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ABSTRACT

We present InfiniteMesh, a feed-forward framework for efficient high-quality
image-to-3D generation with view interpolation. Recent advancements in Large
Reconstruction Model (LRM) have demonstrated significant potential in extract-
ing 3D content from multi-view images produced by 2D diffusion models. Never-
theless, challenges remain as 2D diffusion models often struggle to generate dense
images with strong multi-view consistency, and LRMs often exacerbate this multi-
view inconsistency during 3D reconstruction. To address these issues, we propose
a novel framework based on LRM that employs 2D diffusion-based view interpo-
lation to enhance the quality of the generated mesh. Leveraging multi-view images
produced by a 2D diffusion model, our approach introduces an Infinite View Inter-
polation module to generate interpolated images from main views. Subsequently,
we employ a tri-plane-based mesh reconstruction strategy to extract robust tokens
from these multiple generated images and produce the final mesh. Extensive ex-
periments indicate that our method generates high-quality 3D content in terms of
both texture and geometry, surpassing previous state-of-the-art methods.

1 INTRODUCTION

3D generation from a single image has become increasingly vital across various fields, including
virtual reality, gaming, and robotics Pang et al. (2024). Recent advancements in 2D diffusion models
Ho et al. (2020); Song et al. (2021); Blattmann et al. (2023a) and Large Reconstruction Models
(LRMs) Hong et al. (2023); Li et al. (2023); Tang et al. (2024); Wang et al. (2024); Xu et al. (2024a)
have opened new avenues for 3D content creation. Several works, such as Poole et al. (2022); Lin
et al. (2023); Qian et al. (2023); Seo et al. (2023); Qiu et al. (2024); Chen et al. (2024a;b), leverage
2D diffusion models to generate 3D content through a Score Distillation Sampling (SDS) pipeline.
An alternative approach involves creating multi-view images using 2D diffusion, followed by the
application of reconstruction algorithms to obtain 3D content from these images Liu et al. (2023a);
Shi et al. (2023b); Liu et al. (2023b); Wang & Shi (2023); Shi et al. (2023a); Long et al. (2024).

Nonetheless, current state-of-the-art (SoTA) methods typically produce a limited number of multi-
view images (usually four or six), which restricts the generation of geometric and textural details.
Approaches such as Blattmann et al. (2023b); Voleti et al. (2024); Chen et al. (2024c) have intro-
duced video diffusion strategies to directly increase the number of generated multi-view images,
however, they are often plagued by the challenge of multi-view inconsistency, as illustrated in Fig.
1 (SV3D and V3D). Besides, They also require significant training costs, including GPU memory,
etc., which greatly limit their application.

To address these limitations, we introduce InfiniteMesh, a novel LRM-based image-to-3D frame-
work, designed to improve 3D generation quality through 2D diffusion-based view interpolation.
InfiniteMesh generates a large number of multi-view images with two steps. Firstly, InfiniteMesh
employs a 2D diffusion model for N main views generation (N is 4), then, an Infinite View In-
terpolation (IVI) module is incorporated to generate interpolated images with superior multi-view
consistency from main views, enriching representational details. Finally, a tri-plane-based mesh
reconstruction model utilizes these views to extract robust tokens, and produce a final mesh that
shows high-quality geometry and texture. We validate our approach using the Google Scanned Ob-
jects (GSO) dataset Downs et al. (2022) and images collected from the web, demonstrating that
InfiniteMesh outperforms existing baseline methods.
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Input SV3D V3D Ours

Figure 1: Qualitative comparisons between our IVI module and video diffusion methods in multi-
view generation. Two generated images are shown here, and images generated by video diffusion
networks show inconsistencies due to the lack of connectivity across frames. In contrast, our method
ensures strong inter-frame connections, which significantly enhances the multi-view consistency of
the generated images.

The motivation behind our InfiniteMesh is obvious and straightforward, we separate the process
of generating large number of multi-view images into two steps (N main views generation and
Infinite View Interpolation (IVI) for view interpolation). IVI module can facilitate consistent image
interpolation between two neighbouring main views, better constraints are provided in the view
interpolation process, thus better results can be expected. As shown in Fig. 1 (Ours), with such a
setting, multi-view consistencies and image qualities can be guaranteed.

Our contributions can be summarized as follows:

• We propose InfiniteMesh, an LRM-based framework to efficiently generate high-quality
3D mesh from a single image, utilizing multi-view diffusion for view interpolation.

• We develop an IVI module that facilitates consistent image interpolation between any two
neighbouring main views using 2D multi-view diffusion, followed by a tri-plane-based
LRM to enhance mesh texture and geometry.

• We conduct extensive experiments to demonstrate the superiority of our proposed methods
over other SoTA methods, both quantitatively and qualitatively.

2 RELATED WORKS

2.1 3D GENERATION

Recent advancement in diffusion models Sohl-Dickstein et al. (2015) has brought image genera-
tion to a new height Ho et al. (2020); Song et al. (2021); Rombach et al. (2022); Blattmann et al.
(2023a). Numerous works have focused on leveraging diffusion models for 3D generation. A main-
stream approach is directly training 3D generators using 3D ground truth Zhou et al. (2021); Zheng
et al. (2023); Wang et al. (2023); Gupta et al. (2023); Shue et al. (2023). For instance, Zhou et al.
(2021) and Zheng et al. (2023) trained diffusion models to directly generate 3D voxels. In Wang
et al. (2023) and Shue et al. (2023), a 3D-aware tri-plane diffusion model is introduced to produce
NeRF Mildenhall et al. (2021) representations. Nonetheless, 3D diffusion methods tend to be time-
consuming during optimization, and often show low quality in terms of texture and geometry.

To deal with this, some studies have explored the utilization of 2D diffusion-based generators for
3D generation. DreamFusion Poole et al. (2022) was the first to use 2D diffusion models to generate
3D content through SDS. Building upon this work, Lin et al. (2023); Qian et al. (2023); Seo et al.
(2023); Qiu et al. (2024); Chen et al. (2024a;b) have adopted the SDS pipeline to optimize various
3D representations such as NeRF, mesh, and gaussian splatting Kerbl et al. (2023). However, per-
forming 3D generation tasks with 2D diffusion models often encounters issues related to multi-view
inconsistency, indicating room for improvement.
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2.2 MULTI-VIEW DIFFUSION MODELS

Researchers have made great efforts to improve diffusion models in multi-view images generation.
Zero123 Liu et al. (2023a) was the first to encode camera pose as an additional condition to gen-
erate images from different specific views. On this basis, MVDream Shi et al. (2023b) replace
self-attention in the Unet architecture with multi-view attention to facilitate multi-view consistency.
Other works Liu et al. (2023b); Wang & Shi (2023); Shi et al. (2023a); Long et al. (2024) share a
similar idea to generate 3D-aware and multi-view consistent 2D representations. These multi-view
images can be further processed using techniques such as NeRF Mildenhall et al. (2021) and Gaus-
sian Splatting Kerbl et al. (2023) to obtain 3D representations. Nevertheless, existing multi-view
diffusion models are constrained to generating a limited number of images from a single input im-
age. Recent advancements Blattmann et al. (2023b); Voleti et al. (2024); Chen et al. (2024c) have
sought to outcome this limitation by utilizing temporal priors in video diffusion models to boost the
number of generated images. Despite these improvements, such strategies often neglect the connec-
tivity between frames, resulting in inconsistencies and diminishing the quality of the generated 3D
content.

2.3 LARGE RECONSTRUCTION MODELS

The advent of large-scale 3D datasets Deitke et al. (2023; 2024) has significantly advanced the field
of image-to-3D generation, bringing generalized reconstruction models to new heights. LRM Hong
et al. (2023) was a pioneer that demonstrates the superiority of Transformer Vaswani et al. (2017)
backbone in mapping image tokens to predict tri-plane NeRF under multi-view supervision. Build-
ing upon this foundation, Instant3D Li et al. (2023) extends the input to multi-view images, largely
enhancing the quality of image-to-3D generation through multi-view diffusion models. Inspired by
Instant3D, subsequent methods such as LGM Tang et al. (2024) and GRM Xu et al. (2024b) further
refine it by replacing NeRF representations with 3D Gassian Splatting Kerbl et al. (2023) to improve
the rendering efficiency. Recently, CRM Wang et al. (2024) and InstantMesh Xu et al. (2024a) take
advantage of FlexiCubes Shen et al. (2023) to improve both efficiency and quality of image-to-3D
generation.

3 INFINITEMESH

As illustrated in Figure 2 (a), given a single input image x0, the architecture of our proposed In-
finiteMesh consists of 4 primary components: 1) a multi-view diffusion model to generate main
multi-view images, 2) an Infinite View Interpolation (IVI) module to perform view interpolation
between any two neighbouring views, and 3) a tri-plane based large reconstruction model to recon-
struct a high-quality 3D mesh. The details of each component are elaborated below.

3.1 MULTI-VIEW DIFFUSION MODEL

In this paper, we follow Long et al. (2024) to train a four-view generation model based on multi-view
2D diffusion, which takes a single image as input, and generate outputs from four viewpoints (front,
right, back, and left) to maximize multi-view consistency.

3.2 INFINITE VIEW INTERPOLATION

Building upon main views generated by the multi-view diffusion model, we perform view interpo-
lation through our IVI module. As depicted in Fig. 2 (b), given two adjacent main view images xM

1
and xM

2 ∈ RH×W×3, our objective is to learn a model f that synthesizes any interpolated image
xi, along with their corresponding camera poses Π = {πM

1 ,πi,π
M
2 }. Here π = [R,T ], where

R ∈ R3×3 and T ∈ R3. This relationship can be formulated as follows:

xi = f(xM
1 ,xM

2 ,Π). (1)

Most multi-view diffusion architectures Liu et al. (2023a); Long et al. (2024) employ the latent
diffusion denoising strategy Rombach et al. (2022). In our view interpolation setting where two
main views are input, one view is designated as the reference image xRef

i , and the other as the
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Figure 2: (a) The pipeline of our proposed InfiniteMesh. Starting with a single image, InfiniteMesh
first generates main views using a multi-view diffusion model. (b) Interpolated views are then
obtained from these main views using IVI module. (c) The images are processed through a ViT
to extract feature embeddings, which are then used to generate a high-quality 3D mesh utilizing a
tri-plane-based large reconstruction model.

condition image xCond
i , so the adapted objective of the latent diffusion denoising process in our IVI

module can be expressed as:

LIV I := Ez∼E(xRef
i ),t,ϵ∼N (0,1)

∥∥ϵ− ϵθ(zt, t, C(xCond
i ,πi))

∥∥2
2
, (2)

where C(xCond
i ,πi) represents the condition embedding of the condition view and the relative cam-

era pose. The inference model f is optimized to perform iterative denoising from zT by training
the model ϵθ Rombach et al. (2022). Specifically, zT is obtained by channel-concatenating xRef .
Following Liu et al. (2023a), a CLIP Radford et al. (2021) embedding of xCond

i is concatenated with
πi. This ensures that the generated interpolated images maintain multi-view consistency with both
xRef and xCond, which benefits stability of view interpolation.

Given the varying camera poses of each interpolated view, some views are positioned closer to xM
1

while others are nearer to xM
2 . To ensure a balanced distribution and multi-view consistency, for xi,

the reference and condition views can be expressed as follows:

[xRef
i ,xCond

i ] =

[xM
1 ,xM

2 ], if i ≤ n

2
,

[xM
2 ,xM

1 ], if i >
n

2
.

(3)

where n represents the umber of interpolated images. Better constraints are provided in the view
interpolation process, thus better results can be expected. In our implementation, we set n to 2,
empirically.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

In IVI module, two main views are employed as reference and condition to improve the consistency
and stability of the interpolated images. The consistent interpolated images effectively supplement
missing views, thereby enriching the detail during model reconstruction. We provide more analysis
in the experiment section.

3.3 TRI-PLANE-BASED MESH RECONSTRUCTION

We train a robust tri-plane-based reconstruction model to obtain high-quality mesh from the multiple
generated images. As illustrated in Fig. 2 (c), for every two adjacent main images xM

1 and xM
2 ,

we generate a sequence of interpolated images X IV I = {x1, . . . ,xn} through our IVI module.
Consequently, for each main view xM

i in the set of sparse-view main images XM = {xM
1 , . . . ,xM

N }
that generated by multi-view diffusion model, where N represents the number of main views, we
have interpolated images on its left and right: XL = {xL

1 , . . . ,x
L
n} and XR = {xR

1 , . . . ,x
R
n },

respectively. Following general large reconstruction models Hong et al. (2023); Li et al. (2023);
Xu et al. (2024a); Wei et al. (2024); Xu et al. (2024b), we employ a Vision Transformer (ViT) V
Dosovitskiy et al. (2020) to extract image tokens from XM and their corresponding XL and XR

and add them to a position embedding through residual connection. This process can be written as
follows:

fF = p+Acm(p,V(XM )⊕ V(XL)⊕ V(XR)), (4)

where fF represents the fused feature embeddings, p represents the initial position embedding,
⊕ represents channel-wise concatenation, and Acm represents a cross-modal attention operation,
defined as:

Acm(p,f) = softmax(
qkT

√
d
) · v, (5)

with
q = wq · p, k = wk · f , v = wv · f , (6)

where w denotes learnable projection matrices Vaswani et al. (2017); Dosovitskiy et al. (2020).
In this learnable way, the main and interpolated image tokens are fused via residual connection to
enhance multi-view consistency. Subsequently, following InstantMesh Xu et al. (2024a), we decode
fF to obtain a tri-plane representation, and reconstruct the final mesh through FlexiCubes Shen
et al. (2023). Thanks to our IVI module, more multi-view consistent image tokens are provided,
bringing more details related to texture and geometry, thus resulting in a high-quality reconstructed
mesh.

The loss function for mesh reconstruction can be expressed as follows:

L =Lrgb + λlpipsLlpips + λmaskLmask

+ λdepthLdepth + λnormalLnormal + λregLreg,
(7)

with λlpips = 2.0, λmask = 1.0, λdepth = 0.5, λnormal = 0.2, λreg = 0.01. Readers may refer
to Xu et al. (2024a) for more details. During training of mesh reconstruction, we randomly select 4
views as supervision.

4 EXPERIMENTS

In this section, we conduct a series of experiments quantitatively and qualitatively to evaluate the
performance of our proposed InfiniteMesh. We compare InfiniteMesh against SoTA multi-view and
image-to-3D baseline methods. Additionally, we perform ablation studies to validate the effective-
ness and expand-ability of our proposed IVI module.

4.1 EXPERIMENTAL SETTINGS

Dataset. Following prior research Liu et al. (2023a;b); Long et al. (2024), we utilize the Google
Scanned Objects dataset Downs et al. (2022) for our evaluation, which encompasses a diverse array
of common everyday objects. For the evaluation phase, we choose 30 representative objects ranging
from everyday items to animals. Besides, images collected from web are also evaluated to prove our
robustness.
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Table 1: Quantitative comparison for geometry quality between our method and baselines for 3D tex-
tured mesh generation. We report Chamfer Distance, Volume IoU and F-score on the GSO dataset.
The best results are shown in bold font.

Method Chamfer Dist. ↓ Vol. IoU ↑ F-Sco. ↑
One-2-3-45 0.0172 0.4463 0.7219
SyncDreamer 0.0140 0.3900 0.7574
Wonder3D 0.0186 0.4398 0.7675
Magic123 0.0188 0.3714 0.6066
LGM 0.0117 0.4685 0.6869
InstantMesh 0.0103 0.5712 0.7121
V3D 0.0143 0.4660 0.6234
SV3D 0.0142 0.4949 0.6529
Ours 0.0101 0.6399 0.7765

Implementation Details. Our model is trained on the LVIS subset of the Objaverse dataset Deitke
et al. (2023), consisting of approximately 30,000+ objects after a thorough cleanup process. For
image interpolation, we fine-tune our IVI module starting from Wonder3D Long et al. (2024), which
has previously been fine-tuned for multi-view generation. During the fine-tuning process, we resize
the image to 256 × 256 and employ a batch size of 128. This fine-tuning is performed for 10,000
steps. For mesh reconstruction, starting from InstantMesh Xu et al. (2024a), we fine-tune the model
for 30,000 steps with a total batch size of 4. We use eight Nvidia A100 40GB in this paper. In both
fine-tuning processes, we remain the original optimizer settings and ϵ-prediction strategy.

Baselines and Metrics. For comparative analysis, we adopt One-2-3-45 Liu et al. (2024), Sync-
Dreamer Liu et al. (2023b), Wonder3D Long et al. (2024), Magic123 Qian et al. (2023), LGM Tang
et al. (2024), InstantMesh Xu et al. (2024a), V3D Chen et al. (2024c), and SV3D Voleti et al. (2024)
as our baselines to evaluate the quality of the generated mesh. We also adopt V3D and SV3D to
evaluate the quality of novel view synthesis of our IVI module in orbiting view generation.

To evaluate the geometry quality for 3D textured mesh generation, Chamfer Distances, Volume IoU,
and F-score metrics are utilized. To evaluate novel view synthesis (NVS) and the texture quality for
3D texutred mesh generation, we employ the PSNR, SSIM Wang et al. (2004), and LPIPS Zhang
et al. (2018) metrics. We also evaluate the GPU memory usage in orbiting view generation.

4.2 3D TEXTURED MESH GENERATION

The quantitative results are summarized in Tabs. 1 and 2, where our InfiniteMesh outperforms all
baseline methods in terms of both geometric and texture quality metrics. For mesh texture eval-
uation, we render 24 images at 512 × 512 resolution, capturing meshes at elevation angles of 0◦,
15◦, and 30◦, with 8 images evenly distributed around a full 360◦ rotation for both generated and
ground-truth meshes. Among the baseline models, though InstantMesh demonstrates better per-
formance in geometry quality, and SV3D demonstrates better performance in texture quality, our
results outperform these SOTAs in both geometry and texture. Based on high-quality main view re-
sults, the diverse detail acquisition from the IVI module enables the reconstruction model to capture
comprehensive geometric and texture information, which is proved in ablation studies in Sec. 4.4.

Qualitative comparisons in Fig. 3 including images collected from web and the GSO dataset. Our
consistent view interpolation approach enriches image tokens within the reconstruction model, pro-
viding more features with good multi-view consistency, therefore, comparing with SOTAs, more
smooth geometry and visual appealing textures can be obtained by our approach.

4.3 NOVEL VIEW SYNTHESIS

We benchmark the novel view synthesis capabilities of our IVI module against video diffusion-
based baselines in orbiting view generation, where 12 views are selected along a horizontal orbiting
trajectory. Quantitative results are presented in Tab. 3. Our approach effectively employ two main
views as reference and condition, thus improving the consistency and stability of the interpolated
images. As shown in Tab. 3, it is also worth mentioning that our IVI module requires a much lower
memory cost for inference compared to video diffusion-based methods, as we generate views by
two steps.
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Figure 3: Qualitative 3D mesh results generated by InfiniteMesh demonstrate better geometry and
texture compared to other baselines.
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Table 2: Quantitative comparison for texture quality between our method and baselines for 3D
textured mesh generation. We report PSNR, SSIM Wang et al. (2004), LPIPS Zhang et al. (2018)
on the GSO dataset. The best results are shown in bold font.

Method PSNR ↑ SSIM ↑ LPIPS ↓
One-2-3-45 13.93 0.8084 0.2625
SyncDreamer 14.00 0.8165 0.2591
Wonder3D 13.31 0.8121 0.2554
Magic123 12.69 0.7984 0.2442
LGM 13.28 0.7946 0.2560
InstantMesh 17.66 0.8053 0.1517
V3D 17.60 0.8115 0.1520
SV3D 17.76 0.8173 0.1517
Ours 18.32 0.8230 0.1397

Table 3: Quantitative comparison between our method and video diffusion-based methods for novel
view synthesis in orbiting view generation. We select 12 views along a horizontal orbiting trajectory
and report PSNR, SSIM Wang et al. (2004), LPIPS Zhang et al. (2018), GPU memory usage on the
GSO dataset. The best results are shown in bold font.

Method PSNR ↑ SSIM ↑ LPIPS ↓ Memory(MiB) ↓
V3D 16.37 0.796 0.173 39786
SV3D 17.12 0.801 0.185 39014
Ours 17.38 0.803 0.159 9686
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Reconstructed Mesh (Geometry)Reconstructed Mesh (Texture)IVI examplesMain View Examples

Figure 4: IVI results of elevated camera trajectories and their corresponding reconstructed meshes.
To highlight the differences, we present the results with and without a 30◦ elevation.
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Figure 5: We validate the effectiveness of our IVI module. It can be observed that view interpolation
demonstrate better geometry and texture with more details.

4.4 ABLATION STUDY

In this subsection, we conduct ablation study to validate the superiority of our architecture.
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Table 4: Quantitative results for texture and geometry quality of our method with different elevation
angles for 3D textured mesh generation. We report Chamfer Distance, Volume IoU, F-score, PSNR,
SSIM Wang et al. (2004), LPIPS Zhang et al. (2018) on the GSO dataset. The best results are shown
in bold font.

Method Chamfer Dist. ↓ Vol. IoU ↑ F-Sco. ↑ PSNR ↑ SSIM ↑ LPIPS ↓
baseline w/o IVI 0.0186 0.4398 0.7675 13.31 0.8121 0.2554
w/o elev. 0.0102 0.6299 0.7686 18.19 0.8222 0.1417
w/ +15◦ and -15◦ elev. 0.0101 0.6380 0.7753 18.32 0.8230 0.1399
w/ +30◦ and -15◦ elev. 0.0101 0.6353 0.7734 18.27 0.8229 0.1397
w/ +30◦ and -30◦ elev. 0.0101 0.6399 0.7765 18.28 0.8229 0.1405

Table 5: Quantitative results for texture and geometry quality of our method with different number
of interpolated number n for 3D textured mesh generation. We report Chamfer Distance, Volume
IoU, F-score, PSNR, SSIM Wang et al. (2004), LPIPS Zhang et al. (2018) on the GSO dataset. The
best results are shown in bold font.

n Chamfer Dist. ↓ Vol. IoU ↑ F-Sco. ↑ PSNR ↑ SSIM ↑ LPIPS ↓
1 0.0101 0.6297 0.7683 18.16 0.8209 0.1430
2 0.0102 0.6380 0.7753 18.19 0.8222 0.1417
3 0.0101 0.6340 0.7719 18.21 0.8221 0.1424

View interpolation for LRM: To evaluate the effectiveness of view interpolation in our LRM
framework, we conduct ablation study with four views (front, right, back, and left) as input and
tri-plane-based LRM for reconstruction. As illustrated in Fig. 5, with the IVI module generating in-
terpolated images with superior multi-view consistency, our InfiniteMesh reconstructs high quality
meshes with more details and less breakage regarding geometry and texture, especially for objects
with complicated geometry and texture. Meanwhile, as shown in Tab. 4, the baseline results are
obtained with wonder3D since we use it as baseline without using IVI module. As shown in Tab. 4,
results with our IVI module with and without elevation all outperform baseline with large margins,
which proves that all our designed camera trajectories work positively for dense image generation.

Camera pose trajectories in IVI: Tab. 4 illustrates the impact of varying elevation angles on
camera pose trajectories within the IVI module, with representative examples provided in Fig. 4.
It can be observed that incorporating elevated camera trajectories (from ±15◦ to ±30◦) within the
IVI module show improvements in both geometry and texture. This improvement is attributed to the
richer detail diversity provided by elevated camera angles, as evidenced in the 3rd column in Fig. 4.

Number of interpolation views: We performed ablation studies to determine the optimal number
n of interpolated views. As illustrated in Table 5, with setting n = 2 yields the better performance
in terms of both geometry and texture quality. Notably, when n is set to 3, silimar results can be
obtained comparing with n = 2. Therefore, we set n = 2 in our experiment.

5 LIMITATION AND CONCLUSION

In this paper, we introduce InfiniteMesh, a novel LRM-based image-to-3D framework to produce
high-quality 3D content. Particularly, we propose an innovative multi-view diffusion-based IVI
module to perform view interpolation, followed by a tri-plane-based mesh reconstruction to obtain
the final mesh. Our experimental results indicate the superior performance of InfiniteMesh, demon-
strating its ability to generate 3D meshes with exceptional texture and geometric fidelity, compared
to existing SoTA methods.

Based on our view interpolation strategy, we can achieve further view expansion of diverse trajecto-
ries by further applying the IVI module between the generated images. However, the performance
of IVI module depends on the generation qualities of main view images in the first step. We be-
lieve improvements can be made by incorporating view super-resolution concept into multi-view
diffusion at the feature level, which will be a primary focus of our future work.
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Table 6: Inference time comparisons between our approach and SOTA video generation methods.

Methods inference time (s)
SV3D 85.198
V3D 31.893
IVI (Ours) 14.324

A INFERENCE TIME

Mesh reconstruction: Our 3D mesh reconstructiont LRM part takes an average time of 1.464
seconds for inference, which is similar with InstantMesh that constructs meshes in an average time
of 1.270 seconds.

As shown in Figure 2 (c) and Equation 4 of our main paper, all image tokens are concatenated
for subsequent operations. We have a position embedding p ∈ RV,P,D and a concatenated tensor
X ∈ RV,P,D, where V represents the view number. p serves as the query and X acts as the key in
the cross-modal attention operation.

Please kindly note that our approach does not result in a computational time proportional to V 2. This
is because we only increase the computational load in the image encoder’s transformer (cross-modal
attention) part. After this step, we employ a Triplane transformer that concatenates and flattens
features from all views, then decodes them into a fixed-shape Triplane. Subsequent operations are
based on this fixed-shape Triplane, which does not increase computational overhead. Therefore, the
additional computational time is primarily confined to the image encoder section, and the overall
computational complexity is not proportional to V 2.

Besides, as we described before, for the concatenated tensor X ∈ RV,P,D, though the theoretical
time complexity of cross attention is O((V P )2, D), we use Pytorch ? in our experiments, the
matrix multiplication is mainly performed along P and D dimensions, and “FlashAttention-2: Faster
Attention with Better Parallelism and Work Partitioning” and “Memory-Efficient Attention” are
utilized to accelerate the attention process. Thus increase of V bring acceptable time consuming,
from 1.270 seconds to 1.464 seconds.

View Interpolation: Tab. 6 demonstrates the inference time comparisons between our approach and
video generation methods. Our IVI module takes 3.5s for a single view interpolation process. In our
experiment, four interpolations are required, the total video generation time is approximately 14s.
The quantitative comparison results with SOTA video generation methods are as follows:

Please kindly note that all results are obtained with a A40 GPU.

B VIDEO AND MESH RESULTS ON OOD DATA

We provide more out-of-distribution (OOD) visual results in Fig. 6 with different images as input,
including both video and mesh results. We choose images from real-world, Objaverse dataset, and
web (both artistic and photographic style), and our model is only trained with Objaverse dataset,
which proves the generalization abality of our approach.

As shown in the video results in Fig. 6, better multi-view consistency images can be obtained by
our approach, compared with other video-based methods, and differences in the mesh results are
highlighted in red areas. For example, our method outperforms other video-based methods with
more accurate geometry details in the forklift and cat, while SV3D and V3D show flattened results,
treating three-dimensional objects as nearly two-dimensional objects. In the milk case, our approach
effectively converts 2D artistic images into consistent multi-view images and intact meshes, main-
taining shape consistency that others fail to achieve. Additionally, our method reconstructs more
consistent details in the doll’s arm, as highlighted in red areas, while other video-based methods
result in texture blurring issue.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Input Video Results Mesh Results

S
V

3
D

V
3
D

O
u

rs

Real-world

Image

S
V

3
D

V
3
D

O
u

rs

Photographic

Image

S
V

3
D

V
3
D

O
u

rs

Artistic

Image

S
V

3
D

V
3

D
O

u
rs

Objaverse

Figure 6: Video and mesh results on out-of-distribution (OOD) data.

C QUALITATIVE RESULTS ON CAMERA TRAJECTORIES

We present more distinctive qualitative results on camera trajectories in Fig. 7. We highlight the
differences in red areas in the final mesh geometry. With elevation in camera trajectories, our IVI
module shows better quality in the reconstructed mesh. For example, the fork of the forklift and the
eyes of the dragon are more complete and refined.

D 360◦ RECONSTRUCTION DENSE IMAGES

We also present rendered 360◦ reconstruction dense images to better show the details of our mesh
results, as shown in Fig. 7.

E LOSS FUNCTION FOR MESH RECONSTRUCTION

The loss function for mesh reconstruction can be expressed as follows:

L =Lrgb + λdepthLdepth + λnormalLnormal

+ λmaskLmask + λlpipsLlpips + λregLreg,
(8)

where Lrgb, Ldepth, Lnormal, and Lmask refer to the loss of RGB images, depth, normal, and
mask maps of the reconstructed mesh, and Llpips and Lreg refer to LPIPS Zhang et al. (2018) and
regression loss, respectively, with λlpips = 2.0, λmask = 1.0, λdepth = 0.5, λnormal = 0.2,
λreg = 0.01. Readers may refer to Xu et al. (2024a) for more details.
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Figure 7: Qualitative results on camera trajectories and 360◦ reconstruction dense images.

F EXPERIMENTAL SETTINGS

For comparative analysis, we adopt One-2-3-45 Liu et al. (2024), SyncDreamer Liu et al. (2023b),
Wonder3D Long et al. (2024), Magic123 Qian et al. (2023), LGM Tang et al. (2024), InstantMesh
Xu et al. (2024a), V3D Chen et al. (2024c), and SV3D Voleti et al. (2024) as our baselines to evaluate
the quality of the generated mesh. We also adopt V3D and SV3D as our baselines to evaluate the
quality of novel view synthesis of our IVI module in orbiting view generation.

Please kindly note that we follow the commonly accepted settings and baselines, for example,
LGM’s performance is compared in both the V3D Chen et al. (2024c) and InstantMesh Xu et al.
(2024a).

On the other hand, LGM and other baselines are all methods for 3D generation, though with different
technical approaches, making the comparison reasonable.
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