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ABSTRACT

Graph representation learning has been extensively studied over the last decade,
and recent models start to pay attention to a relatively new area i.e. 3D graph
learning with 3D spatial position as well as node attributes. Despite the progress,
the ability to understand the physical meaning of the 3D topology information
is still a bottleneck for existing models. On the other hand, quantum computing
is known to be a promising direction for its theoretically verified supremacy for
large-scale graph and combinatorial problem as well as the increasing evidence for
the availability to physical quantum devices in the near term. In this paper, for the
first time to our best knowledge, we propose a quantum 3D embedding ansatz that
learns the latent representation of 3D structures from the Hilbert space composed
of the Bloch sphere of each qubit. Specifically, the 3D Cartesian coordinates of
nodes are converted into rotation and torsion angles and then encode them into
the form of qubits. Moreover, Parameterized Quantum Circuit (PQC) is applied to
serve as the trainable layers and the output of the PQC is adopted as the final node
embedding. Experimental results on two downstream tasks, molecular property
prediction and 3D molecular geometries generation, demonstrate the effectiveness
of our model. Though the results are still restricted by the computational power
on the classic machine, we have shown the capability of our model with very few
parameters and the potential to execute on a real quantum device.

1 INTRODUCTION

Graph representation, or specifically 3D graph representation as considered in this paper, has re-
ceived extensive attention over the last decade. Beyond tasks like node classification or link pre-
diction, it further facilitates various downstream applications such as molecular property prediction
(Liu et al., 2021) and drug design (Gaudelet et al., 2021). Recently, machine learning approaches
have been well developed for learning latent node embedding on molecules (Schütt et al., 2017;
Unke & Meuwly, 2019; Gasteiger et al., 2019; 2021). However, the mainstream of such researches
is still facing the challenges of better processing the 3D Cartesian coordinates and learning the latent
representation of the 3D graph structure.

On the other hand, there are also emerging lines of researches in the area of quantum computing.
State-of-the-art quantum computing hardwares are now stepping into the Noisy Intermediate-Scale
Quantum (NISQ) era, which leads to the possibility to implement applications in specific scientific
domains in the near term (Preskill, 2018; Arute et al., 2019; Zhong et al., 2020; Huang et al., 2020).
The overlap between quantum computing and machine learning has emerged as one of the most en-
couraging areas for quantum computing, as termed by quantum machine learning (Biamonte et al.,
2017). Quantum paradigms or hybrid paradigms have been carefully designed to fulfill quantum
supremacy in quantum chemistry problems (Aspuru-Guzik et al., 2005; O’Malley et al., 2016). Ex-
isting approaches mainly focus on the quantum simulation of molecular energies, which enables
effective prediction of chemical reaction rates. However, these quantum approaches (Romero et al.,
2018; Peruzzo et al., 2014; O’Malley et al., 2016; Yung et al., 2014) are still simulating the energies
of certain small molecules like H2, LiH, etc.

In this paper, we aim to develop quantum machine learning approaches to learn the latent represen-
tation of the 3D graph structure of molecules instead of directly simulating the molecular energies
with Hamiltonians. Graph learning may not be as precise as molecular simulation approaches for
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property prediction, but they have the ability to learn hundreds or thousands of molecules and pre-
dict the properties for more complex molecules. Specifically, we first convert the 3D Cartesian
coordinates of the atoms into three geometries: distance, rotation angle, and torsion angle. Then we
encode the angles and distance as well as the atom type (a discrete variable), into qubits. A distance
threshold is used so that each time a focal atom is picked to learn the embedding, one only need to
consider the neighboring atoms within the threshold. Considering the size of the molecules and the
size of the neighborhood, we only require up to ten qubits to learn the representation, which makes
our proposed model easy to simulate on a classical processor and capable of running on a NISQ
device. Analog to the hardware efficient ansatz (Kandala et al., 2017; Huang et al., 2021), we apply
a Parameterized Quantum Circuit (PQC) after the encoding stage. The trainable parameters are the
θs of the rotation gates Rx and Ry in the PQC. The gradient of each parameter θ is calculated by the
shifting technique (Mitarai et al., 2018), and those parameters are updated by the backpropagation
and gradient descent approach analog to classical neural networks. We apply a tomography at the
end of the circuit and concatenate the real part and imaginary part of the output vector and then take
it as the node embedding. We conducted numerical experiments on the filtered QM9 dataset for
both molecular property prediction task and molecular geometries generation task. Experimental
results show that compared with classical state-of-the-art baseline models, our quantum 3D embed-
ding model achieves comparable results on small datasets with much fewer network parameters. We
summarize our contributions as follows:

1) To the best of our knowledge, we are the first to use qubits to encode 3D relative positional
information, which aims to effectively preserve the property of equivariance and invariance. In fact,
using a qubit on a Bloch sphere to encode the rotation and torsion angle of two atoms is more
intuitive than using 3D Cartesian coordinates, which is also supported by the success of spherical
representation on not only in molecules but also point clouds in recent studies.

2) We use two qubits to represent each atom, and we only consider the focal atom and its neighbors
at each iteration. Therefore, the maximum number of qubits is 10 in our model. So we are able to
test our model on Qiskit (http://qiskit.org) with quantum cloud service from IBM-Q with simulator
yet it guarantees that the code can also be seamlessly deployed and runnable on IBM’s NISQ device.

3) We manage to implement a quantum circuit full-amplitude simulator with transition unitary for
the PQC on a classical processor. It replicates the results yet over 20 times faster than the QASM
simulator from IBM Qiskit’s simulator, which enables us to conduct experiments on more tasks.

4) The numerical experiments on two different well-studied molecular tasks show that our embed-
ding approach is able to extract geometry and neighborhood information with very few parameters
(only 64 parameters in the PQC) and achieve relatively good results.

2 PRELIMINARIES AND RELATED WORKS

In this section, we first briefly review basic concepts of quantum computing as well as quantum
machine learning. We further present some previous works on quantum graph learning approaches.

2.1 QUANTUM COMPUTING

In quantum computing, qubit (abbreviation of quantum bit) is a key concept which is similar to
a classical bit with a binary state. The two possible states for a qubit are the state |0〉 and |1〉,
which correspond to the state 0 and 1 for a classical bit respectively. We refer the readers to the
textbook (Nielsen & Chuang, 2002) for comprehension of quantum information and quantum com-
puting. In this paper, we give a compact description of background for self-containess.

A quantum state is commonly denoted in bracket notation. It is also common to form a linear
combinations of states, which we call a superposition: |ψ〉 = α|0〉 + β|1〉. Formally, a quantum
system on n qubits is an n-fold tensor product Hilbert space H = (C2)⊗d with dimension 2d. For
any |ψ〉 ∈ H, the conjugate transpose 〈ψ| = |ψ〉†. The inner product 〈ψ|ψ〉 = ||ψ||22 denotes
the square of the 2-norm of ψ. The outer product |ψ〉〈ψ| is a rank 2 tensor. Computational basis
states are given by |0〉 = (1, 0), and |1〉 = (0, 1). The composite basis states are defined by e.g.
|01〉 = |0〉 ⊗ |1〉 = (0, 1, 0, 0).

Analog to a classical computer, a quantum computer is built from a quantum circuit containing
wires and elementary quantum gates to carry around and manipulate the quantum information. A
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quantum gate is a unitary operation U on Hilbert space H. When we simulate the quantum circuit
on a classical computer, we can obtain the overall transition unitary by tensoring and multiplying
those unitary gate operators together.

A projective measurement is described by an observable,M , a Hermitian operator on the state space
of the system being observed. The observable has a spectral decomposition,M =

∑
mmPm, where

Pm is the projector onto the eigenspace of M with eigenvalue m. When measuring the state |ψ〉,
the probability of getting results m is given by p(m) = 〈ψ|Pm|ψ〉.

2.2 QUANTUM MACHINE LEARNING

(Cerezo et al., 2021) proposed the concept of Variational Quantum Algorithms (VQA), which lever-
ages quantum advantages to solve machine learning problems on a near-term quantum device. Then,
Parameterized Quantum Circuits (PQC) are the concrete implementation of certain VQA. For each
qubit we have rotation operator Rx(θ) which rotate through angle θ (radias) around the x-axis. A
PQC is mainly composed of Rx(θ), Ry(θ) and Rz(θ) with θ as the parameters. The parameters θ
are updated by a classical optimizer to minimize the loss function L(θ) which evaluates the dissim-
ilarity between the output of PQC and the target result. The derivative of the i-th parameter θ(i) can
be computed by using the shifting technique proposed by (Mitarai et al., 2018). It requires running
the whole circuit twice but with shifting θ(i) to θ(i) + π/2 and θ(i)− π/2

∂L(θ)

∂θ(i)
=
L(θ(1), · · · ,θ(i) + π/2, · · · )− L(θ(1), · · · ,θ(i)− π/2, · · · )

2
(1)

Also using gradient backpropagation, classical learning models are adapted into their quantum ver-
sion, e.g. QCNN (Cong et al., 2019), QRNN (Bausch, 2020), QGAN (Huang et al., 2021), QL-
STM (Chen et al., 2022), and etc, which yet show that the quantum counterparts on NISQ device
may not be as powerful as the SOTA classical ones (usually with millions of parameters). Involving
quantum computing is an interesting experiment to seek potential supremacy and the connection
between latent space and the mystery quantum entanglement.

2.3 UNITARY COUPLED-CLUSTER

One of the most promising area to demonstrate the quantum computing supremacy is quantum chem-
istry. There have been continuous work in this research area and the mainstream of these work is
Unitary Coupled-Cluster (UCC) (Romero et al., 2018; Peruzzo et al., 2014; O’Malley et al., 2016;
Yung et al., 2014). UCC focused on solving the time-independent Schrödinger equation for molec-
ular system to predict the chemical properties. The coupled-cluster theory is used to obtain the
Hamiltonian of a certain molecule and then use Trotter-Suzuki decomposition to approximate the
Hamiltonian on a quantum circuit. The parameters in the rotation gates allow us to train for the min-
imal ground-state energy. This method provides a hierarchy of wave functions that can be prepared
on a quantum computer using a polynomial number of gates. It is believed that UCC can provide
better accuracy than classical coupled cluster (Wierschke, 1994; Hoffmann & Simons, 1988; Bartlett
et al., 1989), which is also regarded as the ”gold standard” of quantum chemistry (Bartlett & Musiał,
2007). However, UCC is an unsupervised learning method with no ground truth and can only evolve
one molecule at a time since the circuit is uniquely designed for a certain molecule. There are also
evidence showing that the number of parameters in UCC might be still too large to allow practical
calculations for large molecules.

2.4 QUANTUM GRAPH LEARNING

Different from evolving Hamiltonian and solving the Schrödinger equation with the quantum circuit,
we also have quantum graph learning approaches trying to learn the latent representation of the
vertex and the graph. A hierarchical architecture based on quantum random walks is employed to
extract multi-scale properties of the graph (Dernbach et al., 2018). However, it is vague that how to
efficiently construct the diffusion matrix from the quantum states generated by the quantum walkers.
The information aggregation is performed by the classical system, which further incurs additional
expenses as a consequence of the interaction between quantum and classical environment. (Zhang
et al., 2019) and (Ai et al., 2022) suggest to exploit the quantum Hilbert space to rebuild the quantum
representation of the graph in the quantum state. But the number of qubits to represent a graph with
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Figure 1: The quantum 3D embedding scheme. (a) The 3D molecular graph with the gray node
(in the black circle) is picked as the focal atom and three white nodes within the distance threshold
as the neighbors. (b) We convert the 3D Cartesian coordinates of the atoms into the relative position
tuple (d,θ,ϕ). (c) We encode the position tuple as well as the atom type into two qubits for each
atom. (d) The PQC for our model, the input layer includes Rx and Ry on each qubit, which encodes
the up mentioned data. Trainable layers with parameters θs and entanglement layers are applied
alternately to analog the classical machine learning layers. (e) The task of property prediction. We
use the embeddings from the PQC to predict chemical properties and compare them with the labels.
(f) The task of 3D molecular geometries generation. We generate a molecule from scratch based on
autogressive flow model with picking one focal atom and then deciding the relative position.

its node attributes scales linearly with the number of nodes, and the encoding strategy is not carefully
designed. (Bai et al., 2021) and (Chen et al., 2021) develop a hybrid graph learning model which
consists of quantum layer and classical layer aimed at reflecting richer graph characteristics. But
they both lack formal justifications for the quantum model selections, which lead us to question
whether the quantum layer is necessary. Thus, we propose a full quantum paradigm with quantum
friendly encoding specially designed for molecular problems.

3 METHODOLOGY

3.1 PROBLEM SETTING AND METHOD OVERVIEW

Problem Setting. In this paper, we aim to develop a quantum machine learning approach for learn-
ing node embedding with node-wise 3D coordinates. We take molecules with 3D graph structures
as an example. Let G denotes the graph of a certain molecule and V denotes the node set of graph
G. The number of nodes (in other words atoms) is n = |V|. Each node vi ∈ V has an attribute ai,
which is the atom type in our setting. Our target is to learn the embedding for each atom and then
obtain the final embedding for the molecule. The embeddings are then tested on different molecular
tasks (e.g. molecular property prediction, 3D molecular geometries generation, etc.).

Method Overview. We develop a quantum machine learning approach to learn the embedding on
3D graph. The trainable parameter refers to the θ in those rotation gates in the PQC.

Specifically, we first encode the 3D coordinates and the atom types into qubits. We use relative
coordinates instead of the 3D Cartesian coordinates to ensure both equivariance and invariance. The
relative coordinates can be written in the form of a position tuple (d,θ,ϕ), where d,θ and ϕ denote
the radial distance, polar angle, and the azimuthal angle, respectively. We set up a distance threshold
to pick the neighbors which can interact with the focal atom. A PQC is then used to learn the latent
variables and entangle the qubits together. We further apply a tomography at the end of the PQC
and then concatenate the real part and the imaginary part. The overall pipeline is shown in Fig. 1.
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3.2 THE PROPOSED ATOM2QUBIT

Considering a molecule with n atoms, we take it mathematically as a graph G with n nodes.
For each node vi, we have a corresponding attribute ai, which denotes the atom type and a 3D
Cartesian coordinate set {xi, yi, zi}. Without loss of generality, we first pick vi as the focal
atom and learn the embedding of node vi. The distance between vi and other nodes vj ∈ V is
dij =

√
(xj − xi)2 + (yj − yi)2 + (zj − zi)2. Note that not all of the node pairs in the graph have

interaction in the pairs, we set a maximum distance threshold dmax as a hyperparameter. So that
vj ∈ N (vi), if i 6= j and dij ≤ dmax, which means only the nodes vj with dij ≤ dmax are consid-
ered as the neighbors of vi. We then need to convert the 3D Cartesian coordinates of vj ∈ N (vi)
into the position tuple (dij ,θij ,ϕij). The definition of rotation angle θ and torsion angle ϕ are
shown in Fig. 1 (b). Now each node vj ∈ N (vi) can be uniquely defined by {aj , dij ,θij ,ϕij}.
When we encode classical information into the quantum form, we have two different ways. The
first one is amplitude encoding and the second one is angle encoding. The amplitude encoding can
encode a classical one-hot vector of dimension n with only log2(n) qubits, but it is quite hard to
encode continuous variables while requires O(n) times to encode the information. On the contrary,
the angle encoding requires a minimum of n/3 qubits to encode n classical information, but it is
capable of encoding both discrete and continuous variables. Furthermore, the angle encoding is a
better fit for the rotation parameters in the circuit. In this paper, we pick angle encoding as our way
to encode the information set {aj , dij ,θij ,ϕij} into qubits.

For each qubit, we have three rotation operators Rx, Ry and Rz. We can theoretically encode three
different pieces of information on one qubit. However, if we consider the qubit on a Bloch sphere,
we can uniquely define the rotation track on the Bloch sphere using only two rotation operators. To
avoid the decomposition of the third input, we only use two of the rotation operators Rx and Ry in
this paper (Rz does not change the outputs of our measurement method). Therefore, we need two
qubits |Ψ1〉 and |Ψ2〉 to encode each node vj ,

|Ψ1〉 = Ux(θij)×Uy(ϕij)× |0〉 (2)

|Ψ2〉 = Ux(
dij
dmax

× 2π)×Uy(
aj

anum
× 2π)× |0〉 (3)

where anum denotes the number of atoms occurred in the dataset and aj is an integer ∈ [1, anum].
|Ψ1〉 ⊗ |Ψ2〉 is the quantum encoding state of one node generated from initial state |00〉. If n =
|vi ∪N (vi)|, the initial state |Ψ0〉 for the PQC in Sec. 3.3 after the Atom2Qubit encoding stage is

|Ψ0〉 = |Ψ1〉 ⊗ |Ψ2〉 ⊗ · · · ⊗ |Ψ2n−1〉 ⊗ |Ψ2n〉 (4)

3.3 QUANTUM 3D EMBEDDING ANSATZ

We first discuss the number of qubits we need for our approach on molecule problems. Each time
we learn the embedding of node vi, we need to encode the information of vi ∪ N (vi) into qubits.
Therefore the qubit number is linear with the size of N (vi). The interaction between atoms in a
molecule is bounded by the bond length between atoms. As the bond length increases, the interaction
becomes much weaker, which means we barely have multi-hop message passing in our graph. This
gives us the possibility to run the test on an existing near-term quantum device. Therefore, we
choose hardware-efficient ansatz that has been proved on a superconducting quantum processor
with six fixed-frequency transmon qubits by (Kandala et al., 2017) and a 56-bit superconducting
quantum processor Zuchongzhi by (Huang et al., 2021).

Analog to classical neural network models, the PQC is constructed by layers and each layer has an
identical arrangement of quantum gates. Fig. 2 illustrates the general framework of the quantum 3D
embedding ansatz. The overall unitaryU(θ) = ΠL

l=1(UentUl(θ)), whereUent is the entanglement
layer and Ul(θ) is the l-th trainable layer. In particular, we have the l-th trainable layer Ul(θ) =
N⊗

k=1

(Uy(θ
(k,l)
y )) ×

N⊗
k=1

(Ux(θ
(k,l)
x )), where Ux is the unitary of gate Rx and θ(k,l)x is the parameter

for Rx at the l-th layer on the k-th qubit. The entanglement layer Uent consists of CNOT gates and

5



Under review as a conference paper at ICLR 2023

… …

𝑅𝑥(𝜃𝑥
1,𝑙) 𝑅𝑦(𝜃𝑦

1,𝑙)

𝑅𝑥(𝜃𝑥
2,𝑙) 𝑅𝑦(𝜃𝑦

2,𝑙)

𝑅𝑥(𝜃𝑥
𝑁−1,𝑙) 𝑅𝑦(𝜃𝑦

𝑁−1,𝑙)

𝑅𝑥(𝜃𝑥
𝑁,𝑙) 𝑅𝑦(𝜃𝑦

𝑁,𝑙)

𝑈𝑙 𝑈𝑒𝑛𝑡

𝑙𝑎𝑦𝑒𝑟𝑙

… … …

𝑈𝑙+1 𝑈𝑒𝑛𝑡
…… …

𝑈𝑙−1 𝑈𝑒𝑛𝑡

…

𝑙𝑎𝑦𝑒𝑟𝑙+1𝑙𝑎𝑦𝑒𝑟𝑙−1

Figure 2: The circuit for our quantum 3D embedding ansatz. Each layer includes trainable param-
eters block Ul and entanglement block Uent. We have N qubits in the circuit so there are 2 × N
parameters in each layer. The entanglement layer is composed of CNOT gates to pairwisely entangle
all the N qubits.

it entangles all the qubits together shown in Fig. 2. The quantum state |Ψl〉 after l layers is

|Ψl〉 = Uent ×Ul × (Uent ×Ul−1 × (· · · (Uent ×U1|Ψ0〉))) (5)

= Uent ×
N⊗

k=1

(Uy(θ
(k,l)
y )Ux(θ

(k,l)
x ))× (· · · (Uent ×

N⊗
k=1

(Uy(θ
(k,1)
y )Ux(θ

(k,1)
x ))|Ψ0〉))) (6)

The quantum state |Ψ0〉 is the initial state, which is also the output of the Atom2Qubit stage. With
the parameters θ(k,l)x and θ(k,l)y , we can learn the latent representation of each node. Note that
the model we proposed is a graph representation learning model, thus we need to further attach
downstream tasks to test the efficiency of our model, and the loss function is also obtained from the
downstream model. The loss function L which is employed to optimize the trainable parameters
θ = θ

(k,l)
x � θ(k,l)y , where � is concatenation, for our modelM it yields:

min
θ
L(Mθ(|Ψ0〉)) (7)

The parameters θ are then updated at each iteration by gradient decent from Eq. 1.

3.4 ATOM EMBEDDING

The quantum circuit we mentioned above is a N qubit circuit and it works in a 2N dimensional
Hilbert space. We apply a tomography at the end of the circuit thus we can get a 2N dimensional
vector with a complex number αi for each dimension. A quantum state |ψ〉 can be written in the
form of a combination of the computational basis states,

|ψ〉 = α1 |0 · · · 00〉︸ ︷︷ ︸
2N

+α2 |0 · · · 01〉︸ ︷︷ ︸
2N

+α3 |0 · · · 10〉︸ ︷︷ ︸
2N

+ · · ·+ α2N |1 · · · 11〉︸ ︷︷ ︸
2N

(8)

where αi, 1 ≤ i ≤ 2N are the complex coefficients and the vector (α1, α2, · · · , α2N ) is the result
of the tomography. Each αi can be written in the form of αi = Re(αi) + Im(αi) · i, where Re
denotes the real part, Im denotes the imaginary part and i is the imaginary unit. We then concate-
nate the real part and the imaginary part of the tomography and get the node embedding vector
(Reα1,Reα2, · · · ,Reα2N , Imα1, Imα2, · · · , Imα2N ) with the dimension of 2N+1.

4 NUMERICAL EXPERIMENTS

All the experiments are performed on a single machine with 1TB memory, one physical CPU with
28 cores Intel(R) Xeon(R) W-3175X CPU @ 3.10GHz), and two GPUs (Nvidia Quadro RTX 8000).
The source code is written by PyTorch, where we simulate the whole quantum circuit process using
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transition unitary. We have also implemented a Qiskit version of our modelOn QM9-pred, the av-
erage training time for each epoch is over 2 hours using QASM simulator on Qiskit and it takes an
average of 310s on our simulator, which is about 23 times faster. Note that all our models are not
implemented on quantum hardware yet, but the model and the circuit we proposed are easy to adapt
to NISQ devices. To test the performance of our embedding model, we perform numerical exper-
iments on two different tasks and compare the results with state-of-the-art classical 3D molecular
representation learning models.

Table 1: Statistics of datasets.

Datasets QM9-pred QM9-gen

#Max Nodes 10 10
#Nodes/Graph 9.73 9.39
#Edges/Graph 9.37 9.16

Dataset. The benchmark dataset we used is QM9 (Ra-
makrishnan et al., 2014), which is widely used for pre-
dicting various properties of molecules and 3D molecules
generating tasks. It includes quantum chemistry struc-
tures and properties of up to 134k stable small organic
molecules. These molecules consists of up to 9 heavy
atoms CONF, not counting hydrogen, and their corre-
sponding 3D molecular geometries are computed by den-
sity functional theory (DFT).

4.1 IMPLEMENTATION DETAILS

In Sec. 3.2 we have shown how to convert the information of each atom into rotation angles on qubits.
Now we discuss more precisely how to calculate the position tuple (d,θ,ϕ). The 3D coordinates for
atom vi in QM9 is three real numbers xi, yi and zi. If we pick vi as the focal atom, ∀vj ∈ N (vi),
we need to calculate the position tuple for atom vj against vi.

dij =
√

(xj − xi)2 + (yj − yi)2 + (zj − zi)2 (9)

θij = arctan(

√
(xj − xi)2 + (zj − zi)2

yj − yi
) (10)

ϕij = arctan
xj − xi
zj − zi

(11)

In order to fit the definition of rotation angle and torsion angle, those angles should fit into the
domain θij ∈ [0, π] and ϕij ∈ [0, 2π). We need to adjust the results in Eq. 10 and Eq. 11.

θij ← θij + π, if yj − yi < 0 (12)
θij ← 0, if yj − yi = 0 (13)

ϕij ← ϕij + π, if zj − zi < 0 ∧ (xj − xi < 0 ∨ xj − xi > 0) (14)
ϕij ← ϕij + 2π, if zj − zi > 0 ∧ xj − xi < 0 (15)

Specifically, we set dmax = 1.77, which is the maximum bond length in the dataset, and we set
anum = 6 as there are five different types of atom in the dataset in addition with a null type.

Now we discuss more details of the transition unitary based full-amplitude circuit simulation on a
classical processor. The quantum gates we used in our PQC are only Rx(θ), Ry(θ) and CNOT. The
matrix representations of the single-qubit gates are as follows:

Rx(θ) =

(
cos(θ

2 ) −i sin(θ
2 )

−i sin(θ
2 ) cos(θ

2 )

)
, Ry(θ) =

(
cos(θ

2 ) − sin(θ
2 )

sin(θ
2 ) cos(θ

2 )

)
(16)

The two-qubit gate unitary matrix is as follows:

CNOT =

 1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (17)

With these matrices of the basic gates, we obtain the unitary of a circuit block. We first divide the
block by layers, and each layer has at most one gate for each qubit. We tensor the gate matrix within
each layer and thus we get the unitary for the layer. We then use matrix multiply between different
layers, so the final unitary is calculated through torch.tensor() and then torch.matmul(). For a N
qubit circuit, the overall unitary U ∈ C2N×2N . The maximum number of qubits we need is 10, so
the largest unitary we need is in C1024×1024, which is still affordable on a classical processor.
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Table 2: Performance comparison between the baselines and our proposed method on QM9-pred
in terms of MAE for three properties (εHOMO, εLUMO and ∆ε) and the std. MAE for all three
properties. We use the unit eV for these three energy-related properties.

SchNet DimeNet++ SphereNet ComENet EGNN Ours
Property eV std.% eV std.% eV std.% eV std.% eV std.% eV std.%

εHOMO 0.683 90.8 0.427 56.8 0.349 46.4 0.504 67.0 0.409 54.4 0.419 55.7
εLUMO 0.605 45.1 0.451 33.6 0.287 21.4 0.538 40.0 0.580 43.2 0.451 33.6

∆ε 0.704 60.2 0.576 49.2 0.403 34.4 0.665 56.8 0.704 60.2 0.486 41.5

overall 0.664 65.2 0.485 46.4 0.347 34.0 0.569 54.5 0.564 52.6 0.452 43.5

4.2 MOLECULAR PROPERTY PREDICTION

We first conduct experiments on the task of molecular property prediction to evaluate our embedding
model. The downstream model we used is a simple multilayer perceptron predictor, which can
perform linear regression on the embeddings from the embedding model.

Setting. We filter the QM9 to generate the dataset for our prediction task. Our quantum model
suffers from the extremely high time cost of simulating the quantum circuit on classic computers,
and it is impossible for us to run on the whole 134k molecules in QM9. We sieve the dataset
with molecules no more than 10 atoms, and randomly pick 500 of them to form our dataset for the
prediction task. We denote the dataset as QM-pred, and statistics of it are listed in Table 1. We
split the dataset into training/validation/test sets with a ratio of 8:1:1. Training molecules are used to
optimize the model parameters. The validation molecules are used to fine-tune the hyper-parameters
as well as conduct the early stopping, and then we report the results on test molecules. Among
all sixteen properties listed in QM9, we selected three important energy-related properties, namely
εHOMO, εLUMO and ∆ε. ∆ε, also known as the HOMO-LUMO gap, is one of the most practically-
relevant quantum chemical properties of molecules (Bredas, 2014). In line with (Liu et al., 2021),
we report the mean absolute error (MAE) for each property as well as the overall mean standardized
MAE (std. MAE) for all these three properties.

Baselines. To the best of our knowledge, there are no other quantum models considering represen-
tation learning for 3D graphs, thus we compare our method with four baselines in the classical do-
main: the seminal work in this area SchNet (Schütt et al., 2017), DimeNet++ (Klicpera et al., 2020),
SphereNet (Liu et al., 2021), ComENet (Wang et al., 2022) and EGNN (Satorras et al., 2021).

Prediction model. The embeddings obtained from our model are fed to a simple predictor, which is
a multilayer perceptron reducing the size of the embedding from 2N to 1. We use stochastic gradient
descent (SGD) with Adam optimizer (Kingma & Ba, 2014) to train our model for a maximum of
100 epochs with a batch size of 32 and a learning rate of 0.01. Meanwhile, as the running time will
increase dramatically when the number of trainable layers increases, we set the number of layers in
the PQC as four to balance the training time and accuracy.
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Figure 3: Training loss on the prediction task.

Results. The results of the property predic-
tion task are presented in Table 2. Our model
achieved the second best on all three prop-
erties. SphereNet is 21.8% better than ours
on the overall mean standardized MAE and is
17.1% better than us on the HOMO-LUMO
gap. However, SphereNet used 1, 898, 566 pa-
rameters and we only used 102, 881 parameters
(64 of them are from the PQC). Compared to
the fundamental baseline, we are 33.3% bet-
ter than SchNet on overall mean standardized
MAE and 31% on HOMO-LUMO gap. Notice
that SchNet still used 455, 809 parameters. As
shown in Fig. 3, our model converges very fast
in the first few epochs, which also demonstrates the efficiency of our model.
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Table 3: Performance of the G-SphereNet and our proposed method on 500 randomly generated
molecules for chemical validity percentage and MMD distances of bond length distributions.

MMD distances ↓
Method Validity ↑ H-C H-N H-O C-C C-N C-O Average

G-SphereNet 68.55% 0.161 0.280 1.104 0.399 0.438 0.277 0.443
Ours 67.00% 0.237 0.409 0.770 0.326 0.407 0.378 0.421

4.3 3D MOLECULAR GEOMETRIES GENERATION

This study evaluates the performance of our proposed embedding model when adapted to the exist-
ing random molecular geometry generation method. To be more specific, the embeddings from our
model are used to extract 3D conditional information in the generation process.

Setting. We also use filtered QM9 for evaluation. Different from QM-pred, we select 806 molecules
that contain no more than 10 atoms to form our dataset, 50 of them are used for validation and the
remaining are used for training. We entitled this filtered QM9 as QM9-gen and the statistics of
QM9-gen is presented in Table 1. The generated molecular geometries can be converted to molecu-
lar graphs according to the approach proposed in (Gebauer et al., 2019). As for metrics, we use the
chemical validity percentage (Validity) which is defined as the percentage of molecular graphs that
obey the chemical valency rules to evaluate the generation accuracy. In addition, we adopt Max-
imum Mean Discrepancy (MMD) (Gretton et al., 2012) distances of bond length distributions to
evaluate the 3D structural accuracy of the generated molecular geometries. We calculate the length
distribution in the generated geometries and in the dataset geometries separately for each type of
bond, then we can obtain the statistical discrepancy between them with the MMD distance. In line
with (Luo & Ji, 2022), we compute the MMD on hydrogen-carbon single bonds (H-C), hydrogen-
nitrogen single bonds (H-N), hydrogen-oxygen single bonds (H-O), carbon-carbon single bonds
(C-C), carbon-nitrogen single bonds (C-N), carbon-oxygen single bonds (C-O) these six types of
chemical bonds respectively as they are most frequently appeared.

Baseline. We use G-SphereNet (Luo & Ji, 2022) as the baseline in this molecular geometries gener-
ation task. We select G-SphereNet (also from ICLR 22) produced by the same group as SphereNet,
which uses SphereNet as the embedding model to extract 3D conditional information.

Generation Model. As for generation model, we employ the same generation pipeline as G-
SphereNet, which adopts a flexible sequential generation strategy by adding atoms in 3D space
one by one based on autoregressive flow models. We use Adam optimizer to train the our model for
100 epochs, with a batch size of 64 and a learning rate of 0.001. Also, we set the maximum number
of atoms that can be generated for each molecule as 13.

Results. We present the performance of our model against G-SphereNet in Table 3. We reach com-
parable results with baseline model on QM-gen. More specifically, our model slightly outperforms
the baseline model on MMD distances for 3 types of bond length, which shows that our method
bears a strong capability of extracting the 3D conditional information of molecular geometries.

5 CONCLUSION

3D information is important for graphs such as molecules in quantum chemistry and learning the
3D representation for those graphs has attracted increasing attention. Existing classical models
face the inherent challenge of understanding the physical meaning of the 3D Cartesian coordinates.
To our best knowledge, we are the first to use qubits to encode 3D spatial information and use a
Parameterized Quantum Circuit (PQC) to learn the representation of each node as the embedding.
The experiments on two well-studied downstream tasks demonstrate the efficiency and capability of
our model, and the potential to execute on real quantum devices.

Limitation & future works. Our method is limited by the time consumption when simulating
quantum circuits, while superconducting NISQ device is entering the 50+ qubit era (Gong et al.,
2021), which gives us the confidence to test our model on one of them. Meanwhile, the noise on the
gates are not fatal with such shallow circuits. But we will need to adjust the readout procedure of our
embedding when testing on NISQ device. It is aimed to extending our experiments to 10 thousand
molecules and reaching the chemical accuracy of 1.6× 10−3 Hartree.
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