Long-Context Modeling with Dynamic Hierarchical
Sparse Attention for On-Device LLMs

Siheng Xiong'?* Joe Zou? Faramarz Fekri! Yae Jee Cho?
!Georgia Institute of Technology 2Google
sxiong4b@gatech.edu zouj@google.com fekri@ece.gatech.edu yaejeecho@google.com

Abstract

The quadratic cost of attention hinders the scalability of long-context LLMs, es-
pecially in resource-constrained settings. Existing static sparse methods such as
sliding windows or global tokens utilizes the sparsity of attention to reduce the
cost of attention, but poorly adapts to the content-dependent variations in atten-
tion due to their staticity. While previous work has proposed several dynamic
approaches to improve flexibility, they still depend on predefined templates or
heuristic mechanisms. Such strategies reduce generality and prune tokens that re-
main contextually important, limiting their accuracy across diverse tasks. To tackle
these bottlenecks of existing methods for long-context modeling, we introduce
Dynamic Hierarchical Sparse Attention (DHSA), a data-driven framework that
dynamically predicts attention sparsity online without retraining. Our proposed
DHSA adaptively segments sequences into variable-length chunks, then computes
chunk representations by aggregating the token embeddings within each chunk. To
avoid the bias introduced by varying chunk lengths, we apply length-normalized
aggregation that scales the averaged embeddings by the square root of the chunk
size. Finally, DHSA upsamples the chunk-level similarity scores to token level simi-
larities to calculate importance scores that determine which token-level interactions
should be preserved. Our experiments on Gemma2 with Needle-in-a-Haystack
Test and LongBench show that DHSA matches dense attention in accuracy, while
reducing prefill latency by 20-60% and peak memory usage by 35%. Compared
to other representative baselines such as block sparse attention, DHSA achieves
consistently higher accuracy (6—18% relative gains) with comparable or lower cost,
offering an efficient and adaptable solution for long-context on-device LLMﬂ

1 Introduction

Long-context modeling is crucial for real-world applications [Yang et al. [2024]]. However, the
quadratic complexity of attention [[Vaswani et al.| [2017|] makes scaling to long sequences prohibitively
expensive, especially in resource-constrained scenarios like on-device applications. While prior work
has explored sparsity-based methods to tackle the high cost of implementing long sequences, many
rely on static sparse patterns (e.g., Longformer [Beltagy et al.| 2020]], BigBird [Zaheer et al.| 2020])
failing to generalize across tasks or recent dynamic methods (e.g., Minference [Jiang et al., [2024],
LM-Infinite [Han et al.l [2023]], H20 [Zhang et al., 2023], Scissorhands [Liu et al.| 2023]]) rely on
oversimplified templates or heuristic cache-eviction rules, restricting adaptability and accuracy.

In this paper, we propose Dynamic Hierarchical Sparse Attention (DHSA), a lightweight plug-in
module that dynamically predicts attention sparsity during both prefill and decode stages. Unlike prior

*Work done during internship at Google.
?Code and data available at https://github.com/xiongsiheng/DHSA,

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Efficient Reasoning.

https://github.com/xiongsiheng/DHSA

Dynamic Hierarchical Sparsity Prediction

Output embeddings

A
Token-level
5) TopK Sparsity M "
X
M = TopK(S;, Ny,) —> Add & Norm
4
Feed
Forward
I Token-level $
i Similarity S
4) Upsampling HH t
::i S = fupsample(sclB) — Add & Norm
FRERH +
4 Our Proposed | Multi—Head
DHSA module Attention

3) Dot-product Chunk-level T i 4
Similarity Similarity S¢ K J

- t Positional Encoding B

A
2) Chunk) ol |cul| callesllea | c Chunk ‘
Aggregation Representation
? Bo[te| t2) ta|| ta|| ts|| to|| E|| Ee| [to || trd|trd[t14[t13
by by b, 3 by bs bs

1) Boundary
Prediction

to[lt, ||tz]|ts || ta flts || ts [lE7] [ts t10|E1af{t12|[t13)

Input Tokens T = [tg, -+, t;_4]

tg|
=

Figure 1: Overview of the proposed Dynamic Hierarchical Sparse Attention (DHSA) framework.

approaches that rely on hand-crafted sparsity patterns, DHSA learns to infer sparsity through chunk-
level similarity and adaptive boundary prediction. This makes DHSA fully data-driven, enabling it to
adapt across tasks without retraining the base model or manually tuning sparsity patterns.

Our contributions are summarized as follows:

» Hierarchical sparsity prediction. We estimate chunk-level similarity and upsample it to token-
level importance scores, enabling DHSA to focus on the most impactful attention weights and
thereby reduce latency and memory while preserving accuracy (see Section [2.1).

¢ Dynamic chunking. We introduce our proposed boundary-prediction method that adaptively
segments input sequences into variable-length chunks, overcoming the limitations of fixed-size
chunking and enabling efficient long-sequence processing (see Section [2.2).

* Robust chunk representation. We propose a length-normalized aggregation strategy that
mitigates the pitfalls of naive average pooling and better captures chunk-level representations

(see Section[2.3).

Our experiments on Needle-in-a-Haystack Test and LongBench [Bai et al., 2023]] show that DHSA
matches dense attention in accuracy while reducing prefill latency by 25-45% and peak memory
usage by 30-35%, and consistently outperforms other dynamic sparsity baselines [Han, [2024]] with
6—18% relative gains.

2 Proposed Method: Dynamic Hierarchical Sparse Attention (DHSA)

Our proposed DHSA is a plug-in module integrated into each of the N Transformer layers of an LLM
(see Fig.[I). It takes the token embeddings at the current layer as the input and outputs a sparsity
mask to prune unimportant token pairs. The core idea is to leverage chunk-level similarity to inform
token-level sparsity prediction. This requires addressing two key challenges: (1) fixed-size chunking
is too rigid to capture content shifts, and (2) average pooling poorly handles variable-length chunks.
We resolve these with the solutions detailed in Sections and 23l

2.1 Hierarchical Sparsity Prediction

Given a sequence of tokens T = [tg, t1, ..., t;_1] of total length L, its token-level sparsity mask is
denoted as M € {0, 1}, where if the i*" row and j*"* column element of M is equal to 1, i.e.,

Needle in A Haystack Gemma-2-2b dense attention Needle in A Haystack Gemma-2-2b w/ DHSA

0.8 0.8
= =
S -0.6 < 0.6
o <
& &
g 0.4 % 0.4
Q k9
a fa)
0.2 0.2
100 100
QF - Q¢ o \{—\l—\{-o'o SR P V) VS VA VP VI VIl VE VI VSV VS
~ «f’mQ'f'"bbﬂf’ ™ b:’)‘o ‘96) ©° b"’/\“«o’% N A N N A T SRR
Context Length Context Length
(a) Dense Attention (b) DHSA (budget = 1k)

Figure 2: Needle-in-a-haystack results on Gemma2-2b-it (maximum context length = 8k). The budget is
specified per query per layer.

Single-Document QA Multi-Document QA Summarization Few-shot Learning
Method NrtvQA Qasper Mf-en HotpotQA 2WikiMQA Musique GovReport QMSum MultiNews TriviaQA SAMSum
Dense 2237 3532 3732 41.63 32.05 19.05 27.08 21.08 25.48 87.00 41.26
Block sparse 16.74 26.15 32.83 35.74 31.93 14.44 26.20 19.54 25.30 86.12 40.38
DHSA 20.69 30.20 34.98 38.78 31.96 15.90 26.75 20.74 25.38 87.03 41.46

DHSA (+bs) 19.64 28.67 31.20 39.50 32.97 14.39 26.72 20.12 25.57 87.74 40.68

Table 1: Performance comparison of DHSA, dense attention, and block sparse attention on LongBench using
Gemma2-2b-it. DHSA (+bs) denotes a variant with boundary sharing across layers. For sparse method, the
budget is set as 2k. Block size and query chunk size are both set to 256 for block sparse and DHSA, respectively.

M, ; = 1, it indicates that the interaction between t; and t;, 7, j € [0, L — 1] should be preserved.
Conversely, M; ; = 0 implies that the interaction between t; and t; can be skipped.

Predicting the full matrix M directly would require scoring all L x L token pairs, which is com-
putationally prohibitive for long contexts. Instead, we adopt a two-step hierarchical approach (see
Appendix [A] for the detailed workflow):

Step 1 Chunk-level prediction: We partition the entire token sequence T into /N, non-overlapping
chunks {Cy, Cyq, ..., Cn,_1}, defined by the boundary indices B = {bg, b1, ..., bn, }, where
=by < by < ... < by, = L. Bach chunk Cg, k € [0,..., N. — 1] contains the
consecutive tokens indexed from by, to by 1. We then construct a chunk-level similarity matrix
S, € RNexNe where the ['" row and k*" column element of S, i.e., (S.); x represents the
predicted importance of interactions between chunks C; and Cy,. The procedure for obtaining

S. will be described in Section 2.3}

Step 2 Token-level selection: Starting from S., we upsample it to obtain the token-level similarity
matrix S; € RL*L, which encodes the predicted importance of attending from each query
token to every key token. Concretely, for each chunk pair (C;, Cy), {l,k} € [0, N, — 1], the
corresponding submatrix (S¢)p,:5,, 1], [bs:bs 1] 1S assigned the same value (S.); x. We define
such mapping function as fupsampie (Sc, B) = S;. Given the token-level similarity matrix S,
we generate the token-level sparsity mask M by applying a TOPK selection with a per-query
token budget defined as N,. Here IV}, is a hyperparameter, which may be set dynamically
based on available computational or memory resources.

2.2 Dynamic Boundary Detection

To better estimate S; from S., we propose a dynamic chunking strategy that adaptively determines
boundary indices B based on the input sequence. We formulate chunking as a boundary detection
problem, where the goal is to decide whether each token position marks the end of a chunk. Formally,
for each position ¢ € [0, L — 1], we define a boundary indicator function 6(¢) = 1 if i = by, for some
k; Otherwise, (i) = 0. We estimate this indicator using a neural network with three components:

Encoder. For each candidate position ¢, we extract two local windows:

Kieit = fvra (Kicw+1, -+ 5 Ki])s Krighe = funa((Kit1, -+ 5 Kigw)) (D

where w is the window size and k; denotes the key vector of token j. Each window is processed by a
Multi-Head Attention (MHA) module defined as fyya with pooling.

3

Attn. Acc. Latency Peak Mem. Context Attn. Latency Peak Mem.
Implem, ~ Method g5 ®) (GB) Len Implem, ~ Method %) (GB)
Dense 2115 1.65 10.72 oo Difse 218 Py:3
eager Block 17.04 1.00 9.08 torch.sd Dense 3.37 8.38
DHSA 20.12 1.19 6.91 orensdpa - pHsA 1.98 9.69
Dense 2237 1.10 6.33 eager Dense L5 oo
torchsdpa Block 1674 0.88 9.88 32k N Demse 10,97 1518
DHSA 1937 091 6.99 torch.sdpa ppgA 413 16.99

Table 2: Comparison on NarrativeQA with Gemma?2. Table 3: Comparison at varying context lengths with
Both block-sparse and DHSA use a 2k budget Gemma2 on a single 24 GB GPU. DHSA uses a 2k
(block/query chunk size = 256, max context = 8k). budget with a query chunk size of 256.

Feature Fusion. Given ke and kign, we construct the feature vector:
hi = [klef17 krighta |kleft - kright|a kleft O] krighl7 Sim(klefta kright)] (2)

where © is element-wise multiplication and sim(-,-) is cosine similarity. Further rationale and
analyses of this fusion choice are provided in Appendix [B]

MLP. The fused feature h; is passed through two linear layers defined as fyp:

yielding the probability that position ¢ is a boundary. The training and inference details for our
boundary predictor are provided in Appendix

2.3 Robust Chunk Representation

Now that we have the boundaries, we aggregate token embeddings to form chunk representations. We
identify two main challenges in this process: (1) average pooling after padding is problematic, as zero
embeddings from padding dilute the average, and (2) average pooling is sensitive to chunk length. To
address these issues, we compute the sum of embeddings and divide by the actual (unpadded) chunk
length, followed by length normalization:

q.=V|Cl-q, k.=+/[C|k)

where |C| denotes the number of tokens in chunk C, and q and k is the average of token queries and
keys within the chunk respectively. We then compute the dot product similarity between each chunk

query and chunk key using S, = QCKI where Q. and K, are the respective query and key matrices.

3 Evaluation

Experiment setup. We implement our method in PyTorch with Hugging Face Transformers and
run all experiments on a single NVIDIA RTX 3090 GPU. We use Gemma?2-2b-it [Gemma Team
et al.,|2024]] and Gemma3-1b-it [Gemma Team et al., [2025]] with torch.bfloat16 precision and
batch size 1. Comparisons are mainly against dense and block sparse attention [Han, [2024], the latter
lacking dynamic chunking and improved chunk representations. Further implementation details and
additional results are in Appendices|C|and D}

Results. We evaluate DHSA on Needle-in-a-Haystack and LongBench against dense and block
sparse attention. (1) Needle-in-a-Haystack Test: On Gemma?2-2b-it, retaining the top 1k tokens
per layer, DHSA matches dense attention while substantially outperforming baselines (see Fig.[2]
Fig.[6). (2) LongBench: With a 2k budget, DHSA performs close to dense attention and clearly
surpasses block sparse attention (see Table[T). (3) Latency/Memory Usage: On NarrativeQA (from
LongBench), DHSA reduces latency and memory relative to dense attention. While slightly slower
than block sparse, it achieves higher accuracy with lower memory usage (see Table [2]and [3).

4 Conclusion

We presented Dynamic Hierarchical Sparse Attention (DHSA), a method that combines dynamic
chunking with hierarchical sparsity prediction to efficiently focus on the most relevant tokens in long-
context language modeling. Experiments on Needle-in-a-Haystack Test and LongBench demonstrate
that DHSA achieves accuracy on par with dense attention while substantially reducing latency and
memory usage. Unlike static sparsity or conventional block-sparse approaches, DHSA adapts to
input-dependent attention patterns, enabling more effective use of the attention budget and offering a
practical solution for efficient long-context modeling.

Limitations

The primary goal of DHSA is to accelerate LLM inference. Although extending the maximum
context length could further enhance its utility, we found no reliable implementation for the Gemma
family, and our initial adaptation produced unexpected behavior. Debugging this was beyond the
scope of the current work, so we leave context-length extension for future exploration. Moreover,
although DHSA is fully data-driven, its performance still depends on hyperparameters such as the
chunk budget and chunk size. Developing adaptive or learned strategies for budget allocation remains
an important direction for future work.

References

Yuan Yang, Siheng Xiong, Ehsan Shareghi, and Faramarz Fekri. The compressor-retriever architecture
for language model os. arXiv preprint arXiv:2409.01495, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Mangzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for
longer sequences. Advances in neural information processing systems, 33:17283-17297, 2020.

Huiqgiang Jiang, Yucheng Li, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua
Han, Amir Abdi, Dongsheng Li, Chin-Yew Lin, et al. Minference 1.0: Accelerating pre-filling
for long-context llms via dynamic sparse attention. Advances in Neural Information Processing
Systems, 37:52481-52515, 2024.

Chi Han, Qifan Wang, Hao Peng, Wenhan Xiong, Yu Chen, Heng Ji, and Sinong Wang. Lm-
infinite: Zero-shot extreme length generalization for large language models. arXiv preprint
arXiv:2308.16137, 2023.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o0: Heavy-hitter oracle for efficient
generative inference of large language models. Advances in Neural Information Processing
Systems, 36:34661-34710, 2023.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios
Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of importance
hypothesis for 1lm kv cache compression at test time. Advances in Neural Information Processing
Systems, 36:52342-52364, 2023.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long context
understanding. arXiv preprint arXiv:2308.14508, 2023.

Lab Han. Block-sparse attention. https://hanlab.mit.edu/blog/block-sparse-attention)
2024. Accessed: 2025-08-27.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al.
Gemma 2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118,
2024.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhe;j,
Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Riviere, et al. Gemma 3 technical
report. arXiv preprint arXiv:2503.19786, 2025.

https://hanlab.mit.edu/blog/block-sparse-attention

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. triviaqa: A Large Scale Distantly
Supervised Challenge Dataset for Reading Comprehension. arXiv e-prints, art. arXiv:1705.03551,
2017.

Peng Xu, Wei Ping, Xianchao Wu, Zihan Liu, Mohammad Shoeybi, and Bryan Catanzaro. Chatqa
2: Bridging the gap to proprietary llms in long context and rag capabilities. arXiv preprint
arXiv:2407.14482, 2024.

Alexander Neubeck and Luc Van Gool. Efficient non-maximum suppression. In /8th international
conference on pattern recognition (ICPR’06), volume 3, pages 850-855. IEEE, 2006.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Yucheng Li, Tianyu Liu, Keming Lu, Wayne Xiong,
Yue Dong, Junjie Hu, et al. Pyramidkv: Dynamic kv cache compression based on pyramidal
information funneling. arXiv preprint arXiv:2406.02069, 2024.

A DHSA Workflow

DHSA applies to both the prefill and decode stages. Specifically,

* Prefill stage: When all tokens in the prompt sequence of length L are available, we first predict
the boundary indices B for the entire prompt. We then perform chunk-level prediction to obtain
S., upsample it to produce the token-level similarity matrix S; with fupsample, and apply TOPK
selection with budget IV, to obtain the token-level sparsity mask M for all tokens in the prompt.

* Decode stage: In autoregressive generation, we adapt the approach to handle the incremental arrival
of new tokens. Let L’ be the total sequence length at the current decoding step (including both
prompt and generated tokens). We extend the existing chunk boundaries B = [by, ..., bn.], by, = L
to B’ = [bg, ...,bn,, L' — 1, L']. Here we have that

— The total number of chunks becomes N, + 2.

— The chunk Cn, = [tz, ..., t 2] contains all previously generated tokens in the current decod-
ing session.

— The chunk Cp_41 = [t1-—1] contains only the current query token.

We then compute only the interactions between C 1 and all its preceding chunks to obtain last
row of the updated chunk-level similarity matrix S new. This row is upsampled to the token level to
produce the corresponding row of the updated token-level similarity matrix s pew, from which we
derive the last row of the sparsity mask my,, by applying TOPK selection with token budget N;.

We present the pseudocode of our approach for the prefill and decode stages (Algorithms [I] and [2))
and analyze the associated computational cost. Dense attention is the most expensive, as each
token attends to all L keys, leading to a cost of O(L?). Block sparse attention is more efficient
because each token attends to only IV, keys, reducing the cost to O(L - N;), while the routing term
is typically sub-dominant for realistic sequence lengths. DHSA lies in between: it retains most of
the efficiency gains of block sparse attention but introduces an additional O(L) pass for boundary
prediction, which identifies chunk boundaries. For sequence lengths where attention is the primary
bottleneck (thousands of tokens), the general cost ordering is: Block sparse attention < DHSA <
Dense attention.

B Boundary Detection

We formulate the chunking task as a boundary detection problem, where the objective is to determine
whether each token position marks the end of a chunk. Formally, for each position i € [0, L — 1], we
define a boundary indicator function

5(i) = 1 if ¢ = by for some k,
~ |0 otherwise,

indicating that the token at position ¢ is the last token of a chunk. This end-boundary prediction
approach aligns naturally with the way sequences are segmented, as it allows the model to determine
when a coherent segment of context has concluded. By framing the task this way, we can leverage
binary classification methods to adaptively segment sequences in DHSA.

This probability, denoted as Pr(é(i) = 1), is predicted based on the local key representations
surrounding ¢, using a boundary prediction function that takes as input two windows centered at 4:

[ki7w+17 e 7ki]7 [ki+1a T 7ki+w]a

where w is a hyperparameter that determines the receptive field and k; denotes the key vector
corresponding to token j.

Local context is sufficient for boundary prediction because chunk boundaries are determined by
local changes in semantic similarity. Intuitively, if the left window (preceding tokens) and the
right window (succeeding tokens) are highly similar, the two regions likely belong to the same
chunk, and no boundary should be placed. Conversely, a sharp drop in similarity between these
windows indicates a topic or context shift, suggesting the end of a chunk. Moreover, focusing on
local context rather than the full sequence significantly reduces computation. Evaluating boundaries
requires processing only tokens per position which is essential for efficiency. To further validate the

Algorithm 1 DHSA: Prefill Stage

Algorithm 2 DHSA: Decode Stage

Input: prompt tokens {t; f;ol of length L; prompt

chunk boundaries {b; }?’:CO of length N, + 1; per-
query token budget IV,

Output: token-level sparsity mask M

1:

2:

Define chunks C; < [ts;, ..
to No — 1

Obtain chunk-level queries Q..[7, :] and keys K[/, :
] for each C;

Sty). forj =0

Input: prompt tokens {t;}~,'; prompt chunk bound-

aries {bj};-VCO and chunks {Cj};\;co_l; cur-

rent total length L’; previous generated tokens
{t:}.,?; current query token t;/_,; per-query
token budget Ny

Qutput: last row of the updated token-level sparsity

mask Mmyew

: Define the updated boundaries by, 1 < L' — 1

3: Compute chunk-level similarity: S. < QCK;r € and by, 42 « L/
NC NC €
R 2: Define the updated chunk Cy, —
tL,...,t ’_ 2[1‘1(1(:1\]C 1 |t

4: Initialize token-level similarity S; € R“*" toze- 3. {deate chuLnk—level keys Iz'c for ([jf, aljd Cn.41
5 ;05 0N —1d 4: Compute last row of the updated chunk-level sim-

i forj=0to N. —1do ilarity senew < qz/_; (K.) " € RNH2
6: forl =0t N.—1do Y Senew ¢ Az-1(Ke)
7. Se[bj : bj41,be : biga] < Seld, 1] 5: Initialize last row of the updated token-level simi-
g.' nde;l g for larity S¢ new € RZ with zeros

- endlo 6: for j = 0to N. + 1 do
10: Initialize mask M € {0, 1}2** to zeros ; endsgéfw [b : bjt1] 4= Sc.newls]

11: for: = 1to L do

12: Select Top N, proceeding keys based on Sy, : 9: Tnitialize mask muey € {0, 1} L' ith zeros

10: Select Top Ny proceeding keys based on s¢ new
11: Update myey accordingly
12: return myey

13: Update Mz, :] accordingly
14: end for
15: return M

interpretability of these boundaries, we analyzed their correspondence with sentence and paragraph
endings and observed a strong alignment, suggesting that DHSA captures meaningful discourse-level
transitions.

Architecture. We define the boundary prediction function as a neural network. After exploring
various architectures and hyperparameters, we finalize the design shown in Fig.[3] This architecture
was chosen because it strikes a balance between expressiveness, efficiency, and robustness. The
encoder effectively captures contextualized token embeddings for both the left and right windows.
The feature fusion module proved more stable and discriminative than using a single metric in
isolation. The final MLP is shallow enough to maintain low latency but still has sufficient capacity.
By keeping the receptive field limited to 2w tokens, the total prediction cost is linear to token length

In the feature fusion module, we combined the raw context vectors Kief, Krigne, absolute differences
|Kieft — Krigne|, multiplicative interactions Kies © Kiignt, and cosine similarity sim(Kief, Kiignt) because
each signal captures complementary aspects of boundary semantics. The raw vectors preserve
local context information, absolute differences highlight directional changes between left and right
spans, multiplicative interactions emphasize co-activation patterns, and cosine similarity provides
a normalized measure of alignment. Together, these features make the boundary predictor more
robust to scale, length, and semantic variation. In ablations, we found that using only a single
similarity measure (e.g., cosine similarity) was less stable, whereas combining multiple signals
yielded consistently better boundary detection.

We selected the optimal hyperparameters using the Long Data Collections dataseﬂ The selection
process involved monitoring training loss, training metrics, and validation metrics, including precision,
recall, F1 score, and topK overlap. In addition, we evaluated the end-to-end performance of the
trained model on the validation set. The chosen configuration includes a context window size of
w = 4 (i.e., 8 tokens per position), 8 attention heads, average pooling, a hidden size of 256 in the
MLP, and a total model size of 20 MB shared across layers and datasets.

*https://huggingface.co/datasets/togethercomputer/Long-Data-Collections

https://huggingface.co/datasets/togethercomputer/Long-Data-Collections

Explicit modeling incorporates multiple similarity signals beyond raw encodings, enhancing both
interpretability and performance. Adaptability is achieved by using a single model shared across
layers and datasets, which promotes generalization and efficiency. The model is also lightweight:
with a size of only 20 MB, it is well-suited for deployment in resource-constrained environments.

Automatic labelling. To train the boundary predictor, we automatically derive ground-truth labels
from attention scores, avoiding the need for manual annotation. We adopt this intermediate labelling
strategy instead of end-to-end training from final task performance. End-to-end optimization is
computationally intractable, as it would require differentiating through boundary indices with only
sparse, delayed supervision from downstream metrics. In contrast, derived labels provide dense, local
supervision, turning boundary detection into a well-defined, efficient classification problem that still
captures the structural cues implicit in the model’s own attention behavior.

Specifically, we analyze accumulated attention mass patterns. Tokens within a coherent span typically
exhibit consistent accumulated attention profiles, meaning the distribution of attention mass over
preceding tokens remains relatively stable across positions within the span. In contrast, a boundary is
often marked by a sudden change in this profile, such as when the subsequent token’s accumulated
attention shifts sharply toward a different subset of preceding tokens.

Fig.] illustrates our automatic labeling strategy. For each candidate position, we examine the
accumulated attention mass patterns in its left window and right window, where each row in the
heatmap corresponds to a token and color intensity indicates the magnitude of accumulated attention
mass. In the left example, the left and right windows (both outlined in blue) exhibit highly similar
attention profiles, indicating that the tokens around this position belong to the same coherent span;
thus, the position is not labeled as a boundary. In the right example, the attention profiles of the
left window (blue) and right window (green) differ markedly, signaling a sharp change in attention
behavior. This difference suggests that the position lies at the end of a chunk and should be labeled as
a boundary.

Formally, let the token sequence be
T = [thtla s 7tL—1}

with length L, and let A € RL*L denote its attention matrix, where A, ,, is the attention weight from
token u to token v.

For each position ¢ € [0, L—1], we consider whether it marks the end of a chunk. To do so, we examine
two local windows of size w on either side of 4, i.e., the past window: tokens {t; 1, ...,t;} and
the future window: tokens {t;4+1,...,t;1w}-

Shared Encoder [timwrr o Gl [Eimwern, oo 8]
6()=0
h’i = [kfef.EJ k:'l’ght: |klefr - k)'igh[» kreftgkwgfﬁ.JSim(kfeftJ k?'r_gfu‘.)] [tj‘W+1‘ T t]] [tj—W+1‘ T t]]

s =1
Pr(8(i) = 1)

Figure 4: Illustration of our automatic
Figure 3: Architecture of the boundary predictor, consist- labeling strategy. The core intuition is
ing of a shared encoder, a feature fusion module, and an that tokens within a coherent span tend
MLP classifier. to receive similar attention distributions.

We then compute the past cumulative attention mass:

1 L-1 i
apast(i)zm Z Z Au,va 5)

u=i+w+1v=i—w+1

and the future cumulative attention mass:

L—-1 i+w

afut(i) = ﬁ Z Z Au,v» 6)

uw=1+w+1v=1+1

where w = 4 is the local window size (receptive field), and the outer sum index u iterates over future
tokens (beyond i 4+ w) while the inner sum index v iterates over the tokens in the corresponding
window.

‘We define the attention ratio:

max (afm(i)a apast(i)) +e

Ty = —; - -
min (afm(z), apast(z)) + e

))

where € = 0.001 is added for numerical stability.

Given the maximum allowed number of chunks N, and a threshold 8,. = 1.1, we select the top N, — 1
positions ¢ whose r; exceeds 6, (with positions 0 and L always included as boundaries), with N,
serving as the primary constraint in practice.

Visualization. We show token-level (normalized) similarity matrix with static and dynamic chunk-
ing in Fig.[5] Static chunking divides the sequence into fixed-size non-overlapping chunks for
attention computation, whereas dynamic chunking adapts chunk boundaries based on our labelling
strategy. These examples are taken from Gemma2-2b-it, which alternates local and global attention
layers. Layer O is a local attention layer and Layer 1 is a global attention layer, and we treat them
separately in the visualization to highlight the differences.

In the static chunking plots (left), chunk boundaries are fixed at uniform intervals, producing rigid,
evenly spaced attention bands that may split semantically related tokens across chunks. In contrast,
the dynamic chunking plots (right) show irregularly sized chunks whose boundaries shift with the
attention patterns, allowing both local and global attention layers to capture longer, more coherent
spans within a single chunk. This alignment to content can reduce boundary-induced information
loss and improve performance.

Training of the boundary predictor. We describe below the key implementation details of our
training pipeline that are non-trivial and contribute meaningfully to performance.

Instead of using hard labels, which are obtained by selecting the top /N, — 1 positions with the highest
attention ratios, we adopt a soft labeling strategy. Hard labels are inherently sensitive to the chunk
number constraint, i.e., the fixed number N. — 1 of chunk boundaries to be selected per sequence.
Under this scheme, a position with a given ratio r might receive a label of 1 for one choice of N,
but a label of O for another, even though its underlying ratio has not changed. This sensitivity can
confuse the model and discard useful information about positions near the cutoff.

To address this, we convert the attention ratio r into a continuous probability value using the following
transformation:

p=o(a-(log(r+¢) - B)) ®)
where r is the ratio, ¢ = 107 is a small constant for numerical stability, « = 2.0 and 3 = 1g(2.0)
are scalar parameters controlling the slope and offset, with base e ~ 2.71828, and o (z) = 1-&-% is

the sigmoid function.

This maps the ratio to a probability in the [0, 1] range, preserving the relative ordering of positions
and capturing confidence without enforcing a hard cutoff. Positions with higher ratios produce
probabilities closer to 1, but those with moderately high ratios still receive meaningful supervision.
This approach is in line with knowledge distillation, where soft targets have been shown to improve
generalization by providing richer learning signals than binary labels.

10

Attention Mask Attention Mask

03— . 0.0 0
..".L i 0.0
1000 H 1000
. -0.2
2000 2000
k -0.2
3000 k 3000
c — c
8 A o S
= =
@ .I @ -04
£ 4000 & 4000
5 | A 5
g A | g
O 5000 -06 O 5000
“' . -0.6
6000 ' k 6000
k 0.8 o8
7000 : ‘ 7000
H h h
8000 ! ! ‘ | k 8000
: - -10 -10

0 1000 2000 3000 4000 5000 6000 7000 8000 0 1000 2000 3000 4000 5000 6000 7000 8000

Key Position Key Position
(a) Static Chunking (local attention layer) (b) Dynamic Chunking (local attention layer)

0 Attention Mask 0 Attention Mask

1000

5
8
8

2000

N
S
8
8

3000

w
8
8
8

4000

2
8
8
8

Query Position
Query Position

5000

m
g
8
8

6000

@
8
8
s

7000

3
3
8
8

8000

8
8
s

-10

-10 -
0 1000 2000 3000 4000 5000 6000 7000 8000 0 1000 2000 3000 4000 5000 6000 7000 8000

Key Position Key Position
(c) Static Chunking (global attention layer) (d) Dynamic Chunking (global attention layer)

Figure 5: Token-level similarity matrices with static (left) and dynamic (right) chunking in Gemma2-
2b-it. Static chunking uses fixed-size chunks, while dynamic chunking adapts boundaries to content,
shown for a local attention layer (layer 0) and a global attention layer (layer 1).

Using the conventional Binary Cross-Entropy (BCE) loss for training our boundary predictor in
dynamic chunking, we identify two key issues: (1) class imbalance, where boundary tokens are
much fewer than non-boundary tokens, and (2) varying sample difficulty, where some boundaries are
easier to detect than others. To address these, we adopt the focal BCE loss, which down-weights the
contribution of easy examples and amplifies the focus on harder, misclassified cases. The weighting
term (1 —p;)” automatically reduces the loss for well-classified positions (large p; for positives, small
p; for negatives), while the fixed positive-class weight w offsets the imbalance between boundary
and non-boundary positions.

L= (1=p)[= wyilogps — (1= y:) log(1 — pi)] ©)
where y; € [0,1] is the ground-truth soft label for position ¢, z; € R is the logit produced by the
boundary predictor, p; = o(z;) = H% is the predicted probability, w = 1.3 is the fixed positive-

class weight for class imbalance, and v = 2.0 is the focal parameter controlling emphasis on hard
examples.

We further accelerate training through the following strategies. (1) Storing only boundary labels:
Instead of storing both input embeddings and boundary labels, which would consume excessive
memory, we store only the labels. This allows the model to perform dynamic chunking directly from
the loaded labels without recalculating them. Additionally, the labels can be generated in parallel
for all training samples, significantly improving efficiency. (2) Training all layers simultaneously:
The boundary predictor needs to be trained for all layers. Rather than performing multiple forward

11

passes, one for each layer, we perform a single forward pass of the language model per sample to
obtain input embeddings for all layers. These embeddings are then used to train the predictor for all
layers simultaneously.

Data preparation. We analyze existing long-context datasets for both training and inference. For
training, we select Long Data Collectionﬁ trivia QA [Joshi et al., 2017E], ChatQA2 [Xu et al., 2024E]
that mainly focus on high-quality question answering and summarization tasks. We inspected the
datasets and found that the samples are quite similar. To accelerate training, we apply sampling by
selecting the first 10,000 samples from each dataset for training. For evaluation, we use the first 100
samples from the validation set of each dataset.

Metrics. We monitor the following metrics during training to facilitate debugging and to compare
different hyperparameter configurations. We track the training loss across all layers (results shown
for Gemma2-2b-it, which has 26 layers in total). For training, we evaluate precision, recall, and F1
score for the positive class (where soft labels > 0.5 are treated as positive), as well as top-K overlap
with K = 500. Top-K overlap is defined as the number of overlapping positions divided by K, and
we monitor this metric because, during inference, the top positions are selected as boundaries. For
validation, we compute precision, recall, F1 score, and top-K overlap (X = 500) on the validation
set.

Inference of the boundary predictor. We observe that selecting positions purely based on the
topK scores can lead to suboptimal boundaries due to noise and closely spaced high-score peaks.
To mitigate this, we adopt Non-Maximum Suppression (NMS) [Neubeck and Van Gool, 2006], a
technique widely used for eliminating redundant detections in computer vision. The core idea is
to keep only the highest-scoring candidate within a local neighborhood, thereby producing well-
separated, reliable boundaries.

We first obtain the boundary scores by computing the boundary predictor’s output scores for all
positions in the sequence, which represent the model’s confidence that a given position marks a chunk
end. Next, we identify candidate boundary positions by selecting all positions whose scores exceed a
minimal confidence threshold, thereby pruning out low-probability positions while retaining multiple
plausible candidates. The remaining candidates are then sorted in descending order of their scores,
ensuring that higher-confidence positions are considered first during suppression. We subsequently
apply NMS: starting with the highest-scoring candidate, we mark it as a boundary and remove any
other candidates within a specified window size (e.g., 8 or 64 tokens) of this position, as they are
considered overlapping or too close to be separate boundaries. After suppression, the final set consists
of well-spaced local maxima that are more robust to noise and score fluctuations.

Applying NMS with a small window size (e.g., 8) yields better results than using no NMS. For
tasks requiring broader context segmentation, a larger NMS window size (e.g., 64) further improves
performance. In some cases, we also augment the output with explicit boundaries such as \n, \n\n,
or prior information from structured prompts to better align with semantic structure.

C Implementation Details

We primarily implement the method using PyTorch and Hugging Face Transformers. All experiments
were conducted on a single NVIDIA RTX 3090 GPU (24 GB) running Ubuntu 22.04.4 LTS. The
software environment includes Python 3.12, CUDA 12.4, PyTorch 2.5.1+cul24, and Transformers
4.52.3. We used the GemmaZ—Zb-iﬂ and Gemma3-1b—itﬂ with torch.bfloat16 precision and a
batch size of 1. In Gemma2-2b-it, global attention is applied in every other layer with a sliding
window of 4,096 tokens, and the model supports up to 8,192 position embeddings. In Gemma3-1b-it,
global attention is applied in every sixth layer with a sliding window of 512 tokens, and the model
supports up to 32,768 position embeddings.

*https://huggingface.co/datasets/togethercomputer/Long-Data-Collections
*https://huggingface.co/datasets/mandarjoshi/trivia_qa
Shttps://huggingface.co/datasets/nvidia/ChatQA2-Long-SFT-data
"https://huggingface.co/google/gemma-2-2b-it
%https://huggingface.co/google/gemma-3-1b-it

12

https://huggingface.co/datasets/togethercomputer/Long-Data-Collections
https://huggingface.co/datasets/mandarjoshi/trivia_qa
https://huggingface.co/datasets/nvidia/ChatQA2-Long-SFT-data
https://huggingface.co/google/gemma-2-2b-it
https://huggingface.co/google/gemma-3-1b-it

Needle-in-a-haystack test. We evaluated different baselines using Gemma?2-2b-it and Gemma3-
1b-it, starting with an assessment of the models’ long-context processing capabilities through the
needle-in-a-haystack test. This benchmark evaluates a model’s ability to locate a target sentence (the
needle) within a long context and is widely used for long-context language modeling. Our setup
used context lengths ranging from 1,000 to 8,000 tokens (interval of 100) and depth ranges from
0% to 100% (interval of 10%). The prompt format was: <|im_start|> This is a very long
story book: <book> {context} </book>. Based on the content of the book,

Question: {retrieval_question} Answer: with the needle sentence “The best thing to do
in San Francisco is eat a sandwich and sit in Dolores Park on a sunny day.” and the corresponding
retrieval question “The best thing to do in San Francisco is:”. We used ROUGE as the evaluation
metric, and visualized results with green indicating correct and red indicating incorrect predictions.

D Additional Results

Needle-in-a-haystack test. The results are shown in Fig.[6] Among sparse attention methods,
sliding window attention [Beltagy et al., 2020] relies on static patterns that perform poorly when the
actual attention deviates from the predefined one. On Gemma?2-2b-it, retaining the top 1k tokens
per layer, DHSA matches dense attention while substantially outperforming block sparse attention.
Even with a budget of 512, DHSA maintains strong performance, highlighting its efficiency. We also
observe that Gemma3-1b-it, despite having more local attention layers, exhibits stronger long-range
contextual understanding. This improvement likely stems from architectural and training advances,
including an extended positional encoding range (32k vs. 8k), optimized placement of global layers,
refined local attention designs, and greater exposure to long-form data during pretraining.

Latency/memory usage comparison. We further evaluated the latency and memory usage of
different methods: block sparse attention, sliding window attention, StreamingL.LM [Xiao et al.,
2023|], H20 [Zhang et al.l 2023]], and PyramidKV [Cai et al.||2024]. Note that StreaminglL. LM, H20,
and PyramidKYV focus on KV cache compression, which does not reduce prefill latency or prefill
peak memory usage. Block sparse attention, similar to our method, can affect prefill latency and peak
memory usage.

For the latency test on Gemma2-2b-it (Fig. [7), block sparse attention has a prefill budget of 512,
sliding window attention has a maximum KV cache capacity of 2048, while StreamingL.L M, H20,
and PyramidKYV are limited to 128. Block sparse attention with larger block sizes can also reduce
prefill latency. On the other hand, for all decode-stage methods, prefill time increases with context
length since KV cache compression only applies during decoding. Decoding time remains constant
for KV cache compression methods regardless of context length, whereas dense attention decoding
time increases as the context grows because more KV states are cached. Reducing the maximum KV
cache capacity, such as using 2048 for sliding window attention compared to 128 for compression
methods, has only a minor effect on wall-clock time, since the attention forward pass during decoding
accounts for only a small portion of the total computation.

For the memory usage test on Gemma2-2b-it (Fig. [§), larger block sizes in block-sparse attention
reduce prefill memory usage. In contrast, all decode-stage methods show increasing prefill memory
with context length, since KV compression only applies during decoding. During decoding, KV
cache compression methods keep peak allocated memory constant, while dense attention memory
usage grows with context length. Sliding window attention exhibits higher peak memory usage
because of its larger cache capacity.

For the latency test on Gemma3-1b-it (Fig.[9), decoding time remains constant regardless of context
length because Gemma3 applies global attention only every six layers. In the local attention layers,
the KV cache size does not grow with context length. For the memory usage test on Gemma3-1b-it,
we noticed that sliding window attention with a large KV cache capacity (2048) shows higher memory
usage at the first decoding step because new key/value states for a single token are concatenated to
the existing cache. Since torch.cat () creates a new tensor rather than modifying in place, both the
old and new tensors are temporarily stored in memory. For models with many layers, this can double
KV cache memory usage temporarily. After the first decoding step, memory usage stabilizes, and
reported values correspond to this stabilized state.

13

Needle in A Haystack Gemma-2-2b dense attention 10

2 0.8
e
& 0.6
&
< 0.4
=
a 0.2
& - - S & - & - - NS & - & - v 20
N S N T A A P A S
Context Length
(a) Dense Attention
Needle in A Haystack Gemma-2-2b sliding window attention 1.0
g 0.8
€
g 0.6
&
< 0.4
=
a 0.2
= - = & = - = - - = - = - v 20
N S N T A A AP A S
Context Length
(b) Sliding Window Attention (budget = 2k)
Needle in A Haystack Gemma-2-2b block sparse attention 1.0
g 0.8
c
g 0.6
&
< 0.4
=
a 0.2
= - = & = - = - = & = - = - « 00
N S N T A A AP A S
Context Length
(c) Block Sparse Attention (budget = 1k)
Needle in A Haystack Gemma-2-2b DHSA 1.0
g 0.8
£
g 0.6
&
- 0.4
=
Q.
a 0.2
= - = & = - = - = & = - = - v 00
RN N S R N S S A PN PR A
Context Length
(d) DHSA (budget = 1k)
Needle in A Haystack Gemma-2-2b DHSA 1.0
3 0.8
£
g 0.6
&
< 0.4
S
Q.
a 0.2
0.0

S N
RO RS N R A S S S PR SR

Context Length
(e) DHSA (budget = 512)
Figure 6: Needle-in-a-haystack results on Gemma2-2b-it (maximum context length = 8k). The budget
is specified per query per layer. Block size and query chunk size are both set to 64 for block sparse
and DHSA, respectively.

14

Latency Comparison between Different Methods Latency Comparison between Different Methods

12
—— dense attention prefill —— dense attention prefill
block sparse attn prefill (block size: 16) dense attention decode
10 | —#— block sparse attn prefill (block size: 32) 10 | —#— sliding window attn prefill
—#— block sparse attn prefill (block size: 64) —o— sliding window attn decode
—#— block sparse attn prefill (block size: 128) —— streaming lim prefill
8 8 1 —e— streaming lim decode
h2o prefill
I I —8— h20 decode
e 6 2 61 pyramid kv prefill
E £ —&— pyramid kv decode
44 4 4
} = - —— 4
2 2
_/
04 04| m
T T T T T T T T T T T T T T
0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000
Context Token # Context Token
(a) Prefill-stage sparse attention (b) Decode-stage sparse attention

Figure 7: Latency comparison on Gemma2-2b-it with varying context lengths. Sliding-window
attention uses a budget of 2048, block sparse attention 512 and KV compression (streaming LLM,
h2o0, pyramidKV) 128. The number of generated tokens is 100, and all methods are implemented
with torch.sdpa.

Memory Usage Comparison between Different Methods Peak Memory Usage Comparison between Different Methods
204 —#— dense attention prefill 16 1 —#— dense attention prefill
block sparse attn prefill (block size: 16) dense attention decode
—#— block sparse attn prefill (block size: 32) —— sliding window prefill
_ 184 —#— block sparse attn prefill (block size: 64) _la{ —e— sliding window decode
a —#— block sparse attn prefill (block size: 128) ('5 —— streaming llm prefill
> N —e— streaming lim decode
E g 124 h2o prefill
g % —8— h2o decode
© o pyramid kv prefill
2 £ 101 —e— pyramid kv decode
g g
B <
X X
6
T T T T T T T T T T T T T T
0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000
Context Token # Context Token
(a) Prefill-stage sparse attention (b) Decode-stage sparse attention

Figure 8: Peak memory usage comparison on Gemma2-2b-it with varying context lengths. Sliding-
window attention uses a budget of 2048, block sparse attention 512 and KV compression (streaming
LLM, h2o0, pyramidKV) 128. The number of generated tokens is 100, and all methods are imple-
mented with torch. sdpa.

Finally, we note several potential influencing factors in KV compression methods (Fig.[I0). Large
changes in wall-clock inference time occur only with substantial reductions in KV cache size. While
KV compression may not drastically shorten inference time, it clearly reduces memory usage. In
addition, decoding time is largely proportional to the number of newly generated tokens.

15

Latency Comparison between Different Methods

Peak Memory Usage Comparison between Different Methods

104 —® dense attention prefill
54 / dense attention decode
—#— sliding window prefill
e—ft—o $— ;ﬁ _ —e— sliding window decode
4l T & 84 —®— streaming lim prefill
E —e— streaming lim decode
. g h2o prefill
0 3] —#— dense attention prefill g —8— h2o decode
“E’ dense attention decode > 6 pyramid kv prefill
= —— sliding window attn prefill % —8— pyramid kv decode
2 —e— sliding window attn decode 8
,—#— streaming llm prefill <
" —e— streaming llm decode § 44
1] h2o prefill o
—8— h2o decode
pyramid kv prefill
04 B - —0— pyramid kv decode 219 $
T T T T T T T - - - - - - -
0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000
Context Token # Context Token
(a) Latency (b) Memory Usage

Figure 9: Latency and peak memory usage comparison across different baselines with varying context
length on Gemma3-1b-it. Sliding-window attention uses a budget of 2048, block sparse attention 512
and KV compression (streaming LLM, h20, pyramidKV) 128. The number of generated tokens is
100, and all methods are implemented with torch. sdpa.

Latency v.s. Max KV Cache Capacity Latency v.s. Number of Generated Tokens
4.2
—8— sliding window attn decode —®- sliding window attn (max capacity 16384) prefill
h2o decode 40 + h2o (max capacity 128) prefill
—8— sliding window attn (max capacity 16384) decode

—8— h2o (max capacity 128) decode

Time (s)
Time (s)

o4

- - - - - - - - - T T T T
0 2000 4000 6000 8000 10000 12000 14000 16000 200 400 600 800 1000
Max KV Cache Capacity # Generated Tokens

(a) Latency vs. Maximum KV Cache Capacity (con- (b) Latency vs. Number of Generated Tokens (context
text length = 32k, generated tokens = 100) length = 32k)

Figure 10: Potential factors affecting the latency of KV compression methods on Gemma?2-2b-it. The
attention is implemented with torch. sdpa.

16

	Introduction
	Proposed Method: Dynamic Hierarchical Sparse Attention (DHSA)
	Hierarchical Sparsity Prediction
	Dynamic Boundary Detection
	Robust Chunk Representation

	Evaluation
	Conclusion
	DHSA Workflow
	Boundary Detection
	Implementation Details
	Additional Results

