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Abstract

NeurAlly-Decomposed Oracle (NADO) is a pow-
erful approach for controllable generation with
large language models. It is designed to avoid
catastrophic forgetting while achieving guaran-
teed convergence to an entropy-maximized closed-
form optimal solution with reasonable model-
ing capacity. Despite the success, several chal-
lenges arise when apply NADO to a wide range
of scenarios. Vanilla NADO suffers from gra-
dient vanishing for low-probability control sig-
nals and is highly reliant on a regularization to
satisfy the stochastic version of Bellman equa-
tion. In addition, the vanilla implementation of
NADO introduces a few additional transformer
layers, suffering from a limited capacity espe-
cially compared to other finetune-based model
adaptation methods like LoRA. In this paper, we
propose a improved version of the NADO al-
gorithm, namely DiNADO (norm-Disentangled
NeurAlly-Decomposed Oracles), which improves
the performance of the NADO algorithm through
disentangling the step-wise global norm over the
approximated oracle R-value for all potential
next-tokens, allowing DiNADO to be combined
with finetuning methods like LoRA. We discuss
in depth how DiNADO achieves better capac-
ity, stability and flexibility with both empirical
and theoretical results. Experiments on formality
control in machine translation and the lexically
constrained generation task CommonGen demon-
strates the significance of the improvements. 1
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1. Introduction
Large pretrained generative transformers (Radford et al.,
2019; Brown et al., 2020; Raffel et al., 2020) have achieved
remarkable success in a wide range of natural language
generation tasks, such as story generation, text summariza-
tion, and question answering. Such models benefit from the
vast amount of training data to learn powerful distributions
that contain rich information about the underlying logic of
human languages.

One typical way to adapt such models for specific appli-
cations is through fine-tuning. However, there are a few
problems associated with fine-tuning: 1) The computational
efficiency of fine-tuning is highly dependent on the model’s
number of parameters. Fine-tuning some extremely large
models provided as services rather than open-sourced check-
points can be too expensive for the majority of the commu-
nity. 2) Fine-tuning on smaller datasets risks causing the
catastrophic forgetting problem. A pretrained model can
overfit to an under-represented task domain, while forgetting
important knowledge it once learned during the pre-training
stage. This is particularly a problem when the model is ex-
amined for some reasoning capabilities like compositional
generalization and/or commonsense reasoning.

Prompt-tuning (Dong et al., 2022) are recent approaches to
addressing the challenges associated with fine-tuning large
pretrained models. These approaches involve adding a few
tokens, which can be discrete natural language tokens or
continuous trainable vectors, to the input of a task. Then
instead of modifying the parameters of the model, gradient-
based optimization is employed to change the embeddings
of the added tokens to maximize the probability of the model
producing a specific desired output. This allows for the
model to adapt to unseen tasks and domains with minimal
data, and can also help to avoid the catastrophic forgetting
problem associated with traditional fine-tuning methods.
However, prompt-tuning has only limited capacity, so it is
usually only effective in specific scenarios.

In-context learning, another popular approach to con-
trol/adapt models without needing to update the model
parameters, requires reading the prompt/instructive exam-
ples every time the model is executed. On one hand, this
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causes computational concerns when a significantly long
prompt/instructive example is needed for a complex task.
On the other hand, the added tokens or embeddings may not
always be able to capture the nuances and complexities of a
given task or domain, leading to suboptimal performance.

The NADO algorithm (Meng et al., 2022) is a unique ap-
proach that lies between fine-tuning and prompt-tuning/in-
context learning. It adapts pretrained generative transform-
ers by projecting the base model to the control signal space.
To achieve this, NADO is implemented with a smaller trans-
former model, which controls the base model while preserv-
ing necessary model capacity and avoiding direct modifica-
tion of the base model parameters. In the ideal case, NADO
adapts the original distribution to the entropy-maximized
optimal solution for the target control. It has shown suc-
cess in various scenarios such as formal machine translation
and lexically constrained text generation. However, there
are still a few open questions when applying such models
to solve the controlled generation problems: 1) When the
discrepancy between the controlled distribution and the orig-
inal distribution is large, what is the best practice to train the
NADO layers? 2) How can we improve the robustness and
efficiency of the NADO module, so that we can reduce ad-
ditional costs such as the number of samples and additional
parameters for training the NADO module?

In this paper, we address the previous problems related to the
NADO algorithm for better training. We propose DiNADO,
the improved version of NADO by disentangling the norm
of the step-wise value function R. DiNADO solves the
major issues of vanilla NADO in multiple aspects, leading
to better, more stable performance in controllable generation.
Our main contributions can be summarized as follows:

• We propose an improved parameterization of NADO,
namely DiNADO, which generally improves NADO’s
convergence during both the optional SFT (supervised
finetuning) and later stages. We justify the effective-
ness empirically and theoretically on the uniqueness of
the global parametric optima.

• We theoretically analyse the inefficiency of the gradi-
ent estimation process when using NADO with sparse
signals from the control signal function i.e. the or-
acle C(x,y), and demonstrate how to improve the
sample/gradient estimation efficiency when training
NADO by further exploiting the likelihood predictions
from the base model p.

• We show that with the new formulation, it is natural
to combine DiNADO with finetune-based approaches
like LoRA, to update the base model p by optimiz-
ing the oracle function parameterized by contrasting
the altered distribution q = pϕ+∆ϕ against the base
model pϕ. This contrastive formulation significantly

boosts the model capacity of NADO, at the same time
allowing for better inference-time performance of the
algorithm.

2. Background and Related Work
Controllable Generation for Autoregressive Models.
There are multiple paradigms to achieve controllable gener-
ation with autoregressive models. According to Zhang et al.
(2022), these paradigms can be classified into three general
types: fine-tuning, refact/retraining, and post-processing.
Most previous attempts to achieve controllable generation
have focused on the first two paradigms, including methods
such as CTRL (Keskar et al., 2019) and prompt-based learn-
ing methods (Shin et al., 2020; Lester et al., 2021; Li and
Liang, 2021). The post-processing paradigm includes meth-
ods such as constrained decoding (Anderson et al., 2017;
Lu et al., 2021b;a) and auxiliary model guided generation
(Dathathri et al., 2020; Krause et al., 2021; Liu et al., 2021;
Lin and Riedl, 2021; Yang and Klein, 2021). These meth-
ods have shown some success in controlling the base model
using signals like lexical constraints, but each of them has
its own limitations. Constrained decoding methods fail in
directly editing the model distribution, and they may strug-
gle to handle sequence-level control signals that are not
trivially factorizable into the token/step level. Auxiliary
model guided generation methods have the potential to han-
dle sequence-level, abstract control signals, but they often
require additional data or annotation. Moreover, most Aux-
iliary model guided generation methods don’t consider the
distribution of the base model, causing distribution discrep-
ancy and degenerated performance in the decoding process.

NeurAlly-Decomposed Oracle (NADO) NeurAlly-
Decomposed Oracle (NADO) (Meng et al., 2022) is a
novel post-processing approach for controllable generation.
Given the base distribution p(x) of the large pretrained
model NADO controls and the target control signal function
C(x), NADO aims to project the base distribution to the
probability space with successful control i.e. C(x) = 1.
Formally, the target distribution q(x) NADO produces can
be written as:

q(x) =

{
βp(x) if C(x) = 1

0 if C(x) = 0

where β is the re-normalizing factor that does not need to
be calculated explicitly. NADO finds q(x) through learning
the step-wise expected satisfaction ratio RC(x<t), which
can be defined as:

RC(x<t) = Ex∼p(x|x<t)[C(x)]
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where p(x|x<t) means the distribution of all sequences x
with x<t as the prefix.

The vanilla implementation of NADO is naturally limited
in both its model capacity and sample efficiency. We argue
this is a direct consequence of the entanglement of global
norm and the relative strength in the step-wise RC(x<t).

The GeLaTo Algorithm GeLaTo (Zhang et al., 2023) is
an innovative framework aimed at enhancing autoregres-
sive text generation by integrating tractable probabilistic
models (TPMs) for imposing lexical constraints. This ap-
proach leverages distilled hidden Markov models to effec-
tively guide the generation process in models like GPT-2,
ensuring that generated text adheres to specified lexical
constraints. Demonstrating superior performance on the
CommonGen benchmark, GeLaTo represents a significant
advancement in the domain of constrained text generation.
It can be formulated as follows:

p(xt+1 | x1:t, α) ∝ PrTPM(α | x1:t+1) · PrLM(xt+1 | x1:t)

Here PrTPM(α | x1:t+1) is an HMM-based approximation
of the base model.

GeLaTo is capable of achieving perfect control of logic
signals, yet requiring the deployment of an HMM-based dis-
tribution modifier module. Compared to standard language
models, HMM-based models are less scalable, limiting the
computational efficiency of GeLaTo.

Importance Sampling tackles the problem of calculating
an integral by sampling from a different distribution that is
easier to sample from, rather than directly from the origi-
nal distribution, especially when the original distribution is
under-sampled. The basic idea behind importance sampling
is to reweight the samples generated from a different dis-
tribution (known as the proxy distribution) so that they are
consistent with the target distribution. This reweighting is
done using the ratio of the target distribution to the proxy
distribution. The formulation of importance sampling can
be written as follows:

Ex∼p[f(x)] = Ex∼q[
p(x)

q(x)
f(x)]

where p(x) is the target distribution, q(x) is the proxy dis-
tribution, and f(x) is the function we want to estimate the
expected value of. In reinforcement learning, we use impor-
tance sampling to estimate the value of a policy under the
target distribution by reweighting the returns generated by
the proxy policy.

In this work, we use the core idea of the importance sam-
pling and develop upon that to further boost the gradient
estimation process of NADO.

3. Methodology
We discuss the challenges of applying the vanilla version
of NADO in some tricky scenarios. First, when the original
distribution p(x) and the target distributions q(x) are far
away for each other, NADO usually significantly benefits
from an optional warmup step that conducts supervised
finetuning (SFT) towards samples from q(x). This step is
essentially prompt-based fine-tuning like CTRL (Keskar
et al., 2019). Under the original parameterization of NADO,
during this SFT step, the solution to a particular q(x) is not
unique, because the optimization target is ill-defined. To
address this issue, we first theoretically analyse the major
cause of the issue, and then propose a new parameterization
of NADO, namely DiNADO (norm-Disentangled NeurAlly-
Decomposed Oracles).

Second, the original random sampling strategy of NADO
is inefficient for training a model to tackle control signals
with low satisfaction rate. To address this, we introduce
importance sampling and discuss how our proxy distribution
is constructed.

Finally, we discuss how to further improve the NADO
algorithm’s capacity and efficiency by combining it with
finetune-based adaptation methods like Low-Rank Adap-
tation (LoRA).We call the composed algorithm DiNADO-
Merge. DiNADO-Merge allows us to update base model p’s
parameters by implicitly optimizing the constraint oracle
R. As a result, we obtain the target distribution q = pϕ+∆ϕ

without adding additional parameters. This improves com-
putationally efficient during the inference time as it does not
introduce additional parameters while achieve better control
over vanilla finetuning with or without LoRA.

3.1. Notations

General formulation Following the notations in the orig-
inal NADO paper, we use x ∈ X and y ∈ Y to denote the
input and generated sequence, respectively. We assume the
distributions are defined on the set of sequences of tokens
in Σ. We denote the i−th token in y as yi and the sequence
prefix from the beginning to the (i − 1)−th token as y<i.
Thus, for the base auto-regressive language model, the step-
wise distribution can be written as p(yi|x,y<i), and the
conditional joint distribution as p(y|x) =

∏
i p(yi|x,y<i).

Formulation in NADO Modules We hereby consider the
formulation of NADO. The sequence-level oracle can be
defined as a boolean function C : X × Y → {0, 1}. We
also interchangeably use the notation C(y) or C(x,y). The
resulting step-wise density ratio function can be written as
RC(x,y<t) or simply RC(y<t). When we do a one-step
enumeration for the next-step likelihood over the vocabulary,
we also use the notation RC

θ (yt|y<t) = {RC
θ (y≤t)}∀yt∈Σ.
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3.2. Normalization Yields Uniqueness of Optima in SFT
for NADO-altered likelihood

In the original parameterization of NADO, RC
ϕ (x,y<t) re-

flects the expected value of the decomposed oracle function
C(x,y).To find the optimal q(yi|x,y<i), it would be natu-
ral to assume that RC(x,y<t) is unique for the optimal a
specific q(yi|x,y<i) induced from C(x,y). However, we
have the following lemma to prove that it is not the case:

Lemma 1: The Ambiguious Target to SFT on NADO’s
Composed Likelihood. Given the base distribution
p(yi|x,y<i), there are infinite numbers of different unnor-
malized RC(x,y<t) (i.e. C(x,y<t)) that consequent to the
same q(yi|x,y<i),.

Proof. For an arbitrary real number 0 < τ < 1, we can
construct a new Cτ (x,y<t) = τC(x,y<t) and the cor-
responding RτC(x,y<t). We now concern the modified
distribution qτ (yi|x,y<i) it induces.

By definition, obviously:

RτC(x,y<t) = τRC(x,y<t)

Since

q(yi|x,y<i) =
RC(x,y≤i)

RC(x,y≤i−1)
p(yi|x,y<i),

and

qτ (yi|x,y<i) ∝
Rτ (x,y≤i)

Rτ (x,y≤i−1)
p(yi|x,y<i)

=
τRC(x,y≤i)

τRC(x,y≤i−1)
p(yi|x,y<i)

=
RC(x,y≤i)

RC(x,y≤i−1)
p(yi|x,y<i)

This implies qτ (yi|x,y<i) = q(yi|x,y<i). Since there are
infinite numbers of τ , this successfully disproves the unique-
ness of the original unnormalized RC(x,y≤i) if we concern
a certain q(yi|x,y<i). While this does not affect the ma-
jor part of the original NADO algorithm (RC(x,y≤i) is
still unique given C), it leads to an inconsistent objective
(and thus sub-optimal performance) during the optional SFT
stage (i.e. warmup) with NADO.

3.3. DiNADO: Disentangling the rescaler from the
step-wise oracle factorization value R

We hereby propose a new parameterization of NADO that
tackles the problem. In the original NADO algorithm, we
directly estimate the decomposition of oracle with a param-
eterized model RC

θ (x,y≤i). In the new parameterization,
we try to eliminate the effect of different scaling (i.e. τ in

the previous formulation). Without loss of generality, by
assuming that RC(x, ∅) > 0, where RC(x, ∅) denotes the
possibility for the constraints x to be satisfied when nothing
has been generated yet (otherwise it would be meaningless
to control the base distribution anyway), we instead parame-
terize a normalized non-negative function rθ(x,y≤i) ≥ 0
that is in proportion to RC(x,y≤i) in each step. Formally:

∀x,y<i, yi :

RC
θ (x,y≤i) = β(x,y<i)rθ(yi|x,y<i)

s.t. ∥rθ(y|x,y<i)∥n = 1.0

Here ∥ · ∥n can be an arbitrary norm. When n = 1, this
is equivalent to ∥rθ(y|x,y<i)∥1 =

∑
rθ(y|x,y<i) = 1.0,

making rθ(x,y≤i) a probability over the vocabulary.

DiNADO-Hard: Towards Regularization-Free Training
of NADO We hereby show that we don’t need to param-
eterize β in a sequential manner, but can instead compute
it through induction that would eventually result in a more
sound formulation of NADO. Without loss of generality,
we use L-1 norm in this variant i.e.

∑
rθ(y|x,y<i) = 1.0.

This makes the output of the NADO module to be a prob-
ability over the vocabulary, which is identical to that of a
regular language model.

Consider the original regularization used in NADO to ensure
the forward consistency condition:

Lreg(x,y, R
C
θ ) =

fKL

(∑
yi

RC
θ (x,y≤i)p(yi|x,y<i), R

C
θ (x,y≤i−1)

)
,

(1)

it will only be perfectly satisfied, if and only if:

Equation 2 (the Forward Consistency Condition)∑
yi

RC
θ (x,y≤i)p(yi|x,y<i) = RC

θ (x,y≤i−1) (2)

Intuitively, this condition is trying to make sure that
the expectation (with the base distribution’s probability
p(yi|x,y<i) of RC

θ (x,y≤i) should be consistent with the re-
sult if we directly take the NADO module’s output from the
last step RC

θ (x,y≤i−1). From an reinforcement learning’s
perspective, this condition equation can also be interpreted
as the Bellman equation for a stochastic policy agent.

Substituting Equation 2 with our rescaler-decomposed pa-
rameterization, we have:

β(x,y<i)
∑
yi∈Σ

rθ(x,y≤i)p(yi|x,y<i)

=β(x,y<i−1)rθ(x,y≤i−1)
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Hence we have the following condition for inductively cal-
culating the rescaler β(x,y<i):

β(x,y<i) = β(x,y<i−1)
rθ(x,y≤i−1)∑

yi
rθ(x,y≤i)p(yi|x,y<i)

(3)

For a unified formulation, it’s trivial to prove that rθ(x, ∅) =
1.0. We use a classification head to model βθ(x, ∅).

During training, the calculation of this induction can be
numerically stabilized using log-likelihoods.

At inference time, for each step, we can omit β and only
consider the following modified distribution:

qθ(yi|x,y<i) ∝ p(yi|x,y<i)rθ(x,y≤i)

Any likelihood-based SFT on this composed distribution
will not have an impact on β(x,y<i−1). It’s trivial to
prove that, given p(yi|x,y<i), qθ(yi|x,y<i) and rθ(x,y≤i)
forms a bi-jection. Note that, without loss of general-
ity, we can assume in practice ∀x,y<i, p(yi|x,y<i) >
0, rθ(x,y≤i) > 0, qθ(x,y≤i) > 0 since they’re composed
from outputs of neural networks which always predict finite
numbers on the log-scale.

DiNADO-Soft: Balancing between Proper Regulariza-
tion of R and Better Approximation of C(x,y) While
DiNADO-Hard provides a way to completely get rid of the
regularization term and potentially improve the controlla-
bility, it is possible that the introduced prior of a perfectly-
satisfied forward consistency condition can introduce prac-
tical difficulties in a better approximation of E

[
C(x,y)

]
using Rθ(x,y≤i).

DiNADO-Soft compromises between the vanilla NADO and
DiNADO-Hard. While still adopting the rescaler decom-
position parameterization, in DiNADO-Soft we drop the
induction in Equation (3) and directly model the step-wise
rescaler βθ(x,y<i) instead as follows:

Rθ(x,y≤i) = βθ(x,y<i)rθ(yi|x,y<i)

Compared to DiNADO-Hard, by sharing the classifier head
among different steps, this will not further introduce model
parameters. During training, we still include the regulariza-
tion (in Equation (1)) in vanilla NADO. In our experiments,
we show that DiNADO-Soft still improves upon the vanilla
version significantly, especially in a faster and better satis-
faction of the forward consistency condition.

DiNADO-Merge: Overhead-Free DiNADO through the
Comparison of Distributions We hereby show that with
the rescaler-decomposed parameterization, we can utilize
finetune-based adaptation methods like LoRA (Hu et al.,

2021) to further improve the capacity and scalability of
DiNADO. We can achieve this by reversing the cause and
effect between the composed distribution q(yi|x,y<i) and
the NADO output R(x,y<i).

In vanilla NADO, we use the NADO module to di-
rectly model Rθ(x,y<i), and compose the edited distri-
bution qθ(yi|x,y<i) ∝ p(yi|x,y<i)Rθ(yi|x,y<i). We
hereby consider a variant of NADO, where we use LoRA
∆ϕ = L⊤U to directly model the edited distribution as
q(yi|x,y<i) = pϕ+∆ϕ(yi|x,y<i), and then train the model
with NADO objective through computing rϕ+∆ϕ(yi|x,y<i)
by contrasting q(yi|x,y<i) = pϕ+∆ϕ(yi|x,y<i) against
the original distribution pϕ(yi|x,y<i).

For each step, we directly model the rescaler βθ(x,y<i)
and compose rϕ+∆ϕ(yi|x,y<i) by L-∞ normalizing
pϕ+∆ϕ(yi|x,y<i)

pϕ(yi|x,y<i)
:

rϕ+∆ϕ(yi|x,y<i) ∝
pϕ+∆ϕ(yi|x,y<i)

pϕ(yi|x,y<i)

max
yi

r(yi|x,y<i) = 1.0

The NADO output can be computed by:

R(yi|x,y<i) = βθ(x,y<i)rϕ+∆ϕ(yi|x,y<i)

In this case, we can bound 0 ≤ βθ(x,y<i) ≤ 1, and learn
βθ(x,y<i) as a step-wise binary classification model.

The biggest practical benefit for DiNADO-Merge is that,
after training the model to convergence, one have direct
access to the modified model q(y|x) = pϕ+∆ϕ(y|x) with
no additional inference-time overhead compared to using
the original/base model pϕ(y|x) alone.

3.4. Inefficient Gradient Estimation in Vanilla NADO

We now concern the variance of gradient w.r.t. RC
θ (x,y<i).

Suppose we are sampling from the original distribution p:

Var(∇L(C;Rθ;x,y≤i))

=Ey∼p(y|x,y≤i)[(∇L(C;Rθ;x,y≤i))
2
]

−Ey∼p(y|x,y≤i)[∇L(C;Rθ;x,y≤i)]
2

=Ey∼p(y|x,y≤i)

[(
(Rθ(x,y≤i)− C(x,y))

Rθ(x,y≤i)(Rθ(x,y≤i)− 1)

)2
]

−Ey∼p(y|x,y≤i)[∇L(C;Rθ;x,y≤i)]
2 (4)

Without loss of generality, we concern the inefficiency of
the gradient estimation when there are still expected updates,
i.e.

0 < ∥Ey∼p(y|x,y≤i)[∇L(C;Rθ;x,y≤i)]∥ < α

With a probability 0 ≤ µ ≤ 1, either of the case that our
current R disagrees with C(x,y) is true:
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Figure 1. Illustration of the original example distribution, the truncated distribution using the likelihood re-weighting trick and directly
approximating the distribution empirically using the same number of random samples.

• C(x,y) = 0 and Rθ(x,y≤i) > 1− δ, in this case:(
(Rθ(x,y≤i)− C(x,y))

Rθ(x,y≤i)(Rθ(x,y≤i)− 1)

)2

=

(
Rθ(x,y≤i)

Rθ(x,y≤i)(Rθ(x,y≤i)− 1)

)2

=

(
1

(Rθ(x,y≤i)− 1)

)2

>
1

δ2

• C(x,y) = 1 and Rθ(x,y≤i) < δ, in this case:(
(Rθ(x,y≤i)− C(x,y))

Rθ(x,y≤i)(Rθ(x,y≤i)− 1)

)2

=

(
Rθ(x,y≤i)− 1

Rθ(x,y≤i)(Rθ(x,y≤i)− 1)

)2

=

(
1

Rθ(x,y≤i)

)2

>
1

δ2

We can then have the following lower bound for Eq. 4:

∀0 ≤ µ, δ ≤ 1 : Var(∇L(C;Rθ;x,y≤i)) ≥
µ

δ2
− α2

This shows that if µ is non-neglectable, as δ → 0, the
variance of the gradient estimation process in vanilla NADO
is highly impacted by the sparsity (represented by δ) of
the oracle function C(x,y) and can lead to an inefficient
training process due to the random detours caused by the
noisy gradient from mini-batches.

Tackling Insufficient Presentation of Distribution: Like-
lihood Re-weighting Importance Sampling. We now
consider a better strategy for choosing a proxy distribution
and perform importance sampling to reduce the variance
of gradient. Recall that, in practice we can only collect
a very limited number of samples that are much less than
sufficient to express potentially significant likelihood dif-
ferences by using the empirical distribution of which. See

Figure 1, given the same number of samples, the distribution
represented by both the unique samples and their likelihood
scores from the original base model is significantly more
similar (under KLD measure) to the full distribution than
using only the samples.

Specifically, we collect a set (i.e. the collection of unique
elements) of decoded data as the truncation basis, and use
the original distribution p to assign a normalized weight for
each of the unique basis samples. In practice, this can be
achieved by either running random sampling multiple times
until having collected a sufficient number of unique samples
or simply doing a beam search to approximately select the
top-K (K is the sample size limit) of p as the truncation
basis.

It is trivial to prove that this minimizes the fKL between
the truncated distribution and original distribution.

4. Experiments
Following the setup of NADO (Meng et al., 2022) and
FUDGE (Yang and Klein, 2021), we evaluate different
variants of DiNADO in comparison to the vanilla NADO
and other existing controllable decoding methods on the
supervised Lexically Constrained Generation (LCG) task
using the CommonGen dataset(Lin et al., 2020) and For-
malMT with Fisher and CALLHOME Spanish-English
Speech Translation Corpus dataset(Post et al., 2013).

4.1. Dataset Setup

FormalMT In both the Spanish source and the original
English reference, the sentences are informal and causal.
In our evaluation, we follow the setup in NADO (Meng
et al., 2022) to use the rewritten, formal reference (Salesky
et al., 2019) instead. The formality score C-function here
is approximated by a binary classifier, also adopted from
previous works (Yang and Klein, 2021; Meng et al., 2022).
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LCG CommonGen is designed to evaluate the common-
sense reasoning ability of neural text generation models, as
well as examining their compositional generalization ability.
The training set consists of 32,651 unique key concepts,
which serve as constraints, and a total of 67,389 annotated
description sequences. Additionally, a validation set con-
taining 993 concepts and 4,018 description sequences is
provided. To ensure a comprehensive evaluation, the dataset
maintains an open leaderboard for benchmarking different
approaches on a withheld test set. However, the maintenance
of the test server for this test set has already concluded. As
an alternative setup, we use GPT-4 (Achiam et al., 2023)
to generate the test-set reference. For all other setups, we
closely followed previous paper’s data configurations to
ensure consistency with prior work.

4.2. Experiment: Better Controllable Generation with
DiNADO

We hereby conduct experiments to study the effectiveness
of the proposed approach. We split our experiments into
two parts: 1) Main results that utilizes a GPT-2-Large base
distribution and compared against existing works on con-
strained decoding algorithms, evaluated by generation qual-
ity (BLEU) and controllability (Coverage of the keywords);
2) Sample efficiency study to investigate how different de-
signs and objective reweighting tricks help mitigating the
sample efficiency issue of NADO.

4.2.1. MAIN RESULT 1 - INPUT-AGNOSTIC FORMALITY
CONTROL IN MACHINE TRANSLATION

We first present the primitive results in comparison with
existing algorithms on the formality control problem in
machine translation. DiNADO-Merge with full parameter

Table 1. Performance of different ways for adapting and control-
ling the language model on FormalMT. Results with ∗ are reported
from the original paper.

Model Formal BLEU Formality

GPT-2 Large

Direct Finetune 16.84 0.44

NADO 20.76 0.53

DiNADO-Soft-GPT-2 Base 21.06 0.59
DiNADO-Merge-LoRA 21.37 0.59
DiNADO-Merge-fullparameter 21.58 0.60
MarianMT

Direct Finetune 16.98∗ 0.45∗

FUDGE 17.96∗ 0.51∗

NADO 21.04∗ 0.53∗

finetuning achieves the best performance among all models,
followed by DiNADO-Merge with LoRA.

4.2.2. MAIN RESULT 2 - INPUT-AWARE CONTROLLED
GENERATION FOR COMMONGEN

We now present the second part of main results in compari-
son with existing algorithms. We focuses on the supervised
setting, and report the results with either the self-reported
ones or our re-evaluation with the synthesized references.

Table 2. Performance of different ways for adapting and control-
ling the language model on CommonGen. Results with * are
evaluated with the GPT-synthesized pseudo test references.

Model BLEU Coverage
(dev) (test) (dev) (test)

GPT-2 Large

Direct Finetune 27.6 24.1* 87.4% 87.2%
NeuroLogic (Lu et al., 2021b) - 26.7 - 96.7%
A*esque (Lu et al., 2021a) - 28.2 - 97.8%

GeLaTo (Zhang et al., 2023) 34.0 34.1 100% 100%
- (w/o rerank) 32.5 32.9* 100% 100%

NADO-Adaptation Layers 30.3 30.1* 97.1% 96.2%
NADO-GPT-2 Base 30.8 30.7* 97.6% 96.8%

DiNADO-Hard-Adaptation Layers 28.3 28.4* 97.5% 97.6%
DiNADO-Hard-GPT-2 Base 28.9 29.0* 97.7% 97.9%
DiNADO-Soft-Adaptation Layers 29.9 30.0* 97.8% 97.5%
DiNADO-Soft-GPT-2 Base 31.6 31.4* 98.6% 97.9%
DiNADO-Merge 34.3 34.2* 98.5% 98.9%
- (w/o rerank) 32.3 32.9 98.4% 98.9%

As is shown in Table 2. DiNADO-Merge achieves the state-
of-the-art among all constrained decoding algorithms.

4.2.3. DISCUSSION

DiNADO-Hard versus DiNADO-Soft While the perfect
satisfaction of the forward consistency condition is theoret-
ically appealing, we find that in practice this hinders the
effective learning of the oracle signal C(x,y), resulting in
an inferior performance of DiNADO-Hard generally. In par-
ticular, with an inaccurate estimation of the initial βθ(x, ∅),
with the false estimation being too high, in intermediate
steps it could be possible that RC

θ (x,y≤i) > 1 which vio-
lates the definition of RC

θ (x,y≤i) > 1. We argue that this
further negatively impact the performance of the composed
distribution.

Adaptation Layer versus Smaller Model versus
DiNADO-Merge The larger capacity generally grant the
NADO module with more flexibility and the composed
model better controllability. This observation is generally
consistent with the conclusions from our discussion in Sec-
tion 4.2.4. DiNADO-Merge in particular shows more gener-
alizable performance, which we argue can be a direct result
that it manage to handle the controllability in the same pa-
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Figure 2. (a) The original NADO and DiNADO converge with sim-
ilar dynamics at early stages in terms of the major part of loss, but
DiNADO converges to a better local optima. (b) DiNADO’s norm
disentanglement significantly helps to stabilize the regularization
term.

rameter space as the pretrained base model.

Discussion: Training Stability Comparison We further
conduct a study on the training stability of DiNADO against
NADO through tracing the training loss of them. See Fig-
ure 2. In Figure 4.2.3, we find that the original NADO and
DiNADO converge with similar dynamics at early stages in
terms of the major part of the loss which are most associated
with the learning of the R function. However, DiNADO is
capable of more sufficiently approximating R, especially
after around 10 epochs of training. In Figure 4.2.3, we
observe that the regularization term in vanilla NADO first
increases due to divergence from the original distribution,
and then converges slowly until below 0.5. According to
previous study in NADO, the divergence of the regulariza-
tion term would harm how the improvement in R actually
helps the performance of the modified distribution q. In
contrast, the norm-disentanglement in DiNADO helps it to
always control the regularization term under 0.5, making
most updates in R always helpful towards the improvement
of the composed distribution q.

Table 3. Post-SFT performance of different parameterization for
distribution post-editing on CommonGen. The number in paren-
thesis indicates the unremovable extra parameter number for the
R module. The behavior of Unnormalized corresponds to the
behavior of NADOv1 during its optional SFT phase, whereas Nor-
malized corresponds to DiNADO(-Soft/Hard).

Model BLEU (dev) Coverage

GPT-2 Large

Direct Finetune (GPT-2 Large) 27.61 87.4%
Direct Finetune (GPT-2 Base) 17.36 84.1%

Unnormalized-Adaptation Layers (119M) 13.98 86.8%
Unnormalized-GPT-2 Base (117M) 15.12 87.1%
Normalized-Adaptation Layers (119M) 16.36 87.2%
Normalized-GPT-2 Base (117M) 17.15 87.3%
Normalized-Merge (0M) 28.91 88.5%

T5 Large

Direct Finetune (T5 Large) 30.33 93.3%
Direct Finetune (T5 Small) 22.31 91.5%

Unnormalized-Adaptation Layers (92M) 16.71 87.1%
Unnormalized-T5 Small (80M) 18.22 86.9%
Normalized-Adaptation Layers (92M) 19.87 86.2%
Normalized-T5 Small (80M) 20.49 87.7%
Normalized-Merge (0M) 30.73 92.9%

Instructed Flan-T5

Direct Instruct (Flan-T5 Large) 34.53 95.8%
Direct Instruct (Flan-T5 Small) 18.80 82.9%

Unnormalized-Adaptation Layers (92M) 32.89 92.8%
Unnormalized-T5 Small (80M) 33.50 96.3%
Normalized-Adaptation Layers (92M) 31.67 93.4%
Normalized-T5 Small (80M) 33.84 96.2%
Normalized-Merge (0M) 34.67 96.5%

4.2.4. ABLATION STUDY: EXPERIMENT ON
LIKELIHOOD-BASED SFT (WARM-UP)

We first conduct an experiment on the CommonGen dataset
to study how much the proposed new parameterization of
NADO alleviates the known issues during the likelihood-
based warmup process. We consider a harder case than the
original warmup process in the original NADO paper. In-
stead of training the base distribution to be an unconditional
description model, we now concern directly using NADO
to adapt pretrained language models to handle the Common-
Gen task without any task-specific finetuning of the base
distribution. We view this experiment as an examination of
the extra model capacity introduced by different ways of
model controlling.

We discuss and compare the post-warm-up performance
under two different cases: 1) finetuning pretrained mod-
els without instruction tuning (e.g. GPT-2 (Radford et al.,
2019)) and unstructured prompting; 2) instructing and fine-
tuning pretrained model with instruction tuning (e.g. Flan-
T5 (Chung et al., 2022)). See Table 3.

In addition, we compare different ways to model the proba-
bility mask RC

θ (x,y≤i). In addition to the original way of
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adaptation layers described in NADO (Meng et al., 2022),
we also examine the case where we use a fully independent
yet smaller model to serve as RC

θ (x,y≤i).

Controlling the Base Model: Adaptation Layers versus
a Smaller Model We find that using a smaller model in
general performs better than the original way of using adap-
tation layers (of similar parameter numbers) for both NADO
and DiNADO. Note that, since the objective in the NADO
algorithm is very different than that from the original lan-
guage model initialization, for language models that use
tied input-output embeddings, we need to untie them for
effectively adapting the model as the NADO module. No-
tably, experiment results using Flan-T5 show that, for cases
where the base distribution is good enough, the introduction
of adaptation layers can cause the composed distribution to
be even worse than simply direct sampling from the base
distribution.

Unnormalized versus Normalized: Improved Warm-up
with Algorithmic Consistency Mitigation We find that
the mitigation of algorithmic consistency of the original
composed likelihood function in DiNADO generally im-
proved the post-SFT performance. When the base model
has a huge distribution gap from the target domain (as shown
in the case of finetuning GPT-2(Radford et al., 2019) and
T5 (Raffel et al., 2020) models), this improvement is sig-
nificant. As a result, the composed distribution after SFT
is performing similarly well as directly an SFT model with
similar additional parameter capacity. By further combining
with finetuning methods like LoRA(Hu et al., 2021) as the
DiNADO-Merge algorithm, the post-SFT performance is
on par or even better than full model finetuning. This is
expected, as the behavior of DiNADO-Merge during SFT
stage is identical to vanilla LoRA-finetuning.

4.2.5. SAMPLE EFFICIENCY STUDY

In the original setup, one need to collect 32 independent
samples for each unique input to train the NADO mod-
ule. However, empirically this can still be too expensive,
as we would like to investigate how the previously pro-
posed improvements contribute to better sample efficiency
of the algorithm. We take two variants of the models as
the representative of NADOv1 and DiNADO respectively:
NADOv1-GPT-2 Base and DiNADO-Soft-GPT-2 Base. We
start from collecting (N=2) samples, and gradually double
the sample size until 64 samples per unique input. The
results are shown as in 4:

Discussion A sufficient number of samples per unique input
is crucial towards the success of NADOv1. The performance
of NADOv1 saturates near (N=32), this validates that setting
(N=32) is a reasonable choice. Compared to NADOv1,
simply improving the algorithm with parameterization as

Table 4. Performance of different ways for adapting and control-
ling the language model on CommonGen. Results with * are
evaluated with the GPT-synthesized pseudo test references.

Model BLEU Coverage
(dev) (test) (dev) (test)

GPT-2 Large

NADO-GPT-2 Base (N=2) 24.0 22.6* 85.1% 84.2%
NADO-GPT-2 Base (N=4) 25.1 23.4* 87.4% 87.0%
NADO-GPT-2 Base (N=8) 27.4 26.6* 91.3% 88.7%
NADO-GPT-2 Base (N=16) 29.1 28.6* 93.8% 92.9%
NADO-GPT-2 Base (N=32) 30.8 30.7* 97.6% 96.8%
NADO-GPT-2 Base (N=64) 30.8 30.6* 97.8% 96.9%

w/o Likelihood-based Reweighting

DiNADO-Soft-GPT-2 Base (N=2) 24.3 23.7* 86.1% 85.7%
DiNADO-Soft-GPT-2 Base (N=4) 26.6 25.1* 92.7% 91.0%
DiNADO-Soft-GPT-2 Base (N=8) 28.8 28.0* 94.5% 93.9%
DiNADO-Soft-GPT-2 Base (N=16) 29.4 29.0* 96.1% 95.3%
DiNADO-Soft-GPT-2 Base (N=32) 30.9 30.8* 97.1% 97.0%
DiNADO-Soft-GPT-2 Base (N=64) 30.9 30.8* 97.0% 97.3%

w/ Likelihood-based Reweighting

DiNADO-Soft-GPT-2 Base (N=2) 25.3 24.7* 88.6% 87.3%
DiNADO-Soft-GPT-2 Base (N=4) 28.6 29.1* 96.7% 96.1%
DiNADO-Soft-GPT-2 Base (N=8) 30.6 30.5* 96.6% 96.9%
DiNADO-Soft-GPT-2 Base (N=16) 30.9 31.0* 97.5% 97.3%
DiNADO-Soft-GPT-2 Base (N=32) 31.3 31.2* 97.9% 97.6%
DiNADO-Soft-GPT-2 Base (N=64) 31.6 31.4* 98.6% 97.9%

DiNADO-Soft helps in improving the sample efficiency, yet
its performance is still impacted by the number of samples
to an observable degree. Generally, DiNADO without the
likelihood-based reweighting shows a similar dynamics as
NADOv1 with a larger sample size. With the likelihood-
based reweighting, we can effectively reduce the sample
size to as small as (N=4) without significantly sacrificing
the resulting performance, although a larger sample size can
still boost the performance slightly.

5. Conclusion
In this paper, we discuss the existing algorithmic problems
of NeurAlly-Decomposed Oracle (NADO), a trainable con-
trollable generation decoding algorthm for language models.
Our discussion focuses on theoretically analysing the flawful
designs of the vanilla implementation of NADO and propos-
ing respective mitigations, resulting in the improved ver-
sion of NADO, namely DiNADO as in norm-Disentangled
NeurAlly-Decomposed Oracles. In addition, the new imple-
mentation of DiNADO allows it to be naturally combined
with finetuning methods like LoRA, resulting in a capacity-
rich version of NADO. Experiments on MarianMT and
CommonGen justify the significance of these algorithmic
improvements.
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Impact Statement
The goal of this paper is to analyze and mitigate the existing
problems in the constrained decoding algorithm NADOv1.
For the broader impact, we argue that DiNADO provides
an alternative way to achieve the alignement and super-
alignment of language models. In particular, we show that
the feedback from either the smaller language models or
a comparison between an LLM and its previous versions
could utilize NADO as a more efficient way to control and
guide LLMs to better correlate with human preferences with
solid theoretical guarantee.
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