
Under review as a conference paper at ICLR 2024

A THEORETICAL STUDY OF THE JACOBIAN MATRIX
IN DEEP NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Due to the compositional nature of neural networks, increasing their depth can
lead to issues of vanishing or exploding gradients if the initialization scheme is not
carefully selected (Poole et al., 2016; Schoenholz et al., 2017; Hayou et al., 2019).
One approach to identifying a desirable initialization scheme involves analyzing
the behavior of the input-output Jacobian and ensuring that it does not degenerate
exponentially with depth. Such an analysis has been conducted in previous works,
such as Pennington et al. (2017), where the authors discovered a critical initializa-
tion scheme that ensures Jacobian stability, as confirmed by empirical results. The
analysis carried in such studies is limited to initialization and leverages classical
results in random matrix theory. In this paper, we extend this analysis beyond
initialization, and study Jacobian behaviour during training. Notably, we show
that a notion of stability holds throughout training (if satisfied at initialization),
hence providing a theoretical explanation for the crucial role of initialization. To
do this, we first prove a general theorem that utilizes recent breakthrough results
in random matrix theory (Brailovskaya and van Handel, 2022). To show the broad
applicability of our framework, we also provide an analysis of the Jacobian in
other scenarios such as sparse Networks and non-iid initialization.

1 INTRODUCTION

Deep neural networks (DNNs) have revolutionized machine learning, achieving state-of-the-art re-
sults in many applications (LeCun et al., 2015). However, despite their impressive performance,
training DNNs remains a challenging task and often requires heavy hyper-parameters tuning. One
important factor that affects the trainability of DNNs is the behaviour of the input-output Jacobian,
which measures the sensitivity of the network’s output to changes in its input(Saxe et al., 2013).
Improper initialization can lead to issues of vanishing or exploding Jacobians/gradients (as depth in-
creases), which might cause the network to get stuck in poor local optima or diverge during training.

Prior research on the Jacobian in DNNs has concentrated on its behaviour at initialization (Penning-
ton et al., 2017; Collins and Hayase, 2023), where the network weights are initialized, e.g. with
independent and identically distributed (i.i.d) Gaussian weights, or orthogonal weights (e.g., Pen-
nington et al. (2017); Hanin and Nica (2020); Chhaibi et al. (2022)), and showed both theoretically
and empirically a correlation between ‘stable’ Jacobian behaviour at initialization and favorable
performance properties (training and generalization). Similar works have focused on studying other
related quantities such as covariance kernel and gradients at initialization to derive the ‘Edge of
Chaos’ initialization scheme (Poole et al., 2016; Schoenholz et al., 2017; Pennington et al., 2017;
Hayou et al., 2019), which guarantees gradient stability and better information propagation. How-
ever, the analysis in these works is limited to initialization and fails to cover other scenarios, e.g.
what happens to the Jacobian during training? or what happens to the Jacobian after we prune the
network (LeCun et al., 1990; Hassibi et al., 1993; Lee et al., 2018b; Hayou et al., 2021; Wang et al.,
2020; Frankle and Carbin, 2019a)? etc.

In this paper, we propose to (partially) address some of these questions by developing a general
theoretical framework (stability theorem, Appendix A) based on recent breakthroughs in random
matrix theory, on the products of random matrices in non-iid settings (Brailovskaya and van Handel,
2022). Our primary objective is to gain insights into the behaviour of the Jacobian under different

1

Under review as a conference paper at ICLR 2024

scenarios in the simple case of Multi-Layer Perceptrons (MLPs). To the best of our knowledge, this
is the first theoretical work on the behaviour of Jacobian in DNNs beyond initialization. Extending
these results to other architectures is challenging and is an interesting topic for future research.

Our analysis reveals several interesting phenomena. Firstly, with i.i.d initialized networks, if the Ja-
cobian is ‘stable’ (we formally define stability later in the paper) at initialization, then, under some
assumptions it remains roughly stable during training. Secondly, we show a three-phases behaviour
of the Jacobian norm during training: a stagnation phase where the Jacobian norm remains roughly
constant, followed by a descent phase where the Jacobian exhibits a rapid drop in norm, and a con-
vergence phase where the Jacobian norm converges and remains roughly constant until convergence
of gradient descent. Lastly, to show the broad applicability of our theoretical framework, we show
that in sparse networks, the Jacobian behaves similarly to that of a full network (non sparse) if
we scale the non-zero weights suitably, where the scaling factor depends on the pruning method.
In Appendix F, we further provide an application of our framework in the case of networks with
non-iid initialization weights, and find that there exists a width-dependent correlation threshold that
guarantees similar Jacobian properties to the iid case. All the proofs are deferred to the Appendix.

2 SETUP AND DEFINITIONS

Throughout this paper, we consider the Multi-Layer Perceptron (MLP) architecture given by:

MLP ▷


Y0(x) = Winx,

Yk(x) = Wkϕ(Yk−1(x)), k = 1, . . . , L,

Yout(x) = Woutϕ(YL(x)),

(1)

where x ∈ Rd is the input, Yout ∈ Ro is the network output, Win ∈ Rn×d,Wk ∈ Rn×n,Wout ∈
Ro×n are the network weights, and ϕ is the ReLU activation function given by ϕ(z) = max(z, 0)
(acting coordinate-wise). For the sake of simplification, we omit here the bias terms in the definition
of the MLP. We refer to Yk as the pre-activations or the features and ϕ(Yk) as the activations.
Hereafter, width and depth will be used to refer to n and L, respectively.

In practice, neural networks are usually trained with gradient-based algorithms such as Stochas-
tic Gradient Descent (SGD), Adam, etc. (LeCun et al., 2015; Kingma and Ba, 2014; Bottou,
2012). This requires the calculation of the gradients of some loss function with respect to the
weights (Wk)1≤k≤L using back-propagation. Let ℓ be a loss function (e.g. mean-squared er-
ror for regression, and cross-entropy loss for classification) and D = {(xi, zi), i = 1 . . . N}
be a fixed training dataset. DNN training aims to minimize the empirical objective L(W) =

N−1
∑N

i=1 ℓ(Yout(xi), zi), where W = {Win, (Wk)1≤k≤L,Wout}. With GD, the parameters W
are updated with the rule:

W←W − η
∂L
∂W

.

For a datapoint (x, z), the gradient of the loss function evaluated at (x, z) w.r.t. the weights W i,j
k

(for some i, j ∈ {1, . . . , n}) is given by:

∂ℓ(Yout(x), z)

∂W i,j
k

=
∂ℓ(Yout(x), z)

∂Y i
k (x)

ϕ(Y j
k−1(x)) =

∂ℓ(Yout(x), z)

∂YL(x)

⊤
∂YL(x)

∂Y i
k (x)

ϕ(Y j
k−1(x)).

Hence, the gradients inherently depend on the Jacobian terms

Jk(x) =
∂YL(x)

∂Yk−1(x)
=

(
∂Y i

L(x)

∂Y j
k−1(x)

)
1≤i,j≤n

∈ Rn×n,

for k ∈ {1, 2, . . . , L}. Using the chain rule, it is easy to see that for k ∈ {1, . . . , L−1}, the Jacobian
satisfies the recursion Jk(x) = Jk+1(x)×Wk Dk−1(x), where Dk(x) = Diag(ϕ′(Yk(x))) ∈ Rn×n.
Thus, we can express the Jacobian terms as a product:

Jk(x) =

L∏
l=k

WlDl−1(x), k ∈ {1, . . . , L− 1}.

2

Under review as a conference paper at ICLR 2024

Hereafter, we will denote the Jacobian without reference to its input, and use J1 =
∏L

l=1 WlDl−1, as
defined earlier. We assume a fixed non-zero input x for the analysis. However, our empirical results
will show that our findings hold for randomly selected inputs from the dataset, demonstrating that
our conclusions are independent of the input choice1.

Due to the nature of the Jacobian (product of matrices), one can anticipate the occurrence of van-
ishing or exploding gradient phenomena in instances where the weights are improperly initialized.
By examining the spectral norm of the Jacobian, denoted by ∥J1∥ (i.e., the largest singular value
of J1), in relation to the depth L, distinct regimes can be identified wherein the Jacobian norm
exhibits either exponential exploding or vanishing, or alternatively demonstrates a sub-exponential
dependence relative to depth Pennington et al. (2017). It is the exponential dependence on the
depth that poses a practical problem, as it typically leads to swift degradation of the gradients (ex-
ponential vanishing) and numerical instability (exponential exploding). When the depth depen-
dence is sub-exponential, the network is deemed to be stable. Hereafter, we will use the notation
bL = Θ(aL), bL = O(aL), bL = O(aL), to refer respectively to αaL ≤ bL ≤ βaL (α, β > 0

constants), |bL| ≤ β|aL| for all L, and limL→∞ bL(aL)
−1 = 0. We also use the notation Θ̃ and Õ

to hide any sub-exponential terms.

Definition 1 (Stable Jacobian). We say that the Jacobian of a network with a distribution q over the
weights2 W ∼ q is stable if:

EW∼q[∥J1∥] = Θ̃L(1),

where ∥.∥ denotes the spectral norm ∥A∥ =
√

λmax(AA⊤).

Here, we define stability for any weight distribution q, including the weight distribution during
training (Section 4). Note also that here stability is defined as Θ̃(1) instead of Θ(1), which hides
sub-exponential terms. This is because empirical results suggest that for typical network depths (e.g.,
in the range of 10 to 100), sub-exponential dependence does not significantly affect the performance
(Poole et al., 2016; Schoenholz et al., 2017; Hayou et al., 2019). In the following, we will analyze the
infinite-width limit of the Jacobian. In this limit, under some assumptions, the norm ∥J1∥ converges
to a deterministic value almost surely (see Pennington et al. (2017) for the result at initialization,
and Appendix A for a more general setup). As a result, taking the average over W has no effect in
this limit and one can think of the stability condition as being similar to ∥J1∥ ≈ Θ̃L(1).

3 JACOBIAN WITH I.I.D WEIGHTS AT INITIALIZATION

The large depth behaviour of the Jacobian has so far been studied at initialization, i.e., when the
weights W are i.i.d randomly sampled from a fixed underlying distribution q0. In particular, Pen-
nington et al. (2017) showed that when wide neural networks are initialized with independent Gaus-
sian weights N (0, ζ), the largest singular value of the input-output Jacobian J1 can either exponen-
tially explode or vanish with depth if the variance of the weights is different from ζ = 2/n, which is
also known as the Edge of Chaos initialization. This choice of ζ guarantees stability at initialization.
This result holds under the following approximation that simplifies the analysis.

Approximation 1. In the infinite-width limit, the diagonal entries of (Dk)k∈0,...,L behave as i.i.d
Bernoulli variables with parameter 1/2. Moreover, they are independent of the weights W.

It is easy to see why Approximation 1 is valid in the large-width regime. When n → ∞, it is well
known that the entries of the pre-activations (Y i

k)1≤i≤n converge (in distribution) to i.i.d Gaussian
random variables that are independent across i and k (Neal, 1995; Lee et al., 2018a; Matthews
et al., 2018; Hayou et al., 2019; Yang, 2019). Moreover, these entries become independent of the
weights W in this limit. Hence, since the matrix Dk consists of diagonal elements of the form
ϕ′(Y i

k) = 1Y i
k>0, it holds that the diagonal elements become approximately i.i.d Bernoulli random

variables with parameter 1/2 when n is large. We refer the reader to Appendix G for an empirical
verification of Approximation 1.

1It should be noted that while the input can impact stability in a DNN, this impact is often minor if the
dataset is normalized, with the architecture and weight distribution playing a more significant role.

2Since neural networks are trained starting from a random initialization, then at any training stage, the
weights W are random.

3

Under review as a conference paper at ICLR 2024

Notation. Hereafter, we use the approximate symbol "≈" instead of "=" for any result derived
under some approximation. Similarly, we use "⪅" instead of "<".
Now assume that the weights are initialized as W ij

k ∼ N (0, σ2
w/n) for some σw > 0. Then, the

following holds.

20 40 60 80
Depth

10 22

10 14

10 6

102

1010

Ja
co

bi
an

 n
or

m

2
w

0.5
2.0
4.0

20 40 60 80
Depth

101

6 × 100

2 × 101

3 × 101
4 × 101

Ja
co

bi
an

 n
or

m

Figure 1: Illustration of the Jaco-
bian norm at initialization in an MLP
network of width n = 256 and vary-
ing depth. The input is randomly se-
lected from MNIST. All results are
averaged over 3 runs. (Top) Impact
of depth on the Jacobian norm for
different σw. (Bottom) Evolution of
the Jacobian norm as a function of
depth for critical initialization.

Theorem 1 (Corollary of Eq. (17) in Pennington et al. (2017)).
In the limit n→∞, under Approximation 1, we have the follow-
ing:

∥J1∥ ≈ ΘL

(
L

(
σ2
w

2

)L
)
.

In particular, the choice σ2
w = 2 guarantees stability.

Note that the choice σ2
w = 2 corresponds also to the Edge of

Chaos initialization; an initialization scheme that allows deeper
signal propagation in MLPs Poole et al. (2016); Schoenholz et al.
(2017); Hayou et al. (2019). Fig. 1 shows the Jacobian norm
for different choices of σw and depths L. Exponential explod-
ing/vanishing with depth can be observed in the non-critical
initialization cases σ2

w ∈ {0.5, 4.0}, while a sub-exponential
growth w.r.t. depth is achieved with the critical initialization
σ2
w = 2 as predicted by Theorem 1. In Appendix G, we report

the accuracy of trained networks for varying architectures (MLP,
VGG) and initialization schemes (resulting in different Jacobian
norms) and further confirm that Jacobian stability is necessary to
achieve non-trivial performance. This adds to the empirical evi-
dence provided in Pennington et al. (2017); Chhaibi et al. (2022).

4 STABILITY DURING TRAINING

Empirical evidence suggests that critically initialized DNNs ex-
hibit a significant performance boost (Poole et al., 2016; Schoen-
holz et al., 2017; Hayou et al., 2019). This observation suggests that the Jacobian remains stable
(no exponential exploding/vanishing with depth) throughout the training process. Despite this, to
the best of our knowledge, there is currently no theoretical explanation in the literature for this
phenomenon. Using a variant of Approximation 1, a recent result from Random Matrix Theory
(Brailovskaya and van Handel, 2022), and a concentration result from the Tensor Programs frame-
work (Yang and Hu, 2021), we show that:

• If the Jacobian is stable at initialization, it remains stable throughout training.

• There exist three phases for Jacobian behaviour: the stagnation phase which is an initial training
stage where (under some conditions on the learning rate) the Jacobian norm remains asymptot-
ically constant. This initial phase appears when the learning rate is sub-optimal (see below for
more details); the decent phase, a second training stage where the Jacobian norm decreases sig-
nificantly without exhibiting any exponential exploding/decay. Using a toy model, we provide
a heuristic explanation to this phenomenon; the convergence phase, a later training stage during
which the Jacobian norm converges and remains roughly constant.

Hereafter, we use the superscript t to denote the value of some object at training step t. Consider the
full-batch gradient descent rule3 given by:

W t+1
l = W t

l − γ
∂L
∂W t

l

, l ∈ {1, . . . , L}, (2)

where t ∈ {0, . . . , T} is the training step, ∂L
∂Wl

∈ Rn×n is the matrix with entries ∂L
∂W ij

l

, and
γ > 0 is the learning rate. For the sake of simplification, we assume that the loss is given by

3To simplify the analysis, we consider the full-batch gradient descent instead of SGD.

4

Under review as a conference paper at ICLR 2024

L(W) = (2n)−1∥YL(x) − z∥2 for some (input, target) pair (x, z).4 All Jacobian matrices in this
section are computed for the input x.

4.1 JACOBIAN STABILITY DURING TRAINING

Consider the Jacobian at time t, given by J t
1 =

∏L
l=2 W

t
l D

t
l−1. After one gradient step, we have

J t+1
1 =

L∏
l=1

(
W t

l − γ
∂L
∂W t

l

)
Dt+1

l−1 = J̃ t
1 +

L∑
k=1

(−γ)kΓt
k,

where J̃ t
1 =

∏L
l=2 W

t
l D

t+1
l−1 and, for instance, Γt

L =
∏L

l=1
∂L
∂W t

l
.

Note that J̃ t
1 is a variant of J t

1, computed with matrices Dt+1
l instead of Dt

l . Therefore, it becomes
clear that a variant of Approximation 1 is needed to deal with the infinite-width limit.
Approximation 2. Given some fixed t, in the infinite-width limit, the diagonal entries of
(Dt′

k)k∈0,...,L behave as i.i.d Bernoulli variables with parameter 1/2 for all t′ ≤ t. Moreover, they
are independent from the weights Wt′ . The weight matrices Wt′

l are approximately i.i.d across l.5

Approximation 2 generalizes Approximation 1 in the context of training. It can be weakened by
considering "free-probability" properties instead of independence, but we believe this is an unnec-
essary complication for this work. The approximation that Wt′

l are i.i.d across l for some t′ ≤ t is
justified by the fact that the learning rate usually scales as O(n−1) (this is required in order to avoid
any feature blow-up in the infinite-width limit) which becomes small in the infinite-width limit. We
invite the reader to check Appendix G for a discussion and verification of this approximation.
Theorem 2 (Jacobian during training). Assume that the learning rate satisfies γ = On,L(n

−1L−3).
Then, for any t, under Approximation 2 holding up to time t, we have that

lim
n→∞

∥J t
1∥ − ∥J iid

1 ∥ ≈ Θ̃L(1),

where J iid
1 denotes the Jacobian at initialization (with σ=

w2).

The result of Theorem 2 suggests that if the Jacobian is stable at initialization, it remains stable
throughout training, under approximation Approximation 2. This provides the first theoretical argu-
ment for the crucial role of initialization in deep learning. Let us now discuss the three phases of the
behaviour of the Jacobian norm during training.

4.2 STAGNATION PHASE

One might anticipate that a small learning rate would result in minimal changes to the Jacobian
norm, especially at early training. However, it is not straightforward to determine how small the
learning rate should be in terms of model characteristics. In the next result, we establish that the
Jacobian norm remains asymptotically constant during an initial training stage, the length of which
depends on the learning rate.
Theorem 3. Consider a critically initialized MLP (Eq. (1)) trained with the gradient rule
given by Eq. (2), with the learning rate satisfying γ < n−1 log(n)−3/2. Then, for t =
O(n−1 log(n)−3/2γ−1), under Approximation 1 holding up to time t, we have that,

lim
n→∞

∥J t
1∥ − ∥J iid

1 ∥ ≈ 0,

where J iid
1 denotes the Jacobian with iid weights at initialization.

Theorem 3 requires that γ < n−1 log(n)−3/2 for the result to hold. This is a mild condition that is
generally satisfied in practice. In fact, the learning rate γ should be no larger thanO(n−1) otherwise
features might explodes as the width grows (Yang and Hu, 2021). We distinguish two different cases
depending on the learning rate:

4Here, the training dataset consists of a single pair (x, z). The analysis can be readily generalized to multiple
pairs, but this is an unnecessary complication for this analysis.

5Note that here, we don’t assume that the weights W t′
ij are iid across (i, j). Entries might be correlated.

5

Under review as a conference paper at ICLR 2024

Descent
phaseConvergence

phase

0 250 500 750 1000
Iteration

2

3

4

5

6

Ja
co

bi
an

 N
or

m

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 a
cc

ur
ac

y

lr
1e-05
0.001
0.01

Figure 2: (Left) Illustration of the descent and convergence phases on an MLP network with width n = 256
and varying depths, trained on CIFAR2 (binary CIFAR10) with stochastic gradient descent. The 2 figures on
the left represent the same plot from different angles. We show the first 5000 gradient steps. All the values are
averaged over 3 runs. (Right) Illustration of the super-lazy training regime Vs the non-lazy regime for an MLP
of width n = 256 and depth L = 5. The dashed, resp. full, lines represent test accuracy, resp. Jacobian norm.
We refer the reader to Appendix G for the same figure with larger number of iterations.

• No Feature Learning (γ = Õn(n
−1): the condition on t is satisfied for a large range of t that

becomes infinite when n → ∞. As a result, this stagnation phase spans the whole training
procedure, suggesting that the Jacobian norm does not change during training. This should be
expected since there is no feature learning (Yang and Hu, 2021). Intuitively, the order of magnitude
of the learning rate in this case is not sufficient to induce any ‘learning’ in the infinite-width limit.

• Feature Learning (γ = Θ̃n(n
−1)): the condition on t is generally satisfied only at the first few

steps (if satisfied at all). The choice γ = Θn(n
−1) is related to the µ-Parametrization which was

shown to induce feature learning in the infinite-width limit (Yang and Hu, 2021).6 Generally, if
the learning rate is chosen to be of order n−1, the stagnation phase does not appear in this case
since feature are quickly updated, inducing a change in the Jacobian norm as well.

We depict in Fig. 2 the effect of small learning rates on the evolution on the Jacobian norm during
training. Note that the result of Theorem 3 requires that Approximation 2 holds up to time t. We
refer the reader to Appendix G for an empirical verification of this approximation.

4.3 DESCENT AND CONVERGENCE PHASES

Descent Phase. In Fig. 2 (2 figures on the left), the Jacobian norm decreases significantly at early
training. In this case, there is no stagnation phase as the learning rate is close to optimal (chosen
with a grid search to optimize training, see details in Appendix G). Using a simple toy model,
we provide an explanation for the descent behaviour. Consider the Jacobian at time t, given by
J t
1 =

∏L
l=2 W

t
l D

t
l−1. With one gradient step, the Jacobian becomes:

J t+1
1 =

L∏
l=2

(
W t

l − γ
∂L
∂W t

l

)
Dt+1

l−1 = J̃ t
1 − γΓt

1 +O(γ2),

where J̃ t
1 =

∏L
l=2 W

t
l D

t+1
l−1 and Γt

1 =
∑L

l′=2

[∏L
l=2
l>l′

W t
l D

t+1
l−1

]
∂L

∂W t
l′
Dt+1

l′−1

[∏L
l=2
l<l′

W t
l D

t+1
l−1

]
.

The norm of J t+1
1 is the square root of the largest eigenvalue of (J t+1

1)⊤J t+1
1 given by:

(J t+1
1)⊤J t+1

1 = (J̃ t
1)

⊤J̃ t
1 − γ((J̃ t

1)
⊤Γt

1 + (Γt
1)

⊤J̃ t
1) +O(γ2). (3)

A sufficient condition for the largest eigenvalue of (J t+1
1)⊤J t+1

1 to be smaller than that of (J t
1)

⊤J t
1 is

that the first order term in γ is non-negative (in matrix sense). A general proof is not straightforward
because of the complexity of the training dynamics. However, by restricting our analysis to a simple
one-dimensional linear model, we provide insight into this behavior.
Theorem 4 (Descent with a toy model). Given a constant α > 0, consider the task of learning the
(oracle) function y∗(x) = αx using the dataset {(xi, yi = αxi)}1≤i≤N and linear width 1 depth

6µ-Parametrization requires some other specific scalings for the initialization and learning rates of the in-
put/output layers.

6

Under review as a conference paper at ICLR 2024

L MLP given by yout(x) =
[∏L

l=1 wl

]
x, where x,wl, yout(x) ∈ R (scalars). Then, we have that

J t
1Γ

t
1 = x̄2At

∑L
l′=1

[∏
l ̸=l′ w

t
l′

]2
where At = ytout(1)(y

t
out(1)− α) and x̄2 = n−1

∑n
i=1 x

2
i . As a

result, at initialization, we have EWAt = 1, and therefore, on average, (J t
1)

2 is larger than (J t
0)

2

for t = 1.7

The proof of Theorem 4 is provided in Appendix D. The result suggests that at early training, we
should observe a decent phase in the Jacobian norm. Intuitively, this comes from the fact that
gradient-based training always guides the network towards small gradients, thereby forcing the Ja-
cobian (which is involved in the gradients) norm to decrease as well.

The Convergence Phase. From Eq. (3), the difference between (J t+1
1)⊤J t+1

1 and (J̃ t
1)

⊤J̃ t
1 de-

creases as training progresses (on average). This is attributable to the fact that Γt
1 depends on the

gradients, which naturally converge to zero. Consequently, we anticipate the Jacobian norm to ap-
proach constancy during training. Our empirical observations corroborate this expectation since the
Jacobian norm tends to stabilize in Fig. 2. Surprisingly, this convergence is fast and typically oc-
curs within the first few epochs. The underlying reasons for this phenomenon remain unclear and
unexplained at the moment, and further research investigation is necessary to elucidate the factors
contributing to this behavior.

To illustrate the broad applicability of our theoretical framework, we present another instance of its
use in the next section, focusing on sparse networks commonly encountered in the context of net-
work pruning. In Appendix F, we provide another application of our framework for neural networks
initialized with non-i.i.d weights.

5 JACOBIAN IN SPARSE NETWORKS

Network pruning aims at removing redundant weights that do not significantly affect model per-
formance (LeCun et al., 1990). Such weights are identified using some pruning criterion that de-
termines the importance of each weight in the network. By removing these weights, one could
significantly reduce the computational requirements for both the training and deployment of DNNs
(Hassibi et al., 1993). After pruning, the network becomes sparse, and training such networks has
been proven challenging in practice (Frankle and Carbin, 2019b). In this section, we analyze the Ja-
cobian norm of sparse networks and provide the necessary conditions for stability. Notably, we show
that a simple method-dependent scaling trick ensures stability. We also identify an edge of stability
for sparsity and support our theory with empirical evidence. Our current analysis is limited to prun-
ing at initialization (Lee et al., 2018b; Wang et al., 2022; Hayou et al., 2021) of MLPs, i.e. pruning
performed on i.i.d weights. Extending this theory to modern architectures is not straightforward and
is an interesting question for future work.

Pruning. Consider the MLP architecture described in Eq. (1). The pruning procedure involves the
application of a binary mask B ∈ {0, 1}p (where p is the total number of parameters in the network,
i.e., p = d×n+L×n2 + o×n) to the weights of the network W producing another network with
weights Wpruned, where Wpruned = B ◦W is the Hadamard (i.e., element-wise) product. We
say weight i ∈ [p] is pruned if bi = 0. This can be performed via different procedures. A standard
approach to generating masks is to give each weight W ij

k a score gijk according to some criterion.
The mask is then created by keeping the top m weights by score, where m is chosen to meet some
desired sparsity level s (fraction of weights to remove).

To study the stability after pruning, we can look at the norm of the Jacobian of the pruned network
Jpruned
1 given by:

Jpruned
1 =

L∏
l=1

W pruned
l Dl−1.

We propose to study the Jacobian norm ∥Jpruned
1 ∥ for networks pruned at initialization with two

different pruning methods:
7Notice that for the toy model, the width is n = 1, and therefore, the Jacobian is a real number.

7

Under review as a conference paper at ICLR 2024

1. Random Pruning: weights are randomly pruned with probability s (the sparsity).
2. Score-Based Pruning: weights are scored using a certain criteria (e.g. magnitude, sensitivity,).

The first requires a simple application of our main stability theorem (Appendix A), while the lat-
ter requires a more delicate stability theorem, the proof of which is deferred to the Appendix E.
The main takeaway is that scaling the weights is required to maintain stability in pruned networks.
However, the scaling factor depends on the pruning method.

5.1 RANDOM PRUNING

20 40 60 80
Depth

10 26

10 19

10 12

10 5

102

Ja
co

bi
an

 n
or

m

Sparsity
0.0
0.5
0.95

0.98
0.985
0.99

20 40 60 80
Depth

10 6

10 4

10 2

100

Ja
co

bi
an

 n
or

m

Sparsity
0.0
0.5
0.95

0.98
0.985
0.99

Figure 3: Jacobian norm after prun-
ing at initialization as depth in-
creases in a randomly pruned MLP
of width n = 256 (input sam-
pled randomly from MNIST). (Top)
Without scaling. (Bottom) With
scaling.

In the subsequent analysis, we use the notation an ≫ bn for two
positive sequences an, bn, whenever bn = O(an).
Theorem 5 (Scaling guarantees stability). Consider random
pruning with sparsity level sn ∈ (0, 1) that can either depend
on n or be constant. Then, under Approximation 1 and the as-
sumption that 1 − sn ≫ log(n)5

n (in case sn depends on n), by
scaling the weights Wpruned with (1 − sn)

1/2, the Jacobian of
the scaled sparse network, given by:

J̃pruned
1 = (1−sn)−L/2Jpruned

1 =

L∏
l=1

(1−sn)−1/2W pruned
l Dl−1,

satisfies:
lim
n→∞

∥J̃pruned
1 ∥ − ∥J iid

1 ∥ ≈ 0,

where J iid
1 refers to the Jacobian of the non-pruned network with

i.i.d weights. As a result, with σ2
w = 2, the pruned network is

stable.

Theorem 5 reveals that, once pruning has been performed, re-
scaling is essential for stabilizing the Jacobian. Specifically, the
theorem states that ∥Jpruned

1 ∥ is asymptotically proportional to
Θ̃L((1 − sn)

(L−1)/2). This exponential dependence on depth indicates that stability cannot be
attained without modifying the weights. In other words, when starting with a critically initialized
network, the weights must be re-scaled after pruning to account for the resultant sparsity. This
scaling process renders the infinite-width behavior of the spectral norm similar to that of a non-
pruned critically initialized neural network, thereby guaranteeing stability in the sparse network, as
evidenced in Fig. 3. Further experiments are provided in Appendix G.

In Theorem 5, the sparsity sn can depend on n. We provide an upper bound on the sparsity in terms
of the width, in order for the stability to hold. This result allows us to identify an edge of stability,
defined as a maximal sparsity (in terms of n) so that the stability holds. This result highlights an
interesting phase transition phenomenon with respect to the sparsity. When the sparsity is of order
1−sn ∼ n−1 up to a logarithmic factor, the stability result no longer holds, and the spectral norm of
the Jacobian behaves differently (as compared to a non-pruned critically initialed network), see e.g.
Benaych-Georges et al. (2019); Tikhomirov and Youssef (2021). In Fig. 3, We observe this behavior
when the sparsity hits the level 99%, which is of order log10(256)/256 ≈ 0.009. It is worth noting
that the condition 1 − sn ≫ n−1 log(n)5 is a sufficient condition, and it is highly likely that phase
transition occurs at a smaller threshold.

5.2 SCORE-BASED PRUNING

To complement the previous section, we show that a similar stability result holds with score-based
pruning, however, the scaling constant is different in this case. We restrict our analysis to
magnitude-based pruning, performed at initialization, where weights are scored based on their
magnitude gw = |w| Han et al. (2015). However, the proof can be in principle extended to other
score-based methods. The main takeaway is that the scaling factor depends on the pruning method.

8

Under review as a conference paper at ICLR 2024

20 40 60 80
Depth

10 33

10 25

10 17

10 9

10 1

Ja
co

bi
an

 n
or

m

sparsity
0.0
0.5
0.95

0.98
0.985
0.995

20 40 60 80
Depth

106

1013

1020

1027

1034

Ja
co

bi
an

 n
or

m

sparsity
0.0
0.5

0.95

20 40 60 80
Depth

0

10

20

30

Ja
co

bi
an

 n
or

m

sparsity
0.0
0.5

0.98
0.995

0.00 0.25 0.50 0.75 1.00
Sparsity

100

101

No
rm

al
iza

tio
n (1 s) 1/2

t

Figure 4: Jacobian norm after
pruning at initialization as depth
increases in a score-based pruned
MLP of width n = 256 (input sam-
pled randomly from MNIST). (Top)
Without scaling (scaling factor = 1).
(Middle) With scaling: (a) scaling
constant = (1 − sn)

− 1
2 ; (b) scal-

ing factor t is approximated based
on equation E. (Bottom) Compari-
son of the scaling factors in function
of sparsity level.

Theorem 6 (Magnitude pruning). Consider magnitude-based
pruning in which the rn largest weight coefficients in absolute
value are kept, corresponding to a sparsity level of sn := 1− rn

n2 .
Then, under Approximation 1 and the assumption that 1− sn ≫
log(n)4

n , the Jacobian of the scaled sparse network, given by:

J̃pruned
1 = tLnJ

pruned
1 =

L∏
l=1

tnW
pruned
l Dl−1,

satisfies: limn→∞ ∥J̃pruned
1 ∥ − ∥J ind

1 ∥ ≈ 0,

where t−2
n := 1

n2

∑rn
j=1 EΦ−1(1 − B

(j)
n), and, successively, X

is a N(0, 1) random variable, Φ(x) := P(X2 ≤ x), and B
(j)
n is

a Beta(j, n2 − j + 1) random variable.

The proof of Theorem 6 is provided in Appendix E.

In Fig. 4, we demonstrate the effect of the scaling factor on the
evolution of the Jacobian norm with depth. The top two plots
show that without scaling (scaling factor = 1), the Jacobian norm
is not stable and remains so when using the same scaling factor
as in the case of random pruning ((1 − sn)

− 1
2). The stability is

recovered with the correct scaling factor stated in Theorem 6
which is shown in the third plot. The bottom plot compares
the two scaling factors, used in the second and third plots re-
spectively, in function of the sparsity. The takeaway is that the
optimal scaling factor differs depending on the pruning criteria.
The optimal scale for random pruning does not guarantee stabil-
ity for magnitude-based pruning. It is primordial to determine
the correct scaling factor that would guarantee the stability with
different pruning criteria. Note that our results on sparse net-
works confirm previous results on weight scaling in the case of
sensitivity-based pruning Hayou et al. (2021)8.

We refer the reader to Appendix G for results on the performance
on trained sparse networks with and without normalization.

6 CONCLUSION AND LIMITATIONS

In this paper, we provided an analysis of the Jacobian norm in
DNNs in different contexts. Our findings shed light on an impor-
tant result: stability at initialization implies stability throughout
training (under some approximations). In this regard, our work
expands the existing literature on this topic and justifies the cru-
cial role of initialization, often observed in practice. We also
study the Jacobian of networks pruned at initialization and show
how one can stabilize sparse networks after pruning. However,
one limitations of our theory is that it currenlty only applies to
the MLP architecture. Extending these results to more modern
architectures is an interesting question for future work.

8It is worth mentioning that the stability measure used in Hayou et al. (2021) is based on the second norm
of the gradient, which is a weaker measure than the Jacobian spectral norm.

9

Under review as a conference paper at ICLR 2024

REFERENCES

A. S. Bandeira, M. T. Boedihardjo, and R. van Handel. Matrix concentration inequalities and free
probability, 2021. URL https://arxiv.org/abs/2108.06312.

F. Benaych-Georges, C. Bordenave, and A. Knowles. Largest eigenvalues of sparse inhomogeneous
Erdos-Rényi graphs. Ann. Probab., 47(3):1653–1676, 2019. ISSN 0091-1798. doi: 10.1214/18-
AOP1293. URL https://doi.org/10.1214/18-AOP1293.

L. Bottou. Stochastic gradient descent tricks. Neural Networks: Tricks of the Trade: Second Edition,
pages 421–436, 2012.

T. Brailovskaya and R. van Handel. Universality and sharp matrix concentration inequalities, 2022.
URL https://arxiv.org/abs/2201.05142.

R. Chhaibi, T. Daouda, and E. Kahn. Free probability for predicting the performance of feed-forward
fully connected neural networks. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho,
and A. Oh, editors, Advances in Neural Information Processing Systems, volume 35, pages 2439–
2450. Curran Associates, Inc., 2022.

B. Collins and T. Hayase. Asymptotic freeness of layerwise Jacobians caused by in-
variance of multilayer perceptron: the Haar orthogonal case. Comm. Math. Phys.,
397(1):85–109, 2023. ISSN 0010-3616. doi: 10.1007/s00220-022-04441-7. URL
https://doi.org/10.1007/s00220-022-04441-7.

J. Frankle and M. Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural networks.
In 7th International Conference on Learning Representations, 2019a.

J. Frankle and M. Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural networks.
In International Conference on Learning Representations, pages 1–42, 2019b.

S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights and connections for efficient neural
network. Advances in neural information processing systems, 28, 2015.

B. Hanin and M. Nica. Products of many large random matrices and gradients in deep neural
networks. Comm. Math. Phys., 376(1):287–322, 2020. ISSN 0010-3616. doi: 10.1007/s00220-
019-03624-z. URL https://doi.org/10.1007/s00220-019-03624-z.

B. Hassibi, D. Stork, and W. Gregory. Optimal brain surgeon and general network pruning. In IEEE
International Conference on Neural Networks, pages 293 – 299 vol.1, 1993.

S. Hayou, A. Doucet, and J. Rousseau. On the impact of the activation function on deep neural
networks training. In International Conference on Machine Learning, 2019.

S. Hayou, J.-F. Ton, A. Doucet, and Y. W. Teh. Robust pruning at initialization. In International
Conference on Learning Representations, 2021.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

R. Latała, R. van Handel, and P. Youssef. The dimension-free structure of nonhomogeneous random
matrices. Invent. Math., 214(3):1031–1080, 2018. ISSN 0020-9910. doi: 10.1007/s00222-018-
0817-x. URL https://doi.org/10.1007/s00222-018-0817-x.

Y. LeCun, J. Denker, and S. Solla. Optimal brain damage. In Advances in Neural Information
Processing Sstems, pages 598–605, 1990.

Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature, 521(7553):436–444, 2015.

J. Lee, Y. Bahri, R. Novak, S. Schoenholz, J. Pennington, and J. Sohl-Dickstein. Deep neural net-
works as Gaussian processes. In International Conference on Learning Representations, 2018a.

N. Lee, T. Ajanthan, and P. H. Torr. Snip: Single-shot network pruning based on connection sensi-
tivity. In 6th International Conference on Learning Representations, 2018b.

10

Under review as a conference paper at ICLR 2024

A. Matthews, J. Hron, M. Rowland, R. Turner, and Z. Ghahramani. Gaussian process behaviour in
wide deep neural networks. In International Conference on Learning Representations, 2018.

J. A. Mingo and R. Speicher. Free probability and random matrices, volume 35 of Fields Insti-
tute Monographs. Springer, New York; Fields Institute for Research in Mathematical Sciences,
Toronto, ON, 2017. ISBN 978-1-4939-6941-8; 978-1-4939-6942-5. doi: 10.1007/978-1-4939-
6942-5. URL https://doi.org/10.1007/978-1-4939-6942-5.

R. Neal. Bayesian Learning for Neural Networks, volume 118. Springer Science & Business Media,
1995.

J. Pennington, S. S. Schoenholz, and S. Ganguli. Resurrecting the sigmoid in deep learning through
dynamical isometry: Theory and practice. In Proceedings of the 31st International Conference on
Neural Information Processing Systems, NIPS’17, page 4788–4798, Red Hook, NY, USA, 2017.
Curran Associates Inc. ISBN 9781510860964.

B. Poole, S. Lahiri, M. Raghu, J. Sohl-Dickstein, and S. Ganguli. Exponential expressivity in deep
neural networks through transient chaos. 30th Conference on Neural Information Processing
Systems, 2016.

L. Q. Qi. Some simple estimates for singular values of a matrix. Linear Algebra
Appl., 56:105–119, 1984. ISSN 0024-3795. doi: 10.1016/0024-3795(84)90117-4. URL
https://doi.org/10.1016/0024-3795(84)90117-4.

A. M. Saxe, J. L. McClelland, and S. Ganguli. Exact solutions to the nonlinear dynamics of learning
in deep linear neural networks. arXiv preprint arXiv:1312.6120, 2013.

S. Schoenholz, J. Gilmer, S. Ganguli, and J. Sohl-Dickstein. Deep information propagation. In
International Conference on Learning Representations, 2017.

T. Tao. Topics in random matrix theory. 2011.

K. Tikhomirov and P. Youssef. Outliers in spectrum of sparse Wigner matrices. Random Struc-
tures Algorithms, 58(3):517–605, 2021. ISSN 1042-9832. doi: 10.1002/rsa.20982. URL
https://doi.org/10.1002/rsa.20982.

R. van Handel. Probability in high dimension. APC 550 Lecture Notes, Princeton University, 2016.

C. Wang, G. Zhang, and R. Grosse. Picking winning tickets before training by preserving gradient
flow. In 8th International Conference on Learning Representations, 2020.

H. Wang, C. Qin, Y. Bai, Y. Zhang, and Y. Fu. Recent advances on neural network pruning at
initialization. In Proceedings of the International Joint Conference on Artificial Intelligence,
IJCAI, Vienna, Austria, pages 23–29, 2022.

L. Xiao, Y. Bahri, J. Sohl-Dickstein, S. Schoenholz, and J. Pennington. Dynamical isometry and a
mean field theory of cnns: How to train 10,000-layer vanilla convolutional neural networks. In
International Conference on Machine Learning, pages 5393–5402. PMLR, 2018.

G. Yang. Tensor programs i: Wide feedforward or recurrent neural networks of any architecture are
Gaussian processes. arXiv preprint arXiv:1910.12478, 2019.

G. Yang and E. Hu. Tensor programs iv: Feature learning in infinite-width neural networks. ICML
2021, 2021.

11

Under review as a conference paper at ICLR 2024

Appendix
A STABILITY THEOREM

Random Matrix Theory (RMT) is a branch of mathematics that deals with the statistical properties
of matrices with random entries (Tao, 2011). For a long time, RMT has focused on models with
independent and identically distributed entries. However, in recent years, there has been a growing
interest in non-homogeneous models, which has led to significant advances in the understanding of
the spectral norm of structured random matrices (see Latała et al. (2018) and references therein).
Such non-homogeneous models are particularly interesting in applied mathematics as they include
sparse matrices and pruned networks. In this work, we rely on recent breakthrough results of Ban-
deira et al. (2021) which pushes the scope of those obtained in Latała et al. (2018) to cover models
with dependent entries. Those advances exploit the connections to the limiting regime of RMT gov-
erned by Free Probability Theory (Mingo and Speicher, 2017). This powerful theory uncovers the
limiting behavior of the spectrum of a non-commutative polynomial in several independent random
matrices. It is therefore well suited to the context of deep neural networks and the spetral study of
the Jacobian which is a non-commutative polynomial (a product) of several random matrices (the
weight matrices of each layer).

In the sequel, relying on the results of Bandeira et al. (2021), we will derive a general statement
capturing the limiting behavior of the input-output Jacobian norm. The generality of this stability
theorem will then be exploited to easily derive all statements used in this paper as direct corollaries.

To state the theorem, let

• W1, . . . ,WL be independent copies of a n × n weight matrix W consisting of centered
sub-Gaussian coefficients with variance O(1n) (which may be correlated);

• D1, . . . , DL be independent copies of D := diag(d1, . . . , dn) with i.i.d. Bernoulli(12) co-
efficients di;

• B1, . . . , BL be independent copies of tB where t > 0 and B := (bi,j) is a n × n matrix
with uniformly bounded random variables i.e. max1≤i,j≤n |bi,j | ≤ βn for some βn > 0.

We also suppose that (Di)1≤i≤L is independent from (Wi, Bi)1≤i≤L. However, we do not require
independence between (B1, . . . , BL) and (W1, . . . ,WL). Finally, let Jk :=

∏L
l=k WlDl−1 and

Jpruned
k :=

∏L
l=k Bl ⊙WlDl−1 (where ⊙ denotes the Hadamard product).

Theorem 7 (Stability theorem). Under the above setting, the convergence

lim
n→∞

∥Jpruned
k ∥ − ∥Jk∥ = 0 (4)

holds true if the following three conditions hold:

(i) t2

n log5 nβ2
n → 0,

(ii) sup1≤i≤n

∣∣t2∑n
k=1 E[(bi,kwi,k)

2]− 1
∣∣→ 0,

(iii) t2n2(log n)3 sup(i,j) ̸=(k,l) |Ebi,jwi,jbk,lwk,l

∣∣→ 0.

12

Under review as a conference paper at ICLR 2024

Proof. Let H := tB ⊙WD9 and let C denote the n2 × n2 matrix with coefficients C(i,j),(k,l) =
cov(Hi,j , Hk,l). According to (Brailovskaya and van Handel, 2022, Theorem 2.16), (4) will hold if

(a) ∥2E[HH∗]− Idn∥ → 0,

(b) t2 E sup
i,j≤n

|wi,jbi,j |2 → 0,

(c) (log n)
3 ∥C∥ → 0,

and

(d) t log2 n sup
i,j≤n

|wi,jbi,j | → 0 almost surely,

are satisfied, where ∥X∥ denotes the operator norm (largest singular value) of X . We start by
checking (b) and (d). By the maximal tail inequality (van Handel, 2016, Lemma 5.2), we have

P

(
sup
i,j≤n

wi,j ≥ c

√
log n

n
+ x

)
≤ e−Cnx2

, x > 0

for some constants c, C > 0. This entails that supi,j |wi,j | ≲
√

logn
n a.s., and E supi,j w

4
i,j ≲

log2 n
n2 .

Then

t2 E sup
i,j≤n

|wi,jbi,j |2 ≤ t2
√

E sup
i,j≤n

w4
i,j

√
E sup

i,j≤n
b4i,j

≲
t2

n
β2
n log

2 n

→ 0,

by (i), which proves (b). Similarly, (d) holds since, almost surely,(
t log2 n sup

i,j≤n
|wi,jbi,j |

)2

≲
t2

n
β2
n log

5 n→ 0.

Next, we have Hi,j = tbi,jwi,jdj and

(HH∗)i,j = t2
n∑

k=1

bi,kwi,kdk bj,kwj,kdk,

so

E(HH∗)i,j =
t2

2



n∑
k=1

E[bi,kwi,kbj,kwj,k], if i ̸= j,

n∑
k=1

E(bi,kwi,k)
2, if i = j.

Using the estimate

∥A∥ ≤ max
1≤k≤n


n∑

i=1

|aik|,
n∑

j=1

|akj |


for any n× n matrix A (see, e.g., (Qi, 1984, Theorem 2)), it is then easy to check that

∥2E[HH∗]− Idn∥ ≤ sup
1≤i≤n

∣∣∣∣∣t2
n∑

k=1

E[(bi,kwi,k)
2]− 1

∣∣∣∣∣+ t2n2 sup
(i,j)̸=(k,l)

|E[bi,jwi,jbk,lwk,l]|.

9In (Brailovskaya and van Handel, 2022, Theorem 2.16), the authors consider self-adjoint matrices, but the
result holds for any matrix as they pointed in Remark 2.1 in the same paper. This is straight-forward using

the hermitization trick: given a non-Hermitian matrix M , define H =

[
0 M

M∗ 0

]
which is Hermitian and its

eigenvalues are ± the singular values of M .

13

Under review as a conference paper at ICLR 2024

Therefore, (a) is satisfied under (ii) and (iii). To check (c), we have

C(i,j),(k,l) = E[Hi,jHk,l] = t2

{
E[bi,jbk,lwi,jwk,l]

1+δj,l
4 , if (i, j) ̸= (k, l),

1
2 E(bi,jwi,j)

2, if (i, j) = (k, l),

Then, for any n× n matrix M ,∣∣∣∣∣∣
∑
i,j,k,l

Mi,jC(i,j),(k,l)Mk,l

∣∣∣∣∣∣ = t2

2

∑
i,j

E(bi,jwi,j)
2M2

i,j +
t2

4

∑
(i,j)̸=(k,l)

E[bi,jwi,jbk,lwk,l]Mi,jMk,l(1 + δj,l)

≤ t2

2

(
β2
n

n
+ n2 sup

(i,j)̸=(k,l)

∣∣Ebi,jwi,jbk,lwk,l

∣∣)∑
i,j

M2
i,j ,

so (c) holds thanks to (i) and (iii).

B PROOF OF THEOREM 2

Proof. For some l2 < l1, denote J l1:l2
1 =

∏
l1≥l≥l2

W t
l D

t+1
l−1 .

Recall that

J t+1
1 =

L∏
l=1

(
W t

l − γ
∂L
∂W t

l

)
Dt+1

l−1 = J̃ t
1 +

L∑
k=1

(−γ)kΓt
k.

where, J̃ t
1 =

∏L
l=2 W

t
l D

t+1
l−1 and,

Γt
k =

∑
L≥l1>l2>···>lk≥1

JL:l1+1
1

∂L
∂W t

l1

Dt+1
l1−1J

l1−1:l2+1
1

∂L
∂W t

l2

Dt+1
l2−1 . . .

∂L
∂W t

lk

Dt+1
lk−1J

lk−1:1
1 .

For instance, Γt
L =

∏L
l=1

∂L
∂W t

l
and Γt

1 =
∑L

l′=1

[∏L

l>l′
W t

l D
t+1
l−1

]
∂L

∂W t
l′
Dt+1

l′−1

[∏L

l<l′
W t

l D
t+1
l−1

]
.

The key ingredient in this proof is to prove that under Approximation 2 holding up to step t, the
terms in Γt

k are all of order ΘL(L
2k+1). To show this, we proceed by induction and use the fact that

for iid initialized weights, we have (Theorem 1) ∥J1∥ ⪅ CL for some constant C (that potentially
depends on the input x but not on depth L). Observe also that ∂L

∂W t
l
= JL:l+1dY t

Lϕ(Y
t
l−1)

⊤, where

dY t
L = ∂L

∂YL
at step t. Hence, for t = 1, we have that

∥Γt
k∥ ⪅

∑
L≥l1>l2>···>lk≥1

(CL)2k+1 ×
k∏

j=1

∥dY t=0
L ϕ(Y t=0

lj−1)
⊤∥.

Furthermore, we have that ∥dY t=0
L ϕ(Y t=0

l−1)
⊤∥ = ∥ϕ(Y t=0

l−1)∥e∥dY t=0
L ∥e, where ∥.∥e refers to

the Euclidean norm in Rn. By assumption, we have dY t=0
L = n−1(Y t=0

L − z) and therefore
limn→∞ ∥dY t=0

L ∥e = ΘL(1).10. Similarly, we have that limn→∞ n−1∥ϕ(Y t=0
l−1)∥2e = ΘL(1). This

follows also from the same argument above. More generally, the previous two bounds hold through-
out training using the Tensor Program framework Yang and Hu (2021) (Thm 7.4). Therefore, letting
γ̃ = limn→∞ nγ (which exists by assumption), we obtain

∥J1
1∥ ⪅ CL+ L

L∑
k=1

(
L

k

)
(Cγ̃L2)k = ΘL(L× (1 + Cγ̃L2)L).

Therefore if γ = O(n−1L−3), we have ∥J1
1∥ ≈ ΘL(1).

Using the “Master Theorem” from Yang and Hu (2021), the concentration argument men-
tioned above holds for any t, more precisely, we have limn→∞ ∥dY t=t′

L ∥e = ΘL(1) and
n−1 limn→∞ ∥ϕ(Y t=t′

l−1)∥2e = ΘL(1). We conclude that this is true for all any t, provided that
Approximation 2 holds up to time t.

10This uses standard concentration results on the neurons in an MLP, see e.g. Matthews et al. (2018).

14

Under review as a conference paper at ICLR 2024

C PROOF OF THEOREM 3 AND THEOREM 5

The setting of both theorems corresponds to letting the mask B be random and independent of the
weight matrix W , where the entries of B are i.i.d Bernoulli variables with parameter 1 − s (note
that s = 0 in the case of Theorem 3). In this case E[bi,j] = 1− s, and the conditions of the stability
theorem reduce to t ∼ (1 − s)−

1
2 , 1 − s ≫ log5 n

n , and (1 − s)γ2n2(log n)
3 → 0 (note that γ = 0

in the case of Theorem 5). This proves both Theorem 5 and Theorem 3. For Theorem 3, it should
be noted that we use the fact that if the Jacobian is stable at initilization, then it remains stable
thourghout traingning under Approximation 2 (Theorem 2). This combined with the condition on
the learning rate and that of t yields the desired result.

D PROOF OF THEOREM 4

Given a constant α > 0, consider the task of learning the (oracle) function y∗(x) = αx using the
dataset {(xi, yi = αxi)}1≤i≤N . The model consists of a depth L linear MLP given by yout(x) =[∏L

l=1 wl

]
x, where x,wl, yout(x) ∈ R (scalars)11. With the mean squared loss, simple calculations

yields ∂L
∂wl

=
[∏

l′ ̸=l wl′

]
x̄2(yout(1)−α), where x̄2 def

= 1
n

∑N
i=1 x

2
i . The Jacobian at training step t

is a scalar and is equal to J t
1 =

∏L
l=1 w

t
l , where wt

l is given by the gradient rule wt+1
l = wt

l −γ ∂L
∂wt

l
.

With these dynamics, Eq. (3) becomes
(J t+1

1)2 = (J t
1)

2 − 2γJ t
1Γ

t
1 +O(γ2),

where Γt
1 =

∑L
l′=1

[∏
l ̸=l′ w

t
l′

]
∂L
∂wt

l′
= x̄2(ytout(1) − α)

∑L
l′=1

[∏
l ̸=l′ w

t
l′

]2
, where ytout refers to

the network output with parameters wt. Therefore, we obtain

J t
1Γ

t
1 = x̄2ytout(1)(y

t
out(1)− α)

L∑
l′=1

∏
l ̸=l′

wt
l′

2

.

The term
∑L

l′=1

[∏
l ̸=l′ w

t
l′

]2
is positive almost surely. To conclude, let us look at the average

behavior of the term ytout(1)(y
t
out(1)− α) at early training stages. At step t = 0 (init), we have that

EW

[
y0out(1)(y

0
out(1)− α)

]
= EW

[
y0out(1)

2
]
= 1, and therefore on average (J1

1)
2 is smaller than

(J0
1)

2. Intuitively, this behavior should persist during the first few steps.

E PROOF OF THEOREM 6

In the score-based pruning, we compute some scores g ∈ Rp and prune based on the value of g (keep
the (1 − s) × p weights with the highest scores). In this case, the weights Wl are dependent, but
this dependence is weak when the number of parameters p is large because in this case, score-based
pruning becomes close to a rejection algorithm.

In the setting of Theorem 6, the magnitude-based pruning consists in choosing bi,j := 1{|wi,j |≥w(r)}

for the mask, where w(1) ≥ w(2) ≥ · · · ≥ w(n2) is the non-increasing rearrangement of {|wi,j | :
i, j ≤ n}. Moreover, we suppose that the gaussian weights are uncorrelated. To apply the stability
theorem, we estimate

E(bi,kwi,k)
2 = Ew2

i,k1{|wi,k|≥w(r)}

=
1

n

r∑
j=1

E
(
X2 ·

(
n2 − 1

j − 1

)
Φ(X2)n

2−j
(
1− Φ(X2)

)j−1
)
,

=
1

n3

r∑
j=1

EΦ−1(1−B(j)
n),

11It is worth noting that this simple model excludes the weights wout and win. Nevertheless, the inclusion
of these weights does not affect the validity of the result.

15

Under review as a conference paper at ICLR 2024

where, successively, X is a N(0, 1) random variable, Φ(x) := P(X2 ≤ x), and B
(j)
n is a

Beta(j, n2 − j + 1) random variable. Thus, we set

t−2 :=

n∑
k=1

E(bi,kwi,k)
2 =

1

n2

r∑
j=1

EΦ−1(1−B(j)
n) (5)

to enforce condition (ii) of the stability theorem. Note that

Φ−1(x) = 2 erf−1(x)2

where erf−1, the inverse of the standard error function, fulfills

erf−1(1− x)2 ≤ log
1

x
, x ∈ (0, 1],

erf−1(1− x)2 ∼ log
1

x
, x→ 0.

For all j ≪ n2, the law of large numbers shows that B(j)
n ∼ j

n2 almost surely as n → ∞. In
particular,

E

(
erf−1

(
1−B

(j)
n

)2
log n2

j

)2

≲
E log2 B

(j)
n

log2 n2

j

= O(1),

where
erf−1

(
1−B

(j)
n

)2
log n2

j

→ 1.

It follows by uniform integrability that

EΦ−1(1−B(j)
n) ∼ 2 log

n2

j

whenever j ≪ n2. Thus, if we choose r ≫ n log4 n, then for all 1 ≤ j ≤ ⌈
√
rn log2 n⌉ =: R,

EΦ−1(1−B(j)
n) ≥ Φ−1(1−B(R)

n) ∼ 2 log
n2

R
≍ log n

so

t2 ≤ n2∑R
j=1 EΦ−1(1−B

(j)
n)

≲
n2

R log n
∼ n2

√
rn log3 n

≪ n

log5 n
,

which shows that condition (i) of the stability theorem holds. Condition (iii) is null since

Ebi,jwi,jbk,lwk,l = Ewi,jwk,l1{|wi,j |∧|w(k,l)|≥w(r)} = 0,

by symmetry. Thus stability will hold for the magnitude-based pruning if we keep e.g. the r =
⌈n log5 n⌉ largest coefficients of the weight matrix. This proves Theorem 6.

F FURTHER THEORETICAL RESULTS: JACOBIAN WITH DEPENDENT
WEIGHTS

The reader might ask what happens to the Jacobian norm when the weights are not independent.
Another way of posing this question is as follows:
starting from a critical initialization as described in Theorem 1, what level of correlation may be
introduced between the weights without jeopardizing the network’s stability?

The next theorem demonstrates that weight matrices W that possess correlated entries can result
in network stability, provided that the degree of correlation does not surpass O(n−1 log(n)−3). In
this case, we also necessitate that Approximation 1 holds, and a rationale for this requirement is
provided subsequent to the statement of the theorem. The proof of the theorem is deferred to ??.

16

Under review as a conference paper at ICLR 2024

Theorem 8 (Stability with Dependent Weights). Assume that the weights W1,W2, . . . ,WL are in-
dependent copies of n × n weight matrix W consisting of centered Gaussian entries with variance
σ2
w/n and correlation corr(W ij

k ,Wml
k) = O(n−1 log(n)−3) if (i, j) ̸= (m, l). Then, under Approx-

imation 1, in the limit n→∞, we have the following:

lim
n→∞

∥J1∥ − ∥J iid
1 ∥ ≈ 0,

where J iid
1 denotes the Jacobian with iid weights at initialization. As a result, the stability holds in

this case also with σ2
w = 2.

Proof. It suffices to apply the stability theorem with t = 1 and the (trivial) mask B where all com-
ponents are equal to 1 (no pruning). In the setting of Theorem 8 the three conditions of the stability
reduce to cov(W ij

k ,Wml
k) = o(n−2 log(n)−3), that is corr(W ij

k ,Wml
k) = o(n−1 log(n)−3).

20 40 60 80
Depth

10 9

10 6

10 3

100

Ja
co

bi
an

 n
or

m

= 2 k, k =

8
7
6

5
4
3

2 7 2 5 2 3

10 5

10 3

10 1

101
Ja

co
bi

an
 n

or
m

Depth
5
15
35
50

Figure 5: Illustration of the Jaco-
bian norm for a randomly selected
input with an MLP architecture of
width n = 256 and varying depths.
All results are averaged over 3 runs,
and confidence intervals are high-
lighted with shaded areas. (Top) Im-
pact of Depth on the Jacobian norm
for different correlation levels. (Bot-
tom) Impact of the injection of the
correlation between the weights on
the Jacobian norm.

It is reasonable to anticipate that when the correlation between
weights is small enough, the Jacobian norm will display behav-
ior akin to that observed in the i.i.d case. However, the task of
quantifying the degree of correlation required for such similarity
to hold is not straightforward. Theorem 8 provides a necessary
condition on the correlation, in terms of a comparison between
the correlation and the width n. Provided that the correlation is
much smaller than n−1 (up to a logarithmic term), the Jacobian
norm will be virtually identical to its i.i.d counterpart. An em-
pirical verification of Approximation 1 for correlated weights is
provided in Appendix G. In Fig. 5, we demonstrate the influence
of depth and the correlation between weights on the Jacobian
norm. In our simulations, the weights are generated as W ij

k =

W ij
k,ind + ηwk, where wk,W ij

k,ind ∼ N (0, 2/n), and η is held

constant. In this setup, we have corr(W ij
k ,Wml

k) = η2

1+η2 ≈ η2

when η is small. For n = 256 = 28, the condition specified
in Theorem 8 translates to η ≪ 2−4. As seen in the figure, for
η ∈ {2−8, 2−7}, the Jacobian norm closely matches the i.i.d case
(represented by the blue curve), particularly when L ≤ 40. As
depth increases, one would expect that the difference between
the correlated and the i.i.d Jacobian norms to become more pro-
nounced. This is due to the fact that, given a fixed depth, the
result is valid in the infinite-width limit12.

G FURTHER EMPIRICAL RESULTS

In this section, we conduct several experiments to verify the ap-
proximations used in the main text. We also train different ar-
chitectures (MLP, VGG) to confirm some theoretical results. All
the networks are trained with SGD, and learning rate is tuned
using a grid search in the set {1e − 1, 1e − 2, 1e − 3, 1e − 4}.
For VGG network, this reflects the initial learning rate (decreased twice during training).

G.1 EMPIRICAL VERIFICATION OF APPROXIMATION 1

In this section, we empirically verify Approximation 1 using a mixture of independence test and
visualization methods. We depict the results in three cases: the i.i.d weights case, the dependent
weights case, and the super-lazy training case.

12Note that if depth = width and both tend to infinity, Theorem 6 and Theorem 1 do not hold.

17

Under review as a conference paper at ICLR 2024

G.1.1 IID WEIGHTS

Diagonal entries of Dl. We first verify that the diagonal entries of Dl are approximately iid
Bernoulli variables with parameter 1/2.

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1

0.0

0.5

1.0
2

0.0 0.5 1.0
1

0.0

0.5

1.0

3

0.0 0.5 1.0
2

0.0 0.5 1.0
3

Figure 6: Joint distributions of three randomly selected entries of Dl (denoted by 1, 2, and 3)
for l = 10 in a depth L = 30 and width n = 100 MLP with a randomly selected input, based on
N = 1000 simulations. Since the values of the entries are binary (0 or 1) we added random Gaussian
noise (variance 0.01) to the points for better visibility.

In Fig. 6, we show the joint distributions of three randomly selected entries of Dl for l = 10 in
a depth L = 30 and width n = 100 MLP. Since the values of the entries are binary (0 or 1) we
added random Gaussian noise (variance 0.01) to the points for better visibility. The two main
observations are the absence of correlation between the values of the entries, and that each entry has
approximately probability 1/2 of being equal to 1, thus confirming the validity of Approximation 1
in the iid weights case.

Chi-squared independence test. We further run a chi-squared independence test between two
randomly selected entries of Dl and we obtained the following results: χ2(1) = 0.1379, and
p-value = 0.73, and thus the "H0" hypothesis (independent random variables) cannot be rejected.
Another observation is that the p-value seems to have a uniform distribution as we change the ran-
dom seed, which further supports the independence hypothesis13.

Independence of Wl and Dl. There is no standard method to evaluate the independence between
a discrete and a continuous random variable. We use the following heuristic to evaluate dependence
between the matrices Wl and Bl: we compute the statistics TW = 1

n2

∑
1≤i,j≤n 1W ij

l >0 and TD =
1
n

∑
1≤i≤n 1Di

l>0 and study the correlation between them.

Fig. 7 shows the joint distribution of (TW , TD) for Dl and Wl (l = 10) in a L = 30 and n = 100
MLP. No clear correlation can be observed from the histograms. This supports the approximation
of independence between W and D. We will see in the case of dependent weights that this statistics
become correlated when we increase the correlation level, confirming the validity of this simple
heuristic.

G.1.2 DEPENDENT WEIGHTS

Diagonal entries of Dl. Fig. 8 shows the joint distributions of three randomly selected diagonal
entries of D as in the previous selection with the only difference being that the weights are now

13It is well known that the distribution of the p-value under the H0 hypothesis is uniform in [0, 1]

18

Under review as a conference paper at ICLR 2024

0.49

0.50

0.51

T W

0.49 0.50 0.51
TW

0.35

0.40

0.45

0.50

0.55

0.60

0.65

T D

0.4 0.5 0.6
TD

Figure 7: Joint distribution of (TW , TD) for Dl and Wl (l = 10) in a L = 30 and n = 100 MLP
with a randomly selected input, based on N = 1000 simulation.

0.25

0.00

0.25

0.50

0.75

1.00

1.25

0

0.0

0.5

1.0

1

0.0 0.5 1.0
0

0.25

0.00

0.25

0.50

0.75

1.00

1.25

2

0.0 0.5 1.0
1

0.0 0.5 1.0
2

0.0

0.5

1.0

0

0.0

0.5

1.0

1

0.0 0.5 1.0
0

0.0

0.5

1.0

2

0.0 0.5 1.0
1

0.0 0.5 1.0
2

Figure 8: Same as Fig. 6 with dependent weights given by W̃ ij
l = W ij

l + ηw as in Fig. 5. (Left)
η = 0.1. (Right) η = 0.9.

correlated. With weak correlation (left figure), it appears that Approximation 1 is still a good
approximation. However, with high correlation (right figure), it is clear that the diagonal entries are
not dependent and the approximation is not valid in this case.

Chi-squared independence test. (Left) χ2(1) = 0.11, and p-value = 0.45, (Right) χ2(1) =
61.01, and p-value = 1e− 6. Therefore, the independence hypothesis cannot be rejected in the low
correlation case, while it is (strongly) rejected in the high correlation case.

Independence of Wl and Dl. In Fig. 9, we use the same heuristic as in Fig. 7 for both correlation
levels η = 0.1 and η = 0.9. While the first case no clear correlation can be observed between
TW and TD, it is straightforward from the figure on the right that the two statistics are dependent,
suggesting that Wl and Dl are dependent in this case. This confirms the validity of our heuristic in
studying the independent between Wl and Dl.

19

Under review as a conference paper at ICLR 2024

0.40

0.45

0.50

0.55

0.60

0.65

T W

0.4 0.5 0.6
TW

0.3

0.4

0.5

0.6

0.7

T D

0.4 0.6
TD

0.0

0.2

0.4

0.6

0.8

1.0

T W

0.0 0.5 1.0
TW

0.0

0.2

0.4

0.6

0.8

1.0

T D

0.0 0.5 1.0
TD

Figure 9: Joint distribution of (TW , TD) for Dl and Wl (l = 10) in a L = 30 and n = 100 MLP
with a randomly selected input, based on N = 1000 simulation. (Left) η = 0.1. (Right) η = 0.9.

G.2 APPROXIMATION 2

0.0

0.5

1.0

0

0.0

0.5

1.0

1

0.0 0.5 1.0
0

0.25

0.00

0.25

0.50

0.75

1.00

1.25

2

0.0 0.5 1.0
1

0.0 0.5 1.0
2

Figure 10: Same as Fig. 6 with trained weights (iteration 4000) with learning rate γ = 1e− 4.

Diagonal entries of Dl. Fig. 10 shows the joint distributions of three randomly selected diagonal
entries of D as in the previous selection with the only difference being that the weights are now the
trained weights given by Wt at iteration t = 4000 with learning rate γ = 1e−4. Up to this iteration,
it appears that Approximation 2 is still a good approximation. It should be expected however that as
the number of iterations grows, the independence approximation should no longer be viable.

Independence of Wl and Dl. In Fig. 11, we use the same heuristic as in Fig. 7 for trained weights
at iteration t = 4000. No clear correlation can be observed between TW and TD from the figure.

G.3 DIFFERENT LEARNING RATES

Fig. 12 is the same as Fig. 2 (Right), with more training steps.

20

Under review as a conference paper at ICLR 2024

0.450

0.475

0.500

0.525

0.550

0.575

T W

0.45 0.50 0.55
TW

0.4

0.5

0.6

T D

0.4 0.5 0.6
TD

Figure 11: Joint distribution of (TW , TD) for Dl and Wl (l = 10) in a L = 30 and n = 100 MLP
with a randomly selected input, based on N = 1000 simulations of the training procedure. Iteration
t = 4000.

0 1000 2000 3000 4000
Iteration

2

3

4

5

6

Ja
co

bi
an

 N
or

m

0.2

0.4

0.6

0.8

Te
st

 a
cc

ur
ac

y
lr
1e-05
0.001
0.01

Figure 12: Jacobian+TestAcc evolution in a MLP of width n = 256 and depth L = 5 for different
learning rates. The dashed, resp. full, lines represent test accuracy, resp. Jacobian norm.

G.4 IMPACT OF NORMALIZATION IN PRUNED NETWORKS

In Fig. 13 and Fig. 14, we report the test accuracy/loss of an MLP of width n = 256 of varying depths
trained on Fashion-MNIST. The normalization procedure significantly improves the trainability of
the network after pruning. The edge of stability can also be observed in terms of trainability as
predicted in Theorem 5.

G.5 FULL NETWORK WITH I.I.D AND DEPENDENT WEIGHTS

In Fig. 15, we depict the test error after convergence in two settings: IID initialized MLP trained on
MNIST, and Dependent Weights Initialized MLP trained on Fashion-MNIST. The results support
our theoretical findings.

21

Under review as a conference paper at ICLR 2024

0 2 4 6 8 10
Epoch

0

20

40

60

80

100

Va
l a

cc
ur

ac
y

Normalization: False, Depth: 5

Sparsity
0.0
0.5
0.9
0.9175
0.935
0.9525
0.97

0 2 4 6 8 10
Epoch

0

20

40

60

80

100

Va
l a

cc
ur

ac
y

Normalization: False, Depth: 10

Sparsity
0.0
0.5
0.9
0.9175
0.935
0.9525
0.97

0 2 4 6 8 10
Epoch

0

20

40

60

80

100

Va
l a

cc
ur

ac
y

Normalization: False, Depth: 30

Sparsity
0.0
0.5
0.9
0.9175
0.935
0.9525
0.97

0 2 4 6 8 10
Epoch

0

20

40

60

80

100

Va
l a

cc
ur

ac
y

Normalization: True, Depth: 5

Sparsity
0.0
0.5
0.9
0.9175
0.935
0.9525
0.97

0 2 4 6 8 10
Epoch

0

20

40

60

80

100

Va
l a

cc
ur

ac
y

Normalization: True, Depth: 10

Sparsity
0.0
0.5
0.9
0.9175
0.935
0.9525
0.97

0 2 4 6 8 10
Epoch

0

20

40

60

80

100

Va
l a

cc
ur

ac
y

Normalization: True, Depth: 30

Sparsity
0.0
0.5
0.9
0.9175
0.935
0.9525
0.97

Figure 13: Test (Validation) accuracy of a width n = 256 randomly pruned MLP of varying depths
trained on Fashion-MNIST with learning rate γ = 0.01. Top figures show the results without
normalization while the bottom figures show the results with normalization.

2 4 6 8 10
Epoch

0.5

1.0

1.5

2.0

Va
l l

os
s

Normalization: False, Depth: 5

Sparsity
0.0
0.5
0.9
0.9175
0.935
0.9525
0.97

2 4 6 8 10
Epoch

0.5

1.0

1.5

2.0

Va
l l

os
s

Normalization: False, Depth: 10

Sparsity
0.0
0.5
0.9
0.9175
0.935
0.9525
0.97

2 4 6 8 10
Epoch

0.5

1.0

1.5

2.0

Va
l l

os
s

Normalization: False, Depth: 30

Sparsity
0.0
0.5
0.9
0.9175
0.935
0.9525
0.97

2 4 6 8 10
Epoch

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Va
l l

os
s

Normalization: True, Depth: 5
Sparsity

0.0
0.5
0.9
0.9175
0.935
0.9525
0.97

2 4 6 8 10
Epoch

0.5

1.0

1.5

2.0

Va
l l

os
s

Normalization: True, Depth: 10
Sparsity

0.0
0.5
0.9
0.9175
0.935
0.9525
0.97

2 4 6 8 10
Epoch

0.5

1.0

1.5

2.0

Va
l l

os
s

Normalization: True, Depth: 30
Sparsity

0.0
0.5
0.9
0.9175
0.935
0.9525
0.97

Figure 14: Test loss of a width n = 256 randomly pruned MLP of varying depths trained on
Fashion-MNIST with learning rate γ = 0.01. Top figures show the results without normalization
while the bottom figures show the results with normalization.

G.6 EXPERIMENTS WITH VGG ARCHITECTURES

We conducted additional experiments with VGG networks (CNN) trained on CIFAR10 dataset. The
weights are initialized as zero-mean Gaussian variables with variance σ2

w/(c(2k + 1)) where c is
the fan-in number of channels, k is the filter size (fixed to 3), and σw is a hyper-parameter that we
vary to obtain different values of the Jacobian norm (see Xiao et al. (2018) for an explanation of
this choice of the variance). The convolutional layers have a padding step of 1 and the padding is
circular. We consider VGG archs of depths L ∈ [5, 15, 25, 35]. The number of pooling layers is
fixed to 5 and does not increase with depth. We refer to the pooling layer by ‘MP’ and the last dense
layer by ‘FC’ (Fully connected). The architectures are given by (we count the FC layer in the depth):

Depth L = 5 : [64, ‘MP’, 128, ‘MP’, 256, ‘MP’, ‘512’, ‘MP’, ‘FC’]

22

Under review as a conference paper at ICLR 2024

101 102

Depth

101

102

Te
st

 E
rro

r 2
w = 4.0
2
w = 0.5
2
w = 2.0

101 102

Depth

2 × 101

3 × 101

4 × 101

6 × 101

Te
st

 E
rro

r

2 8

2 6

2 3

Figure 15: (Left) Test error after convergence (70 epochs) as a function of depth in an MLP with
width n = 256 trained with SGD with learning rate γ = 0.001 on MNIST. The results are shown for
3 different choices of σw, the variance of the iid weights. The critical initialization given by σ2

w = 2
guarantees trainability up to depth 100. Note that the orange and green curves coincide, hence the
green curve is not visible. (Right) Test error after convergence (70 epochs) as a function of depth
in an MLP with width n = 256 trained with SGD with learning rate γ = 0.001 on Fashion-MNIST.
The results are shown for 3 different choices of the correlation parameter η. When the correlation is
low, the network remains trainable for large depths, which is not the case for high correlation levels.

Depth L = 15 : [[64]*2, ‘MP’, [128]*4, ‘MP’, [256]*4, ‘MP’, [‘512’]*4, ‘MP’, ‘FC’]

Depth L = 25 : [[64]*3, ‘MP’, [128]*7, ‘MP’, [256]*7, ‘MP’, [512]*7, ‘MP’, ‘FC’]

Depth L = 35 : [[64]*4, ‘MP’, [128]*10, ‘MP’, [256]*10, ‘MP’, [512]*10, ‘MP’, ‘FC’]

All the networks are trained with SGD (details in Fig 16 caption).

Fig 16: Train/Test accuracy for different depths with/without BatchNorm(BN). BN seems to im-
prove performance when Jacobian norm is large, but fails when the latter is extremely large (of
order 1e8). When the Jacobian norm is well-behaved, the network is trainable without BN, however,
it seems that BN improves test accuracy by 2

Fig 17: We vary the hyperparameter to obtain different values of the Jacobian norm at initialization.
On the right figure, we show the Test Acc VS Jacobian Norm (left). The results further support the
association between good properties of Jacobian and trainability/performance. BN seems to mitigate
Jacobian exploding/vanishing up to a certain limit where training with BN also fails. The figure on
the left shows the TrainingTime VS Jacobian Norm. It can be inferred that unstable Jacobian norms
are associated with longer training times (nb of epochs until convergence).

23

Under review as a conference paper at ICLR 2024

10 20 30
Depth

10 1

100

Te
st

 A
cc

2
w = 2, no BN2
w = 2, BN2
w = 5, no BN2
w = 5, BN

10 20 30
Depth

102

104

106

108

Ja
c

no
rm

 (I
ni

t)

2
w = 2, no BN2
w = 2, BN2
w = 5, no BN2
w = 5, BN

10 20 30
Depth

10 1

100
Tr

ai
n

Ac
c

2
w = 2, no BN2
w = 2, BN2
w = 5, no BN2
w = 5, BN

10 20 30
Depth

101

103

105

107

Ja
c

no
rm

 (c
on

ve
rg

en
ce

)

2
w = 2, no BN2
w = 2, BN2
w = 5, no BN2
w = 5, BN

Figure 16: (Setup) VGG trained on CIFAR10 dataset with SGD. The initial learning rate is divided
by 10 after the first 50 epochs, then divided a second time by 10 after 25 epochs if convergence is
not attained. The initial learning rate is fixed to 0.1 (found to be optimal by a logarithmic scale grid
search). Training is stopped when the training loss (cross-entropy) does not significantly change
for 5 consecutive epochs (remains within 1e-4 bound for 5 consecutive epochs). (Left) Train/Test
error after convergence as a function of depth. The results are shown for 2 different choices of σw

(the variance of the init weights) and whether we use BatchNorm or not. The critical initialization
given by σ2

w = 2 guarantees trainability up to depth L = 35. The use of BN in this case does not
seem to improve training error (with σw = 2) but it improves the test accuracy. However, when
the Jacobian norm is large (σ2

w = 5), BN improves trainability for L = 25, but still underperforms
stable training (σ2

w = 2) without BN. For depth L = 35, even with BN, we were not able to train
the network beyond trivial performance. (Right) Jacobian Norm at initialization/convergence for
the different scenarios reported on the left figure. The Jacobian norm was computed for a randomly
picked example from the training set. Note that BN has no effect on the initial Jacobian norm since
BN parameters are initialized as (β1, β2) = (0, 1).

10 8 10 5 10 2 101 104 107

Jac Norm at Init

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

no BN
BN

2
w = 2

10 7 10 3 101 105

Jac Norm at Init

0
5

60

70

80

90

100

110

#E
po

ch
s u

nt
il

Co
nv

2
w = 2

Figure 17: (Left) Test Acc after convergence Vs Jacobian norm at init for a VGG network of depth
L = 35 trained with the same setup as in Fig 1 above. We vary the initialization hyperparameter σ2

w
between 1 and 3 to obtain the range of values for the Jacobian norm. Large values of the Jacobian
norm lead to numerical instability which makes the network untrainable with this setup. The effect
of BN is noticeable in this case as it allows networks with exploding/vanishing Jacobian norms
to be trainable. However, BN is not sufficient when the Jacobian norm is extremely large/small
(typically of order 1e7/1e-7). (Right) Number of training epochs until convergence. Reasonable
values of the Jacobian norm are associated with fast convergence (with non-trivial performance).
When the network is untrainable, the number is fixed to 5 (see the caption of Fig1 for definition of
convergence).

24

