
Published in Transactions on Machine Learning Research (05/2025)

Diffusion Model Predictive Control

Guangyao Zhou∗ stannis@google.com
Google DeepMind

Sivaramakrishnan Swaminathan sivark@google.com
Google DeepMind

Rajkumar Vasudeva Raju rajvraju@google.com
Google DeepMind

J. Swaroop Guntupalli swaroopgj@google.com
Google DeepMind

Wolfgang Lehrach wpl@google.com
Google DeepMind

Joseph Ortiz joeortiz@google.com
Google DeepMind

Antoine Dedieu adedieu@google.com
Google DeepMind

Miguel Lázaro-Gredilla lazarogredilla@google.com
Google DeepMind

Kevin Murphy kpmurphy@google.com
Google DeepMind

Reviewed on OpenReview: https: // openreview. net/ forum? id= pvtgffHtJm

Abstract

We propose Diffusion Model Predictive Control (D-MPC), a novel MPC approach that
learns a multi-step action proposal and a multi-step dynamics model, both using diffusion
models, and combines them for use in online MPC. On the popular D4RL benchmark, we
show performance that is significantly better than existing model-based offline planning
methods using MPC (e.g. MBOP(Argenson & Dulac-Arnold, 2021)) and competitive with
state-of-the-art (SOTA) model-based and model-free reinforcement learning methods. We
additionally illustrate D-MPC’s ability to optimize novel reward functions at run time and
adapt to novel dynamics, and highlight its advantages compared to existing diffusion-based
planning baselines.

1 Introduction

Model predictive control (MPC), also called receding horizon control, uses a dynamics model and an action
selection mechanism (planner) to construct “agents” that can solve a wide variety of tasks by means of
maximizing a known objective function (see e.g., Schwenzer et al. (2021) for a review of MPC). More precisely,
we want to design an agent that maximizes an objective function J(at:t+F −1, st+1:t+F) over a planning horizon

∗Corresponding author: stannis@google.com

1

https://openreview.net/forum?id=pvtgffHtJm

Published in Transactions on Machine Learning Research (05/2025)

F from the current timestep t

at:t+F −1 = arg max
at:t+F −1

Epd(st+1:t+F |st,at:t+F −1,ht)

[
J(at:t+F −1, st+1:t+F)

]
, (1)

where ht ≡ {s1:t−1, a1:t−1} is the history. MPC thus factorizes the problem that the agent needs to solve
into two pieces: a modeling problem (representing the dynamics model pd(st+1:t+F |s1:t, a1:t+F −1), which in
this paper we learn from offline trajectory data) and a planning problem (finding the best sequence of actions
for a given reward function). Once we have chosen the action sequence, we can execute the first action at (or
chunk of actions) and then replan, after observing the resulting next state, thus creating a closed loop policy.

The advantage of this MPC approach compared to standard policy learning methods is that we can easily
adapt to novel reward functions at test time, simply by searching for state-action trajectories with high reward.
This makes the approach more flexible than policy learning methods, which are designed to optimize a fixed
reward function.1 In addition, learning a dynamics model is often more sample-efficient than learning a policy
directly (Zhu et al.). This is because dynamics model training is essentially a supervised regression problem,
predicting the next state given the current state and action—a mapping that is typically well-behaved and
near-deterministic. Policy learning, however, involves predicting actions, where the optimal behavior may be
multimodal (multiple good actions exist) and require accurate long-horizon credit assignment, making it a
more complex learning task given the same data budget. Finally, dynamics models can often be adapted
more easily than policies to novel environments, as we show in our experiments.

However, to make MPC effective in practice, we have to tackle two main problems. First, the dynamics
model needs to be accurate to avoid the problem of compounding errors, where errors in next state prediction
accumulate over time as the trajectory is rolled out (Venkatraman et al., 2015; Asadi et al., 2019; Xiao et al.,
2019; Lambert et al., 2022). To avoid compounding errors, multi-step models are preferable. However, these
require a model class capable of capturing the complex, multimodal distribution of entire trajectories. This
motivates our use of diffusion models. Second, the planning algorithm needs to be powerful enough to select
a good sequence of actions, avoiding the need to exhaustively search through a large space of possible actions.

We tackle both problems by using diffusion models to learn joint trajectory-level representations of (1) the
world dynamics, pd(st+1:t+F |st, at:t+F −1, ht), which we learn using offline “play” data (Cui et al., 2023); and
(2), an action sequence proposal distribution, ρ(at:t+F −1|ht), which we can also learn offline using behavior
cloning on some demonstration data. Although such a proposal distribution might suggest actions that are
not optimal for solving new rewards that were not seen during training, we show how to compensate for
this using a simple sampling-based planner, a variant of the random shooting method that uses a multi-step
diffusion model trained on offline datasets as the action proposal and a simple alternative to more complex
methods such as trajectory optimization or cross-entropy method. We call our overall approach Diffusion
Model Predictive Control (D-MPC).

We show experimentally (on a variety of state-based continuous control tasks from the D4RL benchmarks
(Fu et al., 2020)) that our proposed D-MPC framework significantly outperforms existing model-based offline
planning methods, such as MBOP (Argenson & Dulac-Arnold, 2021), which learns a single-step dynamics
model and a single-step action proposal, and hence suffers from the compounding error problem. By contrast,
D-MPC learns more accurate trajectory-level models, which avoid this issue, and allow our model-based
approach to match (and sometimes exceed) the performance of model-free offline-RL methods. We also show
that our D-MPC method can optimize novel rewards at test time, and that we are able to fine-tune the
dynamics model to a new environment (after a simulated motor defect in the robot) using a small amount of
data. Finally we perform an ablation analysis of our method, and show that the different pieces — namely
the use of stochastic multi-step dynamics, multi-step action proposals, and the sampling-based planner with
learned action proposals — are each individually valuable, but produce even more benefits when combined.

In summary, our key contributions are:

1Goal-conditioned reinforcement learning (RL) can increase the flexibility of the policy, but the requested goal (or something
very similar to it) needs to have been seen in the training set, so it cannot optimize completely novel reward functions that are
specified at run time.

2

Published in Transactions on Machine Learning Research (05/2025)

1. We introduce Diffusion Model Predictive Control (D-MPC), combining multi-step action proposals
and dynamics models using diffusion models for online MPC.

2. We show D-MPC outperforms existing model-based offline planning methods on D4RL benchmarks,
and is competitive with SOTA reinforcement learning approaches.

3. We demonstrate D-MPC can optimize novel reward functions at runtime with a simple sampling-based
planner, and adapt to novel dynamics through fine-tuning.

4. Through ablations, we validate the benefits of our method’s key components individually and in
combination.

2 Related work

Related work can be structured hierarchically as in Table 1. Model-based methods postulate a particular
dynamics model, whereas model-free methods, whether more traditional —behavioral cloning (BC), con-
servative Q learning (CQL) (Kumar et al., 2020), implicit Q-learning (IQL) (Kostrikov et al., 2021), etc—
or diffusion based — diffusion policy (DP) (Chi et al., 2023), diffusion BC (DBC) (Pearce et al., 2023)—
simply learn a policy. This can be done either by regressing directly from expert data or with some variant of
Q-leaning. Model-based approaches can be further divided according to how they use the model: Dyna-style
(Sutton, 1991) approaches use it to learn a policy, either online or offline, which they can use at runtime,
whereas MPC-style approaches use the full model at runtime for planning, possibly with the guidance of a
proposal distribution.2

It is possible to model the dynamics of the model and the proposal jointly using pj(s, a) or as factorized
distribution pd(s|a)ρ(a). The latter allows for extra flexibility, since both pieces can be fine-tuned or even
re-learned independently. Finally, we can categorize these models as either single-step (SS) or multi-step
(MS). SS methods model the dynamics as pd(st+1|ht, at+1) (where ht = (st−H:t, at−H:t) is the history of
length H), and the proposal as ρ(at|ht), so we predict (a distribution over) the next time step, conditioned
on past observations (and the next action, for the dynamics). We extend this to the whole planning
horizon of length F by composing it in an autoregressive form, as a product of one-step conditionals,
i.e., pd(st+1:t+F |s1:t, a1:t+F −1) =

∏t+F −1
t pd(st+1|st, at, ht). (Note that this might result in compounding

errors, even if ht contains the entire past history, i.e., is non-Markovian.) By contrast, multi-step (MS)
methods model the joint distributions at a trajectory level. Thus the MS dynamics model represents
pd(st+1:t+F |st, ht, at:t+F −1) and the MS proposal represents ρ(at:t+F −1|st, ht).

Several recent papers follow the SS Dyna framework. Some using traditional dynamics modeling (e.g.,
MOREL (Kidambi et al., 2020), MOPO (Yu et al., 2020), COMBO (Yu et al., 2021), RAMBO-RL (Rigter
et al., 2022) and Dreamer (Hafner et al., 2020)), and others using diffusion. The latter includes "Diffusion
for World Modeling" paper (Alonso et al., 2024) (previously called "Diffusion World Models” (Alonso et al.,
2023)), “UniSim” paper (Yang et al., 2024), and the “SynthER” paper (Lu et al., 2024). These are then used
to generate samples from the model at training time in order to train a policy with greater data efficiency than
standard model-free reinforcement learning (RL) methods. Some other recent papers — such as “Diffusion
World Model” (Ding et al., 2024), “PolyGRAD” (Rigter et al., 2024) and “Policy-Guided Diffusion” (Jackson
et al., 2024) — have proposed to use diffusion for creating joint multi-step (trajectory-level) dynamics models.
However, being part of the Dyna framework, they are not able to plan at run-time, like D-MPC does.

There are many papers with a model-based approach. Probably the closest to our work is “Diffuser” (Janner
et al., 2022), which uses diffusion to fit a joint (state, action) multi-step model pj(s1:T , a1:T) using offline
trajectory data. They then use classifier-guidance to steer the sampling process to generate joint sequences
that optimize a novel reward at test time. The main difference to our method is that we represent the joint
as a product of two models, the dynamics pd(s1:T |a1:T) and the policy / action proposal, ρ(a1:T). As we
show in Section 4.3, this factorization allows us to easily adapt to changes in the world (e.g., due to hardware
defects) from a small amount of new data, whereas Diffuser struggles in this context. In addition, we propose

2Note that a proposal distribution (which we denote by ρ(a)) is different than a policy (which we denote by π(a)), since
rather than determining the next best action directly, it helps accelerate the search for one.

3

Published in Transactions on Machine Learning Research (05/2025)

Factored: pd(s|a) ρ(a) Joint: pj(s, a) Model-free: π(a)

Dyna MPC MPC
(single-step) (multi-step) (single-step) (multi-step) (multi-step)

Examples

MOReL etc.,
Dreamer,
DWMS,
UniSim,
SynthER

DWM,
PolyGRAD

PGD
MBOP D-MPC Diffuser, DT, TT

BC, CQL,
IQL, DD, DP,

IH, DBC

Run-time planning ✗ ✗ ✓ ✓ ✓ ✗
Run-time novel rewards ✗ ✗ ✓ ✓ ✓ ✗
Novel dynamics ✓ ✓ ✓ ✓ ✗ ✗
Non-expert data ✓ ✓ ✓ ✓
Speed at runtime Fast Fast Med. Slow Slow Fast

Table 1: A tale of three distributions; comparing properties across offline RL methods. The methods we
mention are defined as follows: MOREL etc. Kidambi et al. (2020); Yu et al. (2020; 2021); Rigter et al. (2022),
Dreamer Hafner et al. (2020), DWMS (Diffusion World Models) Alonso et al. (2023), UniSim Yang et al. (2024),
SynthER Lu et al. (2024), DWM (Diffusion World Model) Ding et al. (2024), PolyGRAD Rigter et al. (2024),
PGD (Policy-Guided Diffusion) Jackson et al. (2024), Diffuser Janner et al. (2022), DT (decision transformer)
Chen et al. (2021), TT (trajectory transformer) Janner et al. (2021), BC (behavior cloning), CQL (conservative
Q learning) Kumar et al. (2020), IQL (implicit Q learning) Kostrikov et al. (2021), DD (Decision Diffuser)
Ajay et al. (2023), DP (Diffuson Policy) Chi et al. (2023), IH (Imitiating Humans) Pearce et al. (2023) DBC
(Diffusion BC) Wang et al. (2023) .

a simple sampling-based planner that does not rely on classifier guidance. Other works using MS with a joint
proposal are decision transformer (DT) (Chen et al., 2021), and trajectory transformer (Janner et al., 2021).

Similarly, the “Decision Diffuser” paper (Ajay et al., 2023) learns a trajectory distribution over states, and
uses classifier-free guidance to generate trajectories that have high predicted reward; the state sequence is
then converted into an action sequence using a separately trained inverse dynamics model (IDM). However,
this approach does not allow for run-time specification of new reward functions.

MPC has also been applied in model-based RL, with TD-MPC (Hansen et al., 2022) and TD-MPC2 (Hansen
et al., 2023) being the representative methods. D-MPC differs from the TD-MPC line of work in that D-MPC
uses multi-step diffusion models for both action proposal and dynamics model, while the TD-MPC line of work
uses single-step MLPs. In addition, the TD-MPC line of work focuses on online learning with environment
interactions while in D-MPC we focus on learning from offline data and then use the learned models for doing
MPC in the environment.

The model-based offline planning or MBOP paper (Argenson & Dulac-Arnold, 2021) was the original
inspiration for our method. In contrast with the previous MPC methods, it factorizes the dynamics models
and the action proposal model, which are learned separately and used at planning to optimize for novel
rewards. The main difference with our work is that they use ensembles of one-step deterministic MLPs for
their dynamics models and action models, whereas we use a single stochastic trajectory level diffusion model.
In addition they use a somewhat complex trajectory optimization method for the action selection, whereas
we use a simple sampling-based planner. Finally, we also study adapting the model to novel dynamics.

Several recent works are closely related to D-MPC. “Model-based Diffusion" (MBD) (Pan et al., 2024) also
utilizes diffusion for trajectory-level search, but it assumes known environment dynamics, unlike our setting.
“DyDiff" Zhao et al. (2024) employs a diffusion-based dynamics model with a structure similar to D-MPC’s,
conditioning on action sequences to generate state sequences. However, DyDiff’s primary focus is generating
synthetic on-policy data by modeling the interaction between a given single-step policy and the multi-step
diffusion dynamics model, differing from our goal of planning with learned dynamics and action proposals.

D-MPC is a novel combination of MPC, factorized dynamics/action proposals, and MS diffusion modeling.
This allows us to be able to adapt to novel rewards and dynamics and avoid compounding errors.

4

Published in Transactions on Machine Learning Research (05/2025)

3 Method

We will now describe our new D-MPC method. Our approach can be seen as a multi-step diffusion extension
of the model-based offline planning (MBOP) paper (Argenson & Dulac-Arnold, 2021), with a few other
modifications and simplifications.

3.1 Model predictive control

D-MPC first learns the dynamics model ps|a, action proposal π and heuristic value function J (see below), in
an offline phase, as we discuss in Section 3.2, and then proceeds to alternate between taking an action in the
environment with planning the next sequence of actions using a planner, as we discuss in Section 3.3. The
overall MPC pseudocode is provided in Algorithm 1.

3.2 Model learning

We assume access to an offline dataset of trajectories, consisting of (state, action, reward) triples: D =
{s1

1:T1
, a1

1:T1
, r2

1:T1
, s2

1:T2
, a2

1:T2
, rm

1:T2
, . . . sM

1:TM
, aM

1:TM
, rM

1:TM
}. We then use this to fit a diffusion-based dynamics

model pd(st+1:t+F |st, ht, at:t+F −1) and another diffusion-based action proposal ρ(at:t+F −1|st, ht). To fit
these models, we minimize the denoising score matching loss in the usual way. We include a detailed review
of diffusion model training in Appendix A, and refer the readers to e.g. Karras et al. (2022) for additional
discussions.

We also define a function J that approximates the reward-to-go given any proposed sequence of states and
actions:

J(st:t+F , at:t+F −1) = E[
t+F −1∑

k=t

γk−tR(sk, ak) + γF V (st+F)] (2)

Here γ is the discount factor, and V (s) represents the value function from state s (i.e., estimate of future
reward at the leaves of this search process). We also use a transformer to learn J (although we can also just
compute J directly, if the reward function R is known, and we use an admissible lower bound (such as 0) on
V) by regressing from (st:t+F , at:t+F −1) to the discounted future reward in Eq. (2). We use L2 loss for the
regression. We use J as the objective function for optimization in MPC, and as a way to specify novel tasks.
Refer to Appendix E for additional details on model architectures and hyperparameters.

Algorithm 1: Main MPC loop.
1 Input: D = offline dataset, N = num. samples, F = forecast horizon, H = history length
2 (pd, ρ, J) = train(D)
3 s0 = env.init()
4 h0 = (s0)
5 for t = 0 : ∞ do
6 at = planner.plan(st, ht, pd, ρ, J, N, F, H)
7 (st+1, rt+1) = env.step(st, at)
8 ht = append(at, st+1, rt+1)
9 ht = suffix(ht, H)

Note that unlike MBOP (Argenson & Dulac-Arnold, 2021) we do not need to train ensembles, since diffusion
models are expressive enough to capture the richness of the respective distributions directly. Also, in contrast
to Argenson & Dulac-Arnold (2021), we do not need to train a separate reward function: we estimate our
value function at the beginning of the planning horizon, for a given sequence of states and actions along that
horizon. In this way, our objective function J already includes the estimated reward along the horizon.

5

Published in Transactions on Machine Learning Research (05/2025)

3.3 Planning

D-MPC is compatible with any planning algorithm. When the action space is discrete, we can solve this
optimization problem using Monte Carlo Tree Search, as used in the MuZero algorithm (Schrittwieser et al.,
2020). Here we will only consider continuous action spaces.

We propose a simple sampling-based planner, depicted as Algorithm 2. In order to plan, given the current
state st and history ht, we use our diffusion action proposal ρ to sample N action sequences, we predict the
corresponding state sequences using ps|a, we score these state/action sequences with the objective function
J , we rank them to pick the best sequence, and finally we return the first action in the best sequence, and
repeat the whole process. We show empirically that this outperforms more complex methods such as the
Trajectory Optimization method used in the MBOP paper, which we describe in detail in the Appendix
(Algorithm 5). We believe this is because the diffusion model already reasons at the trajectory level, and can
natively generate a diverse set of plausible candidates without the need for additional machinery.

3.4 Adaptation

As with all MPC approaches, our proposed D-MPC is more computationally expensive than methods that
use a reactive policy without explicit planning. However, one of the main advantages of using planning-based
methods in the offline setting is that they can easily be adapted to novel reward functions, which can be
different from those optimized by the behavior policy that generated the offline data. In D-MPC, we can
easily incorporate novel rewards by replacing Vn in Alg. 2 by Vn = κJ(s1:F , An,1:F) + κ̃J̃(s1:F , An,1:F), where
the novel objective J̃(s1:F , An,1:F) = 1

F

∑F
t=1 fnovel(st, An,t), fnovel is a novel reward function, and κ, κ̃ are

weights of the original and novel objectives, respectively. We demonstrate this approach in Section 4.2. Of
course, if the new task is very different from anything the agent has seen before, then the action proposal
may be low quality, and more search may be needed.

If the dynamics of the world changes, we can use supervised fine tuning of ps|a on a small amount of exploratory
“play” from the new distribution, and then use MPC as before. We demonstrate this in Section 4.3.

4 Experiments

In this section, we conduct various experiments to evaluate the effectiveness of D-MPC. Specifically we seek
to answer the following questions with our experiments:

1. Does our proposed D-MPC improve performance over existing MPC approaches (which learn the
model offline), and can it perform competitively with standard model-based and model-free offline
RL methods?

2. Can D-MPC optimize novel rewards and quickly adapt to new environment dynamics at run time?

3. How do the different components of D-MPC contribute to its improved performance?

4. Can we distill D-MPC into a fast reactive policy for high-frequency control?

Algorithm 2: Sampling-based planner with learned multi-step diffusion action proposals
1 Def a = Planner(s0, h0, pd, ρ, J, N, F, H):
2 for n = 1 : N do
3 an,1:F ∼ ρ(·|s0, h0)
4 s1:F ∼ pd(·|s0, h0, an,1:F)
5 Vn = J(s1:F , an,1:F)
6 n̂ = arg maxn Vn

7 Return an̂,1

6

Published in Transactions on Machine Learning Research (05/2025)

4.1 For fixed rewards, D-MPC is comparable to other offline RL methods

We evaluate the performance of our proposed D-MPC on various D4RL (Fu et al., 2020) tasks. Planning-based
approaches are especially beneficial in cases where we do not have access to expert data. As a result, we
focus our comparisons on cases where we learn with sub-optimal data. We experiment with locomotion tasks
for Halfcheetah, Hopper and Walker2D for levels medium and medium-replay, Adroit tasks for pen, door and
hammer with cloned data, and Franka Kitchen tasks with mixed and partial data.

Our results are summarized in Table 2. We see that our method significantly beats MBOP, and a behavior
cloning (BC) baseline. It also marginally beats Diffuser, a strong model-based offline RL approach that uses
classifier guidance during sampling for planning instead of MPC. In contrast to Diffuser’s single diffusion
model for joint state-action sequence generation, our approach decouples the dynamics model and action
proposal. We note that the total compute of our two transformers is designed to be roughly equivalent to
Diffuser’s single model; we achieve this by using a smaller transformer for the dynamics model, reflecting its
relative simplicity. We additionally compare to other popular model-free offline RL methods, like conservative
Q-learning (CQL) (Kumar et al., 2020) and implicit Q-learning (IQL) (Kostrikov et al., 2021), as well as
model-based RL methods like MOReL (Kidambi et al., 2020), and sequence-models like Decision Transformer
(DT) (Chen et al., 2021). These methods cannot adapt to novel rewards at test time (unlike D-MPC, MBOP
and Diffuser), but we include them to give a sense of the SOTA performance on this benchmark. We see
that our method, despite its extra flexibility, can still match the performance of these existing, but more
restrictive, methods.

Domain Level MOReL MBOP D-MPC (ours) Diffuser DT BC CQL IQL
halfcheetah medium 42.10 44.60 46.00 (±0.17) 44.20 42.60 42.60 44.00 47.40

hopper medium 95.40 48.80 61.24 (±2.30) 58.50 67.60 52.90 58.50 66.30
walker2d medium 77.80 41.00 76.21 (±2.67) 79.70 74.00 75.30 72.50 78.30

halfcheetah medium-replay 40.20 42.30 41.12 (±0.31) 42.20 36.60 36.60 45.50 44.20
hopper medium-replay 93.60 12.40 92.49 (±2.23) 96.80 82.70 18.10 95.00 94.70

walker2d medium-replay 49.80 9.70 78.81 (±4.19) 61.20 66.60 26.00 77.20 73.90
Locomotion Average 66.48 33.13 65.98 63.77 61.68 41.92 65.45 67.47

Domain Level MBOP D-MPC (ours) DT BC CQL IQL
adroit-pen cloned 63.20 89.22 (±12.57) 71.17 (±2.70) 99.14 (±12.27) 14.74 (±2.31) 114.05 (±4.78)
adroit-door cloned 0.00 16.36 (±2.20) 11.18 (±0.96) 3.40 (±0.95) -0.08 (±0.13) 9.02 (±1.47)

adroit-hammer cloned 4.20 12.27 (±3.58) 2.74 (±0.22) 8.90 (±4.04) 0.32 (±0.03) 11.63 (±1.70)
Adroit Average 22.47 39.28 28.36 37.15 4.99 44.90

Domain Level D-MPC (ours) BC CQL IQL
kitchen mixed 67.50 (±2.09) 51.50 52.40 51.00
kitchen partial 73.33 (±1.64) 38.00 50.10 46.30
Kitchen Average 70.42 44.75 51.25 48.65

Table 2: Performance comparison of D-MPC with various model-based and model-free offline RL methods
across different domains. Baseline results are obtained from existing papers (Ajay et al., 2023; Tarasov et al.,
2024). Performance is measured using normalized scores (Fu et al., 2020). For D-MPC, we report the mean
and standard error of normalized scores over 30 episodes with different random initial environment conditions.
Following (Kostrikov et al., 2021), we highlight in bold scores within 5% of the maximum per task. Baseline
numbers from (Ajay et al., 2023) do not have associated standard errors. We include the standard errors for
baseline numbers from (Tarasov et al., 2024) when they are present.

4.2 Generalization to novel rewards

In Fig. 1, we demonstrate how novel rewards can be used to generate interesting agent behaviors. We first
trained the dynamics, action proposal, and value models for D-MPC on the Walker2d medium-replay dataset.

7

Published in Transactions on Machine Learning Research (05/2025)

We then replaced the trained value model with a novel objective Vn for scoring and ranking trajectories in
our planning loop, using fnovel(st, At) = 5 exp(−(ht − htarget)2/2σ2), where ht is the dimension of the state
st that corresponds to the height of the agent, htarget is the target height, σ2 = 5 × 10−4, κ = 0 and κ̃ = 1
(so we only use the new J̃ and ignore the original J). By using this simple method, we were able to make
the agent lunge forward and keep its head down (htarget = 0.9), balance itself (htarget = 1.2), and repeatedly
jump (htarget = 1.4). Note that for the experiments presented in Fig. 1, we utilize a pure novel reward setting
by setting κ = 0 and κ̃ = 1. This means the value function used for planning, Vn, is solely determined
by the novel reward function, J̃ . The original reward function, J , derived from the pre-training data, has
no influence on the agent’s behavior in these cases. The resulting lunge, balance, and jump behaviors are
therefore direct consequences of optimizing J̃ and are not present in the original dataset.

We also compared D-MPC with Diffuser on these novel reward tasks. Diffuser can also optimize these rewards,
and we did not observe a significant performance difference. However, D-MPC’s key advantage lies in its
ability to adapt to novel dynamics, as discussed in Section 4.3.

he
ig

ht
 o

f
th

e
w
al

ke
r

(m
)

re
w
ar

d

trained value function target height 0.9 m target height 1.2 m target height 1.4 m

timestep

t = 250 t = 750 t = 100 t = 150 t = 250 t = 750 t = 50 t = 175

timestep timestep timestep

timestep timestep timestep timestep

0.8

-2

0

2

4

6

-2

0

2

4

6

-2

0

2

4

6

-2

0

2

4

6

0 200 400 600 800 1000

0 200 400 600 800 1000

0 50 100 100 200 300150 200 0 0200 400 600 800 1000

0 50 100 100 200 300150 200 0 0200 400 600 800 1000

1.0

1.2

1.4

0.8

1.0

1.2

1.4

0.8

1.0

1.2

1.4

0.8

1.0

1.2

1.4

Figure 1: Novel reward functions can generate interesting agent behaviors. The leftmost column shows
an example episode generated by D-MPC trained on the Walker2d medium-replay dataset, using the trained
value function in the planner. The remaining three columns present individual examples of behaviors generated
using a height-based novel objective in the planner, with each column corresponding to a different target height.
The top row of each column displays the agent’s height at each timestep within the episode. The middle row
shows two snapshots of the agent per episode, while the bottom row graphs the novel reward (targeted by the
planner) and the actual environment-provided reward received by the agent at each timestep. This figure serves
as a qualitative demonstration of how novel rewards can be employed to produce interesting behaviors.

4.3 Adaptation to novel dynamics

In this section, we demonstrate our model’s ability to adapt to novel dynamics at test time with limited
experience. The need for such adaptions to novel dynamics is common in real world robotics applications
where wear and tear or even imperfect calibrations can cause hardware defects and changed dynamics at test
time. Because of our factorized formulation, where we separate dynamics ps|a from policy πa, we can leverage
a small amount of “play” data collected with the hardware defects, and use it to fine-tune our multi-step
diffusion dynamics model while keeping our action proposal and trained value functions the same.

8

Published in Transactions on Machine Learning Research (05/2025)

We demonstrate this on Walker2D. We train the original models on the medium dataset and simulate a
hardware defect by restricting the torque executed by the actions on a foot joint (action dimension 2). On the
original hardware, without the defect, trained D-MPC achieves a normalized score of 76.21 (±2.67). When
executing this model on defective hardware, performance drops to only 22.74 (±1.41). Performance of our
implementation of Diffuser in the same setup when deployed on defective hardware drops from 72.91 (± 3.47)
to 25.85 (±1.08).

To compensate for the changed system dynamics, we collect 100 episodes of “play” data on the defective
hardware by deploying the original D-MPC trained on the medium-replay dataset. We use this small dataset
to fine-tune our multi-step diffusion dynamics model, while keeping the policy proposal and value model
fixed. Post-finetuning, performance improves to 30.65 (±1.89). Since diffuser jointly models state and action
sequences, there is no way to independently finetune just the dynamics model. We instead fine-tune the full
model with the collected “play” data. After fine-tuning, diffuser performance actually drops to 6.8 (±0.86).
See Table 3a for a summary.

4.4 Ablation studies

In this section, we conduct a series of detailed ablation studies to illustrate how different components in
D-MPC contribute to its good performance. In particular, we investigate the effect of using diffusion for
action proposals, and the impact of using single-step vs. multi-step models both for the action proposals and
for the dynamics models. We evaluate all variants on D4RL locomotion tasks. See Table 3b for a high-level
summary of the results, and Table 4 in the appendix for detailed performances of different D-MPC variants
on individual D4RL domains and levels.

4.4.1 Diffusion action proposals improve performance and simplify the planning algorithm

Existing model-based offline planning methods, such as MBOP, typically use a single-step deterministic MLP
policy for action proposals, an ensemble of single-step deterministic MLP models to emulate a stochastic
dynamics, and rely on trajectory optimization methods for planning. This MBOP method achieves an average
score of 33.13 on the locomotion tasks.

We can significantly improve on this baseline MBOP score, and simplify the algorithm, by (1) replacing
their single-step MLP action proposal with a single-step diffusion proposal, and (2) replacing their TrajOpt
planner with our simpler sampling-based planner. This improves performance to 52.93. Replacing their MLP
dynamics with a single-step diffusion dynamics model further provides a minor improvement, to 53.32.

4.4.2 Multi-step diffusion action proposals contribute to improved performance

D-MPC uses multi-step diffusion action proposals. In this section, we illustrate how this further improves
performance when compared with single-step diffusion action proposals.

We start with the same single-step MLP dynamics model as in Section 4.4.1. We then replace the single-step
diffusion action proposal with a multi-step diffusion action proposal that jointly samples a chunk of actions.
This improves average performance from 52.93 to 57.14. We then repeated this experiment on top of the
single-step diffusion dynamics, and improved performance from 53.32 to 57.81.

4.4.3 Multi-step diffusion dynamics models contribute to improved performance

D-MPC uses a multi-step diffusion dynamics model. In this section we illustrate how this reduces compounding
error in long-horizon dynamics prediction and contributes to improved performance.

We first measure the accuracy of long-horizon dynamics predictions of single-step diffusion, multi-step diffusion
and auto-regressive transformer (ART) dynamics models (described in Appendix E.3), independent of the
planning loop. We train the dynamics models on medium datasets from the respective domains, and measure
the accuracy of long-horizon dynamics prediction, using state/action sequences sampled from the medium
(training data), medium-replay (lower quality data) and expert (higher quality data) datasets. Concretely, we
follow Schubert et al. (2023) and calculate the median root mean square deviation (RMSD) on the non-velocity

9

Published in Transactions on Machine Learning Research (05/2025)

Diffuser D-MPC

Original 79.60 76.21 (±2.67)
Pre-FT w/ defect 25.85 (±1.08) 22.74(±1.41)
Post-FT w/ defect 6.8(±0.86) 30.65(±1.89)

(a)

Action
Proposal

Dynamics Model

SS Diff SS MLP ART MS Diff

SS Diff 53.32 52.93 - N/A
MS Diff 57.81 57.14 59.83 65.98

(b)

Table 3: (a) Performance on Walker2D before and after a simulated hardware defect, followed by fine-tuning
(FT) on play data. (b) Average performances of D-MPC variants on D4RL locomotion tasks. The full D-MPC
method is bottom right. MS: multi-step, SS: single step, Diff: diffusion, ART: auto-regressive transformer. Our
baseline MBOP uses ensembling and MPPI trajectory optimization with SS MLP dynamics models and SS MLP
action proposals, and achieves a score of 33.13.

ex
pe

rt
m

ed
iu

m
-r

ep
la

y
m

ed
iu

m

R
M

SD
 p

re
d.

 e
rr

.

Rollout steps

Walker2d

Diffusion 32-step Diffusion 1-step MLP ART

Hopper HalfCheetah

Figure 2: Accuracy of long-horizon dynamics prediction. We train the dynamics models on the medium
dataset and evaluate on medium (training data), medium-replay (lower-quality data), and expert (higher-quality
data) datasets. Prediction errors are measured by the median root mean square deviation (RMSD) on non-
velocity coordinates based on 1024 sampled state action sequences of length 256. Plots show median ± 10
percentile bands. The multi-step diffusion dynamics model incurs significantly lower prediction error on training
data while maintaining superior generalization abilities, outperforming other single-step and auto-regressive
alternatives. The auto-regressive transformer (ART) dynamics model outperforms the single step diffusion
dynamics model. The single-step MLP dynamics model exhibits compounding errors that grow rapidly for
long-horizon dynamics predictions.

coordinates with increasing trajectory length. Fig. 2 summarizes the results. From the figure we can see how
the multi-step diffusion dynamics model reduces compounding errors in long-horizon dynamics predictions
compared to single-step and auto-regressive alternatives, while maintaining superior generalization abilities,
especially for action distributions that are not too far from training distributions.

We then evaluate the quality of these dynamics models when used inside the D-MPC planning loop with a
multi-step diffusion action proposal. When using the ART dynamics model, we get a score of 59.83, but when
using the multi-step diffusion dynamics model, we get 65.98. We believe this difference is due to the fact that

10

Published in Transactions on Machine Learning Research (05/2025)

the transformer dynamics model represents the sequence level distribution as a product of one-step (albeit
non-Markovian) conditionals, i.e., pd(st+1:t+F |s1:t, a1:t+F −1) =

∏t+F −1
t pd(st+1|s1:t, a1:t−1, at). By contrast,

the diffusion dynamics model is an "a-causal" joint distribution that goes from noise to clean trajectories,
rather than working left to right. We conjecture that this enables diffusion to capture global properties of a
signal (e.g., predicting if the final state corresponds to the robot falling over) in a more faithful way than a
causal-in-time model.

While some D4RL tasks may not present explicit, immediate penalties for short-term planning, achieving
high scores even on benchmarks like Walker2D and Hopper often requires anticipating delayed consequences
of actions (e.g., an excessively fast gait leading to later instability). This section demonstrates D-MPC’s
ability to mitigate compounding error through accurate long-horizon predictions, a crucial capability for both
maximizing performance within D4RL and for tackling more complex, real-world scenarios where long-term
planning is essential.

4.4.4 Necessity of Expressive Models for Multi-Step Prediction

To demonstrate the importance of model expressiveness for effective multi-step prediction, we replaced the
multi-step diffusion models within D-MPC (for both action proposal and dynamics) with multi-step MLPs.
These MLPs were two-layer networks with 4096 hidden units, using flattened multi-step states and actions as
inputs. The D-MPC configuration using diffusion models achieves a normalized score of 65.98 (Table 3b).
In contrast, the version using multi-step MLPs for both components only achieved a score of 50.01. This
substantial performance drop underscores the necessity of employing expressive models, such as diffusion
models, to accurately capture the complex distributions inherent in multi-step planning.

4.5 D-MPC can be distilled into a fast reactive policy for high-frequency control

Due to the use of diffusion models, D-MPC has slower runtime. In Appendix J, we include a detailed runtime
comparison between D-MPC and other methods. However, if high-frequency control is important, we can
distill the D-MPC planner into a fast task-specific MLP policy, similar to what is done in MoREL (Kidambi
et al., 2020) or MOPO (Yu et al., 2020). Concretely, we train an MLP policy on offline datasets, using the
planned actions from pretrained D-MPC as supervision. We do this for the 6 D4RL locomotion domain and
level combinations we use in our ablation studies, and compare performance with both the vanilla MLP policy
and D-MPC. We train all models for 1M steps, and evaluate the last checkpoint for the distilled MLP policy.

We observe that the distilled MLP policy achieves an average normalized score of 65.08 across the 6 D4RL
locomotion domain and level combinations, which is only slightly worse than D-MPC’s average normalized
score of 65.98, and greatly outperforms the vanilla MLP policy’s average normalized score of 41.92. In
addition, after distillation we just have an MLP policy, and it runs at the same speed as the vanilla MLP
policy.

5 Conclusions

We proposed Diffusion Model Predictive Control (D-MPC), which leverages diffusion models to improve
MPC by learning multi-step action proposals and multi-step dynamics from offline datasets. D-MPC
reduces compounding errors with its multi-step formulation, achieves competitive performance on the D4RL
benchmark, and can optimize novel rewards at run time and adapt to new dynamics. Detailed ablation
studies illustrate the benefits of different D-MPC components.

One disadvantage of our method (shared by all MPC methods) is the need to replan at each step, which
is much slower than using a reactive policy. This is particularly problematic when using diffusion models,
which are especially slow to sample from. In the future, we would like to investigate the use of recently
developed speedup methods from the diffusion literature, such as distillation (see e.g., Chang et al. (2023)).
Furthermore, while our ablation studies demonstrate the surprising effectiveness of our simple sampling-based
planner, incorporating guided sampling techniques (as suggested in Janner et al. (2022)) could offer a path
towards greater efficiency by combining the strengths of model-based and model-free approaches.

11

Published in Transactions on Machine Learning Research (05/2025)

Another limitation of the current D-MPC is we only explored setups where we directly have access to the
low-dimensional states, such as proprioceptive sensors on a robot. In the future, we plan to extend this work to
handle pixel observations, using representation learning methods that extract abstract latent representations,
which can form the input to our dynamics models, similar to existing latent-space world modeling approaches
such as the Dreamer line of work, but in an MPC context, rather than a Dyna context.

Like all offline RL methods, D-MPC’s performance is influenced by the distribution of behaviors in the training
dataset. When offline datasets lack behaviors relevant to the target task, the generalization capabilities of any
method are inherently constrained without additional data collection. While this does present a limitation
for D-MPC, it is not unique to our approach but rather a fundamental challenge in offline RL. Within the
scope of available data, D-MPC excels at optimizing and adapting to novel rewards and dynamics, which
represents the realistic scenario for offline RL applications. Our approach’s ability to effectively leverage the
existing behavioral distribution is a significant strength. Future work could explore techniques to encourage
broader exploration within the constraints of offline data, potentially expanding the applicability of D-MPC
and similar methods to an even wider range of scenarios.

References
Anurag Ajay, Yilun Du, Abhi Gupta, Joshua B Tenenbaum, Tommi S Jaakkola, and Pulkit Agrawal.

Is conditional generative modeling all you need for decision making? In ICLR, 2023. URL https:
//openreview.net/forum?id=sP1fo2K9DFG.

Eloi Alonso, Adam Jelley, Anssi Kanervisto, and Tim Pearce. Diffusion world models. October 2023. URL
https://openreview.net/forum?id=bAXmvOLtjA.

Eloi Alonso, Adam Jelley, Vincent Micheli, Anssi Kanervisto, Amos Storkey, Tim Pearce, and François
Fleuret. Diffusion for world modeling: Visual details matter in atari, 2024.

Arthur Argenson and Gabriel Dulac-Arnold. Model-Based offline planning. In ICLR, 2021. URL https:
//arxiv.org/abs/2008.05556.

Kavosh Asadi, Dipendra Misra, Seungchan Kim, and Michel L Littman. Combating the Compounding-Error
problem with a multi-step model. arXiv [cs.LG], May 2019. URL https://arxiv.org/abs/1905.13320.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016.

Ziyi Chang, George A Koulieris, and Hubert P H Shum. On the design fundamentals of diffusion models: A
survey. June 2023. URL http://arxiv.org/abs/2306.04542.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel, Aravind
Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence modeling. Advances
in neural information processing systems, 34:15084–15097, 2021.

Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and Shuran Song.
Diffusion policy: Visuomotor policy learning via action diffusion. In RSS, March 2023. URL http:
//arxiv.org/abs/2303.04137.

Zichen Jeff Cui, Yibin Wang, Nur Muhammad Mahi Shafiullah, and Lerrel Pinto. From play to policy:
Conditional behavior generation from uncurated robot data. In ICLR, 2023. URL http://arxiv.org/
abs/2210.10047.

Zihan Ding, Amy Zhang, Yuandong Tian, and Qinqing Zheng. Diffusion world model. arXiv [cs.LG], February
2024. URL https://arxiv.org/abs/2402.03570.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep data-driven
reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. In ICLR, 2020. URL http://arxiv.org/abs/1912.01603.

12

https://openreview.net/forum?id=sP1fo2K9DFG
https://openreview.net/forum?id=sP1fo2K9DFG
https://openreview.net/forum?id=bAXmvOLtjA
https://arxiv.org/abs/2008.05556
https://arxiv.org/abs/2008.05556
https://arxiv.org/abs/1905.13320
http://arxiv.org/abs/2306.04542
http://arxiv.org/abs/2303.04137
http://arxiv.org/abs/2303.04137
http://arxiv.org/abs/2210.10047
http://arxiv.org/abs/2210.10047
https://arxiv.org/abs/2402.03570
http://arxiv.org/abs/1912.01603

Published in Transactions on Machine Learning Research (05/2025)

Nicklas Hansen, Xiaolong Wang, and Hao Su. Temporal difference learning for model predictive control.
arXiv preprint arXiv:2203.04955, 2022.

Nicklas Hansen, Hao Su, and Xiaolong Wang. Td-mpc2: Scalable, robust world models for continuous control.
arXiv preprint arXiv:2310.16828, 2023.

Dan Hendrycks and Kevin Gimpel. Bridging nonlinearities and stochastic regularizers with gaussian error
linear units. CoRR, abs/1606.08415, 2016. URL http://arxiv.org/abs/1606.08415.

Matthew Thomas Jackson, Michael Tryfan Matthews, Cong Lu, Benjamin Ellis, Shimon Whiteson, and
Jakob Foerster. Policy-guided diffusion. arXiv preprint arXiv:2404.06356, 2024.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence modeling
problem. Advances in neural information processing systems, 34:1273–1286, 2021.

Michael Janner, Yilun Du, Joshua B Tenenbaum, and Sergey Levine. Planning with diffusion for flexible
behavior synthesis. In ICML, May 2022. URL http://arxiv.org/abs/2205.09991.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of Diffusion-Based
generative models. In NIPS, June 2022. URL http://arxiv.org/abs/2206.00364.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel: Model-based
offline reinforcement learning. Advances in neural information processing systems, 33:21810–21823, 2020.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-learning. In
International Conference on Learning Representations, 2021.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline reinforce-
ment learning. Advances in Neural Information Processing Systems, 33:1179–1191, 2020.

Nathan Lambert, Kristofer Pister, and Roberto Calandra. Investigating compounding prediction errors in
learned dynamics models. March 2022. URL http://arxiv.org/abs/2203.09637.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and transfer
data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast solver for
guided sampling of diffusion probabilistic models. arXiv preprint arXiv:2211.01095, 2022.

Cong Lu, Philip Ball, Yee Whye Teh, and Jack Parker-Holder. Synthetic experience replay. Advances in
Neural Information Processing Systems, 36, 2024.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models. In
International conference on machine learning, pp. 8162–8171. PMLR, 2021.

Chaoyi Pan, Zeji Yi, Guanya Shi, and Guannan Qu. Model-based diffusion for trajectory optimization.
Advances in Neural Information Processing Systems, 37:57914–57943, 2024.

Tim Pearce, Tabish Rashid, Anssi Kanervisto, Dave Bignell, Mingfei Sun, Raluca Georgescu, Sergio Valcarcel
Macua, Shan Zheng Tan, Ida Momennejad, Katja Hofmann, and Sam Devlin. Imitating human behaviour
with diffusion models. In ICLR, January 2023. URL http://arxiv.org/abs/2301.10677.

Marc Rigter, Bruno Lacerda, and Nick Hawes. Rambo-rl: Robust adversarial model-based offline reinforcement
learning. Advances in neural information processing systems, 35:16082–16097, 2022.

Marc Rigter, Jun Yamada, and Ingmar Posner. World models via Policy-Guided trajectory diffusion. TMLR,
2024. URL http://arxiv.org/abs/2312.08533.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. arXiv preprint
arXiv:2202.00512, 2022.

13

http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/2205.09991
http://arxiv.org/abs/2206.00364
http://arxiv.org/abs/2203.09637
http://arxiv.org/abs/2301.10677
http://arxiv.org/abs/2312.08533

Published in Transactions on Machine Learning Research (05/2025)

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon Schmitt,
Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, Timothy Lillicrap, and David Silver.
Mastering atari, go, chess and shogi by planning with a learned model. Nature, 2020. URL http:
//arxiv.org/abs/1911.08265.

Ingmar Schubert, Jingwei Zhang, Jake Bruce, Sarah Bechtle, Emilio Parisotto, Martin Riedmiller, Jost Tobias
Springenberg, Arunkumar Byravan, Leonard Hasenclever, and Nicolas Heess. A generalist dynamics model
for control. May 2023. URL http://arxiv.org/abs/2305.10912.

Max Schwenzer, Muzaffer Ay, Thomas Bergs, and Dirk Abel. Review on model predictive control: an
engineering perspective. Int. J. Adv. Manuf. Technol., 117(5):1327–1349, November 2021. URL https:
//doi.org/10.1007/s00170-021-07682-3.

Andy Shih, Suneel Belkhale, Stefano Ermon, Dorsa Sadigh, and Nima Anari. Parallel sampling of diffusion
models. Advances in Neural Information Processing Systems, 36, 2024.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In International
Conference on Learning Representations, 2020.

Yang Song and Prafulla Dhariwal. Improved techniques for training consistency models. arXiv preprint
arXiv:2310.14189, 2023.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. arXiv preprint
arXiv:2303.01469, 2023.

Richard S Sutton. Dyna, an integrated architecture for learning, planning, and reacting. SIGART Bull., 2(4):
160–163, July 1991. URL https://doi.org/10.1145/122344.122377.

Denis Tarasov, Alexander Nikulin, Dmitry Akimov, Vladislav Kurenkov, and Sergey Kolesnikov. Corl:
Research-oriented deep offline reinforcement learning library. Advances in Neural Information Processing
Systems, 36, 2024.

Arun Venkatraman, Martial Hebert, and J . Bagnell. Improving Multi-Step prediction of learned time series
models. AAAI, 29(1), February 2015. URL https://ojs.aaai.org/index.php/AAAI/article/view/
9590.

Hsiang-Chun Wang, Shang-Fu Chen, Ming-Hao Hsu, Chun-Mao Lai, and Shao-Hua Sun. Diffusion model-
augmented behavioral cloning. arXiv preprint arXiv:2302.13335, 2023.

Chenjun Xiao, Yifan Wu, Chen Ma, Dale Schuurmans, and Martin Müller. Learning to combat Compounding-
Error in Model-Based reinforcement learning. December 2019. URL http://arxiv.org/abs/1912.11206.

Sirui Xie, Zhisheng Xiao, Diederik P Kingma, Tingbo Hou, Ying Nian Wu, Kevin Patrick Murphy, Tim
Salimans, Ben Poole, and Ruiqi Gao. Em distillation for one-step diffusion models. arXiv preprint
arXiv:2405.16852, 2024.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang, Yanyan
Lan, Liwei Wang, and Tie-Yan Liu. On layer normalization in the transformer architecture. CoRR,
abs/2002.04745, 2020. URL https://arxiv.org/abs/2002.04745.

Sherry Yang, Yilun Du, Seyed Kamyar Seyed Ghasemipour, Jonathan Tompson, Leslie Pack Kaelbling,
Dale Schuurmans, and Pieter Abbeel. Learning interactive Real-World simulators. In ICLR, 2024. URL
https://openreview.net/forum?id=sFyTZEqmUY.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea Finn, and
Tengyu Ma. Mopo: Model-based offline policy optimization. Advances in Neural Information Processing
Systems, 33:14129–14142, 2020.

14

http://arxiv.org/abs/1911.08265
http://arxiv.org/abs/1911.08265
http://arxiv.org/abs/2305.10912
https://doi.org/10.1007/s00170-021-07682-3
https://doi.org/10.1007/s00170-021-07682-3
https://doi.org/10.1145/122344.122377
https://ojs.aaai.org/index.php/AAAI/article/view/9590
https://ojs.aaai.org/index.php/AAAI/article/view/9590
http://arxiv.org/abs/1912.11206
https://arxiv.org/abs/2002.04745
https://openreview.net/forum?id=sFyTZEqmUY

Published in Transactions on Machine Learning Research (05/2025)

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn. Combo:
Conservative offline model-based policy optimization. Advances in neural information processing systems,
34:28954–28967, 2021.

Hanye Zhao, Xiaoshen Han, Zhengbang Zhu, Minghuan Liu, Yong Yu, and Weinan Zhang. Long-horizon
rollout via dynamics diffusion for offline reinforcement learning. arXiv preprint arXiv:2405.19189, 2024.

Hanlin Zhu, Baihe Huang, and Stuart Russell. On representation complexity of model-based and model-free
reinforcement learning. In The Twelfth International Conference on Learning Representations.

15

Published in Transactions on Machine Learning Research (05/2025)

A Algorithms for model learning

In Algorithm 3 and Algorithm 4, we present the multi-step and single-step training used in our experiments.

Diffusion models are generative models that define a forward diffusion process and a reverse denoising process.
The forward process gradually adds noise to the data, transforming it into a simple Gaussian distribution.
The reverse process, which is learned, denoises the data step by step to recover the original data distribution.

In D-MPC, we model the action proposals and dynamics models as conditional diffusion models. Formally, let
x0, y be the original data, where x0 represents the data we want to model and y represents the conditioning
variable. Let xk be the data at step k in the diffusion process. The forward process is defined as q(xk|xk−1) =
N(xk; √

αkxt−1, (1−αk)I) where αk determines the variance schedule. The reverse process aims to approximate
pθ(xk−1|xk) = N(xk−1; µθ(xk, k, y), Σk) where N(µ, Σ) denotes a Gaussian distribution with mean µ and
covariance matrix Σ. For suitably chosen αk and large enough K, xK ∼ N(0, I). Starting with Gaussian
noise, we iteratively denoise to generate the samples.

We train diffusion models using the standard denoising score matching loss. Concretely, we start by randomly
sampling unmodified original x0, y from the dataset. For each sample, we randomly select a step k in the
diffusion process, and sample the random noise ϵk with the appropriate variance for the diffusion time step k.
We train a noise prediction network ϵθ by minimize the mean-squared-error loss MSE(ϵk, ϵθ(x0 + ϵk, k, y)).
pθ(xk−1|xk, y) can be calculated as a function of ϵθ(xk, k, y), which allows us to draw samples from the trained
conditional diffusion model.

In the D-MPC case, for learning the action proposal ρ, the future actions at:t+F −1 are the clean data x0,
and the current state st and history ht are the conditioning variable y. For learning the multi-step dynamics
model pd, the future states st+1:t+f are the clean data x0, and the current state st, the history ht and the
future actions at:t+F −1 are the conditioning variable y. In both cases, the noise prediction network ϵθ is a
transformer. Details of the transformer are given in Appendix E.1.

Algorithm 3: Model learning (one step models).
1 Def M = train(D, F, H) :
2 Create dataset of tuples: D′ = {(st, ht, at, st+1, rt, Gt)}, ht = (st−H:t−1, at−H:t−1), Gt =

∑T
j=t rj

3 Fit p1(st+1|st, ht, at) using MLE on D′, set pd =
∏t+F −1

j=t p1(sj+1|sj , aj , hj)
4 Fit ρ1(at|st, ht) using MLE on D′, set ρ =

∏t+F −1
j=t ρ1(aj |sj , hj)

5 Fit R = E(rt|st, ht, at) using regression on D′

6 Fit V = E(Gt|st, ht, at) using regression on D′

Algorithm 4: Model learning (multi-step models).
1 Def M = train(D, F, H) :
2 Create dataset of tuples:

D′ = {(st, ht, at:t+F −1, st+1:t+fF
, rt, Gt)}, ht = (st−H:t−1, at−H:t−1), Gt =

∑T
j=t rj

3 Fit pd(st+1:t+F |st, ht, at:t+F −1) using diffusion on D′

4 Fit ρ(at:t+F −1|st, ht) using diffusion on D′

5 Fit R = E(rt|st, ht, at) using regression on D′

6 Fit V = E(Gt|st, ht, at) using regression on D′

B The MBOP-TrajOpt Algorithm

In Algorithm 5, we include the complete MBOP-TrajOpt algorithm from Argenson & Dulac-Arnold (2021)
adapted to our notations as reference.

16

Published in Transactions on Machine Learning Research (05/2025)

Algorithm 5: MBOP-TrajOpt
1 Def a = MBOP-TrajOpt(s0, aprev, M, N, F, κ, σ2):
2 RN = 0
3 AN,H = 0
4 for n = 1 : N do
5 l = n mod K
6 s1 = s0, a0 = aprev

0 , R = 0
7 for t = 1 : F do
8 ϵ ∼ N (0, σ2)
9 at = f l

prop(st, at−1) + ϵ

10 An,t = (1 − β)at + βaprev
min(t,F −1)

11 st+1 = f l
states(st, An,t)

12 R = R + 1
K

∑K
i=1 f i

reward(st, An,t)
13 Rn = R + 1

K

∑K
i=1 f i

value(sF +1, An,F)

14 at =
∑N

n=1
eκRn An,t+1∑N

n=1
eκRn

, ∀t ∈ [0, F − 1]

15 Return a

C Detailed ablation study results

In Table 4, we present detailed performances of the D-MPC variants studied in Section 4.4. See Table 3b for
a a high-level summary.

Domain Name Level MBOP D-MPC MS Diff Action Proposal SS Diff Action Proposal
SS Diff Dynamics SS MLP Dynamics ART Dynamics SS Diff Dynamics SS MLP Dynamics

halfcheetah medium 44.60 46.00 (±0.17) 44.50 (± 0.18) 44.78 (± 0.13) 45.17 (± 0.15) 46.54 (± 0.17) 44.88 (± 0.18)
hopper medium 48.80 61.24 (±2.30) 53.83 (± 2.38) 50.66 (± 1.29) 50.11 (± 1.77) 46.24 (± 1.66) 47.12 (± 2.39)

walker2d medium 41.00 76.21 (± 2.67) 72.23 (± 2.49) 77.09 (± 1.62) 73.16 (± 2.97) 75.59 (± 2.85) 76.44 (± 1.79)
halfcheetah medium-replay 42.30 41.12 (± 0.31) 42.85 (± 0.14) 41.57 (± 0.16) 42.40 (± 0.15) 42.06 (± 0.19) 40.37 (± 0.35)

hopper medium-replay 12.40 92.49 (±2.23) 74.45 (± 4.44) 76.38 (± 3.83) 79.84 (± 3.93) 70.17 (± 5.55) 68.31 (± 5.60)
walker2d medium-replay 9.70 78.81 (±4.19) 58.98 (± 4.79) 52.33 (± 4.85) 68.28 (± 4.43) 39.30 (± 5.62) 40.47 (± 5.51)

Average 33.13 65.98 57.81 57.14 59.83 53.32 52.93

Table 4: Detailed performances of the D-MPC variants studied in the ablation studies on different D4RL domains
and levels. MS = multi-step, SS = single step, Diff = diffusion, ART = auto-regressive transformer.

D Normalizing state coordinates

Following Ajay et al. (2023), we normalize the states that are input to our models by using the the empirical
cumulative distribution function (CDF) to remap each coordinate to lie uniformly in the range [−1, 1].

Given an offline dataset of trajectories, consisting of (state, action, reward) triples

D = {s1
1:T1

, a1
1:T1

, r2
1:T1

, s2
1:T2

, a2
1:T2

, rm
1:T2

, . . . sM
1:TM

, aM
1:TM

, rM
1:TM

}

let Sk ≡
{

M⋃
m=1

Tm⋃
i=1

(sk)m
i

}
be the accumulated corpus for the k-th coordinate of each state. We can define

the empirical CDF for the k-th coordinate of the state by

F̂k(t) = 1
N

N∑
i=1

1si
k

≤t for si=1...N
k ∈ Sk

where 1Y is the indicator function for event Y .

17

Published in Transactions on Machine Learning Research (05/2025)

For the state vector s⃗ consisting of coordinates sk, the relation with the normalized state coordinate is then
given by ŝk = 2F̂k(sk) − 1. The states output from our dynamics model are unnormalized by the inverse
relation sk = F̂ −1

k

(1+ŝk

2
)
.

E Model architectures and training details

E.1 Diffusion models

In this paper, we train 4 kinds of diffusion models: single-step diffusion action proposals, single-step diffusion
dynamics models, multi-step diffusion action proposals, and multi-step diffusion dynamics models.

We implement all 4 models as conditional diffusion models. For single-step diffusion action proposals, we use
diffusion to model p(at|st); for single-step diffusion dynamics models, we use diffusion to model p(st + 1|st, at);
for multi-step diffusion action proposals, we use diffusion to model p(at:t+F −1|st); and for multi-step diffusion
dynamics models we use diffusion to model p(st+1:t+F |st, at:t+F −1).

Our diffusion implementation uses DDIM Song et al. (2020) with cosine schedule Nichol & Dhariwal (2021). We
use transformers as our denoising network: for each conditional diffusion model, we embed the diffusion time
using sinusoidal embeddings, project the time embeddings and each state and action (both for states/actions
that are used as conditioning and for states/actions that are being modelled) to a shared token space with
tokens of dimension 256, add Fourier positional embeddings with 16 Fourier bases to all tokens, and pass
all the tokens through a number of transformer layers. We take the output tokens that correspond to the
states/actions we are predicting, and project them back to the original state/action spaces.

For all our transformer layers, we use multi-headed attention with 8 heads, and 1024 total dimensions for
query, key and value, and 2048 hidden dimensions for the MLP.

For all of our single-step diffusion action proposals, we use 5 diffusion timesteps and 2 transformer layers for
the denoiser.

For all of our single-step diffusion dynamics models, we use 3 diffusion timesteps and 2 transformer layers for
the denoiser.

For all of our multi-step diffusion action proposals, we use 32 diffusion timesteps and 5 transformer layers for
the denoiser.

For all of our multi-step diffusion dynamics models, we use 10 diffusion timesteps and 5 transformer layers
for the denoiser.

E.2 One-step MLP dynamics models

We follow Argenson & Dulac-Arnold (2021) for the multi-layer perceptron (MLP) architecture of our one-step
dynamics model, and train it to approximate st+1 = f(st, at). We use only a single MLP. Hyperparameters
for the model and training are summarized in Table 5.

Hyperparameter Value
Number of FC layers 2

Size of FC layers 512
Non-linearity ReLU

Batch size 256
Loss function Mean square error

Table 5: Hyperparameters for the MLP one-step dynamics model and training.

E.3 Auto-Regressive Transformer dynamics model (ART)

We follow Chen et al. (2021) in our transformer dynamics model, leaving out the rewards tokens
and the time-step embedding. Each state and action is mapped into a single token with a sepa-
rate linear layer, namely embeds and embeda respectively. This results in the following tokens: T =

18

Published in Transactions on Machine Learning Research (05/2025)

[embeds(s1), embeda(a1), embeds(s2), embeda(a2), . . .]. These then normalized using LayerNorm Ba et al.
(2016) then mapped with a causal transformer to a series of output tokens O1, O2, · · · . The loss function is
then:

L =
∑

t

MSE(preda(O2t−1), at) + MSE(preds(O2t), st+1) (3)

where preda and preds are again linear prediction layers mapping from the output token to the state or
action and MSE is the mean squared error.

The hyperparameters used are summarized in Table 6.

Hyperparameter Value
Encode dimension 512
Number of layers 3
Number of heads 4

MLP size per head 512
Attention window size 64

Position embedding Fourier embedding with 16 basis functions.
Dropout Not used.

LayerNorm location Before attention block Xiong et al. (2020)
Non-linearity GeLU Hendrycks & Gimpel (2016)

Table 6: Hyperparameters used in the ART model.

E.4 Model architectures for the objective function

Our objective function J takes as input future action proposals at:t+F −1 and future states st:t+F , and regresses
the discounted future reward as defined in Eq. (2). We again implement our objective function J using a
transformer, using the same transformer layer as in Appendix E.1. We project all states and actions to a
shared token space with tokens of dimension 256, and specify an additional learnable token for the discounted
future reward. We add Fourier positional embedding with 16 Fourier bases to all tokens, pass all tokens
through a transformer of 10 layers, take the token that corresponds to the discounted future reward, and
read out the discounted future reward prediction. We train the objective function J using an L2 loss.

In our experiments for all domains except Hopper, we used a discount factor of 0.99. For Hopper we used a
discount factor of 0.997. For Walker2D and Hopper, episodes can terminate early due to the agent falling
down. For episodes that terminate early, we include an additional −100 termination penalty for the last step
as reward, and calculate the discounted future reward taking into account the termination penalty.

E.5 Training setups and hyper-parameters

For all of our model training, we use the Adam optimizer for which the learning rate warms up from 0 to
10−4 over 500 steps and then follows a cosine decay schedule from 10−4 to 10−5. We train all models for
2 × 106 steps. We use gradient clipping at norm 5, and uses EMA with a decay factor of 0.99. All of our
evaluations are done using the EMA parameters for the models.

E.6 Compute Resources

We train and evaluate all models on A100 GPUs. We use a single A100 GPU for each training run, and
separate worker with a single A100 GPU for evaluation. Training for 2 × 106 steps for each variant takes
about 2 days, for all variants we considered.

F Hyper-parameters for the sampling-based planner

For all of our experiments, we use a forecast horizon F = 32, number of samples N = 64, and a history
length H = 1. A forecast horizon F = 32 already works well since our trained objective function J predicts
discounted future rewards.

19

Published in Transactions on Machine Learning Research (05/2025)

G Long-horizon dynamics prediction

Following Schubert et al. (2023), we measure prediction errors by the median Root Mean Square Deviation
(RMSD) on the non-velocity coordinates, as depicted in Figure 2. While this metric allows us to directly
analyze the effectiveness of the dynamics model, it is a somewhat crude metric of the correctness or usefulness
of the prediction. For example, the following predictions would all produce errors 1.0 compared to the
correct ones: treating each walker as a bundle of limbs with the same center-of-mass, predicting states that
would trigger termination criteria (unreasonable joint angles), or predicting an upside down position for the
HalfCheetah (a state from which it cannot recover). This metric is a more effective probe of dynamics model
quality in the regime where the errors are smaller. We see in Figure 2 that the multi-step diffusion dynamics
model in particular has low prediction errors even for long rollouts, indicating that it performs well in these
situations.

H Generalization to novel rewards

For the examples in Fig. 1, we first trained the dynamics, action proposal and value components of D-MPC
on the Walker2d medium-replay dataset. The leftmost column shows the agent’s height and rewards attained
during an example episode generated by D-MPC.

To incorporate novel rewards, we replaced the the trained value model in the planning loop with a novel
objective based solely on the height of the agent. For this objective, we used fnovel(st, At) = 5 exp(−(ht −
htarget)2/2σ2), where ht is the dimension of the state st that corresponds to the height of the agent, htarget is
the desired target height, σ2 = 5 × 10−4, κ = 0 and κ̃ = 1. The scale factor of 5 in the reward function fnovel
was chosen to roughly match the maximum reward attainable in the environment.

In each episode, the agent starts at a height of 1.25 (with uniform noise in the range of [−5 × 10−4, 5 × 10−4]
added for stochasticity). Figure 1 demonstrates the agent’s behavior for different target heights. For
htarget = 1.2, which is close to the initial position, the agent maintains the desired height for an extended
duration. For htarget = 0.9, the agent lowers its torso to achieve the target height, but eventually leans too
far forward resulting in early episode termination. For htarget = 1.4, the agent has to jump to achieve the
desired height, which can only be momentarily attained due to the environment’s physics. In the example
shown, the agent jumps three times before falling over, leading to early episode termination.

I Adaptation to novel dynamics

We used D-MPC and our implementation of the diffuser models trained on Walker2D medium dataset as our
pre-trained models. To simulate defective hardware, we modified the action being executed in the environment.
Specifically, we clip the action component corresponding to the torque applied on the right foot rotor to
[−0.5, 0.5] vs the original [−1, 1].

To collect the play data on this defective hardware, we run our D-MPC model trained on medium-replay
dataset, and collect data for 100 episodes. It has a total of 30170 transitions (steps) and an average normalized
episode reward of 23.14 (± 2.31). Note that the actions in this dataset correspond to the actions output by
the model and not the clipped actions.

For fine-tuning, we load the pre-trained diffuser and D-MPC models and train them on this dataset with
same training parameters as the original training. For D-MPC, we only train the dynamics model and freeze
other components. For the diffuser, we fine-tune the full model, since it is a joint model. During online
evaluation, we sampled 256 trajectories in both the models and picked the one with the best value to execute
the action at each step. We report the maximum scores for both approaches.

J Timing measurements

To illustrate the differences in run times between different methods, we list in Table 7 the measured wall clock
planning time (along with standard errors) per execution step, on a single A100 GPU, for each algorithm, in

20

Published in Transactions on Machine Learning Research (05/2025)

three D4RL locomotion environments. The measurements illustrate that a simple MLP policy is the fastest,
followed by an MBOP-like setup, followed by D-MPC, followed by MPC with an autoregressive transformer
dynamics model. If tasks require faster control loops, D-MPC could be sped up in a few different ways such
as amortizing the planning over a larger chunk of actions executed in the environment (since the planner
naturally generates long-horizon plans), using accelerated diffusion sampling strategies Lu et al. (2022); Shih
et al. (2024), and distilling the diffusion models Song et al. (2023); Song & Dhariwal (2023); Salimans & Ho
(2022); Liu et al. (2022); Xie et al. (2024). We leave this exploration for future work.

D4RL domain MLP policy MBOP D-MPC ART-MPC

Walker2d 3.51(±0.06) × 10−1 4.77(±0.03) × 100 9.37(±0.03) × 101 3.37(±0.09) × 102

HalfCheetah 3.73(±0.06) × 10−1 3.93(±0.10) × 100 9.24(±0.07) × 101 2.62(±0.04) × 102

Hopper 3.49(±0.06) × 10−1 5.07(±0.78) × 100 9.48(±0.04) × 101 3.51(±0.07) × 102

Table 7: Wall-clock planning time (in milliseconds) per environment step for different algorithms, as measured
on a single A100 GPU.

21

	Introduction
	Related work
	Method
	Model predictive control
	Model learning
	Planning
	Adaptation

	Experiments
	For fixed rewards, D-MPC is comparable to other offline RL methods
	Generalization to novel rewards
	Adaptation to novel dynamics
	Ablation studies
	Diffusion action proposals improve performance and simplify the planning algorithm
	Multi-step diffusion action proposals contribute to improved performance
	Multi-step diffusion dynamics models contribute to improved performance
	Necessity of Expressive Models for Multi-Step Prediction

	D-MPC can be distilled into a fast reactive policy for high-frequency control

	Conclusions
	Algorithms for model learning
	The MBOP-TrajOpt Algorithm
	Detailed ablation study results
	Normalizing state coordinates
	Model architectures and training details
	Diffusion models
	One-step MLP dynamics models
	Auto-Regressive Transformer dynamics model (ART)
	Model architectures for the objective function
	Training setups and hyper-parameters
	Compute Resources

	Hyper-parameters for the sampling-based planner
	Long-horizon dynamics prediction
	Generalization to novel rewards
	Adaptation to novel dynamics
	Timing measurements

