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Abstract

The increasing depth of parametric domain knowledge in large language models (LLMs) is
fueling their rapid deployment in real-world applications. Understanding model vulnera-
bilities in high-stakes and knowledge-intensive tasks is essential for quantifying the trust-
worthiness of model predictions and regulating their use. The recent discovery of named
entities as adversarial examples (i.e. adversarial entities) in natural language processing
tasks raises questions about their potential impact on the knowledge robustness of pre-
trained and finetuned LLMs in high-stakes and specialized domains. We examined the
use of type-consistent entity substitution as a template for collecting adversarial entities
for medium-sized billion-parameter LLMs with biomedical knowledge. To this end, we de-
veloped an embedding-space, gradient-free attack based on powerscaled distance-weighted
sampling to assess the robustness of their biomedical knowledge with a low query bud-
get and controllable coverage. Our method has favorable query efficiency and scaling over
alternative approaches based on blackbox gradient-guided search, which we demonstrated
for adversarial distractor generation in biomedical question answering. Subsequent failure
mode analysis uncovered two regimes of adversarial entities on the attack surface with dis-
tinct characteristics. We showed that entity substitution attacks can manipulate token-wise
Shapley value explanations, which become deceptive in this setting. Our approach comple-
ments standard evaluations for high-capacity models and the results highlight the brittleness
of domain knowledge in LLMs1.

1 Introduction

LLMs such as pre-trained and finetuned generalist language models (GLMs) and their domain-adapted
versions (Zhao et al., 2023; Wang et al., 2023a) incorporating transformer architectures are emerging as the
technological backbone of next-generation search engines and knowledge bases (Petroni et al., 2019; Sung
et al., 2021). They are increasingly used in knowledge-intensive tasks by the general public without sufficient
assessment of inherent issues in trustworthiness and safety (Clusmann et al., 2023; Spitale et al., 2023; Si
et al., 2023). Adversarial examples are valuable probes for model vulnerability and robustness, and are
essential for performance improvements and regulatory audits (Shayegani et al., 2023). Adversarial attacks
are classified by query scaling behavior into low- and high-query-budget attacks (see Fig. 1a). Collecting
adversarial data at scale, either for adversarial training or robustness assessment, requires query-efficient
attacks, first empirically studied in the vision domain (Ilyas et al., 2018; Cheng et al., 2019; Shukla et al.,
2021). For language models, adversarial examples are generated through guided search (Alzantot et al.,
2018), sampling and probabilistic methods (Ren et al., 2019; Yang et al., 2020; Yan et al., 2022), or collected
dynamically by human operators (Jia & Liang, 2017; Wallace et al., 2019b). Most of these methods require a
large amount of model evaluations (in the hundreds to thousands or beyond per instance) or whitebox access
to model internals, and their evaluations tend to focus on small models (with < 1B parameters) (Maheshwary
et al., 2021; Yu et al., 2024), which are insufficient in the era of LLMs. Sampling-based attacks obviate the
need for predetermined search heuristics and can operate with only blackbox model access and a low query

1The code and datasets developed for the work are available in an anonymized repository on GitHub.
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budget. Demonstrations of query-efficient attacks on LLMs meet an emerging demand for their continuous
monitoring (Metaxa et al., 2021), which is particularly important for deploying LLMs in specialized domains.

Question answering (QA) has been the proving ground in recent achievements of biomedical language models
(BLMs), here referring to GLMs adapted to the biomedical domain (Singhal et al., 2023; Kung et al., 2023;
Liévin et al., 2024; Saab et al., 2024). Knowledge and reasoning components in biomedical QA assess the
understanding of diverse concepts, which are represented by domain-specific named entities (NEs). The
present work aims to identify adversarial entities in biomedical QA for both GLMs and BLMs. While GLMs
may have acquired general biomedical knowledge during model development, BLMs gain further domain
knowledge primarily through finetuning on a variety of text data from clinical notes (Lehman et al., 2023),
electronic health records (Wornow et al., 2023), to abstracts or excerpts of scholarly publications (Tinn
et al., 2023). Although QA is a frequently employed paradigm for model performance evaluation (Gardner
et al., 2019; Robinson & Wingate, 2023), currently, biomedical QA still lacks domain-specific robustness
assessment and its use in the real-world applications, albeit promising, is still in its infancy (Kung et al.,
2023). Evaluating model robustness for high-stakes, specialized domains requires customized perturbations
apart from traditional benchmarks (Cecchini et al., 2024). Deployable LLMs in the biomedical domain
should have robust contextual knowledge and language understanding of domain-specific entities.
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D: Blood pressure✓

A: Serum creatinine
B: Temperature
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A 50-year-old woman presents with a severe headache and 
vomiting. She says that symptoms onset after attending a wine 
tasting at the local brewery. She says that her headache is 
mostly at the back of her head and that she has been nauseous 
and vomited twice. Past medical history is significant for 
depression diagnosed 20 years ago but now well-controlled with 
medication. She also has significant vitamin D deficiency. 
Current medications are phenelzine and a vitamin D 
supplement. The patient denies any smoking history, alcohol or 
recreational drug use. On physical examination, the patient is 
diaphoretic. Her pupils are dilated. Which of the following is most 
likely to be elevated in this patient?

Original

Adversarial

(b)

Figure 1: Entity substitution attack on QA with adversarial distractors. (a) Typical query scaling curves in
low- and high-query-budget attack settings. (b) An adversarial distractor example found by type-consistent
entity substitution (highlighted in blue). The correct (top) and incorrect (bottom) model responses (check-
marked) before and after perturbation are included. (c) Illustration of the attack scheme in embedding space
by PDWS for the example in (b). E represents the vocabulary set. D is the key to the question, A-C the
original distractors, C′ is an adversarial distractor at distance h from the key D.

In this work, we proposed and compared sampling- and search-based query-efficient adversarial attacks for
evaluating the knowledge robustness of LLMs in the entity-rich, biomedical domain using type-consistent
entity substitution (TCES). We investigated the setting where a large number of viable replacements (NE >
1000) per attack exist at only a small number of permissible text locations, which is prevalent in specialized
domains where the NEs have shared characteristics such as their type and (word or phrase) structure.
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The setting differs from traditional synonym substitution (Liu et al., 2022; Yu et al., 2024), which have a
significantly smaller number of viable replacements with matching word senses but can operate on many
potential text locations. To relate to real-world scenarios (Apruzzese et al., 2023), we consider the attacks in
the blackbox and hard-label setting with a limited query budget (B ≪ NE). We used the attacks to generate
adversarial examples of distractors (see Fig. 1b), or adversarial distractors in biomedical QA tasks. Our
main contributions include: (i) Introduction of powerscaled distance-weighted sampling (PDWS) method
in embedding space to generate adversarial entities. Our work reports the first use of DWS for adversarial
attacks in text2. The attack scheme has a broad coverage of the embedding space centered around an anchor
point (illustrated as the key D in Fig. 1c) and maps the entity-level robustness landscapes of different LLMs
in two regimes (near and far). (ii) Introduction of the FDA-drugs and CTD-diseases datasets as the source
vocabularies of the perturbation sets, along with an entity type-annotated version of existing biomedical
QA datasets MedQA-USMLE (Jin et al., 2021) and MedMCQA (Pal et al., 2022). Using these data, we
demonstrated the vulnerability of LLMs to two of the most common NEs in the biomedical domain (Wei et al.,
2019): drug and disease names (see example in Fig. 1b). (iii) We unified sampling- and gradient search-based
methods in discrete text space and formulated TCES as an attack template, which we used for quantitative
comparison of the scaling behaviors of the attacks in the same footing. We found that in the blackbox
setting, sampling attacks can have favorable query scaling over gradient-based attacks, which are gradient
quality-limited within a fixed query budget. (iv) By investigating the relationship between Shapley value-
based model explanation (Chen et al., 2023) and adversarial attacks, we uncovered the defining signatures
of successful attacks as a result of entity substitution.

2 Related works

Text substitution attacks Adversarial attacks in neural language models have been demonstrated from
the character to the sentence level (Zhang et al., 2020). The majority of text substitution attacks employ
typos (Gao et al., 2018) and synonyms (Mozes et al., 2021), which effectively impose lexical constraints.
Word frequency has been used as a metric to select adversarial examples in (Mozes et al., 2021). Synonym
substitution attacks have been demonstrated in sentiment analysis (Liu et al., 2022; Yu et al., 2024). Alzantot
et al. (2018) used a genetic algorithm to search for adversarial word substitution. Model sensitivity to entity-
level perturbations including substitution and swapping create problematic situations such as knowledge
conflicts (Longpre et al., 2021) for knowledge-intensive tasks, compromised performance in machine reading
comprehension (Yan et al., 2022) and table interpretation tasks (Koleva et al., 2023).

Robustness in QA The robustness of QA models has been studied using perturbation methods (Jia &
Liang, 2017) and meaning-preserving transformations (Gan & Ng, 2019; Elazar et al., 2021). Sen & Saffari
(2020) introduced a set of perturbations to assess language model generalization between QA datasets.
Richardson & Sabharwal (2020) proposed a distractor design method using proximity in semantic space to
probe model understanding of word senses. Awadalla et al. (2022) examined the connection between in- and
out-of-distribution robustness for different LLMs. The performance of LLMs is sensitive to the ordering of
choices (Pezeshkpour & Hruschka, 2023; Zheng et al., 2024). Overall, the brittleness of knowledge in LLMs
remains a primary limitation for their applications (Elazar et al., 2021; Augenstein et al., 2024).

Characteristics of adversarial examples The defining characteristic of adversarial examples is the in-
duction of false predictions in trained models that would otherwise predict accurately. Other characteristics
include (i) their generality such as transferability and universality (Zou et al., 2023). Transferability refers to
the effectiveness of the same example being adversarial to distinct models (Papernot et al., 2016). Universal
adversarial perturbations are reusable across many examples tested on the same model (Moosavi-Dezfooli
et al., 2017; Wallace et al., 2019a). (ii) The quality of adversarial examples may be judged by their per-
ceptibility to human (Dyrmishi et al., 2023) or simple defense mechanisms such as grammar check. (iii)
Adversarial attacks can operate in the low- and high-query-budget settings (Shukla et al., 2021) with differ-
ent query scaling behaviors. (iv) Adversarial examples by specifically designed perturbations can obstruct
model explanation (Noppel & Wressnegger, 2024) and render it unuseful.

2Throughout the text, we use DWS to refer to the class of sampling method that employs distance-dependent probability
weights. The powerscaled DWS is a type of DWS, so is the other version introduced in Wu et al. (2017).
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3 Entity-centric adversarial attacks

3.1 Adversarial distractor generation

Definition 3.1. A multiple-choice question Q is represented by a tuple, Q = (C,S,D, k), with the context
C, question stem S, a distractor set D = {di}l

i=1, and a key k. The distractors are the wrong choices given
to confuse test-takers, while the key is the correct one (CH & Saha, 2020).
Definition 3.2 (Adversarial distractor). Given the original (or unperturbed) and a perturbed multiple-
choice question pair, Q = (C,S,D, k) and Q′ = (C,S,D′, k), which differ by only a distractor, D′ \(D∩D′) =
{d′}. The distractor d′ is adversarial if the perturbed question elicits a false response from the model, while
it answers correctly to the unperturbed question,

argmax PrLLM(Y = k|C,S,D′, k) ̸= argmax PrLLM(Y = k|C,S,D, k). (1)

The threat model in Definition 3.2 refers to an untargeted attack, while the targeted version only requires
restricting the answer to the perturbed question to a specific distractor. A simple way to construct the
perturbed distractor set D′ in Q′ is to substitute a distractor d by d′, or D′ = (D \ {d}) ∪ {d′}. The
substitution is subject to the constraint ∥Q′ − Q∥ < ϵ, where ϵ is the perturbation budget, and the norm
∥ · ∥ refers to edit distance. For simplicity, we assume the distractors contain only NEs and only one NE
each (such as in Fig. 1b). In Appendix A, we extend Eq. 1 to a more general case with multiple entities
and additional non-entity text in the distractors.
Example 3.1. In the example of Fig. 1b, the stem S is the last sentence on the left side, “Which of the
following is most likely to be elevated in this patient?” The context C is all the text before the stem, “A 50-
year-old woman ... Her pupils are dilated.” The original distractor set D = {Serum creatinine, Temperature,
Creatine phosphokinase, Blood pressure}, the perturbed distractor set D′ = {Serum creatinine, Temperature,
Parathyroid hormone, Blood pressure}, the key k is Blood pressure, or equivalently, D3.

Unlike text addition attacks that introduce distracting information (Jia & Liang, 2017; Wallace et al., 2019a),
the edit constraint onQ that is usually enforced in text adversarial attacks (Roth et al., 2024) doesn’t preclude
large semantic perturbations at the entity level in the distractors. In this work, we draw perturbations from
a finite perturbation set, denoted as E-k := E \ {k}, with E = {ej}m+1

j=1 being the entity dataset as illustrated
in Fig. 1a. In practice, E may be compiled from potential model use cases or curated by regulatory bodies
in a model audit. Next, we discuss a unified view of discovering adversarial entities in the embedding space
using blackbox (or gradient-free) attack methods based on sampling and search.

3.2 Powerscaled distance-weighted sampling

Definition 3.3 (Text span representations). Given the token sequence representation of a span e, we define
its corresponding vector representation in a text embedding of dimension l as e ∈ Rl.

We consider sampling with distance-dependent probability weights from the embedding space of NEs. The
concept of distance-weighted sampling (DWS) was previously introduced in contrastive learning in computer
vision, where the Euclidean distance between samples and an anchor point was used and the probability
weights depend on the embedding dimensionality (Wu et al., 2017). We propose a more flexible version
independent of the embedding dimensionality using a powerscaled distance with a tunable hyperparameter.
Specifically, for a key k, we assign a distance-dependent probability weight pj ∈ [0, 1] to entity ej such that
the distractor d is substituted by

d′ = ej w.p. pj = hn(k, ej)∑
j hn(k, ej) . (2)

Here, h(k, ej) is a distance metric between the anchor point k and ej , while the exponent n ∈ R controls
the shape of the probability weight distribution. When n > 0, as n increases, the entities further away

3For simplicity, in this work, we don’t use different symbols to distinguish between the content of a distractor (or a key)
from its index (e.g. A, B, C, D).
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from k are more preferably weighted. When n < 0, the sampling method employs inverse-distance-scaled
weights, and the entities closer to k are more preferably weighted. In the subsequent evaluations, we use
h(k, ej) = CosineDist(k, ej) = 1−k ·ej/(∥k∥ · ∥ej∥), calculated in a text embedding of choice, where k and
e are the respective vector representations of k and e. The formalism accommodates a deterministic regime
as a limiting case4, when n→ +∞, and pj is vanishingly small for all but the entity furthest from k,

d′ = ej s.t. ej = argmax
ej∈E-k

h(k, ej). (3)

When n = 0, pj is the same for each entity in E-k, corresponding to uniform random sampling. A short
proof of the limiting cases is given in Appendix B. Therefore, our approach bridges the probabilistic and
deterministic approaches to sampling adversarial examples.

3.3 Sampling view of zeroth-order adversarial attack

Blackbox attacks using approximate gradients may proceed with zeroth-order optimization (ZOO), where the
gradients are estimated by finite difference to guide the search (Ilyas et al., 2018; Cheng et al., 2019). In the
discrete text space, Berger et al. (2021) developed the DiscreteZOO attack, which contains three components:
the word importance ranker, the candidate sampler, and the gradient-based optimizer. It operates at the
word level and has been validated on BERT-sized models for synonym substitution attacks. The last two
components aim to find a replacement text span e′ in each iteration through the gradient update rule

e′ = e0 − λ∇̂ZOLLM(Q; e0). (4)

Here, e0 refers to the original text span, e′ and e0 are the vector representations of e′ and e0, respectively.
λ the learning rate, ∇̂ZO indicates the zeroth-order gradient estimator, and ∇̂ZOLLM(Q; e0) has the same
dimensionality as e′ or e0. We use LLM(Q; e0) to denote the LLM text output with the unperturbed question
Q (containing e0) as the input, then the multi-point (M ≥ 2) gradient estimate is constructed by querying
the LLM M times and computing

∇̂ZOLLM(Q; e0) = Eu

[
∆LLM(Q; e0)

∆e0
u

]
= 1

M

M∑
i=1,ei∈E-k

(LLM(Q′; ei)− LLM(Q; e0)) · (ei − e0)
∥ei − e0∥2 . (5)

This is an example of the random directions stochastic approximation (Nesterov & Spokoiny, 2017), where
u = (ej−e0)/∥ej−e0∥ is a randomly oriented vector in the embedding space corresponding to the neighboring
entity ej . Berger et al. (2021) computed Eq. 5 by random sampling of neighbors (in candidate sampler)
within a similarity threshold for synonyms. The procedure was iterated once over all ranked attack locations.
Given a noisy gradient estimate ∇̂ZOLLM(Q; e0) and a discrete search space, we can rewrite Eq. 4 effectively
as deterministic DWS in the embedding space by

d′ = ej s.t. ej = argmin
ej∈E-k

h(e0, ej), (6)

where h(e0, ej) = CosineDist(e0−λ∇̂ZOLLM(Q; e0), ej), with e0 as the anchor point, and argmin indicates
the closest member within the text embedding. Using argmin is essential because the exact location h(e0, ej)
in the discrete embedding space is usually not occupied. While a gradient estimate of sufficient quality
is essential for a successful attack, increasing M will count towards the query budget. Therefore, in the
budgeted setting, a tradeoff should exist between the efficacy of the attack and the number of queries
consumed for each gradient estimation.

4 Implementing attacks on biomedical QA

4.1 Dataset selection

Entity datasets To relate to real-world scenarios, we sourced the vocabulary datasets of drug and disease
names from existing public databases. The drug names dataset (FDA-drugs) contains over 2.3k unique

4The limit n → −∞ indicates replacing the distractor d with k at all times. Since k is not in the perturbation set E-k, this
limit is not attained.
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entities from known drugs approved by the United States Food and Drug Administration (FDA) and curated
by Drug Central5 (Ursu et al., 2017). FDA is a world authority that approves the legal distribution of
drugs, therefore the dataset represents the drug-entity names encountered in daily life. The disease names
dataset6 (CTD-diseases) contains over 9.8k unique entities from the Comparative Toxicogenomics Database
(Davis et al., 2009), which contains a comprehensive collection of uniquely documented chemical-gene-disease
interactions for humans. Both databases are curated by domain experts through regular updates, and unlike
traditional text corpora (Mohan & Li, 2019), the entities in these two datasets contain no redundancy. The
2023 version of the datasets was used after minor data processing.

Biomedical QA datasets We selected over 9.3k questions from the MedQA-USMLE (Jin et al., 2021)
dataset and over 3.8k questions from the MedMCQA (Pal et al., 2022) dataset for benchmarking. Both
datasets are entity-rich and cover a wide range of biomedical specialties and topics. The MedQA-USMLE
dataset contains long-context questions that are used to assess medical students in the United States. The
MedMCQA dataset contains short questions used in medical exams in India. They have been used in recent
works for assessing the biomedical knowledge in LLMs (Singhal et al., 2023; Han et al., 2023; Liévin et al.,
2024; Saab et al., 2024). Both datasets are publicly available and don’t contain personal information. We
annotated the NEs in the two datasets according to the entity types of the Unified Medical Language System
(UMLS) (Bodenreider, 2004) using scispaCy (Neumann et al., 2019). We divided the QA datasets into drug-
or disease-mention questions according to the UMLS entity types (see Appendix C) of NEs in distractors.

4.2 Type-consistent entity substitution (TCES)

Algorithm 1 TCES attack template for collecting ad-
versarial entities in distractors.
Inputs: Question Q, LLM, entity type τ , budget B.
Internals: Number of choices Nch, text t, entity Ent,
embedding Emb, key or correct answer k.
Outputs: Number of queries and the replacement en-
tity, None if unsuccessful after all attempts.

TCESAttacker(Q, Model, τ , B)
tchoices, k ← Q.choices, Q.answer
for c← 1 to Nch do

tch ← tchoices[c]
Entch ← NERecognizer(tch)
Enttfch ← TypeFilter(Entch, τ)

Entkey, Entdistrc ← SplitByLabel(Enttfch)
Entvictim ← RankSelect(Entkey, Entdistrc, Emb)
i← 0
while i < B do

Entperturb ← Sampler(Entkey, Entvictim,
Entvocab, Emb)

Q′ ← Q (Entvictim → Entperturb)
k′ ← Model(Q′)
if GoalFunc(k′, k) ← 1 then

return i, Entperturb

Entvocab ← Entvocab\ Entperturb
i← i + 1

return

Implementing attacks that target entities requires
accounting for type consistency and compatibility
with simultaneous multi-word (or span-level) oper-
ations, because of the inseparable nature of the en-
tity components (e.g. growth hormone, acquired im-
munodeficiency syndrome). This effectively results
in more substitution patterns (one to two words,
two to one word, two to two words, two to three
words, etc.) than the more common one-to-one syn-
onym substitution (Mozes et al., 2021). We describe
TCES in Algorithm 1 as a general and contextual-
ized attack template for entities, with the goal of ad-
versarially modifying model outputs with only one
span-level substitution, specified by token bound-
aries. The template can accommodate single- or
multi-query attacks and it is applicable to any task
that may be formatted into QA (Gardner et al.,
2019).

The initial steps in TCES involve entity recogni-
tion and typing (see Appendix C). For distractor
generation, the type-filtered entities in the choices
(Enttfch) are separated into key (Entkey) and dis-
tractor (Entdistrc) entities. In the biomedical do-
main, the entity type information is readily avail-
able from the UMLS (Bodenreider, 2004) semantic
groups, such as Chemicals & Drugs and Disorders
used for demonstration later. The RankSelect step
selects the text span to attack (Entvictim). In the
PDWS attack, the type-matched entity in the distractors closest to the key is selected. The purpose is to

5https://drugcentral.org/download
6https://ctdbase.org/downloads/
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maintain consistency and is not uniquely associated with the effects discussed later. In ZOO-based attacks,
RankSelect corresponds to the word importance ranker. Then, the potential replacement entities are se-
lected using Sampler (Eq. 2 for PDWS or Eq. 6 for DiscreteZOO), which also removes any duplicates of
the key in the vocabulary (Entvocab). Sampling is carried out without replacement from the correspond-
ing perturbation set E-k (constructed with FDA-drugs or CTD-diseases datasets), equivalent to enforcing
type consistency in the replacement entities to maintain consistency with the entity to attack (Entvictim).
GoalFunc outputs a value from a loss function or from directly comparing with the answer to determine if
the attack is successful.

4.3 Attack execution on LLMs

Victim LLMs We selected both generalist (GLMs) and specialist (BLMs) models for robustness evaluation
via blackbox adversarial attacks. The criterion we adopted here for a model to have biomedical knowledge is
that it should have a baseline performance better than random guessing (e.g. an accuracy of 0.25 for a specific
four-choice QA task) in the evaluated domain-specific task. For GLMs, we used instruction-finetuned T5
(Flan-T5) series of models (Chung et al., 2024) and UL2 model (Tay et al., 2022) (Flan-UL2). For BLMs,
we used MedAlpaca-7B (Han et al., 2023), MedLlama-3-8B-v2.0 (MedLM3-8Bv2) from John Snow Labs,
Llama2-Medtuned-13B (LM2-Medtuned-13B) (Rohanian et al., 2024), and Palmyra-Med-20B (Kamble &
Alshikh, 2023) from Writer. The selected open-source models have sizes in ∼ 1-20B range. Besides, we also
evaluated on GPT-3.5 from OpenAI.

Attack settings All models were evaluated at zero temperature or in the non-sampling setting and model
inference was conducted in the zero-shot setting with only basic prompt instructions (see the prompt structure
in Appendix D). Model inference of Palmyra-Med-20B (Kamble & Alshikh, 2023) used 4-bit quantization
to improve speed (Dettmers & Zettlemoyer, 2023). The evaluation settings resulted in our somewhat lower
baseline accuracies than the reported ones which are often achieved with the help of few-shot prompting
and prompt optimization. The DiscreteZOO attack (Berger et al., 2021) was originally implemented in
the textattack framework (Morris et al., 2020b), which we updated to be compatible with span-level
perturbation using its boundaries, multi-GPU split-model inference, and decoder-based billion-parameter
LLMs by modifying the attack recipe. The following three aspects in the benchmarks are in our focus.

• Query budget: We used fixed query budgets (B) for three main types of attacks: (i) Single-query
sampling-based attacks were used as the reference because the DiscreteZOO attack requires a minimum
of 3 model queries; (ii) Multi-query attacks used a budget of 8 for reasonable computational cost across
all models and attack settings for both sampling- and search-based attacks; (iii) The query scaling trends
of specific LLMs and different attack settings were investigated with a series of query budgets under 100
per input instance. Here, we also included the deterministic versions of PDWS to sample the nearest
and farthest elements with respect to an anchor point. The element was taken from the perturbation
set and the distances (between entities) were calculated using cosine in a chosen text embedding. Their
query-limited versions are refered to as B-nearest and B-farthest element sampling, respectively, where all
B nearest or farthest elements were used sequentially to attack models in query scaling studies. Detailed
definitions are given in Appendix B.4.

• Text embedding: Both the PDWS and DiscreteZOO attacks require sampling from a text embedding.
The counter-fitted GloVe embedding (Mrkšić et al., 2016) was the default for DiscreteZOO, but GloVe is
poor for representing biomedical vocabulary (Wang et al., 2018). We chose two recent embedding models
with improved latent representations of text relations for the benchmarks: (i) CODER (Yuan et al.,
2022), a BERT-structured embedding model contrastively pretrained to distinguish UMLS knowledge
graph concepts; (ii) GTE-base (Li et al., 2023b) from contrastive learning of general web-scale text data.

• Core hyperparameters: For single-query PDWS attacks, we tuned the hyperparameter n within the
interval of [-50, 50] using grid search with a step of 5 or 10 because the local maxima of ASR appear on the
positive and negative sides. For multi-query PDWS attacks, hyperparameter n was briefly re-tuned around
its optimal value in the single-query attack. Most tuned hyperparameters fall within [-30, -5] and [5, 30].
Operating the DiscreteZOO attack in a compatible setting for entities requires two key modifications:
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(i) Use a random word ranking, which allows the attack algorithm to operate in the low-query-budget
setting. (ii) Disable the similarity threshold for candidate point selection in gradient estimation because
only entity type consistency is required. The ASR was greatly improved after this step. Benchmarks of
the DiscreteZOO attacks were carried out with these settings.

5 Finding and assessing adversarial entities
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Figure 2: Powerscaled DWS of adversarial distractors exhibits a two-regime effect at negative and positive
n values (see Eq. 2) in ASR (top) and diversity index (bottom) of replacement entities in successful attacks.
Local maxima in ASR with a finite n are also present in each regime. The vertical dashed line indicates the
location of random sampling. The observed similar behaviors are compared across models and datasets in (a)
Flan-T5-xxl on MedQA-USMLE, (b) Palmyra-Med-20B on MedQA-USMLE, (c) Flan-T5-xl on MedMCQA,
(d) MedAlpaca-7B on MedMCQA. Disease and drug-mention questions are separated by colors. The average
prompt semantic similarity displayed in (e)-(h) is calculated for the successful attacks obtained from the
corresponding attack settings in (a)-(d), respectively.

5.1 Two regimes of adversarial entities

Diversity quantification of adversarial entities The embedding space picture of the substitution
attack in Fig. 1a provides a geometric interpretation of PDWS to examine different types of adversarial
examples by tuning n. We use the Gini-Simpson index (Rao, 1982), ηGS = 1 −

∑
j q2

j , to quantify the
diversity of adversarial examples and a low value indicates less diversity. Here, qj ∈ (0, 1] is the probability of
occurrence of the entity ej among all instances of adversarial entities obtained from sampling, and

∑
j qj = 1.
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MedQA-USMLE MedMCQA

Model (size) Entity
mention

Baseline
(Acc)

RandS@1
(ASR %)

PDWS@1 (-/+)
+CODER (ASR %)

Baseline
(Acc)

RandS@1
(ASR %)

PDWS@1 (-/+)
+CODER (ASR %)

Flan-T5-xl (3B) Drugs 0.318 10.4 13.5 / 10.7 0.265 14.3 19.6 / 15.1
Diseases 0.335 11.0 16.1 / 12.5 0.261 23.8 25.7 / 31.8

Flan-T5-xxl (11B) Drugs 0.323 9.6 13.6 / 11.2 0.291 12.7 19.6 / 16.2
Diseases 0.345 12.2 20.0 / 12.8 0.376 15.2 26.6 / 23.9

Flan-UL2 (20B) Drugs 0.382 8.6 12.3 / 10.5 0.416 13.9 15.1 / 12.7
Diseases 0.396 10.1 15.7 / 13.1 0.408 15.7 25.5 / 17.7

GPT-3.5 (175B) Drugs 0.438 9.1 11.2 / 10.7
Diseases 0.453 8.6 11.5 / 8.8

MedAlpaca-7B Drugs 0.479 7.2 8.2 / 9.6 0.448 13.9 16.2 / 15.9
Diseases 0.498 8.4 12.5 / 9.2 0.434 14.8 19.1 / 13.7

JSL-MedLM3-8Bv2 Drugs 0.827 10.4 10.2 / 11.8
Diseases 0.771 9.5 18.5 / 11.3

LM2-Medtuned-13B Drugs 0.371 16.4 18.1 / 17.8 0.568 15.3 17.3 / 18.1
Diseases 0.398 19.6 23.1 / 19.6 0.515 19.0 27.6 / 21.0

Palmyra-Med-20B Drugs 0.382 12.6 13.3 / 13.5 0.614 10.2 13.8 / 12.7
Diseases 0.441 16.9 21.5 / 18.7 0.624 15.4 20.1 / 11.9

Table 1: Single-query (budget = 1) attack success rates (ASRs) on subsets of MedQA-USMLE and MedM-
CQA datasets by perturbing the drug or disease entity mentions. Zero-shot baseline (Baseline) accuracy is
included for reference next to the ASR of sampling attacks using perturbation by random sampling (RandS),
powerscaled distance-weighted sampling (PDWS). The “-” and “+” signs indicate the two regimes (n < 0
and n > 0). For each model, the highest ASR for a type of entity-mention question in each dataset is bolded.

A low diversity index indicates the reusability and is a proxy indicator for the universal adversarial attack
regime (Moosavi-Dezfooli et al., 2017; Wallace et al., 2019a). Combining the ASR dependence on diversity
and hyperparameter n in Fig. 2 reveals two regimes: (i) the adversarial entities semantically close to (n < 0)
the key k have a greater diversity; (ii) the adversarial entities semantically far from (n > 0) the key k
are more reusable. TCES in these two regimes both can lead to an increase in successful attacks from
random sampling (equivalent to n = 0), as shown in Tables 1-2. Fig. 2 shows that a larger positive n
in Eq. 2 samples more universal adversarial entities than in other situations, leading to a marked drop in
the diversity index. Moreover, there exist local maxima of ASR in both regimes with finite n, which were
discovered by hyperparameter tuning. We call the behavior the two-regime effect and they were observed
in almost all models evaluated here in varying magnitudes for both QA datasets, thanks to the controllable
spatial coverage of sampling methods incorporating distance information. In both single-query and multi-
query attacks, the benchmarks show that the n < 0 regime of PDWS attacks tends to have a greater influence
on model performance than the n > 0 regime, although prominent counterexamples do exist (MedAlpaca-7B
and Llama2-Medtuned-13B (for drug-mention questions), and Flan-T5-xl (for disease-mention questions) in
Table 1).

Semantic distortion by adversarial entities Besides ASR, evaluating the semantic distortion is another
way to quantify the effectiveness of adversarial attacks. We estimated the semantic distortion of entire
prompts in successful attacks before and after entity substitution, corresponding to Q and Q′ in Definition
3.2. We calculated the average prompt semantic similarity (PSS) using SentenceTransformer (Reimers &
Gurevych, 2019) with the RoBERTa-large model (all-roberta-large-v1). At each distinct n, the PSS
∈ [−1, 1] with 1 being the most similar, is averaged over all successful attack instances to obtain the average
PSS, a quantitative measure of the semantic distortion. Its dependence on the hyperparameter n for different
models and datasets are shown in Fig. 2.

Adversarial entity characteristics The two-regime effect indicates that the success of the attacks may
come from two sources that dominate at different locations on the same attack surface, which refers to entity
substitution in the present work.

• At larger distances, the attack succeeds potentially due to the obscurity of the distractor entities in the
question context, which can also profoundly impact the model performance (Li et al., 2023a). This expla-
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Figure 3: Model robustness from single-query adversarial attacks using results in Table 1. The models
(GLMs and BLMs) were evaluated on drug-mention questions from MedQA-USMLE (left) and disease-
mention questions from MedMCQA (right) datasets. The GLMs and BLMs are ordered horizontally by
their sizes. The bar colors distinguish between different attack methods. Perturbations by random sampling
(RS) are in purple. Perturbations by powerscaled DWS (PDWS) in the n < 0 and n > 0 regimes are in blue
and grey, respectively.

nation may be further supported by examining the diversity index, ηGS, which shows the dominance of a
few replacement entities in successful attacks at large distances. We found these highly reusable adver-
sarial entities by ranking their occurrences in successful attacks by powerscaled DWS. For drug names,
the top-ranked adversarial entities include n-acetylglucosamine (an amino sugar and anti-inflammatory
drug)7 and technetium Tc 99m exametazime (a radiopharmaceutical and contrast agent)8. For disease
names, some of the chromosome deletion syndromes and rare disease names are more reusable than oth-
ers. These entities dominate the sampling results in the n > 0 regime for all LLMs, indicating their
transferability and universality.

• At small distances, semantic proximity (Mozes et al., 2021) reduces the distinguishability between the
key and the distractor, therefore increasing the chance of model failure. Examples include similar drugs
or diseases with insufficient details such as using diabetes as a distractor instead of the correct answer
diabetes II (refers to type-II diabetes) can result in a successful attack.

• Adversarial distractors result in little semantic distortion at the prompt level (see Fig. 2e-h). The
experiemnts on the MedMCQA dataset yields somewhat lower average PSS than MedQA-USMLE because
of the longer format of the latter dataset, leading to sightly larger distortions by entity substitution.
Adversarial entities obtained in the n < 0 regime results in slightly higher average PSS compared to those
in the n > 0 regime, while there is also a two-regime effect – the average PSS tends to be the lowest
around n = 0 and higher when n departs further from 0. The trend is consistent for different models and
datasets demonstrated in Fig. 2.

5.2 Scaling characteristics from adversarial entities

Size is not all for scaling model robustness. We compare model robustness using single-query ASR
as the metric in Table 1 and Fig. 3. For the Flan-T5 series of GLMs (Chung et al., 2024) and Flan-UL2 (Tay
et al., 2022), the single-query ASR is more pronounced in smaller and less performant models, indicating
the improvement of robustness as the model’s size grows. However, an opposite trend of robustness is seen

7n-acetylglucosamine on RxList
8technetium Tc 99m exametazime on RxList
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in BLMs. It is worth noting that although Palmyra-Med-20B (Kamble & Alshikh, 2023) has about three
times the number of parameters than MedAlpaca-7B (Han et al., 2023), the larger model is noticeably more
sensitive to entity perturbation. In terms of ASR, the BLMs are comparable to the GLMs in each type
of questions evaluated on. Another observation is that the ASR for models is asymmetrical under PDWS
attacks. For most of the models, sampling adversarial entities with inverse-distance-scaled weights (n < 0
in Eq. 2) induces more performance drop than sampling with distance-scaled weights (n > 0 in Eq. 2), yet
prominent counterexamples exist. The attack performance is further investigated in the sequential, multi-
query setting (budget = 8) in Table 2, where we also compared sampling- against search-based DiscreteZOO
attacks. Here, PDWS attacks in the n < 0 regime are still largely the most effective.

MedQA-USMLE (ASR %) MedMCQA (ASR %)

Model (size) Entity
mention

RandS
@8

PDWS@8 (-/+)
+CODER

DZOO@8
+CODER

DZOO@8
+GTE-base

RandS
@8

PDWS@8 (-/+)
+CODER

DZOO@8
+CODER

DZOO@8
+GTE-base

Flan-T5-xl (3B) Drugs 22.0 29.3 / 23.3 21.7 19.5 32.5 48.3 / 36.2 34.3 28.2
Diseases 27.2 38.8 / 24.8 20.9 23.2 47.1 61.7 / 49.0 45.8 39.3

Flan-UL2 (20B) Drugs 22.5 27.5 / 22.3 20.4 19.2 26.4 35.6 / 22.4 30.7 26.4
Diseases 25.8 34.9 / 26.8 25.7 24.0 39.2 49.5 / 31.6 41.3 37.0

MedAlpaca-7B Drugs 16.8 21.1 / 22.3 22.8 20.5 27.9 37.1 / 30.1 42.6 36.8
Diseases 21.7 30.3 / 24.0 26.5 25.2 29.8 43.9 / 30.8 40.5 38.1

Palmyra-Med-20B Drugs 30.1 31.4 / 31.3 29.1 29.6 28.5 37.3 / 31.9 35.4 35.0
Diseases 33.2 35.1 / 30.2 32.3 34.5 41.1 48.4 / 39.6 46.3 50.1

Table 2: Multi-query (here budget = 8) attack success rates (ASR %) on various LLMs by perturbing the
drug and disease entity mentions in MedQA-USMLE and MedMCQA datasets. The PDWS attack uses the
embedding from CODER and DiscreteZOO (DZOO) attacks use either CODER or GTE-base embedding.
For each model, the highest ASR for a type of entity-mention question in each dataset is bolded.

Sampling attacks has improved query scaling over blackbox gradient attacks in specialized
text embedding. A query scaling study of adversarial attacks investigates attack success with varying
query budgets per input instance (Shukla et al., 2021). It is a comprehensive evaluation of attack methods.
Fig. 4 compares the query scaling of both sampling- and search-based methods for TCES. For low-query-
budget attacks (Fig. 1a), each scaling curve exhibits a rapid rise phase and a plateau phase, separated by an
inflection point. The key message here is that the advantage of PDWS attacks over DiscreteZOO depends
on the model and the choice of text embedding. The PDWS attacks are overarchingly more effective for
GLMs than DiscreteZOO, while for BLMs, the advantage is reduced. Moreover, using a specialized text
embedding further boosts the advantage of PDWS attacks compared with a general text embedding due to
the difference in embedding space neighborhood. We expand the analysis in the following in three directions.

• Query scaling depends on text embedding: Changing the text embedding affects the query scaling
behavior of both PDWS and DiscreteZOO attacks. Fig. 4 shows that the influence of the embedding choice
on PDWS is more pronounced in the rapid rise phase, while it influences the DiscreteZOO primarily in the
plateau phase. Specifically, changing the text embedding from domain-specialized CODER (Yuan et al.,
2022) to the general GTE-base (Li et al., 2023b), the performance advantage of PDWS over DiscreteZOO
attacks shrunk in Flan-T5-xl (Fig. 4a) and inverted in MedAlpaca-7B (Fig. 4b).

• Sampling hyperparameter controls scaling curve shape in PDWS attacks: The hyperparameter
n changes the inflection point of the scaling curve. When the query budget passes the inflection point of the
curve, random sampling starts to surpass PDWS (n > 0) in ASR. This is a consequence of the distribution
of adversarial entities in the embedding space and the regional bias derived from the sampling weights.
The examples in Fig. 4 show that the largest performance gap between the PDWS and DiscreteZOO
attacks appears at around the inflection point of the respective query scaling curve.

• Gradient quality affects query scaling in DiscreteZOO attacks: The query complexity in blackbox
gradient estimation is a long-standing theoretical topic in derivative-free optimization (L’Ecuyer & Yin,
1998) and online learning (Duchi et al., 2015). Nevertheless, how gradient quality affects query scaling
remains less studied for adversarial attacks employing gradient-based discrete optimization. Gradient
estimation consumes a large part of the total query budget, leading to a tradeoff between the gradient
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Figure 4: Example scaling curves of the query budget against ASR for disease-mention questions with (a)
Flan-T5-xl model on MedMCQA dataset and (b) MedAlpaca model on MedQA-USMLE dataset. The curves
are generated using TCES of disease names with the methods described in the legends. The DiscreteZOO
attacks were run in the low-query-budget setting. Executing the random sampling (RS) attack doesn’t
require a text embedding, while the other attacks were evaluated with the CODER or GTE-base as text
embedding. In (c) and (d), query scaling of the attacks based on B-nearest and B-farthest element sampling
(B is query budget) for the same datasets and models as in (a) and (b) are compared with PDWS.

quality and terminal ASR attainable (at max budget) in the query scaling curve. We empirically explored
the query scaling behavior of the DiscreteZOO attack in Appendix E with different candidate points in
the multi-point gradient estimation, which in effect alters the gradient quality. The results show that
having too few candidate points (i.e. small M in Eq. 5) leads to an early onset of the plateau phase,
thereby limiting the highest attainable ASR, whereas having many candidate points can lead to a slower
growth of ASR in the rapid rise phase of the query scaling curve.

• Deterministic sampling attacks are competitive proxies of their probabilistic counterparts.
Performance comparison between B-nearest and B-farthest element sampling, the deterministic and
query-limited versions of PDWS (corresponding to the n < 0 and n > 0 regimes) are given in Fig.
4c-d for the two example cases studied for the query scaling. The results show that the deterministic
sampling attacks are already competitive against DiscreteZOO, and also close in performance to PDWS
in both specialized and general text embeddings. The difference is that these two types of deterministic
sampling attacks examines only predefined regions in the embedding space and cannot explore the entire
attack surface as PDWS would through tuning the n hyperparameter.
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A 73-year-old man presents to the outpatient clinic complaining of chest pain with exertion. He states
that resting for a few minutes usually resolves the chest pain. Currently, he takes 81 mg of aspirin daily.
He has a blood pressure of 127/85 mm Hg and heart rate of 75/min. Physical examination reveals regular
heart sounds and clear lung sounds bilateral. Which medication regimen below should be added?

A: Amlodipine daily. Sublingual
nitroglycerin as needed.

A: Amlodipine daily. Sublingual
nitroglycerin as needed.

B: Metoprolol and a statin daily. Sublingual
nitroglycerin as needed. ✓

B: Metoprolol and a statin daily. Sublingual
nitroglycerin as needed.

C: Metoprolol and ranolazine
daily. Sublingual nitroglycerin as needed.

C: N-acetylglucosamine and ranolazine
daily. Sublingual nitroglycerin as needed.

D: Amlodipine and a statin daily.
Sublingual nitroglycerin as needed.

D: Amlodipine and a statin daily.
Sublingual nitroglycerin as needed. ✓

[Context]:	A	73-year-old	man	presents	to	the
outpatient	clinic	complaining	of	chest	pain
with	exertion.	He	states	that	resting	for	a	few
minutes	usually	resolves	the	chest	pain.
Currently,	he	takes	81	mg	of	aspirin	daily.	He
has	a	blood	pressure	of	127/85	mm	Hg	and
heart	rate	of	75/min.	Physical	examination
reveals	regular	heart	sounds	and	clear	lung
sounds	bilateral.	
[Question]:	Which	medication	regimen	below
should	be	added?	
A:	Amlodipine	daily.	Sublingual	nitroglycerin
as	needed.
B:	Metoprolol	and	a	statin	daily.	Sublingual
nitroglycerin	as	needed.
C:	Metoprolol	and	ranolazine	daily.
Sublingual	nitroglycerin	as	needed.
D:	Amlodipine	and	a	statin	daily.	Sublingual
nitroglycerin	as	needed.

Unperturbed

[Context]:	A	73-year-old	man	presents	to	the
outpatient	clinic	complaining	of	chest	pain
with	exertion.	He	states	that	resting	for	a	few
minutes	usually	resolves	the	chest	pain.
Currently,	he	takes	81	mg	of	aspirin	daily.	He
has	a	blood	pressure	of	127/85	mm	Hg	and
heart	rate	of	75/min.	Physical	examination
reveals	regular	heart	sounds	and	clear	lung
sounds	bilateral.	
[Question]:	Which	medication	regimen	below
should	be	added?	
A:	Amlodipine	daily.	Sublingual	nitroglycerin
as	needed.
B:	Metoprolol	and	a	statin	daily.	Sublingual
nitroglycerin	as	needed.
C:	N-acetylglucosamine	and	ranolazine	daily.
Sublingual	nitroglycerin	as	needed.
D:	Amlodipine	and	a	statin	daily.	Sublingual
nitroglycerin	as	needed.

Adversarially perturbed

Figure 5: (Top) An entity substitution attack using n-acetylglucosamine as the replacement entity for meto-
prolol creates an adversarial distractor. (Bottom) Heatmaps of token-wise Shapley values for a question
before and after the adversarial attack on choice C. The model prediction changes from the correct choice
of B (unperturbed) to the incorrect choice of D (adversarially perturbed).

5.3 Adversarial entities manipulate explainability

Post-hoc analysis is a common way to understand the rationale behind model decisions (Murdoch et al.,
2019). Score-based feature importance such as that based on the Shapley values is routinely used to construct
post-hoc explanation of model prediction through feature attribution (Chen et al., 2023). The stability of
model explanation is a growing concern for their proper use (Alvarez-Melis & Jaakkola, 2018; Hancox-Li,
2020; Lin et al., 2023). Investigations on the susceptibility of LLM explanations to adversarial perturbation
in QA are still lacking. For score-based feature importance, an explainer ϕ(·) maps the m-dimensional
feature x ∈ Rm to scores ϕ(x) ∈ Rm. In the current context, we assess the changes in feature importance
represented by Shapley values (Chen et al., 2023) before (ϕ(Q)) and after (ϕ(Q′)) the adversarial attack
by entity substitution Q → Q′. For convenience of discussion, we use Shapley profile to refer to ϕ(Q) (or
ϕ(Q′)), the token-wise Shapley values calculated over Q (or Q′).

We investigated the changes in the Shapley profile in the two regimes of adversarial entities for open-source
LLMs, because the calculation requires access to model weights. We found that the token with the largest
Shapley value (top-1 feature) is highly correlated with the model’s prediction before and after adversarial
perturbation, with an example shown in Fig. 5 produced using Flan-T5-large. This behavior is an indicator
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of the symbol-binding characteristic of LLMs in multiple-choice QA (Robinson & Wingate, 2023). Moreover,
the Shapley profile typically exhibits pronounced changes before and after entity perturbation, especially
in the text locations close to the perturbed entities (Fig. 5 and Appendix E). Together, these observations
indicate that the substitution attacks effectively manipulate model explanations, because the explanation
after the attack aligns with the wrong prediction, as if they were correct. The behavior occurs despite
unchanged context, stem, and key (C, S, and k), which should contain the most important information for
understanding and answering the question (Chai & Jin, 2004).

6 Discussion and future work

The present study illustrates that TCES is a compact yet effective way to construct adversarial distractors,
which leads to significant performance degradation in LLMs. Our results suggest that to minimize model
queries, using a budget of up to the inflection point on the query scaling curve is the most cost-effective.
The perturbed texts produced by TCES appear natural and are less likely to be detected using grammar
check or topical filtering (Morris et al., 2020a). Therefore, the setting can simulate realistic scenarios where
the “attacks” may be initiated by unsuspecting users, such as healthcare professionals using an LLM-based
clinical decision support system (Liu et al., 2023). In the examples illustrated in Fig. 5 and Appendix E, ad-
versarial distractors can lead to disease misdiagnosis or misprescription of medication, which are detrimental
scenarios that may occur in algorithmic decision-making in biomedicine using LLMs. Further improvement
on the sampling attack performance may be achieved using learned samplers through rejection mechanisms
(Narasimhan et al., 2024) or by finetuning the text embedding to improve the query efficiency of sampling.
Alternatively, the semantic distance used for PDWS may be replaced with a concept distance (Choi et al.,
2016) to improve attack performance on general text embeddings. Our approach may be integrated into inter-
active platforms for adversarial data collection or online monitoring systems for open-ended human-machine
conversation (Chao et al., 2023).

Future research may focus on how to make LLMs more reliable through prompt engineering (Si et al., 2023;
Nori et al., 2023) or leveraging retrieval from nonparametric knowledge bases (Weikum et al., 2021; Soman
et al., 2023) or text sources (Wang et al., 2023b) to improve model generalization to long-tail entities. Besides
vulnerability identification, the current work motivates adversarial defense strategies based on generalized
distances (La Malfa et al., 2020) to establish a tiered system for robustness assessment in user-facing and
domain-oriented applications to mitigate catastrophic failures.
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