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Abstract
Reward design is a fundamental, yet challeng-
ing aspect of reinforcement learning (RL). Re-
searchers typically utilize feedback signals from
the environment to handcraft a reward function,
but this process is not always effective due to the
varying scale and intricate dependencies of the
feedback signals. This paper shows by exploit-
ing certain structures, one can ease the reward
design process. Specifically, we propose a hi-
erarchical reward design framework – HERON
for scenarios: (I) The feedback signals naturally
present hierarchy; (II) The reward is sparse, but
with less important surrogate feedback to help
policy learning. Both scenarios allow us to design
a hierarchical decision tree induced by the impor-
tance ranking of the feedback signals to compare
RL trajectories. With such preference data, we
can then train a reward model for policy learning.
We apply HERON to several RL applications, and
we find that our framework can not only train
high performing agents on a variety of difficult
tasks, but also provide additional benefits such as
improved sample efficiency and robustness.

1. Introduction
Over the past decade, significant advancements in deep
learning techniques, along with unprecedented growth in
computational power, have facilitated remarkable achieve-
ments in the field of deep reinforcement learning (RL) across
diverse domains, including finance, transportation, and auto-
matic programming (Deng et al., 2016; Haydari & Yılmaz,
2020; Le et al., 2022). A key component of modern RL is the
reward function, which is typically predefined in benchmark
environments such as the OpenAI gym or games (Mnih et al.,
2013; Silver et al., 2016; Brockman et al., 2016). When
dealing with complex real-world environments, however,
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we are unable to access to the ground-truth reward, or the
reward is sparse: we receive zero reward most of the time.
Therefore, designing a reward for the agent is necessary.

To construct the reward, practitioners often use multiple
feedback signals z1, . . . , zm, each of which captures differ-
ent facets of an agent’s behavior. In settings where the re-
ward is inaccessible, the most common approach to utilizing
these signals is the linear combination, e.g., r =

∑
i ωi ∗ zi

(Booth et al., 2023; Le et al., 2022; Zhang et al., 2019). The
hyperparameters ωi’s are tuned to provide a comprehensive
description of the agent’s behavior, a process commonly
known as reward engineering (Fu et al., 2017; Wu et al.,
2021). Taking the traffic light control as an example, Zhang
et al. (2019) consider a weighted combination of vehicle
queue length, average waiting time and some other feed-
back signals as the reward. The hyperparameters ωi’s are
determined by extensive tuning in Van der Pol & Oliehoek
(2016); Wu et al. (2017); Zhang et al. (2019). In sparse
reward settings, the feedback signals are used to compose a
reward surrogate, which is then combined with the sparse
reward. Taking code generation as an example, Le et al.
(2022) design a piece-wise function where the region is
divided according to the feedback signals (e.g., compila-
tion error, runtime error) and values are designed by human
experts.

Although feedback signals may serve as useful criteria of
an agent’s behavior, reward engineering is not always an
effective way to ensemble these signals. This is because
feedback signals may have different scales as well as intri-
cate dependencies with other feedback signals. In this case,
determining the weight by humans becomes challenging,
and multiple weights must be simultaneously tuned since
their respective feedback signals are often correlated. More-
over, in sparse reward settings, a piece-wise reward function
often requires massive trials to determine the value, and
dividing the region is also difficult because of the complex
relation among different feedback signals.

How to address the aforementioned issues still remains un-
clear. While most existing works have focused on reward
engineering for specific applications (Liu et al., 2020; Zhang
et al., 2019), this paper proposes a novel reward design
framework for when feedback signals exhibit hierarchical
relations. This relation exists in many RL problems. For
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example, in traffic light control the vehicle queue length
significantly outweighs the average wait time and other
feedback signals. Our framework is also suitable for sparse
reward settings, where sparse rewards naturally have greater
importance than the surrogates. For code generation, practi-
tioners enhance the sparse reward (whether the code passes
unit tests) with surrogates, such as the type of error.

To leverage such hierarchical structures in the afore-
mentioned scenarios, we propose HERON (Hierarchical
prEference-based ReinfOrcement learNing). HERON trains
a preference-based reward model (Bradley & Terry, 1952;
Ouyang et al., 2022) through pair-wise trajectory compar-
isons. Specifically, we design a decision tree, at each level
of which compares trajectories based on a feedback signal.
The feedback signal we use at each level is determined by
its importance ranking, as assigned by the human annotator.

This decision tree based on importance ranking provides
a number of benefits. First, it is a more natural way to
resemble the human decision process compared to reward
engineering. When making decision between two choices,
humans typically start with the the most important factor,
then proceed to the secondary factor, and continue until the
remaining less important factors. Second, ranking feedback
signals is usually easier than specifying numerical weights.
Third, the comparison process of HERON does not depend
on the absolute value of a feedback signal, but on their rela-
tive quantity. We find that this brings additional robustness
in scenarios where the training environment changes. We
will further discuss this in Section 4.1. Finally, HERON is
able to leverage pre-trained knowledge, which allows for
the creation of more powerful rewards.

We empirically validate HERON framework through exten-
sive experiments on real world applications:

Traffic Light Control. In traffic light control (Zhang
et al., 2019), there are 6 feedback signals with the hierarchy:
queue length > the average vehicle waiting time > other
feedback signals. HERON consistently outperforms the
policies trained with reward engineering techniques.

Code Generation. Code generation (Le et al., 2022)
is a sparse reward scenario. Most of the programs gener-
ated by the policy cannot pass all the unit tests and thus
fail to receive the reward. Therefore, surrogates, like the
type of error, are added to compose a piece-wise reward
function. In code generation, HERON demonstrates the
ability to achieve higher Pass@K scores compared to the
hand-crafted piece-wise reward function employed in state-
of-the-art approaches.

Language Model Alignment. Although language models
are powerful, they are not always aligned with human prin-
ciples (Brown et al., 2020). We propose to use HERON to
align language models, by using public datasets of language

model prompts and outputs labelled with response helpful-
ness, coherence, correctness, verbosity, and complexity. By
ranking these factors and applying HERON, we are able to
train an aligned language model.

Robotic Control. We also evaluate HERON on robotic con-
trol (Coumans & Bai, 2016; Brockman et al., 2016), where
the hierarchy of the feedback signals is unclear. In these en-
vironments, HERON performs better than reward engineer-
ing and even achieves comparable performance compared
to the ground-truth reward. This shows that HERON is able
to train a reasonable policy even if the hierarchy is unclear.

The rest of this paper is organized as follows: Section 2
introduces the related work. Section 3 introduces our pro-
posed reward design framework. We conduct experiments
in Section 4. We discuss the limitations of our method in
Section 5.

2. Related Work
Besides reward engineering, there are several works that
attempt to improve reward design for RL.

Reward Shaping. Reward shaping aims to accelerate the
convergence of RL algorithms by incorporating auxiliary
reward information through shaping functions (Ng et al.,
1999; Tenorio-Gonzalez et al., 2010; Devlin & Kudenko,
2012). These approaches aim to mitigate the sparsity of
a pre-defined reward function. While reward shaping has
demonstrated success in practice, it often necessitates ex-
tensive tuning. To circumvent the need for costly tuning,
several methods have been proposed to automatically shape
rewards by utilizing an abstract MDP (Marthi, 2007), tile
coding (Grzes & Kudenko, 2008), and bi-level optimization
(Fu et al., 2019; Hu et al., 2020). In contrast, our work
pursues a different direction that eliminates the requirement
for a pre-specified reward function and does not assume that
the reward is a linear combination of auxiliary factors.

AutoRL. AutoRL (Afshar et al., 2022; Parker-Holder et al.,
2022) automates various aspects of hyperparameter selec-
tion in RL, including parameters related to the reward. Par-
ticularly relevant to our work, Faust et al. (2019) and Chiang
et al. (2019) treat reward weights as hyperparameters and
optimize them using population-based training.

Inverse Reinforcement Learning. Inverse reinforcement
learning (IRL) aims to learn a reward function from ex-
pert demonstrations (Ng et al., 2000; Abbeel & Ng, 2004;
Boularias et al., 2011). Although IRL enables the learning
of complex behaviors without manual reward tuning, it re-
quires observed, optimal behavior. These demonstrations
are often costly to obtain, and in our experiments, acquir-
ing them would be far more expensive than obtaining a
hierarchy of feedback signals. Furthermore, IRL methods
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typically require unstable bi-level optimization procedures,
which our approach does not involve.

Reinforcement Learning from Human Feedback. Rein-
forcement learning from human feedback (RLHF) (Chris-
tiano et al., 2017; Ouyang et al., 2022; Bai et al., 2022) aims
to train a policy model that aligns with human preference.
Although both RLHF and our method involve a preference-
based reward model, in RLHF the preference labels come
directly from the annotators. On the other hand, HERON au-
tomatically compares trajectories by the importance ranking
of the feedback signals. This ranking can be easily set up by
a human overseer if the feedback signals have hierarchy, or
in sparse reward settings. We will discuss more differences
in Section 5.

3. Method
We consider a Markov decision process ⟨S,A,P,R, γ⟩
where an agent interacts with an environment over a series
of discrete time steps. At time step t, the agent observes
st ∈ S, takes an action at ∈ A according to a policy, and
receives the next state observation st+1 ∈ S and reward
rt ∈ R. In most real-world applications, the reward rt is not
available. Therefore, our goal is to design an appropriate
reward model Rϕ : S ×A → R such that when maximizing
the objective

J(θ) = Eτ∼πθ

 ∑
(st,at)∈τ

γtRϕ(st, at)

 , (1)

the agent’s behavior, guided by the policy model πθ : S ×
A → R, meets our expectation.

To design the reward, we utilize a set of n feedback signals
z1t , . . . , z

n
t given at each time step t. These signals serve as

multiple measurements of a trajectory. We denote segments
of the resulting trajectory as

τ = (st, at, {zit}ni=1), . . . , (st+k, at+k, {zit+k}ni=1),

and we overload the notation for zi such that it represents
the feedback signal of a segment of trajectory, zi(τ) =∑

(st,at)∈τ zi(st, at).

Given the feedback signals of trajectories and the impor-
tance ranking, HERON builds the preference-based re-
ward model by preference elicitation and reward learning.
HERON then trains a policy model through policy learning.

Preference Elicitation. We generate a set of trajectory data
with a policy model. We can obtain the initial policy model
by (i) behavior cloning from expert demonstration data, (ii)
pre-training it using a handcrafted reward, or (iii) purely
random initialization. With the trajectory data, HERON
first compares them based on an intuitive form of domain

z1(τ1) − z1(τ2) < 0

z2(τ1) − z2(τ2)

z3(τ1) − z3(τ2)

≈ 0

≈ 0

μ = 2μ = 1

< 0
μ = 2

< 0
μ = 2

> 0

μ = 1
> 0

μ = 1
> 0

Figure 1. Preference elicitation: compare trajectories τ1 and τ2
through 3 feedback signals z1, z2, z3.

knowledge: rankings over the feedback signals. We assume
z1, . . . , zn have been ordered in descending order of im-
portance by an expert with domain knowledge. In sparse
reward settings, z1 is always the sparse reward and the re-
maining zi’s are the surrogates. We then elicit a preference
µ ∈ {0, 1, 2} between trajectory pairs (τ1, τ2) with a deci-
sion tree induced by the given feedback signal hierarchy. A
tie is denoted by µ = 0, µ = 1 means τ1 is preferred, and
µ = 2 means τ2 is preferred.

The decision tree is constructed as follows. We first set the
current level l = 1. We then calculate

µ =


0 if |zl(τ1)− zl(τ2)| ≤ δl

1 if zl(τ1) > zl(τ2) + δl

2 if zl(τ2) > zl(τ1) + δl

where δl is a margin hyperparameter for level l. The margin
parameter δl is ensures that we only elicit a preference
using zl if the two trajectories are significantly different
according to zl. The margin δl can be used to inject further
domain knowledge into the HERON algorithm, but in our
experiments we set δl to the standard deviation of zl over
the collected data.

If µ = 0, we update l← l + 1 and compare the trajectories
with the next most important feedback signal. If the two
trajectories are not significantly different in any of the feed-
back signals (i.e. l > n), we discard the trajectory pair. We
illustrate the algorithm in Figure 1.

Reward Learning. Given a labeled dataset D of trajec-
tories (τw, τu) where τw is the trajectory preferred by the
preference elicitation algorithm (i.e. µ = 1), we would
like to assign a higher reward to the preferred trajectory
(we remove all ties from the dataset, since we find includ-
ing them has negligible effect on training). To accomplish
this, we train a reward model Rϕ : S × A → R where
Rϕ(τ) =

∑
(st,at)∈τ γ

tRϕ(st, at). To assign a higher re-
ward to the preferred trajectory τw, we follow the methodol-
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ogy in Ouyang et al. (2022) and optimize the loss

L(ϕ) = −E(τw,τu)∼D [log (σ(Rϕ(τw)−Rϕ(τu)))] . (2)

We remark that this loss employs the Bradley-Terry prefer-
ence model (Bradley & Terry, 1952). Once we have trained
the reward model Rϕ, we can assign a reward to each tra-
jectory τ as Rϕ(τ). It is important to note that unlike some
prior works which learn linear reward models on top of state
features, HERON allows for more complicated reward mod-
els parameterized by neural networks (Sadigh et al., 2017;
Bıyık et al., 2020). Therefore, it is also possible to introduce
pre-trained knowledge into the reward model.

Policy Learning. With the reward model Rϕ, the policy in
(1) can be learned via popular reinforcement learning algo-
rithms such as Q-learning or Proximal Policy Optimization
(Sutton & Barto, 2018; Schulman et al., 2015; 2017).

Optional: Multi-stage Training. The success of the reward
learning depends on the quality of the trajectories generated
by the policy model, but if the initial policy model is not
optimal, e.g., pre-trained from handcrafted reward function
or randomly initialized, it may introduce significant sam-
pling bias to the trajectories. To address this issue, we can
repeat the preference elicitation, reward learning, and policy
learning for multiple rounds. In each new round, trajectories
in preference elicitation are generated by the policy model
from the last round, and the reward model is then adapted
using the new comparisons.

Extension: Direct Preference Optimization. Rafailov
et al. (2024) showed that in contextual bandit settings, the
KL-regularized preference optimization problem can be
optimized directly, without a reward model. In appropriate
settings, we can use DPO to simultaneously train the policy
and reward, reducing the computational cost of HERON.

4. Experiment
We evaluate the efficacy of our framework traffic light con-
trol experiments, code generation, language model align-
ment, and robotic control.

4.1. Multi-Agent Traffic Light Control

Environments. In this real-world scenario, cooperative
agents learn to increase the throughput and minimize the
wait of cars passing through a traffic network. Due to the
complexity of the traffic system, unfortunately, there is no
one optimal reward, and different reward may be preferred
in different scenarios. To solve this problem, Wei et al.
(2018); Van der Pol & Oliehoek (2016); Zhang et al. (2019)
define the ground-truth reward by balancing the following
six feedback signals: queue length (q), vehicle waiting time
(wt), vehicle delay (dl), number of vehicle emergency stops
(em), number of light phase changes (fl), and number of

vehicles passing through the system (vl).

For these experiments, we evaluate a variety of reward hi-
erarchies. Our reward model is parameterized by a three-
layer MLP that is learned by multi-stage training. We use
QCOMBO (Zhang et al., 2019), a Q-learning based algo-
rithm as the RL algorithm and conduct experiments using
the Flow framework (Wu et al., 2017). We train Multi-agent
RL policies on a two-by-two grid (four agents), each pa-
rameterized by a three-layer MLP. For more details on the
environment and the experiment setting, see Appendix E.

Baseline. We compare our method to reward engineering,
where the reward is formulated as

∑n
i=1 Wizi, where the

Wi’s are hyperparameters and zi’s are normalized feedback
signals. To inject HERON’s domain knowledge and to
make hyperparameter tuning tractable, we set the Wi’s to
be geometrically decreasing such that Wi = βi and select
β ∈ {0.1, 0.2, ..., 1.0}. This a very realistic and competitive
reward engineering baseline. Note that we also explore re-
ward engineering without this prior hierarchical knowledge.
We also compare to ensemble approaches, which train a
separate policy on each feedback signal and then select an
action at each time step by a weighted combination of each
policy (Brys et al., 2017).

In this experiment we evaluate different reward designs by
comparing the ground-truth reward of the associated policy.

Results. In Figure 2, we plot the evaluation reward (as
defined in (Zhang et al., 2019)) of policies in the traffic light
control environment. We observe that the policy trained
with HERON performs significantly better than the policies
trained with the reward engineering baseline or even by
the ground-truth reward developed in Zhang et al. (2019).
The gain of HERON over all other methods passes a t-test
with p < 0.005. We hypothesize that HERON can utilize
each reward signal better than a linear combination does;
a significant change in a single feedback signal may be
drowned out in the linear combination, but HERON can
incorporate this information due to its hierarchical nature.

Flexibility of Hierarchical Reward Modeling. In various
tasks, there is no one ideal reward, and the aspects of an
agent’s behavior that should be prioritized depend on the
practitioner’s preference. As a result, a crucial characteristic
that reward design algorithms should possess is flexibility.
In particular, modifying the domain knowledge inputted
should result in corresponding changes in the behavior of
the agent. To evaluate the flexibility of HERON, we examine
how changing the feedback signal rankings changes agent
behavior in the traffic light control environment.

In this experiment we always set the most important signal
as the number of cars passed, and then we use the queue
length, wait time, or delay as the second signal. The results
can be seen in Figure 4. We observe that HERON is quite
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flexible, and that by changing the reward hierarchy we can
significantly influence the agent’s behavior: when priori-
tizing certain signals the policies performance (measured
according to the prioritized signal) will greatly increase.

Signal Utilization. We also show the level the decision tree
induced by HERON reaches in Figure 3. This may change
with different reward hierarchies, but as we can see from the
figure, a relatively similar proportion of decisions are made
at each level of the decision tree. This confirms the efficacy
of setting δl to zl’s standard deviation.

Figure 2. Evaluation curves with different reward hierarchies in
traffic light control. The curve is within ± one standard deviation.

Figure 3. Utilization of different signals.

Robustness. An advantage of HERON is that unlike re-
ward engineering, it does not depend on the magnitude of
the different feedback signals. This is because the prefer-
ence elicitation algorithm will label trajectory pairs with
µ ∈ {0, 1, 2}, regardless of the scale of the different sig-
nals. This scale-invariance is beneficial, since algorithms
that depend on the scale of the feedback signals may be
vulnerable to changes in the environment during training.
For example, if the scale of a feedback signal suddenly dou-
bles, (i.e. the traffic on a highway doubles due to rush hour)
then two things will happen: (1) the scale of the reward
signal may sharply increase, which is similar to a sudden
change in learning rate; (2) the weight vector used in reward
engineering to combine the feedback signals will effectively
be changed. The first phenomenon may cause training insta-
bility, and the second phenomenon could cause the agent to

(a) Num. Passed (b) Wait Time

(c) Delay (d) Queue Length

Figure 4. Evaluation reward curves with different reward hierar-
chies in traffic light control. The importance decreases from left to
the right in a label. The curve is within ± one standard deviation.

be misaligned with the human overseer’s desires.

To evaluate HERON’s robustness, we change the speed of
the cars halfway into training (this a realistic setting, since
many areas have time-dependent speed limits). We then
evaluate each policy after training under the new environ-
ment, and see which algorithms were able to adapt the best.
We compare the HERON-trained policy with two policies
trained with the reward engineering: one that uses the opti-
mal learning rate in the unchanged environment (1× 10−3)
and one that uses a smaller, more stable learning rate of
1× 10−5.

From Figure 5, we can see that reward engineering is quite
sensitive to changes in the environment during training. This
can be combatted with a smaller learning rate, but this will
result in slower learning and a sub-optimal reward. On the
other hand, HERON is able to attain a high reward regard-
less of the environment change, supporting our hypothesis
that HERON’s scale-invariant design leads to increased ro-
bustness.

4.2. Code Generation

Environment. RL has recently gained considerable atten-
tion for its state-of-the-art performance in various text gen-
eration tasks. Therefore, we investigate if HERON can
achieve similar improvements in LLM performance solely
based on rankings over feedback signals. First, we consider
the code generation task. In code task, the goal of the agent
is to write a program that will satisfy the criteria specified
in a given problem.
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(a) 25 MPH (b) 30 MPH

(c) 40 MPH (d) 45 MPH

Figure 5. Evaluation curves with different environments: changes
of vehicles’ speed limit. The baseline speed limit is 35 MPH.

Baselines. Recently, Le et al. (2022) demonstrated state-of-
the-art performance can be achieved by training with RL.
They manually design a constant piece-wise reward that
is determined by feedback signals including whether the
program passes all the unit test and the type of error if failed
(i.e. compilation error or runtime error).

RCodeRL(s) =


−1.0 if program s fails to compile
−0.6 if program s has a runtime error
−0.3 if program s fails a unit test
+1.0 if program s passes all unit tests.

Shojaee et al. (2023) (PPOCoder) build upon this work, inte-
grating more feedback signals such as a program’s abstract
syntax tree (AST) similarity to expert demonstrations.

Implementation Details. Our decision tree is based on
three signals: the percent of tests a program passes, the type
of error a program incurs, and the AST similarity to expert
demonstrations. To train policies we follow the implemen-
tation of Le et al. (2022). We initialize our policies with
the CodeT5plus-large model and our reward model with
CodeT5-small (Wang et al., 2021). The policies are first
trained with behavior cloning on the expert demonstrations.
Next, we generate 20 samples per training program, and
conduct RL training over these generated samples. We train
with the policy gradient objective. We evaluate the perfor-
mance of each algorithm using Pass@K metric, which is the
number of programming problems passed with K submis-
sions per problem (Chen et al., 2021). We primarily evaluate
HERON on APPS, a python programming datasets contain-
ing 5000 test problems (Hendrycks et al., 2021). Each
question in the dataset comes with expert demonstrations
and test cases the program should pass. To evaluate each
algorithm, we generate 200 programs per problem. In total,

each method is evaluated on 1 million generated programs.
To evaluate the generalization ability of the policies, we eval-
uate each policy in a zero-shot manner on the MBPP dataset,
which contains 974 basic python programming questions
(Austin et al., 2021).

Post-Training Reward Scaling. To further incorporate do-
main knowledge and environment feedback into the reward,
we propose to rescale the reward learnt from (2). Specifi-
cally, we multiply the reward Rϕ(τ) by a shaping constant,
denoted as αF (τ). Here, α is a hyperparameter and tuned
over {1, 2, 3}, while F (τ) corresponds to a piece-wise func-
tion of the feedback signals. We define it for code generation
as

F (τ) =


3 if program τ passes all unit tests
2 if program τ fails a unit test
1 if program τ yields any error.

This function is motivated by the importance ranking of
feedback signals. It explicitly reinforces feedback signals in
policy learning according to their importance ranking and
serves as the supplement of the preference-based reward
model. Specifically, by tuning α, we can effectively control
the reward’s shape and the degree of separation between
the best and worst trajectories. We focus our α tuning
efforts exclusively on the code generation task due to its
high complexity.

Results. We display the results for the code generation task
in Table 1 and Table 2. HERON outperforms all other ap-
proaches. For larger K in Pass@K the gain in Pass@K pass
a t-test with p < 0.05. This is most likely because reward
engineering only gives a large reward to programs that pass
all the unit tests or are similar to the expert demonstrations,
while HERON can give a large reward to programs that may
fail some unit tests but the reward model predicts as being
likely to satisfy the prompt. This means that HERON will
promote a more diverse set of programming strategies. In
addition, HERON’s smooth reward function (opposed to the
discontinuous piece-wise function in sparse reward settings)
may be more conducive for learning, and therefore lead to
higher performance.

We further analyze code generation performance using the
filtered Pass@K metric, which only submits programs that
pass unit tests provided in the prompt (Chen et al., 2021).
As seen in Table 3, HERON uniformly and significantly out-
performs the baselines, confirming the efficacy of HERON.

As in Le et al. (2022), we evaluate the performance of
policies trained by HERON on the MBPP dataset. The
results are displayed in Table 4. HERON outperforms the
other methods, confirming its efficacy.
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Table 1. Raw Pass@K on APPS.
Pass@1 Pass@5 Pass@10 Pass@20 Pass@50

BC 1.59 3.82 5.19 6.74 6.74

CodeRL 1.71 4.12 5.57 7.26 9.81
PPOCoder 1.23 3.08 4.19 5.50 7.62
HERON 1.72 4.19 5.71 7.49 10.19

Table 2. Pass@50 on APPS by three difficulty levels: introductory,
interview, competition.

Intro. Inter. Comp.

BC 18.8 4.23 2.10

CodeRL 23.7 6.93 4.51
PPOCoder 18.6 5.41 3.23
HERON 24.6 7.28 4.53

Table 3. Filtered Pass@K on APPS.
Pass@1 Pass@10 Pass@20

BC 4.70 6.36 6.44

CodeRL 5.73 8.57 8.96
PPOCoder 5.60 8.61 8.93
HERON 5.74 9.03 9.43

Table 4. Pass@K on MBPP
Pass@1 Pass@2 Pass@5

CodeRL 6.58 10.27 16.24
PPOCoder 6.58 10.09 15.85
HERON 7.40 11.03 16.54

4.3. Language Model Alignment

Environment. Beyond code generation, we also evaluate
the ability of HERON to train instruction following models
that are aligned with human principles. For this experiment
we employ Phi-2 (Javaheripi et al.) as our base model, and
train it on the HelpSteer dataset (Wang et al., 2023). The
HelpSteer dataset is composed of instruction-response pairs
annotated (from 0-4) across five feedback signals: correct-
ness, helpfulness, coherence, complexity, and verbosity.

Implementation. For HERON, we use the following hier-
archy: correctness > helpfulness > coherence > complex-
ity > verbosity. We then use HERON-DPO to optimize
the policy. We consider two reward engineering baselines:
REINFORCE-based finetuning with equal reward weights
on all signals and REINFORCE-based finetuning with ex-
ponential decaying reward weights (Williams, 1992). Every
algorithm is initialized from a version of Phi-2 that has
undergone supervised finetuning on HelpSteer.

Results. To evaluate the resulting models, we use three state-
of-the-art reward models (RLHF-Flow (Dong et al., 2024),
PairRM (Jiang et al., 2023), Eurus-7B (Yuan et al., 2024))
and Claude 3 Sonnet to compute a win-rate compared to
the SFT policy on the HelpSteer test dataset. The results
can be seen in Table 5. We find that HERON-DPO can
significantly outperform the baselines across all judges. We
hypothesize that this gain is due to the fact that HERON’s
decision tree over these signals can better capture human
principles compared to linear combinations of feedback
signals. More details can be found in Appendix M.

4.4. More Experiments

To demonstrate that HERON is able to train a reasonable pol-
icy even if the hierarchy is unclear, we experiment on four
robotic control tasks: Ant, Half-Cheetah, Hopper, and Pen-
dulum. We use the PyBullet simulator, where the ground-
truth reward is formulated as a linear combination of sev-
eral signals such as the robot’s potential, the power cost,
whether the joints are at their limit, and whether the robot’s
feet collide (Coumans & Bai, 2016). These factors do not
necessarily display a clear hierarchy. More details on this
environment can be found in Appendix K. The results can
be found in Table 6, where we observe that HERON can
always exceed the performance of the reward engineering
baseline.

4.5. Ablation

Training Time Analysis. The main computational cost of
HERON comes from reward model training, as data collec-
tion is already a part of most RL algorithms and preference
elicitation is very fast. To accelerate reward model training
in the multi-stage setting, we can use an annealed training
schedule (see Appendix I). The normalized training time of
HERON, reward engineering, and ensemble-based learning
are shown in Figure 6a. HERON is 25% slower than reward
engineering on average, which is quite reasonable given that
the tuning cost of reward engineering is usually large.

Hyperparameters. We set δi to the standard deviation of
zi over the collected data in our experiments. Nonetheless,
we evaluate the sensitivity of HERON to these parameters
in Figure 6. We find values in [0, 2 ∗ σi] work well, where
σi is the standard deviation of zi.

Tuning Cost. Finally, we compare the tuning cost of
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Table 5. Win rate against the SFT model as calculated by various LLM judges.

RLHF-Flow PairRM Eurus-7B Claude-3 Avg.

Reward Eng. (Equal Weight) 54.67 58.49 53.68 57.46 56.08
Reward Eng. (Decaying Weight) 59.24 59.64 52.49 56.85 57.06
HERON-DPO 66.20 63.02 63.22 63.82 64.57

Table 6. Ground-truth reward obtained in robotics environments.
Ant Hopper Cheetah Pendulum

Ground-truth 0.99(0.0) 0.86(0.01) 0.94(0.10) 1.0(0.01)

Reward Eng. 0.88(0.02) 0.72(0.05) 0.61(0.04) 0.99(0.0)
HERON 1.0(0.01) 0.78(0.04) 0.62(0.04) 1.0(0.0)

HERON with reward engineering in the traffic light con-
trol environment. For HERON we consider tuning with
exact domain knowledge (the hierarchy is given) and with
inexact domain knowledge (the top 3 elements are given
but their order is not specified). For reward engineering we
consider tuning with exact domain knowledge and with no
domain knowledge (the reward weights do not have hier-
archical structure). For the latter case we tune the weights
with bayesian optimization. The results are shown in Fig-
ure 6c. We find that both versions of HERON significantly
outperform reward engineering. Although bayesian opti-
mization can train high performing policies, it requires 5 to
15 times the tuning iterations of HERON.

(a) Training Time (b) δi

(c) Tuning Cost

Figure 6. Training time and ablation study for HERON.

5. Discussion
Suitable Scenarios. HERON is not intended to serve as a
solution for all RL problems; however, it can perform quite
well in specific settings. In particular, HERON will be most

useful in environments where there are several feedback
signals available and a human overseer can rank these sig-
nals. Our experiments show that in such environments (code
generation and traffic light control) HERON can outperform
state-of-the-art baselines. Moreover, HERON shows great
versatility as it can achieve decent performance in non-ideal
environments (robotic control).

Reward Flexibility. HERON is also capable of dealing with
the feedback signals that are of nearly equal importance.
One feasible solution is to flip the importance ranking of the
equally important feedback signals with certain probability
during the preference elicitation step described in Section
3. One can even design more complex preference elicita-
tion algorithms that do not require a strict hierarchy over
feedback signals, which we leave for future work.

Low Labeling Budget Setting. RLHF is an effective
method to obtain a powerful policy model. This is because
humans can provide more informative insight for the reward
model than feedback signals. However, involving humans
to compare every pair of trajectories is often not affordable
and it is difficult to create suitable instructions on how to
compare trajectories. We consider a separate setting, where
only some feedback signals and some domain knowledge
about them are available. In this case, reward engineering
becomes a reasonable and cheap choice, as does our method.
Therefore, reward engineering is the most suitable baseline.

Multi-objective RL. Our method is not designed specif-
ically for multi-objective RL problems. Generic multi-
objective RL is complex because some objectives adversely
affect other objectives during the optimization. In this case,
researchers try to find the Pareto frontier and balance among
the objectives in many different scenarios (Van Moffaert
& Nowé, 2014; Mossalam et al., 2016). In contrast, our
method can be applied if and only if the feedback signals
are available and have hierarchal structure.

Future Work. Our proposed hierarchical comparison pro-
cedure enjoys flexibility and can be extended. For instance,
we can consider the level of the feedback in the hierarchy
as the preference strength. More specifically, preference
outcomes drawn based on more important feedback make
stronger preferences between two RL trajectories. To exploit
such preference strength, we can add rescaling or margin
hyperparameters to reward learning. We leave this for future
investigation.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Appendix / supplemental material

B. Classic Control Experiment Details
For the classic control experiments we use the OpenAI gym (Brockman et al., 2016). To train all policies we use the DDPG
algorithm, where the policies are parameterized by three layer MLPs with 256 hidden units per layer. We use the Adam
optimizer, and search for a learning rate in [1× 10−5, 1× 10−3].

For mountain car we train for a total of 15000 timesteps and begin training after 5000 timesteps. For pendulum, we train for
a total of 50000 timesteps and begin learning after 25000 timesteps.

C. Baselines
C.1. Ensemble Baseline

Beyond the ground-truth reward, we compare the HERON algorithm with two ensemble baselines inspired by Brys et al.
(2017). These ensemble baselines train a separate policy on each feedback signal, and then combine the policies’ outputs in
a given state to select an action. In every environment we train each policy in the ensemble with the similar parameters as
used for the reward engineering baseline and we again tune the learning rate in [1× 10−5, 1× 10−3].

As described in the main text, we consider two variants of this ensemble based algorithm: one where the action is selected
according to an average over each policy (a← argmaxa∈A

∑n
k=1

1
nπk(s, a)) and one where the preference ranking used as

input to HERON is used to combine the actions (a← argmaxa∈A
∑n

k=1 γ
kπk(s, a)). With the second variant, γ is selected

from {0.25, 0.35, 0.45, · · · , 0.95, 0.99, 1}.

C.2. Reward Engineering Baseline

We also examine the performance of a reward engineering baseline where the reward is formulated as
∑n

i=1 β
izi, where β

is a hyperparameter selected from {0.3, 0.4, ..., 0.9, 1.0} and zi are the normalized feedback signals. The feedback signals
are ordered according to the HERON reward hierarchy, making this a very realistic and competitive reward engineering
baseline. However, we came across a few challenges when trying to make this algorithm work. First, the feedback signals
all need to be normalized, which either requires complex algorithms or multiple agent rollouts before training. In addition,
we find that this baseline is very sensitive to β and therefore has a higher tuning cost. In addition, it can often not beat the
performance of HERON. We plot the performance of the reward engineering baseline in Figure 7. Note that this plot shows
performance over all of training, and HERON typically displays larger reward (comparatively) in the last stages of training.

As we can see from Figure 7, the reward engineering baseline requires extensive tuning to achieve good performance. In
addition, the choice of normalization strategy is very important (Figure 7f). These results further show the benefits of
HERON.

D. Robotics
All of our experiments are conducted with the PyBullet simulator (Coumans & Bai, 2016). The feedback signals in each
environment are as follows: for Ant, it is whether the robot is alive, the progress towards the goal state, whether the joints
are at their limits, and whether the feet are colliding. For HalfCheetah, the signals are the potential and the power cost. For
Hopper, the signals are the potential, an alive bonus, and the power cost.

E. Traffic Light Control
In our experiments we train four agents in a two by two grid. The length of each road segment is 400 meters and cars enter
through each in-flowing lane at a rate of 700 car/hour. The traffic grid can be seen in Figure 8. The control frequency is 1
Hz, i.e. we need to input an action every second. The reward is based on the following attributes for each agent n:

• qn: The sum of queue length in all incoming lanes.

• wtn: Sum of vehicle waiting time in all incoming lanes.

• dln: The sum of the delay of all vehicles in the incoming lanes.
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(a) Ant (b) Half-Cheetah (c) Hopper

(d) Traffic Lights (e) Pendulum (f) Mountain Car

Figure 7. Ablation study of the reward engineering baseline.

• emn: The number of emergency stops by vehicles in all incoming lanes.

• fln: A Boolean variable indicating whether or not the light phase changed.

• vln: The number of vehicles that passed through the intersection.

We can then define the reward-engineering reward as

Rn = −0.5qn − 0.5wtn − 0.5dln − 0.25emn − fln + vln.

All algorithms have the same training strategy. Each agent is trained for three episodes with 3000 SUMO time steps each.
At the beginning of training the agent makes random decisions to populate the road network before training begins. Each
algorithm is evaluated for 5000 time steps, where the first 1000 seconds are used to randomly populate the road. For
adversarial regularization, we use the ℓ2 norm to bound the attacks δ.

F. RLHF Comparison
To explicitly compare RLHF with HERON, we compare the algorithms in the pendulum environment. To simulate human
feedback, we rank one trajectory over another if the ground truth reward achieved by that trajectory is higher than the ground
truth reward achieved by the other trajectory. We then evaluate the performance of this simulated RLHF algorithm when
varying amounts of feedback are given. The results can be seen in Figure 9. In this table we vary the number of feedbacks in
RLHF, while keeping the number of feedbacks for HERON constant. In this setting HERON can perform as well as RLHF,
but such good performance is not guaranteed in every environment.

G. HERON Flexibility
In this section we evaluate how the behavior of the policies trained by HERON change when we change the reward hierarchy.
We plot several hierarchies in Figure 10. The reward engineering is the thick black line. We try three signals as the most
important signal (num passed, wait time, and delay). We notice that all these observations can outperform the reward
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Figure 8. Traffic light control environment.

Figure 9. RLHF comparison in the Pendulum Environment.

engineering reward, even though we measure the return with the reward engineering reward. One important deviation from
this good performance is when wait time is not ranked highly. The wait time is a very important signal, and when we do
not put this variable high up in the hierarchy, the performance becomes unstable when measured according to the reward
engineering reward. This is because if we ignore the wait time of cars, the policy may make some cars wait for a long time,
which is not ideal. However, this can easily be accounted for in the reward design process.

Figure 10. Different reward hierarchies in HERON.

H. Code Generation
In this section we describe details for the code generation task.

H.1. Behavior Cloning

To train the initial behavior model we use behavior cloning (supervised fine-tuning) to adapt the pre-trained CodeT5 to the
APPS task. In particular, we use train with the cross-entropy loss for 12000 iterations, using a batch size of 64. We use the
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Adam optimizer with a learning rate of 2× 10−5.

H.2. Temperature Selection

A hyperparameter that can have a large impact on generation quality is the temperature parameter, which essentially alters
how greedy we are in the next-token sampling step. In all settings we follow the implementation of Le et al. (2022), using a
temperature of 0.6 for APPS and 1.2 for MBPP. In addition, we sample tokens greedily to construct a baseline sample for
each problem.

H.3. Reward Model

It has been noted that reward models often overfit to the dataset (Ouyang et al., 2022). Therefore we use a smaller version
of CodeT5 for our reward model with only 220 million parameters. We train this model for around 40000 steps with a
batch size of 64. This is roughly a single epoch on the preference dataset, which is comprised of 20 samples per problem
sampled from the behavior model and some expert samples provided by the APPS dataset. We use the Adam optimizer with
a learning rate of 2× 10−5.

H.4. Reinforcement Learning

Once we have trained the reward model, we assign a reward to each program in our preference dataset and train using
reinforcement learning on this dataset. Similar to Le et al. (2022), we train on the policy gradient loss and add the cross
entropy loss as a regularization term. We compare our method to two reward engineering rewards:

CodeRL reward. The first reward we compare HERON to is from CodeRL, which defines the reward as

RCodeRL(s) =


−1.0 if program s fails to compile
−0.6 if program s has a runtime error
−0.3 if program s fails a unit test
1.0 if program s passes all unit tests.

PPOCoder reward. The second reward we compare HERON to is based on PPOCoder, which has the insight to include
syntactic similarity to expert samples in the reward. This effectively smooths the reward, and can therefore make the reward
more informative. In particular, they compare the abstract syntax trees of the generated programs with the expert example
programs. This is computed as

Rast(s, ŝ) = Count(ASTs,ASTŝ)/Count(ASTs).

We then construct the final PPOCoder based reward as RPPOCoder(s) = RCodeRL(s)+λMEANŝ(Rast(s, ŝ)), where MEAN
is the mean operator. We tune λ ∈ {0.001, 0.01, 0.1, 1}. We remark that the original PPOCoder reward contains more
feedback signals, but we do not use all of them due to the large tuning cost required to tune the ourselves.

For both of these rewards and the HERON reward we tune the learning rate in {3× 10−6, 5× 10−6, 8× 10−6}.

H.5. Example Programs

To further analyze the performance of HERON, we examine some of the programs generated by HERON. These programs
are randomly selected. We display concatenated prompts and completions in Figure 11.

I. Reward Training
In this section we detail our reward model training. For the classic control tasks and the traffic light control task we do
not have a good initial behavior policy, so we must train our reward model in an iterative manner. In these settings, we
iteratively update the reward model using samples from the current version of the policy. In this way the reward model is
trained on samples generated from progressively better policies.

As we mentioned in our discussion on the computational costs of HERON, the cost of reward model training depends on
the frequency at which the reward model is trained. For the classic control environments we simply use a linear training
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schedule, in which the reward model is updated every 400 steps. For traffic light control we train the reward model with an
annealed frequency, where the reward model is trained every 100υt steps, where υ is set 1.3 and t is the current time step.

We demonstrate the multi-step reward model training in Figure 12. The sharp drop in accuracy occurs at time step 1000,
where the behavior model changes from random to a trained policy. This large change in accuracy indicates that multi-step
reward model training is needed, as reward models trained on random behavior do not perform as well when the behavior
changes.

I.1. The α Hyperparameter

Formal description of shaping signal: Given a trajectory τ , let us compare it with n other trajectories τ1, . . . , τn. Let F (τ)
denote the average level of the decision tree τ wins at. To allow us to incorporate domain knowledge into HERON, we
multiply the reward assigned to τ by a signal αF (τ), where α is a hyperparameter. When the feedback signals are categorical,
F (τ) can capture which category τ lies in, and multiplying the reward by αF (τ) can control the reward separation between
different categories.

Visual description of shaping signal:As mentioned in the main text, the α hyperparameter can be used to control the shape
of the rewards. In Figure 13, we show how changing α changes the reward shape in the code generation task.

J. Computational Setup
For the classic control tasks and traffic light control experiment we run experiments on Intel Xeon 6154 CPUs. For the code
generation task, we train with Tesla V100 32GB GPUs.

K. Robotics Learning Curves
In Figure 14 we display the learning curves in the robotics environments.

L. Limitations
The main limitation of HERON is that not every problem will contain an obvious ranking over the feedback signals, as some
signals may be equally important. We propose to mitigate this limitation in future works by allowing for ties or using a
randomized decision tree in the preference elicitation procedure.

M. Alignment Experiments
Here we present more details on our language model alignment experiments. We use LoRA (Hu et al., 2020) for all
experiments. For the SFT base model, we train for two epochs with learning rate 5e-5. We use batch size 32 and train for 2
epochs. For Reinforce we also use learning rate 5e-5, batch size 32, and train for 2 epochs. For DPO, we use learning rate
5e-5, batch size 32, β = 0.1, and train for 2 epochs.

For evaluation, we use each reward model as specified in their respective release. For Claude 3 based evaluation, we prompt
it to select the most correct, helpful, and harmless response.
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Figure 11. Example programs generate by LLMs trained with HERON.

17



Deep Reinforcement Learning from Hierarchical Preference Design

Figure 12. Reward model accuracy throughout training.

(a) α = 1.0 (b) α = 2.0

(c) α = 3.0 (d) α = 4.0

Figure 13. Reward shape with different values of α.
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(a) Ant (b) Hopper

(c) HalfCheetah

Figure 14. Training curves in different robotics tasks.
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