions. Under these circumstances, the discrepancy measure
used by Lazy-DAgger, which relies on comparing expert and policy actions, remains effective for
detecting when to switch. In the Maze environment, despite having a comparable number of context
switches to Lazy-DAgger, RND-DAgger achieves a higher final performance. This suggests that even
with similar intervention frequencies, RND-DAgger is more effective at leveraging expert feedback to
improve the policy. Thus, in scenarios like Maze, where achieving high task performance is critical,
RND-DAgger is the better choice due to its ability to make more meaningful corrections and drive
the agent towards optimal behavior.

Overall, these findings indicate that RND-DAgger strikes a favorable balance between reducing
context switches and achieving strong policy performance, making it a more efficient and reliable
choice.

Qualitative study: To gain a deeper understanding of when our algorithm requests expert supervi-
sion, Figure 7 visualizes the context switches between the current policy and the expert (additional
figures are provided in Appendix B). As seen in the figure, both Ensemble-DAgger and Lazy-DAgger
query the expert significantly more frequently, leading to a higher number of context switches com-
pared to RND-DAgger. The visualization also reveals that RND-DAgger identifies and focuses on
critical areas of the track that are challenging for the agent during early learning stages. Specifically,
it requests expert intervention primarily in the problematic zones, such as the bottom section of the
track near the bumpers and the obstacle immediately following the speeding ramp (top-left corner of
the track). These are regions where the bot initially struggles, making precise interventions crucial for
improving performance. This observation indicates that RND-DAgger not only minimizes the number
of expert queries but also targets the most relevant segments of the environment where guidance
is essential. By focusing on challenging states rather than spreading expert effort across all states,
RND-DAgger makes more strategic use of expert supervision, resulting in fewer yet more impactful
interventions.

Human Expert-based performance: We conducted a series of experiments (Figure 8) using
a real human expert instead of an oracle policy. In this setup, collecting expert actions while the
agent was being controlled by its own policy (rather than having the expert take direct control) felt
unintuitive for the human participants, making it challenging to apply traditional baselines effectively.
As such we focused our comparison on HG-DAgger, which allows the human expert to decide when
to intervene and take control from the agent.

9

Under review as a conference paper at ICLR 2024

(a) RND-DAgger (b) Lazy-DAgger (c) Ensemble-DAgger

Figure 7: In the RaceCar environment, blue trajectories represent states and actions generated by the
agent’s policy, while red trajectories indicate those collected by the oracle. The visualization shows
that RND-DAgger predominantly requests expert intervention in challenging sections of the track.
This targeted approach results in fewer expert traces compared to baseline methods.

1000 2000 3000 4000 5000 6000
Length of dataset (# expert frames)

0.5

0.6

0.7

0.8

0.9

1.0

Pe
rfo

rm
an

ce

HG-DAgger
RND-DAgger
BC
Expert

(a) Performance

1000 2000 3000 4000 5000 6000
Length of dataset (# expert frames)

0.5

0.6

0.7

0.8

0.9

1.0

Pe
rfo

rm
an

ce

HG-DAgger
RND-DAgger
BC
Expert

(b) Performance (time spent)

Figure 8: Task perfor-
mance on RaceCar
with a real human
as an expert. RND-
DAgger achieves
similar performance
than HG-DAgger
with roughly the same
amount of demonstra-
tions, but outperforms
it in terms of expert
time spent.

Our results show that RND-DAgger performs comparably to HG-DAgger, but with a significant
advantage: it does not require the human expert to continuously monitor the agent’s behavior. Instead,
RND-DAgger automates the decision of when to request expert input based on state novelty, reducing
the cognitive load on the expert. Figure 8b demonstrates the relationship between policy performance
and the actual time the expert spends observing the screen. In RND-DAgger, the agent can run at
accelerated speeds without the need for constant supervision, as the expert only needs to intervene at
specific moments rather than watching the agent’s entire trajectory.

5 CONCLUSION

In this work, we presented RND-DAgger, a novel approach to active imitation learning that efficiently
minimizes the need for expert interventions by leveraging a state-based measure derived from Random
Network Distillation (RND). Unlike traditional methods that rely on action-based discrepancies to
detect when to seek expert guidance, RND-DAgger focuses on identifying out-of-distribution states
where the agent is most at risk of making errors. This allows our method to selectively request
expert feedback only when it is truly necessary, thereby reducing the number of context switches and
optimizing the allocation of expert time. Overall, our method provides a step forward in developing
more practical and human-efficient imitation learning algorithms, making it a valuable tool for
training autonomous agents in complex environments. Future work will explore how to extend
RND-DAgger to more challenging tasks and incorporate different forms of expert feedback to further
improve learning efficiency and applicability.

10

Under review as a conference paper at ICLR 2024

6 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide detailed pseudo-code in section 2 and section
3. The code, along with necessary dependencies, will be made available to reviewers for evaluation.
Upon acceptance, we will release a comprehensive open-source codebase, including all environments,
datasets, oracle model checkpoints, active learning algorithms, and a detailed guide on how to
reproduce our experiments and results.

REFERENCES

Michael Bain and Claude Sammut. A framework for behavioural cloning. In Machine Intelligence
15, pp. 103–129, 1995.

Michael Bain and Claude Sommut. A framework for behavioural cloning. In Machine Intelligence
15, volume 15, pp. 103. Oxford University Press, 1999.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. arXiv preprint arXiv:1810.12894, 2018.

Yiming Ding, Carlos Florensa, Pieter Abbeel, and Mariano Phielipp. Goal-conditioned imitation
learning. Advances in neural information processing systems, 32, 2019a.

Yiming Ding, Carlos Florensa, Mariano Phielipp, and Pieter Abbeel. Goal-conditioned imitation
learning. Advances in Neural Information Processing Systems, 2019b. URL http://arxiv.
org/abs/1906.05838.

Jack Harmer, Linus Gisslén, Jorge del Val, Henrik Holst, Joakim Bergdahl, Tom Olsson, Kristoffer
Sjöö, and Magnus Nordin. Imitation learning with concurrent actions in 3d games. In 2018 IEEE
Conference on Computational Intelligence and Games (CIG), pp. 1–8. IEEE, 2018.

Ryan Hoque, Ashwin Balakrishna, Carl Putterman, Michael Luo, Daniel S Brown, Daniel Seita,
Brijen Thananjeyan, Ellen Novoseller, and Ken Goldberg. Lazydagger: Reducing context switching
in interactive imitation learning. In 2021 IEEE 17th international conference on automation science
and engineering (case), pp. 502–509. IEEE, 2021.

Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina Jayne. Imitation learning: A
survey of learning methods. ACM Computing Surveys (CSUR), 50(2):1–35, 2017.

Kshitij Judah, Alan Paul Fern, and Thomas Glenn Dietterich. Active imitation learning via reduction
to iid active learning. In 2012 AAAI fall symposium series, 2012.

Michael Kelly, Chelsea Sidrane, Katherine Driggs-Campbell, and Mykel J Kochenderfer. Hg-dagger:
Interactive imitation learning with human experts. In 2019 International Conference on Robotics
and Automation (ICRA), pp. 8077–8083. IEEE, 2019.

Arsenii Kuznetsov, Pavel Shvechikov, Alexander Grishin, and Dmitry Vetrov. Controlling overesti-
mation bias with truncated mixture of continuous distributional quantile critics. In International
Conference on Machine Learning, pp. 5556–5566. PMLR, 2020.

Yihuan Mao, Chengjie Wu, Xi Chen, Hao Hu, Ji Jiang, Tianze Zhou, Tangjie Lv, Changjie Fan,
Zhipeng Hu, Yi Wu, et al. Stylized offline reinforcement learning: Extracting diverse high-quality
behaviors from heterogeneous datasets. In The Twelfth International Conference on Learning
Representations, 2024.

Kunal Menda, Katherine Driggs-Campbell, and Mykel J Kochenderfer. Ensembledagger: A bayesian
approach to safe imitation learning. In 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 5041–5048. IEEE, 2019.

Nimisha G Nair, Pallavi Satpathy, Jabez Christopher, et al. Covariate shift: A review and analysis on
classifiers. In 2019 Global Conference for Advancement in Technology (GCAT), pp. 1–6. IEEE,
2019.

11

http://arxiv.org/abs/1906.05838
http://arxiv.org/abs/1906.05838

Under review as a conference paper at ICLR 2024

Antonin Raffin. Rl baselines3 zoo. https://github.com/DLR-RM/rl-baselines3-zoo,
2020.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and structured
prediction to no-regret online learning. In Proceedings of the fourteenth international conference
on artificial intelligence and statistics, pp. 627–635. JMLR Workshop and Conference Proceedings,
2011.

Stefan Schaal. Is imitation learning the route to humanoid robots? Trends in cognitive sciences, 3(6):
233–242, 1999.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung
Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level in
starcraft ii using multi-agent reinforcement learning. nature, 575(7782):350–354, 2019.

Derek Yadgaroff, Alessandro Sestini, Konrad Tollmar, and Linus Gisslén. Improving generalization
in game agents with data augmentation in imitation learning. arXiv preprint arXiv:2309.12815,
2023.

Jiakai Zhang and Kyunghyun Cho. Query-efficient imitation learning for end-to-end simu-
lated driving. In AAAI Conference on Artificial Intelligence, 2017. URL https://api.
semanticscholar.org/CorpusID:5929487.

12

https://github.com/DLR-RM/rl-baselines3-zoo
https://api.semanticscholar.org/CorpusID:5929487
https://api.semanticscholar.org/CorpusID:5929487

Under review as a conference paper at ICLR 2024

A EXPERIMENTAL DETAILS

Dataset Figure 9a and 9b showcase examples of generated trajectories for the RaceCar and Maze
environments.

Episode traces

(a) RaceCar dataset examples

Episode traces

(b) Navigation dataset examples

Figure 9: Dataset examples: the trajectories of the expert from which we bootstrapped to train our
initial BC policies and out BC baselines.

Hyperparameters For each decision rule, several key hyperparameters had to be tuned:

• DAgger
– The probability β of a frame to be controlled by the bot. The probability is decreased

at each DAgger epoch by βi ← βi−1
0

• RND-DAgger
– Threhsold λ of OOD detection
– The historic context length, that is the number of frames in the past we take along with

the current state to detect its OOD nature
– The stability window W

– The size of the random network, represented by the number of layers and neurons per
layer the predictor and target networks have.

• Ensemble-DAgger
– Threhsold τ for discrepency measure
– Threhsold χ for doubt measure
– The number of models N

• Lazy-DAgger
– Threhsold βH for discrepency measure
– Threshold βR for the backward controlled loop (so the criterion to switch back from

expert to autonomous)

Computing thresholds For all the methods that necessitate at least one threshold (RND-DAgger,
Lazy-DAgger, Ensemble-DAgger), we computed them following the following methodology: the
threshold was set to be a positive factor of the mean measure on the training set. In other words,
before each new sessions, the measure was ran over the training dataset, and the threshold (χ and τ
for Ensemble-DAgger, βH for Lazy-DAgger and λ for RND-DAgger) were calculated as :

λ← MEASURE({(at, st) ∈ Dtrain})× L (1)

13

Under review as a conference paper at ICLR 2024

Table 2: Hyperparameter search

(a) Ensemble-DAgger

Hyperparameter Values RaceCar HalfCheetah Maze
χ factor [0, 1, 1.5, 2, 3, 4] 1.5 0 0.5
τ factor [0, 1, 1.5, 2, 3, 4] 1.5 1.5 3
N [2, 3, 5] 5 5 3

(b) RND-DAgger

Hyperparameter Values RaceCar HalfCheetah Maze
λ factor [1, 2, 3, 4] 2 2 2
Hidden size [32, 128] 32 128 32
Number of layers [0, 1, 2] 0 2 0
Historic context length [0, 2, 5, 10, 15] 10 0 2
W [1, 2, 5, 10, 15, 30, 50] 30 5 5

(c) Lazy-DAgger

Hyperparameter Values RaceCar HalfCheetah Maze
βH factor [0, 1, 2, 3, 4] 1.5 0 2
βR divisor [1, 1.5, 2, 3, 4] 2 1.5 2.5

(d) DAgger

Hyperparameter Values RaceCar HalfCheetah Maze
β [0.2, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95] 0.5 0.7 0.8

With L being a positive factor, a hyperparameter to be tuned. For the second threshold of Lazy-
DAgger, we set it to be a factor of the first one: βR = βH/L∗, with L∗ being the hyperparameter
tuned. That’s a different method compared to other methods, such as Zhang & Cho (2017) or Hoque
et al. (2021) who set their threshold so that approximately 20% of the initial dataset is unsafe, or
Ensemble-DAgger Menda et al. (2019) that directly grid search the value. The Table 2 summarizes
the values used for the grid search.

B INTERACTIVE SESSION VISUALIZATIONS

Typical interactive situations In Figure 11, one can understand better how, in the RaceCar
environment, an oracle (and by extend a human taken as an expert) would interact with the learner. In
(a), the current learned policy has control of the car, and the OOD measure (green circle) is below
the threshold: the learner is confident. In (b), the car crashes into a wall, so the measure (red circle)
queries the expert to take control (transparent red capsule). From (c) to (e), the expert demonstrates
how to get back on track, until (f) the measure falls below the threshold again (green circle) for at
least W consecutive frames (see Section 3 for further explanations)

Qualitative study On Figure 10, we reported the context switches and full trajectories on both the
RaceCar and Maze environments. The results are taken from the same session and the same seed to
better compare the figures. From (a) to (b) we can clearly see that Ensemble-DAgger got the most
context switches, compared to Lazy-DAgger and RND-DAgger that have a comparable amounts,
but we can see that the ones from Lazy-DAgger are more concentrated in specific area whereas
is RND-DAgger they seem more spread out. Then, from (d) to (f) we can see the corresponding
episodes with expert demonstrations (in red) added to the dataset during that session. We can see
that the expert demonstrations are either way longer (the whole episode) or way shorter (only a few
frames) for Lazy-DAgger compared to our method, providing more consistency of the demonstrations
throughout the map. The difference is clearer on the RaceCar environment. Indeed, both on the
context switch figures, we can see that Lazy-DAgger and Ensemble-DAgger are comparable, and
that the queries for RND-DAgger are concentrated around only two zones that generated most of the
failure cases of the bot.

14

Under review as a conference paper at ICLR 2024

(a) RND-DAgger (b) Lazy-DAgger (c) Ensemble-DAgger

(d) RND-DAgger (e) Lazy-DAgger (f) Ensemble-DAgger

(g) RND-DAgger (h) Lazy-DAgger (i) Ensemble-DAgger

(j) RND-DAgger (k) Lazy-DAgger (l) Ensemble-DAgger

Figure 10: We conduct a qualitative analysis of the the different query methods. (a)-(d) and (g)-(i):
Each dot represents a context switch : a transition from autonomous to expert control. (e)-(h) and
(j)-(l): In red, the expert demonstrations, in blue the novice segments.15

Under review as a conference paper at ICLR 2024

(a) 0 (b) 1 (c) 2

(d) 3 (e) 4 (f) 5

Figure 11: (a) The agent has control. (b) The OOD measure is triggered (RND), the expert is given
control. (c)-(e) The expert demonstrates how to recover. (f) The state is in distribution, the expert
keeps the control until the stability window is reached.

C ABLATION STUDY

C.1 RND-DAGGER ON HALFCHEETAH

In this ablation study, we evaluate RND-DAgger, focusing on the additive advantages of three key
enhancements: a Minimal Expert Time (MET) (or stability window) of size W , historical context,
and the architecture of the random networks (see Section 2 for insights on the values tested). The
stability window should increase the quality of the frames by letting the expert finish its demonstration
and making sure the learner is fully recovered before letting it the control again. The historical context
enriches decision-making by incorporating temporal information from past actions and concatenating
them to the current state. This particularly helps in tasks where there is a strong relation between
the states. For example, a state where the car is close to a wall is not necessarily a bad state, unless
the car is going towards it for several frames in a row. However, a historical context chosen too big
is detrimental, because it can overshadow useful dimensions of the sate, and thus preventing the
predictor network to seize useful information.

Results of that ablation are reported in Table 3 and Figure 12. We note that the stability window W
helps reducing the context switching, without impacting that much the performance at the end of the
sessions of RND-DAgger. In other words, it helps decreasing the expert burden, without impacting
the task performance.

2000 4000 6000 8000 10000 12000
Length of dataset (expert frames)

1000

0

1000

2000

3000

Pe
rfo

rm
an

ce

RND-DAgger - stab. window
RND-DAgger

RND-DAgger - small
RND-DAgger - historic

BC
Expert

(a) HalfCheetah (Task perf)

4000 6000 8000 10000 12000
Length of dataset (expert frames)

10
2

10
3

co

nt
ex

t s
w

itc
he

s

(b) # context switches

Figure 12: Ablation study on our method. RND-DAgger compared to: (light blue) RND without
stability window, (orange) bigger historical context, (dark blue) smaller architecture for the random
networks.

16

Under review as a conference paper at ICLR 2024

Task Performance # Context Switch
BC 2455 ± 424 -
RND-DAgger 2490 ± 160 708 ± 130
RND-DAgger - MET 2432 ± 175 1985 ± 215
RND-DAgger - small 2167 ± 140 1136 ± 76
RND-DAgger - historic 2172 ± 290 554 ± 90
Lazy-DAgger 2314 ± 278 312 ± 45

Table 3: Performance and context switches at the end of the sessions. We report the results of the key
ablations on RND-DAgger, along with the results of Lazy-DAgger for further comparisons

C.2 STABILITY WINDOW FOCUS

Ablation study on all the methods We further investigated the impact of the Minimal Expert Time
(MET) on our method and on our baselines, across our environments. We reported the results of that
study in Figure 13 and Table 4. In particular, we can see that LazyDAgger + MET isn’t appropriate
in HalfCheetah. The combination of the Lazy mechanism (introduction of a second threshold to
create a hysteresis band) and the MET forces the expert to always have control over the agent, the
the extremely low value for the context switches (which happens only once per episode). The same
remark holds for EnsembleDAgger on RaceCar, but in this case, this behavior doesn’t seem to impact
the task performance of the method.

(a) Task performance RaceCar (b) Task performance HalfCheetah (c) Task performance Maze

(d) Context switches RaceCar (e) Context switches HalfCheetah (f) Context switches Maze

Figure 13: Results for the ablation study with focus on the addition of the Minimal Expert Time
(MET) on the baselines EnsembleDAgger and LazyDAgger. RND-DAgger remains the same as in
Table 1

Qualitative interpretation On the Figure 14 we report the context switches on the RaceCar
environment, at the second DAgger epoch of a given seed with and without a stability window. We
can clearly see that the number of context switches increases and a third critical zone appeared at the
top right of the map for RND-DAgger. That is due to the fact that the bot is fairly confident in the top
straight line of the course, but the last turn is difficult to manage when the velocity of the car is too
high, inducing a query to the expert. There are also more context switches at the entry of that straight
line, because the learner has to be precise to pass without any troubles with the walls or the speed
ramps on the sides. We conclude that the stability window increases the quality of the demonstrations
without impacting the quality of the measure, that still grasps the relevant critical areas of the track.

17

Under review as a conference paper at ICLR 2024

Method Task Performance # Context Switch
RC HC Maze RC HC Maze

Lazy-DAgger + MET 0.943 ± 0.011 2374 ± 325 0.575 ± 0.101 759 ± 39 78 ± 0.0 876 ± 71
Lazy-DAgger 0.939 ± 0.025 2314 ± 278 0.590 ± 0.057 3437 ± 89 312 ± 45 1238 ± 79
Ensemble-DAgger + MET 0.935 ± 0.019 2502 ± 228 0.707 ± 0.023 77 ± 4 315 ± 84 2034 ± 79
Ensemble-DAgger 0.952 ± 0.018 2489 ± 108 0.626 ± 0.045 2785 ± 41 1452 ± 134 2871 ± 94
RND-DAgger 0.944 ± 0.014 2490 ± 160 0.717 ± 0.018 368 ± 11 708 ± 130 1214 ± 25
RND-DAgger w/o MET - 2432 ± 175 - - 1985 ± 215 -

Table 4: We conduct an ablation study on the impact of the Minimal Expert Time (MET) on all
baselines across our three environments. We report the final task performance and number of context
switches. We conducted the same grid search for the value of W as for RND-DAgger (see section A
for more details). The empty values for RND-DAgger w/o MET are in progress

(a) RND-DAgger W = 0 (b) EnsembleDAgger W = 0 (c) LazyDAgger W = 0

(d) RND-DAgger W = 30 (e) EnsembleDAgger W = 30 (f) LazyDAgger W = 10

Figure 14: Ablation study: a focus on the effect of the MET on the RaceCar environment. We see an
increase of the context switches and shorter episode traces as there is no stability window for all the
methods. RND-DAgger seems to have a better grasp on the difficult zones of the track, whereas the
two other measures trigger the expert rather uniformly across the track.

18

	Introduction
	Preliminaries and Related Models
	Random Network Distillation-based DAgger
	Experiments
	Results

	Conclusion
	Reproducibility Statement
	Experimental Details
	Interactive session visualizations
	Ablation Study
	RND-DAgger on HalfCheetah
	Stability window focus

