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ABSTRACT

Normalizing flows (NFs) provide a powerful tool to construct an expressive distri-
bution by a sequence of trackable transformations of a base distribution and form a
probabilistic model of underlying data. Rotation, as an important quantity in com-
puter vision, graphics and robotics, can exhibit many ambiguities when occlusion
and symmetry occur and thus demands such probabilistic models. Though vari-
ous NFs in Euclidean space have been proposed, there are no normalizing flows
tailored for SO(3) manifold. Given the unique non-Euclidean properties of the
rotation manifold, adapting the existing NFs to SO(3) manifold is non-trivial. In
this paper, we propose a novel normalizing flow on SO(3) by combining a Möbius
transformation-based layer and a quaternion affine transformation. With our pro-
posed rotation normalizing flows, one can not only effectively express arbitrary
distributions on SO(3), but also conditionally build the target distribution given in-
put observations. Extensive experiments show that our rotation normalizing flows
significantly outperform the baselines on both unconditional and conditional tasks.

1 INTRODUCTION

Endowing a neural network with the ability to express uncertainty along with the prediction is of
crucial influence to safety and interpretability-critical systems and provides valuable information
for downstream tasks (Schwalbe & Schels, 2020; Leibig et al., 2017; Ching et al., 2018). As a
widely used technique in computer vision and robotics, rotation regression can also benefit from
such uncertainty-aware predictions and enable many applications (Sattler et al., 2019; Glover et al.,
2012; Crassidis & Markley, 2003).

To this end, recent years have witnessed much effort in modeling the uncertainty of rotation via prob-
abilistic modeling of the SO(3) space, including von-Mises distribution for Euler angles, Bingham
distribution for quaternions, matrix Fisher distribution for rotation matrices, etc. Those distributions
are all single-modal, which fall short on modeling objects with continuous symmetry, which are
ubiquitous in our daily life. Taking cup as an example, it exhibits rotational symmetry for which
modeling with the unimodal or the mixture of distributions is clearly insufficient. How to model an
arbitrary distribution on SO(3) manifold is still a challenging open problem.

One choice is to model distributions on SO(3) manifold via discretization, which has been proposed
by Implicit-PDF (Murphy et al., 2021). Implicit-PDF takes input an arbitrary rotation and outputs its
corresponding unnormalized pdf, thus reconstructing the unnormalized distribution with sampling
strategies and is required to compute the normalization constant via dense sampling to obtain the
full discrete approximation of the target distribution. Obviously, the influence of discretization error
and the computational cost is a trade-off pair. Moreover, the discretized distribution does not offer
an efficient method to sample from the target distributions.

Normalizing flows (Rezende & Mohamed, 2015), which maps samples from a simple base distribu-
tion to samples from the target distributions via invertible transformations, provides a flexible way
to express complex distributions and appears to be a strong candidate in modeling arbitrary rotation
distributions.

1



Under review as a conference paper at ICLR 2023

However, despite the great progress in normalizing flows in Euclidean space (Dinh et al., 2014;
2016; Kingma & Dhariwal, 2018; Ho et al., 2019; Behrmann et al., 2019; Chen et al., 2019), there is
little trial on how to effectively construct flows on the non-Euclidean SO(3) manifold and converting
the existing flows into the rotation space is highly non-trivial due to the uniqueness of the SO(3)
manifold.

In this work, we propose a novel rotation normalizing flows on SO(3) manifold. We, for the first
time, build discrete normalizing flows on rotation matrix representation, and have no singularity
encounter in Falorsi et al. (2019). Our flows can be arbitrarily flexible, and provide a way for
efficient sampling and probability inference.

One block of our discrete rotation normalizing flow is composed of a Möbius coupling layer and an
affine transformation in quaternion space, connected by conversions between rotations and quater-
nions. Our Möbius coupling layer leverages the Möbius transformation, whose parameter is condi-
tioned on one column of the rotation matrix, to map another column while maintaining unit length
and thus effectively rotates the other two columns of the rotation matrix. Multiple Möbius coupling
layers can be linearly combined to improve efficiency and we propose a constraint to resolve the
involved discontinuity. Furthermore, to further improve the expressivity of this flow, we propose to
convert the rotation to a quaternion and perform an affine transformation in quaternion space. This
affine transformation is complementary to the Mobius coupling layer and can serve global rotation
as well as condensing or dilating local likelihood in SO(3). Together with the two modules, our
discrete rotation normalizing flow is very expressive and maintains the invertibility.

We conduct extensive experiments to validate the expressivity and stability of our proposed rotation
normalizing flows. The results show that our rotation normalizing flows are able to either effectively
fit the target distributions on SO(3) with distinct shapes, or regress the target distribution given input
image conditions, where our method achieves superior performance over all the baselines.

2 NORMALIZING FLOWS ON RIEMANNIAN MANIFOLD

Normalizing flows (NFs) provide a flexible way to construct complex distributions in high-
dimensional Euclidean space by transforming a base distribution through an invertible and differen-
tial mapping. It can be extended to Riemannian manifolds embedded in a higher dimensional space
(Papamakarios et al., 2021)(Gemici et al., 2016). Formally, normalizing flows transform base dis-
tributions π(x), x ∈ M to target distributions p(y), y ∈ N , where M,N are Riemannian manifold
and have the same topology, via diffeomorphisms T . The probability density function(pdf) of x can
be calculated by change of variable formulas:

p(x) = π(T−1(x))|det JT−1(x)|, (1)

where JT−1(x) = ∂(T (x))
∂x is the D ×D partial derivatives of T−1 at x.

As diffeomorphisms are composable, in practice, the transformation T is often implemented via a
sequence of simple transformations T = TK ◦ · · · ◦ T2 ◦ T1, whose Jacobian determinants are easy
to evaluate. The determinant of the composed transformation is given by:

det(JT (u)) = Πk
i=1 det(JTi+1

(Ti(u))) (2)

The advantage of normalizing flows is that it enables both forward and inverse processes and one
can calculate p(x) during the process, so to fit the target distribution we can maximize the negative
log-likelihood (NLL) of the training data in the inverse process, and to sample from the model
distribution, one can sample from the base distribution and transform it in the forward process.

3 METHOD

The first question for a flow on SO(3) manifold is the representation of rotations. As shown in Zhou
et al. (2019), representations in Euclidean space of less than 5 Dimension are discontinuous, so we
choose rotation matrix, a 9D representation, and design 2 diffeophsisms on SO(3) manifold. One is
the Möbius coupling directly built on rotation matrix, and the other is constructed by a conversion
from rotation on quaternion followed by affine transformation defined in quaternion space and a
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Figure 1: Pipeline overview. Our flow model takes rotations as input and outputs transformed
rotations and log determinants of Jacobian, transforming a uniform distribution to a target one. Our
flow is done by iteratively altering Möbius coupling on Rotation matrix representation and Affine
transformation on Quaternion for K times. For probability inference, data are fed into the flow to
the corresponding rotation which is of uniform distribution and predict log-likelihood; while in the
sampling process, our flow runs inversely, generating new data by transforming samples from the
uniform distribution. The distribution visualization is borrowed from (Murphy et al., 2021) where
SO(3) is projected to a 2D sphere by Hopf fibration, points on the 2D sphere indicate the direction
of a canonical z-axis, the colors represent the tilt angle about that axis, the direction of a canonical
z-axis and the sizes of points show the probability density.

conversion back to rotation matrix. Intuitively, our model is similar to Glow(Kingma & Dhariwal,
2018) with the first part serving as coupling layer which can create complex transformation using
multilayer perceptron(MLP) and the last part serving as 1× 1 convolution which can make the first
part more flexible using learnable permutation.

Our flow is composed of multiple blocks of layers, each of which consists of a Möbius flow and an
Affine flow. The Möbius flow is constructed via Möbius transformation on rotation matrix, while
the Affine flow is built using affine transformations on quaternion. By iteratively adding Möbius
flow and Affine flow to our model, it is able to learn complex distributions. An illustration of our
model is shown in Figure. 1.

3.1 MÖBIUS TRANSFORMATION ON ROTATION MATRIX

Möbius Transformation is defined on a D-dimensional sphere SD. Rezende et al. (2020) has applied
it to build expressive normalizing flows on the 2D circle S1. Here we begin by a brief introduction
to Möbius Transformation, and show our adoption to SO(3) manifold afterwards.

Revisit Möbius transformation. Möbius Transformation on SD can be parameterized by an ω ∈
Rn+1 that satisfies its norm ||ω|| < 1 and thus is a point strictly inside the unit sphere SD. For a
point z ∈ SD, Möbius transformation fω is defined as:

fω(z) =
1− ∥ω∥2

∥z − ω∥
(z − ω)− ω (3)

This transformation has a very straightforward geometric meaning: connect z and ω with a straight
line, which intersects with SD at z′, and the Möbius transformation then maps z to −z′(see illus-
tration of transformation on SO(3) in Figure 2.(a). Note that when ω is at the origin, the transfor-
mation fω becomes the identity transformation; when ω is not at the origin, the transformation fω
concentrates the part away from ω; and when ω is very close to the surface of unit sphere SD, the
transformation maps almost all points on SD to around −ω.

Möbius Coupling Layer A 3×3 rotation matrix R ∈ SO(3) satisfies RRT = I and detR = +1.
It thus can be expressed as three orthonormal vectors [c1, c2, c3] that satisfy ||ci|| = 1 (or, in other
words, ci ∈ S2) and ci · cj = 0 for all i ̸= j.

To build a normalizing flow on SO(3), we thus consider to apply the idea of coupling layer intro-
duced in (Dinh et al., 2014),(Dinh et al., 2016) to the orthonormal vectors. In each coupling layer,
the input is divided into a condition part that remains unchanged after the flow and a transformed
part that may change according to the condition part.

3



Under review as a conference paper at ICLR 2023

𝝎

𝒄𝟐
𝒄𝟐
′

𝒄𝟏/𝒄𝟏
′

𝝎

𝒄𝟏/𝒄𝟏
′

𝒄𝟐
′

𝒄𝟑
′

𝒄𝟐

𝒄𝟑

𝒄𝟐𝟐
′

𝒄𝟐𝟏
′

𝒄𝟐
′′

𝒄𝟐𝟐
′

𝒄𝟐𝟏
′

𝒄𝟐
′′

𝝎

𝒄𝟐
′

𝒄𝟐
𝒄𝟏/𝒄𝟏

′
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Figure 2: Illustration of Möbius transformation on rotation matrix and Scaling and Normal-
ization on quaternion. (a). Möbius coupling layer given c1 as condition and drawn on the plane P
perpendicular to c1. c1 is unchanged, c2 is transformed to the opposite of intersection point of line of
c2 and ω, and c

′

3 is computed via cross product of c1 and c2. (b). Quaternion affine transformation.
Point q ∈ S3 is first scaled to point q̃ on an ellipsoid, and then projected back to q′ ∈ S3, which is
the intersection point of the line connecting q̃ and the origin O and the unit sphere.

We utilize similar structure to build Möbius transformation for rotation matrices. We divide a rota-
tion matrix into 2 parts with the condition part to be ci (i = 1, 2, 3) and the transform parts to be the
rest two columns {cj | j ̸= i}. Take i = 1 as an example: conditioning on c1, we can transform c2
to c′2. Then c3 is already determined by c3 = c1 × c2. The coupling layer needs to ensure that: 1)
||c′2|| = 1, i.e. c′2 ∈ S2; and 2) c′2 is orthogonal to c1.

Given the condition 1), we thus consider to use a Möbius tranformation on S2 to transform c2. To
further meet the condition 2), we notice that all valid c2 and c3 forms a plane P that passes the origin
and c1 is perpendicular to P . After the transformation, c′2 need to stay in P . This can be achieved by
constraining ω inside P . Therefore, we propose to learn a neural network that maps the condition
c1 to R3 and then projects it to P , as shown below:

ω = ω′ − c1(c1 · ω′) (4)

where ω′ is the unconstrained parameters generated by the neural network.

Note that, given c1, there is only 1 DoF left for the rest two columns. So, our Möbius coupling layer
is essentially rotating c2 and c3 about c1 simultaneously by an angle θ ∈ [−π, π) conditioned on c1.

Linear combination of multiple coupling layers. To further increase the expressivity of the
Möbius transformation, Rezende et al. (2020) leveraged linear combination of the transformation,
i.e., the weighted sum of the angles {θi}. We adapted this idea to our Möbius Coupling Layer and
the weights are conditioned on c1 and generated by a learnable neural network conditioned on c1
and a softmax.

However, such naive implementation has singularities. Take 2 combination point with weights [0.5,
0.5] for example. Assume θ1 is 30◦, θ2 is −178◦, the combined angle θ is −74◦. However, when θ2
slightly changed to −182◦ that is 178◦ as θ ∈ [−π, π], the combined angle θ becomes 104◦. This
discontinuity of slight change of θi resulting in huge jump in combined θ when θi is very near to
−π, π may reduce the networks’ performance and add difficulties in learning.

We alleviate such discontinuity by restricting ω within
√
2/2 sphere. With this constriction, θ is

within (−π/2, π/2). See supplementary for the proof.

Note that although it is impossible to calculate the inverse of this combination analytically, Rezende
et al. (2020) proposed to find the inverse using binary search as c2 and c′2 always rotate in the same
direction. Though the restriction on the norm of ω may reduce the expressivity of our flows, the
avoidance of discontinuity stabilizes our network so in general it is beneficial.

3.2 QUATERNION AFFINE TRANSFORMATION

Kingma & Dhariwal (2018) proposed to use 1×1 convolution before each coupling layer for flexible
permutation, as it can decompose the Euclidean space into the condition part and the transform part
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flexibly. In Möbius Coupling Layer on SO(3) this process is also needed as using one of only
[c1, c2, c3] as condition part is not flexible enough.

Inspired by the 1×1 convolution in Euclidean space, we propose a quaternion affine transformation,
which consists of a linear transformation of 4D vectors q followed by a projection to the unit sphere
S3. The explicit expression for this transformation is as follows:

g(q) =
Wq

∥Wq∥
(5)

where W is a 4× 4 invertible matrix, q is the quaternion representation of a rotation. The inverse of
the transformation is simplely by replace W by its inverse matrix W−1. The transformation looks
similar to the 1×1 convolution in Glow(Kingma & Dhariwal, 2018), in which an invertible matrix is
multiplied on picture channels as a generalization of permutation in the split of the coupling layers,
and we have a geometry explanation for its effect.

Geometric explanation of affine. We name after this transformation affine, since it resembles the
affine transformation in Eucliean space f = ax + b, where a is the scaling parameter, and b is a
displacement term. By SVD decomposition, the 4 × 4 invertible matrix can be decomposed into
an orthogonal matrix U , a diagnose matrix S and another orthogonal matrix V . Multiplying U, V
globally rotates the distribution pattern and acts as a displacement on SO(3) manifold, while the
diagnal matrix S serves as the scaling term.

As multiplying an orthogonal matrix won’t change the length of a vector, the term ∥Wq∥ is equal
to ∥S(V q)∥, so affine transformation can be decomposed into:

g(q) = U
S

∥S(V q)∥
(V q) (6)

This can be seen as a 4-step transformation, first a rotation from q to Vq, followed by multiplying
each coordinate by scaling factors si, (i = 1, · · · , 4), a normalization to a unit vector, and finally
followed by a rotation U .

Why rotation U is needed?. Our Möbius coupling layer allows a distribution to flow in the ver-
tical plane of ci, however it is very difficult to learn a global rotation of distributions on SO(3). The
introduced rotation operation in quaternion space exactly alleviates this problem. Rotating quater-
nions thus serves a generalization of permutation in splitting condition or transformed columns of
rotation matrix, which has similar effects to the 1 × 1 Convolution introduced in Glow (Kingma
& Dhariwal, 2018). Leveraging this rotation, we can choose arbitrary axis to be the condition, not
limited by c1, c2, and c3.

We choose to implement this rotation operation in quaternion space rather than directly in SO(3),
because it is naturally covered by quaternion affine transformation, and also, parametrize a 3 × 3
rotation matrix is harder than a 4 × 4 invertible matrix. In practice, we represent 4 × 4 invertible
matrix by a unconstrained 4× 4 matrix as the probability for a non-invertible matrix is near-zero.

Why scaling and normalization?. Multiplying diagonal matrix S results in multiplying coordi-
nate of a quaternion q = (w, x, y, z) by scaling s1, s2, s3, s3,

(w, x, y, z) −→ (s1w, s2x, s3y, s4z) (7)
transformating the unit sphere to an ellipsoid, as shown in Figure.2(b)(a sketch viewed in 2D sections
for 4D quaternion, and as an illustration, we set s1 = 2, s2 = 1, s3 = 1, s4 = 1), a point on the
sphere is transformed to a point on the oval B. The transformation is followed by a projection to
sphere: term 1/∥Sq∥ normalizes the transformed vector. The final point is the intersected point of
OB on the sphere D.

When s1 = s2 = s3 = s4, the Scaling and Normalization transformation is the identity. When si
are not equivalent, it expands areas around the axis with small s and contracts the others. As the
combination in Möbius Flow requires constraint on the length of ω, it is not able to create a high
peak with Möbius Flow, so we need this scaling as the diagonal elements of S can be arbitrarily
high. Note that this process also has the effect of changing the way of decomposition in a different
way from the rotation on quaternion.

f(s1,s2,s3,s4)(w, x, y, z) =
(s1w, s2x, s3y, s4z)√

(s1w)2 + (s2x)2 + (s3y)2 + (s4z)2
(8)
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One advantage of the transformation is its inverse is tractable and easy to be implemented. The
inverse of f(s1, s2, s3, s4) is just f(1/s1, 1/s2, 1/s3, 1/s4).

3.3 INTERCHANGE OF ROTATION MATRIX AND QUATERNION REPRESENTATION

Quaternion is another representation of rotation, defined as a unit vector on the 4D sphere. Let
θ be the angle of the rotation and (x, y, z) be the axis of rotation, then q can be computed as
(cos θ

2 , x sin
θ
2 , y sin

θ
2 , z sin

θ
2 ).

As we choose 3 × 3 rotation matrix as our representation for SO(3), to implement affine transfor-
mation we need first convert a rotation matrix to the quaternion and then convert a quaternion to the
rotation matrix after the transformation. However, as SO(3) is diffeomorphic to the real projective
space RP 3, quaternions have the topology of anti-polar symmetry, that is, q,−q represent the same
rotation. We mathematically extend the SO(3) space to the whole sphere of quaternion, and define
the distribution pR(R) = pq(q) = pq(−q) invariant under anti-polar operation.

As our affine transformation is equivariant to anti-polar operation,

g(−q) = −g(q) (9)

the transformed distribution pq′(q
′) is still invariant under anti-polar operation (see Köhler et al.

(2020)) for more details). The transformed quaternion space maintains the anti-polar symmetry
and is diffeomorphic to the SO(3) manifold. The corresponding R′ is the transformed rotation
matrix. In practice, no matter which convention(q or −q) we make to implement the conversion of
rotation matrix to the quaternion, transformation from R to R′ is a diffeomorphism and suffers no
discontinuity by change of representation.

Please see the Supplementary Material for calculations of log determinant, proof of
√
2
2 choice in

Möbius combination, visualizations, implementation details.

3.4 APPLICATION

Sample and Entropy. One outstanding feature of our Normalizing Flows compared to other prob-
ability inference methods on SO(3) (like Murphy et al. (2021)) is its ability for efficient samples.
Murphy et al. (2021) can only sample by querying a large amount of rotations and calculating the
probability density function. For highly peaked distribution, this method may fail as it is hard to have
queries that are enough close to the peak such that the probability is not close to zero. However, we
can sample by transforming z sampled from a base distribution (we choose uniform distribution)
through our flows. Efficient sampling makes it possible to estimate properties of data x, for exam-
ple, entropy can be estimated via Monte Carlo:

S = E[log p(x)]. (10)

Conditional Normalizing Flow. There are cases when we need to infer a distribution depending
on condition, for example when we need to infer the rotation of a symmetric or occluded object in
an image. Our flow can be easily extended to be conditional using methods in Winkler et al. (2019)
as we can simply concatenate the condition with fixed columns to generate parameters for Möbius
flow. As different target distributions is needed when different condition is given often have a similar
pattern, we add a conditional Affine flow at the end of our flow while remaining the former Affine
flow unconditional to ensure that the decomposition in Möbius flow is fixed. We show an example
of our conditional normalizing flow on learning multi-mode rotation distribution from symmetric
object images (see Experiments for detail). The conditional features can be computed by a ResNet
or other CNN network in this task.

4 EXPERIMENTS

In this section, we conduct multiple experiments to validate the capacity of our proposed normalizing
flows to model distributions on SO(3). We train all experiments with negative log-likelihood (NLL)
loss.
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Table 1: Comparisons on learning to fit various distributions. We adopt log-likelihood as the evalu-
ation metric (higher is better).

Avg. Sharp Cube-like Cone-like Head pose

Mathieu & Nickel (2020) 7.18 13.47 1.02 8.82 5.41
Falorsi et al. (2019) - Failed 3.27 5.32 4.74
Murphy et al. (2021) 7.27 10.52 4.52 8.36 5.71
Mixture matrix Fisher 5.47 7.30 4.33 4.75 5.51

Ours 8.72 13.80 4.68 8.82 7.48

4.1 LEARNING TO MODEL VARIOUS DISTRIBUTIONS

As in common, we first evaluate and compare our normalizing flows and baseline methods by learn-
ing to fit distributions on SO(3) with distinct properties.

Datasets We design three challenging distributions on SO(3) manifold: a very sharp single modal
(matrix Fisher) distribution, a 24-peaked multi-modal distribution and a cyclic distribution. The 24-
peaked distribution and the cyclic distribution are designed to simulate the symmetry property of
cube and cone solids. We also include the distribution of real-world head pose data from UP-3D
(Lassner et al., 2017), 3DPW (Von Marcard et al., 2018) and Human3.6M (Ionescu et al., 2013)
datasets. We adopt the visualization tool of Murphy et al. (2021) and show the target distributions
as follows.

Baselines Falorsi et al. (2019) introduces the reparameterization trick for Lie groups and allows
for constructing flows on the Lie algebra of SO(3). Mathieu & Nickel (2020) proposes continuous
normalizing flows on Riemennian manifold, and we apply it to SO(3) manifold. Murphy et al.
(2021) models the distribution implicit by the neural networks, where the SO(3) space is uniformly
discretized. Finally, we compare to the mixture of matrix Fisher distribution with 500 components.

Results The results are reported in Tab. 1, where our method consistently achieves state-of-
the-art performance among all baselines, demonstrating the ability of our method to fit arbitrary
distributions in various shapes. In our experiment, baseline Falorsi et al. (2019) fails to fit the sharp
distribution around identity due to its singularity around that point.

4.2 ROTATION REGRESSION WITH CONDITIONAL NORMALIZING FLOWS

Modeling arbitrary distributions on SO(3) manifold well handles the rotation regression task for
symmetric objects with multiple (or infinite) correct poses. In this experiment, we leverage our
normalizing flows for conditional rotation regression tasks given a single image.

Datasets We experiment on SYMSOL dataset introduced by Murphy et al. (2021). SYMSOL
I dataset contains images with solids with high order of symmetry, e.g., tetrahedron, cube, cone,
cylinder, which challenges probabilistic approaches to learn complex pose distributions. SYMSOL
II dataset includes solids with small markers to break the regular symmetries. We follow the exper-
iment settings of Murphy et al. (2021).

Baselines We compare our method to Implicit-PDF Murphy et al. (2021) as well as several works
which parameterize multimodal distributions on SO(3) for the purpose of pose estimation, includ-
ing von-Mises distribution Prokudin et al. (2018) and Bingham distribution Deng et al. (2022);
Gilitschenski et al. (2019). We quote numbers of baselines from Murphy et al. (2021).

Results The log-likelihood scores are reported in Table 2. We can see from the table that on
both SYMSOL I and II datasets, our proposed rotation normalizing flows obtain a significant and
consistent performance improvement over all the baselines. We further evaluate our method under
spread metric in Tab. 3.

4.3 ENTROPY ESTIMATION OF ARBITRARY DISTRIBUTIONS

As a bijection of source distribution to the target distribution, normalizing flows is able to effectively
sample from the target distribution with known probability density of the samples, which enables the
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Table 2: Results of rotation regression with conditional normalizing flows on SYMSOL I and II.
We adopt log-likelihood as the evaluation metric. Note that we use the convention that a minimally
informative uniform distribution has an average log likelihood of 0, which is different from IPDF’s
convention of -2.29.

SYMSOL I (log likelihood ↑) SYMSOL II (log likelihood ↑)

avg. cone cyl. tet. cube ico. avg. sphX cylO tetX

Deng et al. (2022) 0.81 2.45 1.34 2.56 -2.15 -0.16 4.86 3.41 5.28 5.90
Gilitschenski et al. (2019) 1.86 6.13 3.17 0.00 0.00 0.00 5.99 5.61 7.17 5.19
Prokudin et al. (2018) 0.42 -1.05 1.01 0.43 1.79 -0.10 2.77 -1.90 6.45 3.77
Murphy et al. (2021) 6.39 6.74 6.55 7.99 7.10 3.57 9.86 9.59 9.20 10.78
Ours 8.42 9.24 8.74 10.46 9.21 4.47 12.23 11.03 12.82 12.83

Table 3: Spread estimation on SYMSOL. This metric evaluates how closely the probability mass is
centered on any of the equivalent ground truths. We follow Murphy et al. (2021) to evaluate it on
SYMSOL I, where all ground truths are known at test time. Values are in degrees.

cone cyl. cube ico. tet.

Deng et al. (2022) 10.1 15.2 16.7 40.7 29.5
Murphy et al. (2021) 1.4 1.4 4.6 4.0 8.4
Ours 0.7 0.6 1.4 16.7 1.2

computation of entropy of the target distribution. In this experiment, we compare our rotation NFs
with Implicit-PDF in approximating the entropy of the target distributions. In order to obtain the
ground truth entropy for evaluation, we adopt multiple matrix Fisher distributions (whose entropy
can be analytically computed) with different parameters as the target distributions. We sample 600k
points from each target distribution as the training data and evaluate both our method and Implicit-
PDF by randomly sampling N (N=5, 10, 100, 1k, 10k) points from the learned distributions. The
results are shown in Fig. 3. We can see that even when the sampling size is small, our rotation
normalizing flows still achieve accurate estimation of entropy for different target distributions, while
Implicit PDF fails to do so.

4.4 ABLATION STUDY

In this experiment, we evaluate the effectiveness of each proposed component in our rotation nor-
malizing flows. We conduct experiments with the same experiment settings as in Sec. 4.1 and the
results are reported in Table 4. As shown in the table, Möbius transformation is of crucial importance
especially for modeling the cube-like multimodal distributions, and affine transformation generally
does good for the overall performance.
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Fisher: diag(100, 10, 1)

101 102 103 104
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8

6

4

2

Fisher: diag(100, 100, 100)
ours
ipdf
GT

Figure 3: Results of entropy estimation for three different target distributions. We compare the mean
and variance of estimated entropy after 100 times of sampling. Note that the horizontal axis is in log
scale.
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Table 4: Ablation study on the experiments learning to fit various distributions. We adopt log-
likelihood as the evaluation metric (higher is better).

Sharp Cube-like Cone-like Head pose

Mobius Transformation 13.56 4.48 8.76 5.55
Affine Transformation 13.50 -0.001 8.84 5.32
Mobius + Affine (Ours) 13.80 4.68 8.82 5.55

5 RELATED WORK

Normalizing flows on Euclidean space Most of the Normalizing flows are constructed in Eu-
clidean space. Many of them are constructed using coupling layers(Dinh et al., 2014; 2016), and
Glow(Kingma & Dhariwal, 2018) improved it using 1 × 1 convolution for flexible permutation.
Flow++(Ho et al., 2019) combines multiple cumulative distribution functions to make the trans-
formation in the coupling layer more expressive. Invertible ResNet(Behrmann et al., 2019) and
Residual Flow(Chen et al., 2019) proposed residual flow which is more flexible and is also possible
to be extended to SO(3). Neural ODE(Chen et al., 2018) and FFJORD(Grathwohl et al., 2018)
treated the transformation as a continuous movement of the vectors and use an ordinary differential
equation (ODE) to parameterize it, and RNODE(Finlay et al., 2020) further improved it by adding
constraints to make the dynamics smoother.

Normalizing flows on non-Euclidean space ReLie (Falorsi et al., 2019) proposed a method to
construct normalizing flow on Lie groups by firstly using normalizing flow on Euclidean space and
then mapping it onto the target Lie group using the exponential map. However, this method suf-
fers from discontinuity and is unstable and even intractable if some special rotations are inputted.
Rezende et al. (2020) proposed three methods to construct flow on tori and sphere: Möbius trans-
formation, Circular splines and Non-compact projection, and here we use Möbius transformation
to construct flow on SO(3). Also, Mathieu & Nickel (2020), Lou et al. (2020) and Falorsi & Forré
(2020) extended continuous normalizing flow to Riemann manifold by parameterizing the “velocity”
in the tangent space, so their method can also be used in SO(3).

Distributions for rotation Several works leverage probabilistic distributions on SO(3) for the
purpose of rotation regression. Prokudin et al. (2018) uses the mixture of von Mises distributions
over Euler angles. Gilitschenski et al. (2019) and Deng et al. (2022) utilize Bingham distribution
over quaternion to jointly estimate a distribution over all axes. They also extend to the mixture of
Bingham distributions. Mohlin et al. (2020) leverages matrix Fisher distribution for deep rotation
regression with unconstrained Euclidean parameters. Different from the parametric distributions
above, Murphy et al. (2021) proposes an implicit pdf over SO(3) modeled by the parameters of the
neural network. It discretizes the SO(3) space into equivolumetric grids and predicts a pdf for each
grid. In this work, our rotation normalizing flow is capable of constructing an arbitrary distribution
on SO(3), with the benefit of efficient sampling.

6 CONCLUSION

In this work, we show the capability of our proposed novel discrete normalizing flows for rotations
to learn various kinds of distributions on S3. The proposed flow is numerically stable and very
expressive, thanks to the complementary role of our proposed Mobius coupling layer and quaternion
affine transformation. Our extensive experiments demonstrate that our flow is able to fit complex
distributions on SO(3) and achieves the best performance in both unconditional and conditional
tasks.
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A CALCULATIONS OF DETERMINATE OF JACOBIAN

A.1 MÖBIUS COUPLING LAYERS

The explicit expression for the forward of Möbius Transformation is as follows:

fω(z) =
1− ∥ω∥2

∥z − ω∥2
(z − ω)− ω. (11)

The Jacobian matrix which is the partial differential of z to fω is:

dfω(z)
dz

=
1− ∥ω∥2

∥z − ω∥2
(I − 2

(z − ω)T (z − ω)

∥z − ω∥2
) (12)

where I is the 3× identity matrix.

As the transformation is only 1 DoF, variable z can be expressed by an angle θ to c2, through:

z = cos θc2 + sin θc1 (13)

The differential of z to θ is given by:

dz
dθ

= − sin θc2 + cos θc3 (14)

The differential of fω(z) to θ is given by the change of variable formula:

dfω(z)
dθ

=
dfω(z)

dz
dz
dθ

(15)

As dfω(z) is also a unit point on sphere and have 1 DoF, it can be converted to θ′. Therefore the
determinate of Jacobian is given by:

|det J | = |dθ
′

dθ
| = ∥fω(z)

dθ
∥ (16)

B CALCULATIONS FOR AFFINE TRANSFORMATION

The forward and inverse of affine transformation is given by:

q′ =
Wq

∥Wq∥
(17)

The determinate of Jacobian of affine transformation is very straightforward and is by:

det J(q) =
detW

∥Wq∥4
(18)

C PROOF OF THE NEED TO CONSTRAINT ∥ω∥

Although the naive implementation of the combination of Möbius transformation has singularities,
this problem can be solved by simply restricting ω within the

√
2
2 sphere, which is shown in fig.4.

(c). The solution can be solved as follows:

If we constraint ∥ω∥ to be less than 1, then the intersection point of line c2ω and the unit circle won’t
be close to c2, so c′2 won’t be close to −c2, and if we keep decreasing ∥ω∥, then the upper bound of
the degree between c2 and c′2 will also decrease. If we constraint the upper bound of the degree to
be less than π

2 , which means to constraint ∥ω∥ to be less than
√
2
2 , then we can constraint c′2 to be

within one semi-circle and the weighted sum can be calculated without singularity.
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Figure 4: Proof of the Need to Constraint ∥ω∥. It can be shown that by constraining ∥ω∥, c′2 would
be within in the same semi-circle with c2 and thus the weighted sum is able to be calculated without
singularity.

D IMPLEMENTATION DETAILS

We use one multi-layer perceptron (MLP) with 4 hidden layers, 64 hidden units, ReLU as activation
function and a residual connection between the first and the last layer in each Möbius Coupling
Layer to compute ω with the condition part as input.

The parameters in Affine Flow is optimized directly with MLP’s parameters using Adam with a
learning rate of 1e-4.

In unconditional experiments we use 48 layers of flow with 64 segments and a batch size of 256 for
25k steps. In experiments on SYMSOL we use 42 layers of flow with 64 segments and a batch size
of 128 for 600k iterations on SYMSOLI and 400k iterations on SYMSOLII for each category.

In experiments on SYMSOL we use an ImageNet pre-trained Resnet50 to capture image features
following Murphy et al. (2021).

E VISUALIZATION

We show the visualization of our learned various distributions in Figure.5. The rotations are gener-
ated by first sampling from uniform distributions and transformed to the targeted ones.

13



Under review as a conference paper at ICLR 2023

(a) ground truth of ’cone-like’ distribution (b) learned ’cone-like’ distribution

(c) ground truth of ’peak-like’ distribution (d) learned ’peak-like’ distribution

(e) ground truth of ’cube-like’ distribution (f) learned ’cube-like’ distribution

Figure 5: Visualization of Learned distributions.(a),(b).The ’cone-like’ distribution has one circle
of equivalent orientations under symmetry. (c),(d). The peak has a very sharp distribution. (e),(f).
The ’cube-like’ distribution has 24-mode.
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