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Abstract

How do children learn a verb’s argument
structure when their input contains non-
basic clauses that obscure verb transitiv-
ity? Here we present a new model that
infers verb transitivity by learning to fil-
ter out non-basic clauses that were likely
parsed in error. In simulations with child-
directed speech, we show that this model
accurately categorizes the majority of 50
frequent transitive, intransitive and alter-
nating verbs, and jointly learns appropriate
parameters for filtering parsing errors. Our
model is thus able to filter out problematic
data for verb learning without knowing in
advance which data need to be filtered.

1 Introduction

Young language learners are limited by partial
knowledge in identifying the structure of sentences
they hear and of their language in general. This
partial knowledge may lead to inaccurate parses
of their input, resulting in data that are misleading
about the true structure of their language. Here we
investigate a problem of misleading data in verb
learning: how learners identify verbs’ syntactic
properties despite the presence of unknown gram-
matical structures that obscure those properties.

We propose a new model for the acquisition of
argument structure, the syntactic property of a verb
that determines which types of clauses it can occur
in (Chomsky, 1965; Chomsky, 1981; Grimshaw,
1990). We model how a learner can use verb dis-
tributions to infer whether a verb can occur in a
transitive clause with both a subject and an ob-
ject, an intransitive clause with only a subject, or
both. This inference depends on the ability to accu-
rately perceive the arguments in a clause: whether
a clause has a subject and an object, or only a sub-

ject. Identifying these arguments is straightforward
for “basic” clause types like (1) and (2), but more
difficult for “non-basic” clause types that do not
follow the subject-verb-object word order typical
of English, like (3):

(1) John ate a sandwich. Amy threw a frisbee.

(2) John ate. (*Amy threw.)

(3) What did John eat? What did Amy throw?

A learner tracking when direct objects are
present after the verb would notice that sentences
like (1) contain both subjects and objects, and sen-
tences like (2) contain only subjects. It would then
follow that throw is obligatorily transitive whereas
eat can alternate. But this strategy is complicated
by the wh-object questions in (3). These questions
do not have direct objects after the verb, but do
have two arguments: the wh-word what stands in
for the verb’s object. These data may be misleading
for a child who has not yet learned how to identify
wh-questions in her language. She might note the
absence of a direct object after the verb and per-
ceive the sentences in (3) as intransitive, mistakenly
concluding that throw can alternate just like eat.

To learn verb transitivity, learners need some
way to filter out the non-basic clauses in their in-
put; this ability is assumed in prominent theories
of verb learning such as syntactic and semantic
bootstrapping (Gleitman, 1990; Lidz and Gleitman,
2004; Pinker, 1984; Pinker, 1989). In this paper
we present a Bayesian model that learns the pa-
rameters for such a filter solely by tracking the
distributions of verbs with and without direct ob-
jects. The model does so under the assumption that
some sentence observations will be generated in
error, due to mis-parses of non-basic clauses like
(3). In simulations with child-directed speech, we
show that this model can learn the parameters for



filtering these parsing errors in order to categorize
50 verbs as transitive, intransitive, or alternating.
We thus demonstrate that it is possible for a learner
to learn an input filter for verb learning without
knowing in advance what needs to be filtered.

2 Filtering Input

Many have proposed that learners need some way
to filter the data they use in acquiring their language
(Adriaans and Swingley, 2012; Lidz and Gleitman,
2004; Pearl and Lidz, 2009; Pinker, 1984). This
filtering is important for theories of verb learn-
ing under which children rely on systematic rela-
tions between verbs’ syntactic properties and their
meanings, e.g. semantic and syntactic bootstrap-
ping (Fisher et al., 2010; Gleitman, 1990; Landau
and Gleitman, 1985; Lasnik, 1989; Pinker, 1984;
Pinker, 1989). Non-basic clauses obscure these
relations, so learners need a way to filter them out
of the data they use for verb learning.

Pinker (1984) posits two solutions: either par-
ents might do the filtering and avoid producing
these sentences in their children’s presence, or chil-
dren might internally filter these sentences them-
selves. Parental filtering does not seem to occur:
even before their second birthday, English-learning
children hear a large number of wh-questions (be-
tween 10-17% of their total input), the majority of
which do not follow the typical word order of En-
glish (Stromswold, 1995). These non-basic clause
types are thus prevalent in child-directed speech,
necessitating a different filtering solution.

The second logical solution is internal filtering:
perhaps children can filter out non-basic clauses
themselves. This proposal implicitly assumes that
children know which sentences to filter out. How-
ever, experimental evidence suggests that children
may not have the ability to recognize which sen-
tences contain wh-questions before the age of 20
months, an age at which substantial verb learning
is already taking place (Gagliardi et al., 2016). Fur-
thermore, this ability may depend on prior verb
knowledge. Identifying that sentences like (3) con-
tain object wh-questions requires the learner to
detect when a fronted phrase (like what, who, or
which NP) stands in relation to a verb that needs a
patient argument and is locally missing one. But
this requires the learner to know which verbs take
patient arguments, in order to notice when those
arguments are needed and missing. In other words,
the learner needs to detect that these sentences con-

tain direct object gaps, rather than intransitive uses
of these verbs— but in order to do so, the learner
must know which verbs are transitive.

The filtering problem thus risks being circular:
learners need to know which verbs are transitive in
order to detect the signals of non-basic clause types
like object wh-questions, but they also need to filter
out sentences containing these clause types in order
to learn which verbs are transitive. Pinker (1984)
posits that children might avoid this problem by
using sentence meaning, context, and intonation
to identify a filter on their input. Our approach,
by contrast, does not require learners to know the
parameters of the input filter before they are able to
learn verbs. Instead of fixing one of these pieces of
knowledge to learn the other, children may jointly
infer which verbs are transitive and the parameters
for filtering sentences containing non-basic clauses.
We thus model a learner who can filter out errors in
parsing non-basic clauses, without needing to first
identify where those errors came from.

3 Model

Our model uses the distribution of direct objects
within and across verbs to infer both verb transi-
tivity and the parameters for filtering non-basic
clauses. We adopt a Bayesian framework, in which
a learner observes a data pattern and infers the prob-
ability of some properties of the system that may
have generated that data. This framework conve-
niently allows us to specify the alternative systems
(verb transitivity properties vs. mis-parses of non-
basic clauses) that our learner considers for the verb
distributions it observes. Our model follows other
Bayesian approaches to argument structure acqui-
sition (Alishahi and Stevenson, 2008; Perfors et al.,
2010), but considers a different problem than the
one explored in that literature. Instead of learning
which verb classes exist in a particular language,
our model is designed to solve the problem of learn-
ing which verbs map to which known transitivity
classes despite input that obscures these mappings.

3.1 Generative Model

The model learns from observations of direct ob-
jects or no direct objects in sentences containing
particular verbs. These observations are formalized
as the Bernoulli random variable X in the graph-
ical model in Figure 1. Each X(v) represents an
observation from a sentence containing verb v in
the model’s input, with a value of 1 if the sentence



Figure 1: Graphical Model

contains a direct object and 0 if it does not. These
observations can be generated by two processes:
the transitivity of verb v, represented by the vari-
ables T and θ in the upper half of the model, or an
internal parsing error, represented by the variables
e, ε, and δ in the lower half of the model. We will
describe each of these processes in turn.

In the upper half of the model, each X(v) is
conditioned on the parameter θ(v), a continuous
random variable defined for values from 0 to 1
inclusive. This parameter controls how frequently
a verb v will be used with a direct object: the
learner assumes that for every observation X(v),
a biased coin is flipped to determine whether the
sentence contains a direct object, with probability
θ(v), or does not, with probability 1− θ(v).

The parameter θ(v) is conditioned on the variable
T (v), which represents the transitivity of verb v. T
is a discrete random variable that can take on three
values, corresponding to transitive, intransitive, and
alternating verbs. Each of these values determines
a different distribution over θ. For the transitive
category of T , θ always equals 1: the verb should
always occur with a direct object. For the intransi-
tive category, θ always equals 0: the verb should
never occur with a direct object. For the alternating
category, θ takes a value between 0 and 1 inclusive.
The prior probability distribution over θ in this case
is a uniform Beta(1, 1) distribution.

In the lower half of the model, each X is con-
ditioned on a Bernoulli random variable e, which
represents the input filter. If e(v)i = 0, the observa-
tion in X(v)

i was generated by θ(v) and T (v), and
accurately reflects the transitivity of verb v. But if
e
(v)
i = 1, the observation in X(v)

i was generated by

an internal parsing error, meaning the learner did
not have adequate grammatical knowledge to parse
the sentence correctly. This observation was not
generated by θ(v) and T (v), and may not accurately
reflect the transitivity of verb v, so it should be
ignored for the purpose of inferring T (v). Each e(v)

is conditioned on the variable ε, which represents
the probability of an internal parsing error occur-
ring for any verb in the input. The model learns a
single parameter value for ε across all verbs.

The second parameter of the input filter is δ,
which represents the probability of observing a di-
rect object when an observation was generated by
an internal parsing error. Thus, whether a sentence
contains a direct object or no direct object depends
on one of two biased coins. If e(v)i = 0 and the ob-
servation accurately reflects the verb’s transitivity
properties, then one biased coin is flipped and the
sentence contains a direct object with probability
θ(v). If e(v)i = 0 and the observation was generated
by a parsing error, then a different biased coin is
flipped and the sentence contains a direct object
with probability δ. Like ε, δ is a shared parameter
across all verbs. We assume that both ε and δ have
a uniform Beta(1, 1) prior distribution.

3.2 Joint Inference

We use Gibbs sampling (Geman and Geman, 1984)
to jointly infer T , ε, and δ, integrating over θ and
summing over e, with Metropolis-Hastings (Hast-
ings, 1970) proposals for ε and δ.

We begin by randomly initializing ε and δ, and
sampling values of T for each verb given values for
those input filter parameters. From observations of
a verb with and without direct objects, the model
determines which value of T was most likely to
have generated those observations. For k(v) direct
objects in n(v) sentences containing verb v, we use
Bayes’ rule to compute the posterior probability of
each value for T (v),

P (T (v)|k(v), ε, δ) =
P (k(v)|T (v), ε, δ)P (T (v))∑

T (v)

P (k(v)|T (v), ε, δ)P (T (v))
(4)

Bayes’ Rule tells us that the posterior probability
of a particular value of T given k(v) and the other
model parameters is proportional to the likelihood,
the probability of k(v) given that value of T and
those parameters, and the prior, the probability of



T before seeing any data. We assume that T is
independent of ε and δ, and that all three values of
T have equal prior probability.

To calculate the likelihood, we must sum over
e. This sum is intractable, but because all of the
values of e for the same verb and the same direct
object status are exchangeable, we make the com-
putation more tractable by simply considering how
many errors were generated for sentences with and
without direct objects for a particular verb. We di-
vide the k(v) observed direct objects for a verb into
k
(v)
1 direct objects that were observed accurately

and k(v)0 direct objects that were observed in error.
The total n(v) observations for verb v are likewise
divided into n(v)1 accurate observations and n(v)0

errorful observations. We then calculate the like-
lihood by marginalizing over n(v)1 and k(v)1 , again
assuming independence among T , ε, and δ,

p(k(v)|T (v), ε, δ) =

n(v)∑
n
(v)
1 =0

 k(v)∑
k
(v)
1 =0

p(k(v)|k(v)1 , n
(v)
1 , δ)

p(k
(v)
1 |n

(v)
1 , T (v))

]
p(n

(v)
1 |ε) (5)

The first term in the inner sum is equivalent to
p(k

(v)
0 |n

(v)
0 , δ), assuming we know n(v), the total

number of observations for a particular verb. This
is the probability of observing k(v)0 errorful direct
objects out of n(v)0 errorful observations, which
follows a binomial distribution with parameter δ.
The second term in the inner sum is the probabil-
ity of observing k(v)1 accurate direct objects out
of n(v)1 accurate observations, which follows a bi-
nomial distribution with parameter θ(v). Recall
that θ(v) = 1 for the transitive category of T , and
θ(v) = 0 for the intransitive category of T . For the
alternating verb category, θ(v) is unknown, so we
integrate over all possible values of θ(v) to obtain

1

n
(v)
1 +1

. The last term in (5) is the probability of

observing n(v)1 accurate observations out of the to-
tal n(v) observations for verb v, which follows a
binomial distribution with parameter 1− ε.

After sampling values for T for each verb in the
dataset, we then sample values for ε and δ. If T
denotes the set of values T (1), T (2), ..., T (V ), and k
denotes the full set of observations of direct objects
k(1), k(2), ..., k(V ) for all V verbs in the input, we
can define functions proportional to the posterior

distributions on ε and δ, f(ε) ∝ p(ε|T, k, δ) and
g(δ) ∝ p(δ|T, k, ε), as

f(ε) = p(k|T, ε, δ)p(ε) (6)

g(δ) = p(k|T, ε, δ)p(δ) (7)

where the likelihood p(k|T, ε, δ) is the product over
all verbs v of p(k(v)|T (v), ε, δ), as calculated in (5).

Within the Gibbs sampler, we resample ε using
10 iterations of a Metropolis-Hastings algorithm.
We begin by randomly initializing ε. At each itera-
tion, we propose a new value ε′, sampled from the
proposal distribution Q(ε′|ε) = N(ε, 0.25). Be-
cause the proposal distribution is symmetric, this
new value is accepted with probability

A = min

(
f(ε′)

f(ε)
, 1

)
(8)

If the new value ε′ has higher probability given T ,
k and δ under equation (6), it is accepted. If it has
lower probability under equation (6), it is accepted
at a rate corresponding to the ratio of its probability
and the probability of the old value of ε.

After sampling ε, we resample δ with 10 iter-
ations of Metropolis-Hastings. The proposal and
acceptance functions are analogous to those for ε.

We ran multiple chains from different starting
points to test convergence of T , ε, and δ. For the
simulations reported below, we ran 1,000 iterations
of Gibbs sampling. We took every tenth value from
the last 500 iterations as samples from the posterior
distribution over T , ε, and δ.

4 Data

We tested the model on a dataset selected from the
CHILDES Treebank (Pearl and Sprouse, 2013).
We used four corpora of child-directed speech
(803,188 total words), which were parsed using
the Charniak or Stanford parser and hand-checked
by undergraduates. See Table 1 for corpus details.

Our dataset consists of sentences containing the
50 most frequent action verbs in these corpora that
could be characterized as transitive, intransitive, or
alternating. We excluded verbs that were obligato-
rily ditransitive or frequently took clausal or verbal
complements: these included mental state verbs
(e.g. want), aspectual verbs (e.g. start), modals
(e.g. should), auxiliaries (e.g. have), and light
verbs (e.g. take).

We sorted these 50 verbs into transitive, intran-
sitive, and alternating categories according to the



Corpus # Children Ages # Words # Utterances
Brown- Adam, Eve, & Sarah, (Brown, 1973) 3 1;6-5;1 391,848 87,473
Soderstrom (Soderstrom et al., 2008) 2 0;6-1;0 90,608 24,130
Suppes (Suppes, 1974) 1 1;11-3;11 197,620 35,904
Valian (Valian, 1991) 21 1;9-2;8 123,112 25,551

Table 1: Corpora of Child-Directed Speech.

English verb classes described in Levin (1993),
supplemented by our own intuitions for verbs not
represented in that work. These classes provide a
target for learning meant to align with adult speaker
intuitions, independent of the corpus data that the
model learns from. The transitive and intransi-
tive categories are conservative; verbs like jump
are considered alternating even though they occur
infrequently in their possible transitive uses (e.g.
jump the horses over the fence). These target cate-
gories thus set a high bar for our model to reach.

We then conducted an automated search over the
Treebank trees for the total occurrences of each
verb in the corpora, in all inflections, and the total
occurrences with overt (pronounced) direct objects.
These direct object counts included transitive basic
clauses like those in (1), but not wh-object ques-
tions with object gaps like those in (3). Table 2
lists these 50 verbs along with their counts and
percentage occurrences with direct objects.

Verb Total % DO
Transitive Verbs
feed 222 0.93
fix 338 0.91
bring 606 0.89
throw 313 0.88
hit 215 0.87
buy 362 0.84
catch 185 0.76
hold 580 0.70
wear 477 0.60
Alternating Verbs
pick 332 0.90
drop 169 0.88
lose 187 0.86
close 166 0.85
touch 183 0.84
leave 356 0.83
wash 196 0.82
pull 331 0.81
open 342 0.77
push 357 0.77
cut 263 0.75
turn 485 0.72
build 299 0.72
bite 197 0.72
knock 161 0.71
read 509 0.69

Verb Total % DO
Alternating Verbs, cont.
break 553 0.63
drink 369 0.61
eat 1324 0.59
sing 307 0.52
blow 256 0.52
draw 376 0.51
move 241 0.46
ride 284 0.35
hang 153 0.35
stick 194 0.29
write 583 0.27
fit 229 0.21
play 1571 0.20
stand 301 0.07
run 230 0.06
swim 184 0.05
walk 253 0.04
jump 197 0.04
sit 862 0.01
Intransitive Verbs
wait 383 0.15
work 256 0.04
cry 263 0.03
sleep 454 0.03
stay 308 0.01
fall 611 0.00

Table 2: Counts and percentage uses with direct
objects (DO) of 50 verbs in dataset.

5 Simulations

We tested our model on the dataset described in
the previous section. We compare our model’s
performance to an oracle model that already knows
the parameters of the input filter, and two baselines.

5.1 Joint Inference Model

Figure 2 displays the posterior probability distri-
butions over verb categories inferred by our joint
inference model for each verb. Black bars represent
the probability assigned to the transitive category,
dark gray bars represent the probability assigned
to the intransitive category, and light gray bars rep-
resent the probability assigned to the alternating
category. The true categories for each verb are
shown below the horizontal axis. Figure 3 displays
the posterior distributions inferred for ε and δ.

The percentage of verbs categorized correctly
by the model is reported in Table 3. The model
achieves highest accuracy in categorizing the in-
transitive verbs: for all but one of these verbs, the
model assigns highest probability to the intransitive
category. The exception is the verb wait, which the
model assigns highest probability under the alter-
nating category. This is due to prevalent uses of
temporal adjuncts, as in wait a minute, that were
parsed as direct objects in the CHILDES Treebank.
Thus, a learner who likewise misparses these ad-
juncts as direct objects would infer that wait is an
alternating rather than intransitive verb.

The model assigns 6 out of the 9 transitive verbs
highest probability under the transitive category.
Three transitive verbs are assigned highest proba-
bility under the alternating rather than the transitive
category: catch, hold, and wear. This is likely be-
cause these verbs display different behavior than
the other transitive verbs in the corpus. The verb
hold occurs frequently in verb-particle construc-
tions (e.g. hold on), which might be treated dif-
ferently than simple verbs by learners. The verbs
catch and wear appear to occur at much higher rates
than other transitive verbs in non-basic clauses:
catch occurs frequently in passive constructions
(e.g. get caught), and wear occurs frequently in



Figure 2: Posterior Distributions over Verb Categories (T ), Joint Inference Model

Figure 3: Posterior Distributions over ε and δ

wh-object constructions (e.g. what are you wear-
ing?). Whether learners likewise mis-classify these
verbs, or can accommodate different rates of miss-
ing direct objects within the set of transitive verbs,
is a topic for further investigation.

The model assigns highest probability for most
of the alternating verbs to the alternating verb cat-
egory. There are 13 exceptions. The verbs pick,
drop, lose, close, touch, leave, wash, and pull are
assigned highest probability under the transitive
category because they infrequently occur in their
possible intransitive uses in child-directed speech.
The verbs run, swim, walk, jump, and sit are as-
signed highest probability under the intransitive cat-
egory because these verbs very infrequently occur
in their possible transitive uses. Thus, the model
over-regularizes the alternating verbs that alternate
infrequently, preferring the more deterministic tran-
sitive and intransitive verb categories.

In order to evaluate the model’s inference of ε
and δ, we estimated the true values of these param-
eters in our dataset. The proportion of transitive
verbs with missing direct objects in the dataset
gives us an estimate of (1 − δ) × ε, and the pro-
portion of intransitive verbs with spurious direct
objects (e.g. wait a minute) gives us an estimate

of δ × ε. Solving these two equations, we find that
δ = 0.18 and ε = 0.24. The posterior probabil-
ity distribution over δ inferred by our model has
a mean of 0.23, and the probability distribution
over ε has a mean of 0.22. Our model thus slightly
over-estimates the value of δ and under-estimates
the value of ε. However, it infers values for these
parameters close to the true values in the corpus,
enabling it to infer the correct transitivity properties
for 2/3 of the verbs in our dataset.

5.2 Oracle Model
To evaluate our model’s performance, we compare
it against an oracle model in which δ is fixed to
0.18 and ε to 0.24 in order to reflect their estimated
true values in our dataset. This allows us to see
how our model compares to a model that knows
the parameters for the input filter in advance.

The posterior probability distributions over verb
categories inferred by the oracle model are dis-
played in Figure 4. Our joint inference model per-
forms identically to the oracle model with intransi-
tive verbs, and almost as well with transitive verbs:
the oracle model succeeds in identifying one more
transitive verb, catch, as transitive. Our joint infer-
ence model performs better than the oracle model
in categorizing alternating verbs: the oracle model
has an even higher tendency to over-regularize the
verbs that alternate infrequently.

Inferring the parameters of the input filter thus
results in comparable, and maybe slightly better,
accuracy in categorizing verbs than knowing these
parameters in advance. It should be noted that the
values of these parameters are important: when we
run a version of the oracle model with inappropriate
values for ε and δ, performance decreases substan-
tially. Thus, our model performs comparably to



Model % Transitive % Intransitive % Alternating % Total Verbs
Joint Inference 0.67 0.83 0.63 0.66
Oracle 0.77 0.83 0.54 0.62
No-Filter Baseline 0.00 0.00 1.00 0.70
Random Baseline 0.33 0.33 0.34 0.34

Table 3: Percentages of Verbs Categorized Correctly.

Figure 4: Posterior Distributions over Verb Categories (T ), Oracle Model

the best-case oracle model not merely because it
infers an input filter, but because it infers the best
parameters for such a filter given our dataset.

5.3 No-Filter Baseline

We’ve seen that our model accurately categorizes
2/3 of the verbs in our dataset by inferring appropri-
ate parameters of a filter on its input, and performs
comparably overall with a model that knows those
parameters in advance. To determine how much
the input filter matters in this inference, we com-
pare our model to a baseline that lacks this filter.
We can instantiate a model with no filter by setting
ε to zero, representing zero probability of parsing
errors. Because every verb in our dataset occurs
some but not all of the time with direct objects, and
this model assumes there are no parsing errors to
filter out, it assigns every verb to the alternating cat-
egory. It thus categorizes 100% of the alternating
verbs correctly, achieving 70% overall accuracy be-
cause alternating verbs make up 70% of our dataset.
However, this accuracy comes at the cost of failing
to categorize any verbs as transitive or intransitive.
Our joint inference model performs substantially
better in this regard, categorizing the majority of
transitive and intransitive verbs correctly. Thus, an
input filter is important for differentiating alternat-
ing from non-alternating verbs.

5.4 Random Baseline

We finally compare our model against a baseline
that assigns verbs randomly to transitivity cate-
gories, assuming that each value of T has equal
prior probability. For each verb in our dataset this
model flips a fair 3-sided coin to determine its tran-
sitivity category. This model thus categorizes 1/3
of the transitive, intransitive, and alternating verbs
correctly, resulting in 34% overall accuracy. Our
joint inference model performs significantly better
on each verb class, and nearly twice as well overall.

5.5 Summary

We find that inferring an appropriate filter on the
input matters for verb transitivity learning, but that
the parameters of this input filter can be learned.
Our model performs comparably to an oracle model
that knows these values in advance. It performs
substantially better in categorizing transitive and
intransitive verbs than a baseline model that lacks
an input filter altogether, and performs twice as
well overall as a random baseline. These results
demonstrate that our model is able to infer reason-
able values for the input filter parameters, allowing
it to accurately categorize the majority of transitive,
intransitive, and alternating verbs.

6 Discussion

In this paper we introduce a model that infers the
parameters of a filter on its input for argument struc-



ture acquisition. Our model accurately categorizes
2/3 of the most frequent transitive, intransitive, and
alternating verbs in child-directed speech on the
basis of their distributions with and without di-
rect objects, by learning to filter out sentences that
were likely mis-parsed. This enables the learner
to avoid drawing faulty inferences about verb tran-
sitivity from non-basic clause types, such as wh-
object questions, that may be mistaken for intran-
sitive clauses. Our model performs substantially
better than baseline models that lack an input fil-
ter and performs comparably to an oracle model
that knows these input filter parameters in advance,
demonstrating that this input filter both matters for
verb learning and can be learned.

Our model offers a novel solution to the prob-
lem of identifying an appropriate input filter for
verb learning (Lidz and Gleitman, 2004; Pinker,
1984) : where previous approaches have implicitly
assumed that children must have a way of identify-
ing the sentences to be filtered, our model learns
an input filter without knowing its parameters in
advance. Instead, the learner infers the input filter
parameters jointly with verb transitivity. This re-
duces the prior knowledge needed for initial verb
learning: the child does not need to identify which
sentences likely contain wh-questions and other
non-basic clause types as a prerequisite for learn-
ing which verbs are transitive. Note that we do not
claim that the Bayesian joint inference performed
by our model represents the exact algorithms per-
formed by child learners; although there is sub-
stantial literature on young children’s statistical
inference capabilities (Gomez and Gerken, 2000),
this model is intended only as a proof of concept
that such joint inference is possible.

The model makes two types of errors in infer-
ring verb categories. First, it is unable to correctly
categorize some transitive and intransitive verbs
that behave differently than other verbs in their
category, such as catch, hold, wear, and wait. Fur-
ther investigation is necessary to determine whether
these verbs pose difficulties for child learners as
well. A second type of error is over-regularizing
alternating verbs that alternate infrequently: the
model prefers to assign these verbs to the transitive
and intransitive categories. This is an example of a
learner preferring a more deterministic analysis for
probabilistic input, a tendency also found in child
learners in artificial language studies (Hudson Kam
and Newport, 2009). The error-filtering mechanism

we present here could thus potentially provide a
way to model other forms of over-regularization in
learning.

Other future directions include extending this
model to cross-linguistic data, particularly to lan-
guages with free object-drop. Chinese, Korean, and
Japanese have a syntactic mechanism for dropping
the direct object of any transitive verb, unlike in
English where object-drop is a lexical property of
specific verbs. As as result, learners of these lan-
guages might be subject to even higher rates of pars-
ing errors if they perceive object-drop sentences as
intransitive. For this reason, these languages are
potentially problematic for syntactic bootstrapping
strategies that rely on learners accurately identify-
ing transitive verbs (Lee and Naigles, 2005; Lee
and Naigles, 2008). But if appropriate parameters
for filtering out problematic object-drop construc-
tions in these languages can be inferred, our model
may help address concerns with the feasibility of
syntactic bootstrapping in these languages.

Finally, this model learns verb transitivity by
effectively filtering out sentences containing non-
basic clause types, without identifying what these
clause types are. But children do eventually learn to
identify non-basic constructions in their language.
If children initially filter out certain sentences as
parsing errors for the purposes of verb learning,
they must eventually learn that many of these sen-
tences are generated by systematic syntactic op-
erations, such as those that create wh-questions
in English. In future work, we aim to investigate
whether a learner can identify which non-basic con-
structions are present in sentences that were parsed
in error. Learning verb transitivity can likely help
the child identify these constructions: if a child ex-
pects a direct object for a verb and encounters sen-
tences where this object does not appear, that child
may be compelled to examine those anomalous
sentences to determine the cause of the missing
object. Thus, a strategy of filtering out non-basic
constructions by initially treating them as parsing
errors may eventually help the learner identify not
only verb transitivity, but also the nature of those
non-basic constructions themselves.
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