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Abstract

Differentially private (DP) machine learning algorithms incur many sources of ran-
domness, such as random initialization, random batch subsampling, and shuffling.
However, such randomness is difficult to take into account when proving differential
privacy bounds because it induces mixture distributions for the algorithm’s output
that are difficult to analyze. This paper focuses on improving privacy bounds for
shuffling models and one-iteration differentially private gradient descent (DP-GD)
with random initializations using f -DP. We derive a closed-form expression of the
trade-off function for shuffling models that outperforms the most up-to-date results
based on (✏, �)-DP. Moreover, we investigate the effects of random initialization on
the privacy of one-iteration DP-GD. Our numerical computations of the trade-off
function indicate that random initialization can enhance the privacy of DP-GD. Our
analysis of f -DP guarantees for these mixture mechanisms relies on an inequality
for trade-off functions introduced in this paper. This inequality implies the joint
convexity of F -divergences. Finally, we study an f -DP analog of the advanced
joint convexity of the hockey-stick divergence related to (✏, �)-DP and apply it to
analyze the privacy of mixture mechanisms.

1 Introduction

Differential privacy (DP, [16, 17]) is a rigorous mathematical framework for ensuring data privacy
and has become a cornerstone of privacy-preserving data analysis over the past two decades. DP has
found widespread applications in various data science fields, such as machine learning [12, 6, 44],
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query answering [18, 15], and synthetic data generation [37, 48, 29, 28]. A randomized mechanism
is considered differentially private if the outputs of two neighboring datasets that differ in at most one
element are indistinguishable from each other. The closeness of these outputs can be measured in
various ways, resulting in the definition of (✏, �)-DP in [16] and its various relaxations.

The distinguishability between the outputs can be measured by statistical divergences. For example,
(✏, �)-DP is associated with the so-called hockey-stick divergence [35]. Another divergence relevant to
differential privacy is the Rényi divergence [20, 38] which leads to Rényi DP [30, 10] and concentrated
DP [11]. In addition to divergence-based DP, a hypothesis testing perspective on differential privacy
was proposed in [43]. More recently, [14] established f -DP for differential privacy where the privacy
is measured by the trade-off function of type I and type II errors.

In real-world applications of differential privacy, including differentially private machine learning, it
is common to analyze the privacy budget of mechanisms that involve mixture distributions, where
the mixture is introduced by stochastic components in the algorithm. Examples of such mechanisms
include sub-sampled mechanisms [4, 52, 40, 31], shuffled mechanisms [13, 22, 23], and variants of
the differentially private stochastic gradient descent (DP-SGD) algorithm [1, 9, 26, 3, 45] that involves
random initialization and multiple rounds of mini-batch sampling. Recently, privacy amplification by
iteration [24] has drawn much attention as it can be used to analyze the privacy bounds for DP-SGD
[45, 2]) which leads to tighter privacy bounds compared to classical analysis based on the composition
theorem [33, 39, 50].

While mixture mechanisms are essential in differentially private machine learning, the absence of an
f -DP guarantee for their analysis remains a significant challenge. Moreover, existing divergence-
based DP bounds for most of these mechanisms are not tight. This is primarily because the complex
distribution resulting from the mixture makes it challenging to accurately quantify privacy guarantees.
In order to illustrate this perspective, we consider the examples of shuffling models and DP gradient
descent (DP-GD) with random initialization, as follows.

• In shuffling models, each user’s data record is locally privatized using a local DP algorithm
[21]. Subsequently, a curator shuffles the dataset containing all users’ data. The shuffling
procedure introduces additional mixtures of binomial noise [22], thereby potentially am-
plifying the privacy provided by the local randomizer. Shuffling is commonly employed
in machine learning algorithms for batch generation [45, 47]. To deal with this mixture,
Hoeffding’s inequality was used in previous literature [22, 23] that leads to the loss of
information. Using f -DP in this paper, we derive an exact analytical trade-off function for
the mixture of binomial distributions which is sharp.

• In deep learning, random initialization is usually adopted in the stochastic gradient de-
scent to enhance the performance of deep neural networks [36]. Intuitively, the inherent
randomness introduced by initialization should contribute to the privacy amplification of
DP-GD. However, Rényi differential privacy (DP) falls short in quantitatively measuring this
randomness, even when applied to the simplest linear model. In this paper, we demonstrate
how f -DP can effectively evaluate and quantify this inherent randomness from initialization.

Our contributions. This paper makes a two-fold contribution. Firstly, we propose a unified theory to
analyze the privacy of mixture mechanisms within the framework of f -DP. Precisely, we derive an
f -DP inequality for mixture distributions which implies the joint convexity of F -divergences for any
convex F . We name this result the "joint concavity of trade-off functions", as it is a lower bound for
trade-off functions. The tightness of the joint concavity is also investigated. Moreover, we propose
the "advanced joint concavity of trade-off functions" which is an f -DP analog of the advanced joint
convexity of the hockey-stick divergence and results in sharper bounds in certain cases.

Building on our inequality, we have refined the privacy analysis of both shuffling models and DP-GD
with random initialization using f -DP. Specifically, for shuffling models, we obtain trade-off functions
in a closed-form representation, leading to tighter bounds compared to existing state-of-the-art results
based on (✏, �)-DP. As for DP-GD, given the challenges in the trajectory analysis of multi-step
iterations, we have chosen to explore a more straightforward one-iteration DP-GD. We demonstrate
that using random initialization significantly enhances the privacy of the output from a single iteration.
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2 Preliminaries on differential privacy

Let D = {zi}ni=1 ⇢ Z be a fixed dataset of size n. Consider a randomized algorithm A : Zn ! S
that maps a dataset D to A(D) in some probability space S. Differential privacy requires that the
change of one element in a dataset has a restricted impact on the output of A. Mathematically, we say
A satisfies (✏, �)-DP for some ✏ � 0 and 0  �  1 if

P[A(D0) 2 S]  e
✏P[A(D1) 2 S] + �,

for any event S 2 S and any neighboring datasets D0 and D1. When � = 0, we simply call (✏, 0)-DP
as ✏-DP. Based on the definition, we see that for small values of ✏ and �, it is challenging to distinguish
between D0 and D1 based on the outputs of A(D0) and A(D1), as the distribution of A(D0) closely
resembles that of A(D1).

The definition of (✏, �)-DP corresponds to the hockey-stick divergence. Let P and Q be two
distributions with probability density functions (pdfs) p and q, respectively. The hockey-stick
divergence between P and Q is defined by H�(PkQ) =

R
(p(x)� �q(x))+ dx for � � 1 with

(·)+ = max{0, ·}. With a little bit abuse of notations, in this paper, we define the divergence (or the
trade-off function) between two random variables as the divergence (or the trade-off function) between
their distributions. Then, a mechanism A is (✏, �)-DP if and only if He✏(A(D0)kA(D1))  � for
any neighboring datasets D0 and D1, which also implies He✏(A(D1)kA(D0))  �.

The Rényi-DP (RDP) is defined based-on the Rényi divergence. The Rényi divergence of order e↵ > 1
between P and Q is given by

Re↵(PkQ) =
1

e↵� 1
log

Z ✓
p(x)

q(x)

◆e↵

q(x)dx.

For e↵ = 1 or +1, R1 or R1 is the limit of Re↵ as e↵ tends to 1 or +1. A mechanism A is said to
satisfy (e↵, ✏)-RDP if Re↵(A(D0)kA(D1))  ✏ for any neighboring D0 and D1.

The distinguishability between A(D0) and A(D1) can be quantified using hypothesis testing, which
aligns with the concept of f -DP. Consider a hypothesis testing problem H0 : P v.s. H1 : Q and a
rejection rule � 2 [0, 1]. We define the type I error as ↵� = EP [�], which is the probability that we
reject the null hypothesis H0 by mistake. The type II error �� = 1� EQ[�] is the probability that we
accept the alternative H1 wrongly.

The trade-off function T (P,Q) is the minimal type II error at level ↵ of the type I error, that is,

T (P,Q)(↵) = inf
�
{�� : ↵�  ↵}.

We say a mechanism A satisfies f -DP if T (A(D0),A(D1)) � f for any neighboring datasets D0 and
D1. In particular, A is said to satisfy µ-GDP if it is Gµ-DP, where Gµ(x) = �(��1(1� x)�µ), for
µ � 0, is the Gaussian trade-off function with � being the cumulative distribution function (cdf) of
N (0, 1).A is considered to be more private if the corresponding trade-off function takes larger values.
When A achieves perfect privacy and A(D0) and A(D1) become completely indistinguishable, the
trade-off function is Id(x) = 1� x. Consequently, for any trade-off function f , we have f  Id.

We say a trade-off function is symmetric if T (P,Q) = T (Q,P ). Note that a trade-off function f

may not necessarily be symmetric. But one can symmetrize it as shown in [14]. The symmetrization
of a trade-off function will be used when we analyze the shuffled mechanisms.

3 Joint concavity of trade-off functions

Let {Pi}mi=1 and {Qi}mi=1 be two sequences of probability distributions. Denote the probability
density functions (pdfs) of Pi and Qi as pi and qi, respectively. Consider the mixture distributions Pw

and Qw with pdfs pw =
Pm

i=1 wipi and qw =
Pm

i=1 wiqi, where the weight w = (w1, · · · , wm)
is such that wi � 0 and

Pm
i=1 wi = 1. The following lemma is to bound the trade-off function

T (Pw, Qw). Upon finalizing this paper, we noted that Lemma 3.1 and Proposition 3.2 appeared
independently in another paper [42, Theorem 8], where they served different applications.
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Lemma 3.1 (Joint concavity of trade-off functions). For two mixture distributions Pw and Qw, it
holds

T (Pw, Qw)(↵(t, c)) �
mX

i=1

wiT (Pi, Qi)(↵i(t, c)),

where ↵i(t, c) = PX⇠Pi

h
qi
pi
(X) > t

i
+cPX⇠Pi

h
qi
pi
(X) = t

i
is the type I error for testing Pi v.s. Qi

using the likelihood ratio test and ↵(t, c) =
Pm

i=1 wi↵i(t, c).

The main idea of the proof is to make the mixture distributions more distinguishable by releasing the
indices. Precisely, for X ⇠ Pw and Y ⇠ Qw, let X|I be a random variable such that X|I = i ⇠ Pi

with I being the indices, i.e., P[I = i] = wi. Let (X|I, I) be a random variable where we observe
both X|I and the indices I . Then, the right hand side of Lemma 3.1 is the trade-off function
T ((X|I, I), (Y |I, I)) between two joint distributions. This is a lower bound for the trade-off
function between mixture distributions because (X|I, I) ! X is a data-independent post-processing
procedure that only removes the observation of indices I , and DP is immune to post-processing
[14, 19].

Under the setting of f -DP, we usually require that the trade-off function is symmetric. The symmetry
of the trade-off function in Lemma 3.1 is guaranteed by the following proposition.
Proposition 3.2. Suppose that for each i, T (Pi, Qi) is a symmetric trade-off function. Then the
trade-off function T ((X|I, I), (Y |I, I)) is symmetric.

The joint convexity of F -divergences plays an important role in the analysis of divergence-based DP
for mixture mechanisms [4, 22]. We now show that Lemma 3.1 is an extension of the joint convexity
of F -divergences, including the scaled exponentiation of the Rényi divergence and the hockey-stick
divergence, to trade-off functions. A trade-off function is always convex and is thus differentiable
almost everywhere. Thus, without loss of generality, we consider fi that is differentiable, symmetric,
with fi(0) = 1.
Proposition 3.3 (An application of Lemma 3.1 to the F -divergences). Let DF (PkQ) =R
F (p(x)/q(x))q(x)dx be an F -divergence between any two distributions P and Q with some

convex F . Then, for fi = T (Pi, Qi), we have

DF (PwkQw) 
mX

i=1

Z 1

0
F

✓
1

|f 0
i(x)|

◆
|f 0

i(x)| dx =
mX

i=1

wiDF (PikQi).

Conversion from a trade-off function to F -divergences is straightforward using Section B in [14].
However, conversion from an F -divergence to a trade-off function is highly non-trivial. In fact,
F -divergence is an integral of a functional of the trade-off function over the whole space while
Lemma 3.1 holds pointwisely, which is a local property. This explains why the divergence-based DP
is not as informative as f -DP since some information is lost due to the integration.

4 Privacy analysis of the shuffled mechanisms

In this section, we explore the f -DP analysis of shuffled mechanisms. Drawing upon [22, 23], the
shuffling procedure incorporates a mixture of binomial noise. This noise can be tightly bounded
using our f -DP inequality for mixture distributions.

4.1 Theoretical privacy guarantee

In shuffling models, the record of each user is privatized by some local randomizer (such as a
randomized response mechanism [41]) and all records are then shuffled by a curator. Mathematically,
consider a dataset D = {zi}ni=1 ✓ Z of size n and each data point zi is privatized by an local
randomizer A0 : Z :! eZ that satisfies ✏0-DP. Then, the mechanism A : Zn ! eZn that maps D to
eD = {A0(zi)}ni=1 is ✏0-DP. A shuffler AShu✏e takes the privatized dataset eD as input and applies a
uniformly random permutation to eD, which introduces the mixture of binomial noise to A and results
in privacy amplification.
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As noted in [23], the shuffling procedure introduces mixtures of binomial distributions. More
specifically, the outputs generated by the shuffled mechanism for two neighboring datasets result
from post-processing random variables X ⇠ P and Y ⇠ Q with P = (1 � w)P0 + wQ0 and
Q = (1 � w)Q0 + wP0, where the weight w = 1

e✏0+1 , and the distributions P0 and Q0 are
defined as (A + 1, C � A) ⇠ P0, and (A,C � A + 1) ⇠ Q0 with A ⇠ Binom(C, 1/2) and
C ⇠ Binom(n� 1, 2/(e✏0 + 1)). It is easy to see that P0 is the mixture of {(Ai + 1, i� Ai)}n�1

i=0

with weights w0
i := P[C = i] and Q0 is the mixture of {(Ai, i�Ai +1)}n�1

i=0 with the same weights.
In this context, Binom(k, p) is a binomial distribution with parameters k 2 N and p 2 [0, 1] and each
Ai is distributed as Binom(i, 1/2). Advancing our analysis, we adopt the joint concavity, as outlined
in Lemma 3.1, to establish a lossless bound for the trade-off function T (P0, Q0).
Proposition 4.1. Let Fi be the distribution function of Binom(i, 1/2) and let w0

i = P[C = i] for
C ⇠ Binom(n� 1, 2/(e✏0 + 1)). Then, we have T (P0, Q0) is a piecewise linear function with

T (P0, Q0)(↵(t)) =
n�1X

i=0

w
0
i

�
1� Fi

⇥
F

�1
i (↵i(t)) + 1

⇤ 
,

for each knot ↵(t) =
Pn�1

i=0 w
0
i ↵i(t) :=

Pn�1
i=0 w

0
iFi

⇣
i� i+1

t+1

⌘
.

Remark. Proposition 4.1 holds with equality and the bound for T (P0, Q0) is sharp.

Before stating our results for T (P,Q), we define some notations related to f -DP. For a function
g : R ! R, let g⇤(y) := maxx{xy � g(x)} be its convex conjugate. For a trade-off function f ,
let C(f) = min{f, f�1}⇤⇤ be its symmetrization, where f

�1 is the left inverse function of f , i.e.,
f
�1 � f(x) = x.

Theorem 4.2. The shuffled mechanism AShu✏e � A is C(fShu✏e)-DP. Here fShu✏e(↵(t)) is a
piecewise linear function where each knot ↵(t) has the form

↵(t) =
n�1X

i=0

w
0
i ↵i(t) :=

n�1X

i=0

w
0
iFi

✓
i� i+ 1

t+ 1

◆
2 [0, 1], for all t � 0,

with Fi being the distribution function of Binom(i, 1/2) and w
0
i = P[C = i] for C ⇠ Binom(n�

1, 2/(e✏0 + 1)), and the value of fShu✏e at a knot ↵(t) is

fShu✏e(↵(t)) = 2w · Id(↵(t)) + (1� 2w) ·
"
n�1X

i=0

w
0
i

�
1� Fi

⇥
F

�1
i (↵i(t)) + 1

⇤ 
#
,

with w = 1
1+e✏0 and Id(x) = 1� x being the identity trade-off function.

Remark. The bound in Theorem 4.2 is near-optimal. In fact, the proof of Theorem 4.2 is based on
a post-processing procedure in [23], joint concavity (Proposition 4.1), and advanced joint concavity
(Proposition 6.4). The post-processing procedure is sharp for specific mechanisms, such as the
randomized response mechanism, as shown by Theorem 5.2 and Theorem 5.3 in [23]. Proposition
4.1 holds with equality and is optimal. The advanced joint concavity, which is an f -DP analog of the
advanced joint convexity in [4], is optimal for specific distributions. Compared to existing analysis
of shuffled mechanisms (e.g., [23]), the main advantage of using f -DP is that we avoid the use of
Hoeffding’s inequality and the Chernoff bound to bound the distance between P0 and Q0 in Proposi-
tion 4.1, which is adopted in [22, 23] and leads to loose bounds, to bound the mixture of binomial
distributions. Moreover, Theorem 3.2 in [23] holds with an assumption ✏0  log

⇣
n

8 log(2/�) � 1
⌘

,
which is removed by using f -DP in our paper.

To convert f -DP to (✏, �)-DP, we use the primal-dual perspective in [14] and obtain the following
Corollary.

Corollary 4.3. Let l (t) := �
Pn�1

i=0 w0
i pi(bi+1� i+1

t+1c)Pn�1
i=0 w0

i pi(bi� i+1
t+1c)

with pi being the probability mass function of

Binom(i, 1/2). Then, we have AShu✏e �A is (✏, �f -DP(✏))-DP for any ✏ > 0 with

�f -DP(✏) = (�e
✏ + 2w)

"
n�1X

i=0

w
0
iFi

✓
i� i+ 1

t✏ + 1

◆#
+ (1� 2w)

"
n�1X

i=0

w
0
iFi

✓
i+ 1� i+ 1

t✏ + 1

◆#
,

where t✏ = inf{t : �2w + (1� 2w)l(t) � �e
✏} and w = 1

e✏0+1 .
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(a) ✏0 = 5.444 > 4.444
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(b) ✏0 = 4.444 (c) ✏0 = 3.444

Figure 1: A comparison between the trade-off function given by Theorem 4.2 and (✏, �)-DP with
n = 10000 and � = n

�1.5 given by [23]. [23] requires that ✏0  log
⇣

n
8 log(2/�) � 1

⌘
⇡ 4.444. Thus,

there is no result for (✏, �)-DP when ✏0 > 4.444.

4.2 Numerical results and comparisons

To the best of our understanding, the leading privacy analysis for shuffled mechanisms is given in
[23]. In this section, we compare the privacy bounds from our Theorem 4.2 and Corollary 4.3 with
those found in Theorem 3.2 of [23]. Additionally, we assess the tightness of our bound against the
empirical lower bounds obtained through binary search.

Specifically, Figure 1 presents a comparison of the trade-off function derived from our Theorem 4.2
to that of [23]. This comparison clearly illustrates that f -DP offers tighter privacy bounds, given that
its trade-off function aligns closer to the identity trade-off function.

In our Table 1, we compare the values of �f -DP(✏), as derived from Corollary 4.3 with �(✏) in [23].
The results indicate that �f -DP(✏) is significantly smaller than �(✏).

In Table 2, we present ✏f -DP alongside the numerical upper bound of ✏ from [23] and the numerical
lower bound determined by binary search. Given its closeness to the lower bound, our Theorem 4.2
can be considered near-optimal.

Table 1: Comparisons with [23]

✏ 0.5 0.6 0.7 0.8 0.9 1.0
� in [23] 0.9494 0.3764 0.1038 0.0181 0.0018 8⇥ 10�5

�f -DP (ours) 3⇥ 10�6 10�7 4⇥ 10�9 9⇥ 10�11 2⇥ 10�12 2⇥ 10�14

We compare �f -DP obtained in Corollary 4.3 with the corresponding � derived from [23] using a fixed
value of ✏0 = 4.444 and n = 10000. Notably, �f -DP is significantly smaller than �.

Table 2: Comparisons with numerical results in [23]

� 5⇥ 10�5 3⇥ 10�6 10�7 4⇥ 10�9 9⇥ 10�11

✏f -DP (ours) 0.4 0.5 0.6 0.7 0.8
Numerical ✏ upper bound in [23] 1.014 1.085 ✏0 ✏0 ✏0

Numerical ✏ lower bound 0.369 0.470 0.575 0.664 0.758

We compare ✏f -DP obtained from Corollary 4.3 with the corresponding numerical upper bound ✏

derived from [23] using a fixed value of ✏0 = 4.444 and n = 10000. For � < 10�7, the bound
in [23] fails as the assumption ✏0  log

⇣
n

8 log(2/�) � 1
⌘

is violated while our theory removes this
assumption and holds for all ✏0. Moreover, we compare our theoretical upper bound with the empirical
lower bound obtained by binary search in [23] which shows that our bound is near-optimal.
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In summary, our non-asymptotic privacy bound for shuffled mechanisms outperforms Theorem 3.2
in [23]. This improvement is a result of our Proposition 4.1, which optimally refines Lemma A.4
in [23]. Besides Proposition 4.1, the remainder of our proof of Theorem 4.2 closely adheres to the
methodology presented in [23]. Our near-optimal result is complicated due to its tightness. Thus, it is
difficult to compare our result with the asymptotic bound in [23] analytically.

5 Privacy analysis of one-iteration DP-GD with random initialization

A significant challenge in the privacy analysis of the last-iteration model of DP-SGD lies in accounting
for multiple randomization techniques used during iterations. This includes aspects like initialization,
iterative steps, and sub-sampling. Since these techniques incorporate a mixture of random noise, the
joint convexity of F -divergence becomes crucial in the privacy analysis of DP-SGD [45, 2]. Our
Lemma 3.1, which provides a unified perspective on these convexity notations, has driven us to
include it in the privacy analysis of DP-GD. Nevertheless, analyzing the trajectories from multi-step
iterations remains complex. Therefore, our initial exploration is to investigate the effects of random
initialization on a one-step iterate. It’s noteworthy that in machine learning, training a deep neural
network using (stochastic) gradient descent combined with random initialization is widely adopted
[36]. The significance of random initialization in noisy gradient descent is also emphasized by [46]
within the framework of Kullback-Leibler privacy.

Consider a dataset D = {(xi, yi)}ni=1 with xi 2 R being the features and yi 2 R being the labels.
Let `(✓,D) be a loss function and let g(✓,D) be the gradient of ` with respect to ✓. The output of
one-step iteration of DP-GD initialized at ✓0 with step-size 1 is given by

✓(D) = ✓0 �
�
g(✓0,D) +N (0,�2)

�
. (1)

In the setting of random initialization, ✓0 is chosen as a Gaussian random variable. Without loss of
generality, we consider ✓0 = I ⇠ N (0, 1) and rewrite ✓(D) = sI(D) + N (0,�2) with sI(D) =
I � g(I,D). ✓(D) is a Gaussian random variable when the initialization I is given, that is, ✓(D)|I =
i ⇠ N (si(D),�2). Thus, we can regard ✓(D) as an infinite mixture of Gaussian distributions with
continuous Gaussian weights {'(i)}i2R, where ' is the pdf of I and the corresponding trade-off
function T (✓(D0), ✓(D1) can be bounded using the joint concavity.

For simplicity, we define ✓(D)|I as a random variable with a given initialization I . For two neighbor-
ing datasets D0 and D1, it holds

T ((✓(D0)|I, I) , (✓(D1)|I, I)) = T ((X|I, I), (Y |I, I))
with X|I ⇠ N (0, 1) and Y |I ⇠ N (µI , 1) for I ⇠ N (0, 1), where µI = (g(I,D1)� g(I,D0))/�.
Theorem 5.1. Let ✓(D0) and ✓(D1) be defined in (1) for neighboring datasets D0 and D1. Then, we
have

T (✓(D0), ✓(D1))(↵(t)) � EI

⇥
�(�tI + µI) · 1[µI0] + �(tI � µI) · 1[µI>0]

⇤

with tI = � t
µI

+ µI

2 and ↵(t) = EI

⇥
�(tI) · 1[µI0] + �(�tI) · 1[µI>0]

⇤
. Here � is the cumulative

distribution function of N (0, 1) and the expectation is taken with respect to I .

Remark. Note that Theorem 5.1 is instance-based privacy guarantee as it relies on the datasets.
To extend it to the worst case, we let µmax

I = maxD0,D1 {|g(I,Dmax
1 )� g(I,Dmax

0 )| /�} be the
sensitivity of the gradient with a given initialization I . As a result, ✓(D) output by one-step DP-
GD is f -DP with f(↵(t)) = EI [�(tmax

I � µ
max
I )] , where t

max
I = � t

µmax
I

+ µmax
I
2 and ↵(t) =

EI [�(�t
max
I )] . The worst case trade-off function is bounded for strongly convex loss functions with

a bounded data domain.

To numerically evaluate the trade-off function in Theorem 5.1, we consider an example D0 =
{(xi, yi)}ni=1 with yi = axi and x

2
i = 1 for some constant a and we defined D1 by removing an

arbitrary element in D0. Moreover, we assume that � = 1. Note that for this example without gradient
clipping, the gradient is linear in I and ✓(D0) is the sum of two Gaussian random variables which
is Gaussian. Thus, the trade-off function has a closed-form representation. In general, the output is
non-Gaussian and we should adopt Theorem 5.1. For example, if we consider gradient clipping [1, 9]
and replace g(✓,D) by the clipped gradient

gc(✓,D) =
nX

i=1

g
(i)(✓)

max{1, kg(i)(✓)k2/c}
, with g

(i)(✓) = (yi � ✓xi)(�xi),
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where the gradient of each data point g(i) is cut off by some constant c > 0, then µ
max
I is given by

µ
max
I =

(
a� I, |a� I|  c,

c, a� I � c,

�c, a� I  �c,

which is not Gaussian. In this example gc(✓,D) +N (0, 1) is considered as c-GDP if we disregard
the effects of random initialization since the sensitivity of gc is c.

We illustrate the trade-off function of Theorem 5.1 computed numerically in Figure 2, where we
also compare it with c-GDP for a = 1 and varying values of c. Overall, the figure suggests that
random initialization can amplify the privacy of DP-GD, as our bounds outperform those of c-GDP,
which does not take into account the randomness of initialization. Furthermore, we observe that as c
increases, the amplification effect caused by random initialization becomes more significant, since
the difference between T ((X|I, I), (Y |I, I)) and c-GDP also increases. This is reasonable, since the
randomness resulting from initialization comes from I such that |a� I|  c, whereas for |a� I| > c,
µI remains constant and no randomness is introduced. Thus, the random initialization introduces
greater levels of randomness as c increases.

It is worth noting that in this example, without gradient clipping, we have µ
max
I = a � I and the

dominate pair are two Gaussian distributions N (0, 1) and N (0, 2). The Rényi DP fails to measure
the privacy of initialization. In fact, it holds Re↵(N (0, 1)kN (0, 2)) = 1 for e↵ large enough.
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Figure 2: Trade-off functions for linear models with a = 1.

6 Optimality of joint concavity and advanced joint concavity

In this section, we first explore the sufficient and necessary conditions under which Lemma 3.1
holds with equality. While Lemma 3.1 is generally not sharp, we introduce an f -DP analog of the
advanced joint convexity of the hockey-stick divergence from [4], yielding tighter bounds in certain
applications.

Recall the distributions P = (1 � w)P0 + wQ0 and Q = (1 � w)Q0 + wP0 that appear in the
shuffled mechanisms. Bounding the trade-off function T (P,Q) directly using the joint concavity
leads to a loose bound (cf., Figure 3b). For the scenarios where Lemma 3.1 is not tight, we introduce
the f -DP analog of the advanced joint convexity of (✏, �)-DP [4] that may lead to tighter bounds and
we term it the "advanced joint concavity of trade-off functions".

The following proposition presents a necessary and sufficient condition for Lemma 3.1 to hold with
equality.

Proposition 6.1. For m = 2, Lemma 3.1 holds with equality if and only if w1p1+w2p2

w1q1+w2q2
(X)

P
=

w1
p1

q1
(X)+w2

p2

q2
(X) with X ⇠ Pw, where for pi(X)/qi(X) = 0/0 and pj(X)/qj(X) 6= 0/0 with

i 6= j, we set pi(X)/qi(X) = pj(X)/qj(X).

It is not difficult to see that P0 and Q0 in shuffling models satisfy this necessary and sufficient
condition when n = 2.

As we discussed, Lemma 3.1 may not be sharp in general. The following lemma is about the advanced
joint convexity of the hockey-stick divergence, which is a slight generalization of Theorem 2 in [4].
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(a) Top-left corner of Figure 3b for small type I
error ↵. As the parameters (✏, �) computed by
the trade-off function only depend on small ↵, ad-
vanced joint concavity leads to a tighter bound.

(b) Trade-off functions obtained by (advanced)
joint concavity. For example, for w = 1/3 and
✏ = 0.5, � derived from Lemma 6.3 is 1.5⇥ 10�6

while that from Lemma 3.1 is 0.0020.

Figure 3: Comparison between joint concavity (Lemma 3.1) and advanced joint concavity (Lemma
6.3).

Lemma 6.2. For any non-negative ✏
0
, ✏0, ✏1, �, and ⌘ satisfying exp(✏0) = (1 � w) exp(✏0) +

w exp(✏1) and exp(✏0)(1� w)� + exp(✏1)w⌘ = exp(✏0)w, we have

He✏0 ((1� w)P1 + wP2k(1� w)Q1 + wQ2)

 (1� w)He✏0 (P1k(1� �)Q1 + �Q2) + wHe✏1 (P2k(1� ⌘)Q1 + ⌘Q2) .
(2)

Lemma 6.2 is reduced to the advanced joint convexity of the hockey-stick divergence in [4] when
P1 = Q1, by minimizing the right-hand-side of (2) with respect to �, ⌘, ✏0, and ✏1.

Recall the convex conjugate g
⇤ of a function g defined by g

⇤(y) = supx{xy � g(x)} and C(f) =
min{f, f�1}⇤⇤ which is the symmetrization of f . We have the following advanced joint concavity
of trade-off functions.
Lemma 6.3 (Advanced joint concavity). Suppose that T (Pi, Qi) is symmetric for each i. Then, for
0  w  1, we have

T ((1� w)P1 + wP2, (1� w)Q1 + wQ2)

� C
 ✓

(1� w)(1� �)F ⇤
1,1 + w(1� ⌘)F ⇤

2,1 + (1� w)�F ⇤
1,2 + w⌘F

⇤
2,2

◆⇤
!

for arbitrary 0  � < w < ⌘  1, where Fi,j(x) is given by F1,i(x) := f1,i

⇣
x(1�w)(⌘��)

(⌘�w)

⌘
,

and F2,i(x) := f2,i

⇣
xw(⌘��)
(w��)

⌘
, and the trade-off functions are defined asfi,j = T (Pi, Qj) for

1  i, j  2. Moreover, for � = ⌘ = w, it holds

T ((1� w)P1 + wP2,(1� w)Q1 + wQ2)

� C ((1� w)T (P1, (1� w)Q1 + wQ2) + wT (P2, (1� w)Q1 + wQ2)) .

Determining the trade-off functions using advanced joint concavity can be challenging in many
practical situations. In fact, to apply the advanced joint concavity, one need to specify the choice
of �, ⌘ by maximizing the right-hand-side of Lemma 6.3. Therefore, in real-world applications, we
often rely on both joint concavity and advanced joint concavity.

For P = (1� w)P0 + wQ0 and Q = (1� w)Q0 + wP0 in shuffling models, we have the following
bound derived from Lemma 6.3.
Proposition 6.4. For P = (1 � w)P0 + wQ0 and Q = (1 � w)Q0 + wP0 with some weight
0  w  1/2, we have T (P,Q) � C (2wId + (1� 2w)T (P0, Q0)) .

The equality in Proposition 6.4 does not hold exactly. However, this lower bound is almost the tightest
closed-form expression. One may refer to Section E.1.1 in the appendix for the proof details.
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7 Discussion

This paper provides refined privacy bounds for mixture mechanisms, including shuffling models and
DP-GD with random initialization. For shuffling models, we present a bound that is tighter than
existing results based on (✏, �)-DP. In the study of DP-GD, we demonstrate how random initialization
can amplify privacy concerns. These bounds are derived using a unified f -DP approach based on the
joint concavity and advanced joint concavity of trade-off functions. We also investigate the sharpness
and other properties of these concavity notions.

In our future work, we plan to extend our analysis from one-step DP-GD to multi-step DP-SGD. For
DP-SGD with multiple iterations, it is crucial to consider subsampling and privacy amplification
by iteration in the privacy accountant, in addition to the randomness introduced by shuffling and
random initialization. While there is an f -DP bound for subsampling provided in an independent
work [42], as far as we know, there is limited research on f -DP results regarding privacy amplification
by iteration.

Beyond DP-SGD, we intend to extend our theory to the privacy analysis of other key applications
that involves various randomization techniques. These include the shuffled Gaussian mechanism for
federated learning, as discussed in [25], and the composition of mixture mechanisms. For extending
our theory to federated learning, we might adopt the f -DP framework outlined in [49]. Addressing
the composition of mixture mechanisms demands examination of the tensor product between trade-off
functions. This is a complex task, even when dealing with the simplest mixture mechanisms like
sub-sampling, as highlighted in [51].
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