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Abstract

Identifying subtle phenotypic variations in cellular images001
is critical for advancing biological research and acceler-002
ating drug discovery. These variations are often masked003
by the inherent cellular heterogeneity, making it challeng-004
ing to distinguish differences between experimental condi-005
tions. Recent advancements in deep generative models have006
demonstrated significant potential for revealing these nu-007
anced phenotypes through image translation, opening new008
frontiers in cellular and molecular biology as well as the009
identification of novel biomarkers. Among these generative010
models, diffusion models stand out for their ability to pro-011
duce high-quality, realistic images. However, training dif-012
fusion models typically requires large datasets and substan-013
tial computational resources, both of which can be limited014
in biological research. In this work, we propose a novel015
approach that leverages pre-trained latent diffusion mod-016
els to uncover subtle phenotypic changes. We validate our017
approach qualitatively and quantitatively on several small018
datasets of microscopy images. Our findings reveal that our019
approach enables effective detection of phenotypic varia-020
tions, capturing both visually apparent and imperceptible021
differences. Ultimately, our results highlight the promising022
potential of this approach for phenotype detection, espe-023
cially in contexts constrained by limited data and compu-024
tational capacity.025

1. Introduction026

In recent years, generative models have undergone rapid027
and accelerating advancements [4, 14, 19, 33, 40], resulting028
in their widespread adoption across a variety of fields. No-029
tably, these models have made significant contributions to030
biological research. For example, they have been employed031
in protein design [41], predicting protein structures [22],032
integrating cancer data [37], synthesizing biomedical im-033
ages [13, 23], predicting molecular structures [5, 32], and034
identifying phenotypic cell variations [2, 3, 27].035

Identifying phenotypic variations in biological images 036
is crucial for advancing our understanding of biological 037
processes. Detecting these differences can be particularly 038
challenging due to the high degree of biological variabil- 039
ity, yet it holds immense potential for enhancing disease 040
understanding, discovering novel biomarkers, and develop- 041
ing new therapeutics and diagnostics [7, 28, 31]. Tradi- 042
tional methods for identifying these phenotypes often rely 043
on cell segmentation and the quantification of features such 044
as intensity, shape, and texture [31]. Recently, deep learn- 045
ing techniques, particularly generative models [2, 3, 27], 046
have been applied to automate and refine this process, en- 047
abling the identification of more interpretable and biolog- 048
ically meaningful features. Among these approaches, dif- 049
fusion models have emerged as state-of-the-art generative 050
models [8], achieving remarkable results in tasks such as 051
image synthesis. However, training diffusion models, like 052
other deep learning models requires large datasets, which is 053
often difficult to obtain in biological applications. 054

In this work, we propose Phen-LDiff a method to detect 055
cellular variations in small biological datasets by leveraging 056
pre-trained Latent Diffusion Models (LDMs) [35]. 057

2. Related Work 058

Diffusion Models. Diffusion Models (DMs)[19, 40] are 059
generative models that have recently achieved remarkable 060
results in various tasks. DMs are latent variable models that 061
operate through two key processes: a fixed forward process 062
that gradually adds noise to the data and a learned back- 063
ward process that denoises it, reconstructing the data distri- 064
bution [19, 40]. Recently, these models have seen several 065
advancements [8, 18, 26, 40], making them state-of-the-art 066
in image synthesis, surpassing traditional generative mod- 067
els like GANs [8]. One of the notable improvements is 068
the introduction of Latent Diffusion Models (LDMs) [35], 069
where images are first compressed into a latent space us- 070
ing a variational autoencoder, and then the diffusion pro- 071
cess occurs within this compressed latent space. This ap- 072
proach enables more efficient scaling to higher-resolution 073
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images and accelerates training times. Additionally, LDMs074
incorporate a conditioning mechanism, allowing for tasks075
such as text-conditioned image generation, inpainting, and076
super-resolution. These innovations in LDMs have facil-077
itated their training on massive datasets [36], resulting in078
powerful pre-trained models such as Stable Diffusion [35],079
which have demonstrated exceptional performances in var-080
ious generative tasks.081

Identifications of Phenotypes in Biological Images.082
Identifying phenotypic variations in biological images is es-083
sential in biology and drug discovery [7, 31], yet it presents084
significant challenges. One of the key difficulties is the085
biological variability among cells within the same condi-086
tion, which can obscure the differences between distinct087
conditions. Recently, generative models have been em-088
ployed to cancel this natural variability in order to visu-089
alize and explain cellular phenotypes in microscopy im-090
ages [2, 11, 27]. In [2], cellular variations between condi-091
tions were identified through an image-to-image translation092
task between two classes, following methodologies simi-093
lar to those in [21, 44]. In Phenexplain [27], a conditional094
StyleGAN2 [25] was trained to detect cellular changes by095
performing translations between synthetic images within096
the latent space of StyleGAN2, allowing for training across097
multiple conditions, unlike the approach in [2]. A simi-098
lar method was presented in [11], but instead of utilizing099
the latent space of GANs, the authors proposed learning100
a representation space using self-supervised learning tech-101
niques [15]. In [3], conditional diffusion models were ap-102
plied to identify phenotypes in real images. This approach103
consists of two stages: first, the source class image is in-104
verted into a latent code, which is then used to generate an105
image from the target class. This method provides a power-106
ful alternative for phenotype detection using real biological107
data. However, all of these models require a large number108
of images to be properly trained.109

Fine-tuning Diffusion Models. Fine-tuning [16, 20, 30,110
38, 42], a well-established strategy for training deep learn-111
ing models on limited data, involves adapting pre-trained112
models. It involves adapting a pre-trained model’s weights113
to fit a smaller dataset. Fine-tuning methods can be catego-114
rized into three main groups: adaptive methods [34, 38],115
where the entire model’s weights are adjusted; selective116
methods [1, 12, 43], where only a subset of the model’s117
parameters are modified; and additive methods [16, 20],118
where additional networks are incorporated to refine the119
weights. These techniques have proven effective for dis-120
criminative models and have recently been extended to gen-121
erative models, such as GANs, autoregressive generative122
models [20], and diffusion models [16]. Fine-tuning tech-123
niques for diffusion models have gained attention, particu-124

larly due to the availability of models pre-trained on large 125
datasets. Recently, several approaches have been proposed 126
for fine-tuning diffusion models [16, 20, 30], driven by the 127
popularity of pre-trained models like Stable Diffusion [35]. 128
In [30], it was demonstrated that modifying a subset of pa- 129
rameters can lead to efficient fine-tuning. Low-Rank Adap- 130
tation (LoRA)[20], a technique originally developed for 131
fine-tuning large language models (LLMs) [29], can also be 132
applied to diffusion models. LoRA freezes the pre-trained 133
model’s weights and learns low-rank matrices that are in- 134
jected into each layer of the network. In[16], the authors 135
introduced SVDiff, a fine-tuning method for diffusion mod- 136
els that focuses on learning shifts in the model’s singular 137
values. 138

(a)

(b)

Figure 1. Top: Real images from the LRRK2 dataset, displaying
wild-type images in the first row and images of mutated neurons in
the second row. Bottom: Real images from the Golgi dataset, with
untreated images in the first row and Nocodazole-treated images
in the second row. In both (a) and (b), identifying and interpreting
differences between the two classes by eye is highly challenging.
However, it is essential for understanding the disease in (a) and
assessing the treatment effects in (b)

3. Method 139

In this section we first provide an overview of DMs and the 140
methods used for fine-tuning them, then we dive into the 141
details of our approach. 142
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Figure 2. We fine-tuned diffusion models on four different microscopy image datasets and performed translations from the source class to
the target class. We observed the following: In (a), the translated images of untreated BBBC021 samples successfully replicated the effects
of Latrunculin B treatment, where we observed a decrease in cell count and the disappearance of the cytoplasmic skeleton, likely due to
the toxicity of the treatment. In (b), TNF treatment on cells and its translocation effect was well recapitulated by image translation. In (c),
we translated images of wild-type cells to images of LRRK2 mutated cells and noticed a reduction in neuron density and complexity (red
squares) and an increase of α-synuclein (yellow squares), recapitulating known effects of the mutation. Finally, in (d), we observed the
correct replication of the effect of Nocodazole treatment causing the scattering of the Golgi apparatus (red squares). Note how pronounced
((a), (b)) as well as subtle ((c), (d)) phenotypic changes are well captured by our model. In any case seeing the same cell before and after
treatment allowed us to assess the effect of the perturbation. Real images of both conditions of the four datasets can be seen in Appendix
A.1.

Figure 3. Phen-LDiff leverages fine-tuned LDMs to perform
image-to-image translation, identifying phenotypic variations be-
tween the images of two conditions. First, a fine-tuned model is
used to invert an image from the source class into a latent code,
which is then used to generate an image in the target class.

3.1. Background143

3.1.1 Diffusion Models144

Denoising Diffusion Probabilistic Models (DDPMs) are la-145
tent variable models that utilize two Markov processes: a146
fixed forward process that gradually adds noise to the data,147

and a learned reverse process that removes noise to recover 148
the data distribution. Formally, given data x0 ∼ q(x0), the 149
forward process iteratively adds Gaussian noise over T time 150
steps following a forward transition kernel given by: 151

q(xt, |, xt−1) = N
(
xt;

√
1− βtxt−1, βtI

)
(1) 152

In the reverse process, noise is gradually removed using a 153
learnable transition kernel: 154

pθ(xt−1, |, xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (2) 155

While DDPMs generate high-quality images, they require 156
many iterations during inference, making the process com- 157
putationally intensive. To accelerate inference, Denoising 158
Diffusion Implicit Models (DDIMs) [40] can be employed. 159
Notably, DDIMs offer deterministic sampling, allowing for 160
exact inversion, a property that is crucial for our approach 161
to observe phenotypic changes in real images. 162

Latent Diffusion Models (LDMs) [35] extend DDPMs 163
by introducing a latent space to improve both efficiency and 164
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flexibility in high-dimensional data generation tasks. In-165
stead of operating directly in the data space, LDMs learn to166
encode images into a lower-dimensional latent space E(x),167
where the diffusion process occurs. This significantly re-168
duces computational overhead, as the diffusion steps are169
performed on a smaller latent representation rather than on170
the full-resolution image. This approach not only acceler-171
ates inference but also makes it feasible to train LDMs on172
very large datasets.173

LLDM = EE(x),y,ϵ∼N (0,1),t

[
∥ϵ− ϵθ (zt, t, c)∥22

]
(3)174

where: E is the encoder, c is the condition and ϵθ is the175
parameterized noise predictor.176

3.1.2 Low Rank Adaptation (LoRA)177

Low-Rank Adaptation [20] is a technique designed to effi-178
ciently fine-tune large pre-trained models by significantly179
reducing the number of trainable parameters. Instead of180
updating the entire weight matrix W during fine-tuning,181
LoRA introduces trainable low-rank matrices to approxi-182
mate the weight updates. Specifically, the weight update183
∆W is decomposed into a product of two low-rank matri-184
ces B ∈ Rd×r and A ∈ Rk×r, where r ≪ min(d, k). The185
adapted weight matrix during training is computed as fol-186
lows:187

W ′ = W +BA⊤ (4)188

This method can be either applied to all or a subset of the189
model layers.190

3.1.3 SVDiff191

SVDiff is a method developed to efficiently fine-tune large192
diffusion models by performing a singular value decom-193
position (SVD) on the weight matrices W .194

W = UΣV ⊤195

During fine-tuning, instead of updating the entire weight196
matrix W , SVDiff updates only the singular values of this197
matrix. This significantly reduces the number of parame-198
ters that need to be trained, leading to faster training times199
and reduced computational resources. By operating in this200
lower-dimensional space, SVDiff helps prevent overfitting201
and makes it more practical to adapt large diffusion models202
to specific tasks or datasets.203

3.2. Datasets204

In this work, we evaluated the proposed method on several205
biological datasets. In some of them, cell variations are pro-206
nounced to showcase our approach, while in others, the dif-207
ferences are more subtle illustrating the usefulness of the208
method to display them. The datasets used are as follows:209

BBBC021: The BBBC021 dataset [10] is a publicly avail- 210
able collection of fluorescent microscopy images of MCF-7, 211
a breast cancer cell line treated with 113 small molecules at 212
eight different concentrations. For our research, we focused 213
on images of untreated cells and cells treated with the high- 214
est concentration of the compound Latrunculin B. In Fig. 2, 215
the green, blue and red channels label for B-tubulin, DNA 216
and F-actin respectively. 217

Golgi: Fluorescent microscopy images of HeLa cells un- 218
treated (DMSO) and treated with Nocodazole. In Fig. 8b, 219
the green and blue channels label for B-tubulin and DNA 220
respectively. 221

LRKK2: This dataset contains images of dopaminergic 222
neurons derived from iPSCs reprogrammed from fibroblasts 223
of a Parkinson’s disease patient affected by the LRRK2- 224
G2019S mutation. It also includes images where the mu- 225
tation was genetically corrected using CRISPR-cas9, pro- 226
viding a rescued isogenic control [27]. In Fig. 8b the bleu, 227
green and red label for DNA, dopaminergic neurons and 228
alpha-synuclein (SNCA) respectively. 229

Translocation: Fluorescent microscopy images depicting 230
the subcellular localization of the NFκB (nuclear factor 231
kappa B) protein, either untreated or treated with TNFα (the 232
pro-inflammatory cytokine tumor necrosis factor alpha). In 233
Fig 2 (b), the blue and green channels labels for DNA and 234
NFκB protein respectively. 235

3.3. Proposed Approach 236

In this work, we introduce Phen-LDiff, a method that 237
leverages pre-trained Latent Diffusion Models (LDMs) for 238
image-to-image translation on small biological datasets to 239
identify phenotypic differences. Our approach begins by 240
conditionally fine-tuning a general-purpose LDM on mi- 241
croscopy images from different experimental conditions 242
(e.g., treated vs. untreated, wild-type vs. mutant, as illus- 243
trated in Fig.1). To perform the translation from one class 244
to another, we first invert an image from the source class 245
into its latent representation, which is then used to generate 246
a corresponding image in the target class. 247

4. Results 248

In this work, we utilized Stable Diffusion 2, which was pre- 249
trained on the LAION-5B dataset [36]. LAION-5B is a 250
large-scale collection of web-scraped image-text pairs, en- 251
compassing a wide variety of general image sources across 252
the internet. We fine-tuned this model on the BBBC021 253
dataset using several strategies: (1) full fine-tuning, where 254
all model parameters are updated; (2) attention fine-tuning, 255
where only the attention layers of the model are modified; 256
and (3) LoRA and SVDiff, two techniques designed to ef- 257
ficiently reduce the number of trainable parameters while 258
preserving model performance. 259
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Figure 4. Visualizing the generalization and memorization of fine-tuned diffusion models on subsets of different sizes from the BBBC021
dataset. Each plot shows two histograms: the blue histogram represents the cosine similarity between images generated using the same seed
by two fine-tuned models trained on distinct, non-overlapping subsets of the same size. If the model has achieved generalization, the blue
histogram should be close to one, indicating that the two images generated by the models are very similar. The orange histogram represents
the cosine similarity between a generated sample and its closest image from the training dataset. A well-generalized model would produce
an orange histogram far from one, indicating that the generated images have low similarity to any specific training example.

4.1. Domain adaptation of fine-tuned LDMs260

As shown in Fig. 5, the fine-tuned Stable Diffusion 2 model261
demonstrates the ability to generate high-quality biological262
images. This highlights the model’s capability to shift its263
original distribution, from natural images to those closely264
aligned with the specific characteristics of biological data.265
Furthermore, the results indicate that the generated images266
maintain good quality across various biological datasets,267
even when trained on a limited number of images (100 im-268
ages per dataset in our case). This suggests that pre-trained269
models can be effectively leveraged to learn new biological270
image distributions, even with a small training dataset.271

4.2. Assessing generalization and memorization in 272
fine-tuned LDMs 273

Recently, some studies have observed that diffusion mod- 274
els can memorize samples from the training set, leading 275
to their replication during inference [6, 39]. This behav- 276
ior was particularly noted in [24], where diffusion models 277
trained on small datasets exhibited memorization. In con- 278
trast, it was demonstrated that the same models do not ex- 279
hibit this memorization when trained on sufficiently large 280
datasets. To ensure that our fine-tuned models do not merely 281
memorize the training datasets but instead learn the under- 282
lying distribution of the images, we adopted the approach 283
proposed in [24]. Specifically, we fine-tuned two models 284
using two non-overlapping subsets from the same datasets 285
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Figure 5. The images generated by a diffusion model fine-tuned
on 100 images using LoRA on different biological datasets, we
can see that the generated samples resemble the real ones.

(thus two different samples from the same distribution) and286
measured the cosine similarity between images generated287
from the same seed, as well as the correlation between each288
generated image and its closest match from the training289
dataset. This evaluation was conducted across four different290
fine-tuning methods: full fine-tuning, attention fine-tuning,291
SVDiff, and LoRA, as illustrated in Fig. 4. From the results,292
we observe that with only 10 training images, all fine-tuning293
methods tend to memorize the training dataset, resulting in294
high correlation values between the generated images and295
the closest ones from the training set. Furthermore, we no-296
tice that full and attention fine-tuning struggle to generalize297
effectively, even as the number of training images increases.298
In contrast, for LoRA and SVDiff, we see that with just 50299
training images, the blue and orange histograms begin to300
shift toward 1 and 0, respectively, indicating greater gener-301
alization and reduced memorization. Although no signifi-302
cant differences were observed in the quality of the gener-303
ated images across the methods, we chose to use LoRA for304
the remaining experiments due to the more optimized and305
faster implementation available to us.306

4.3. Identifying subtle cellular variations with307
image-to-image translation308

So far, we have demonstrated that fine-tuning Latent Diffu-309
sion Models (LDMs) is feasible even on limited biological310
datasets. However, our primary goal is to detect subtle cel-311
lular variations in biological samples. In Fig. 2, we illustrate312
the image-to-image translation performed on small datasets:313
100 images per class for BBBC021, Golgi, and LRRK2,314
and for translocation. In Fig. 2 (a) and (b), the effects of315
treatment are visible. Specifically, for the BBBC021 dataset316
Fig. 2 (a), the phenotypic changes induced by Latrunculin B317
are evident. The actin cytoskeleton (red channel) has largely318
disappeared and a significant decrease in cell count is ob-319

(a) The measurement of the Golgi apparatus area performed on real and
synthetic images for both conditions indicates a difference in the area oc-
cupied by the Golgi apparatus, confirming the observation made by Phen-
LDiff. Specifically, it appears more scattered in the treated case, which
explains its larger size.

(b) The measurement of the area occupied by neurons (green channel) on
real and synthetic images for both conditions indicates a reduced neuron
count in the mutated case, confirming the observation made by Phen-LDiff.
Indeed, the mutation that causes Parkinson’s disease leads to a decrease in
both the number and complexity of neurons

Figure 6. An image analysis measurement using CellProfiler [9]
on the Golgi and LRRK2 datasets, performed on real and synthetic
images for both conditions, led to the same quantitative conclu-
sions, indicating that Phen-LDiff can detect subtle cellular varia-
tions in models fine-tuned on datasets with as few as 100 images
per class.

served, indicating the toxicity of the treatment. In Fig. 2 320
(b), upon treatment with TNFα, the transcription factor 321
translocates to the nucleus, causing the fluorescence signal 322
to shift from the cytoplasm to the nuclear region, resulting 323
in cells displaying brightly fluorescent green nuclei. These 324
phenotypic changes are prominent and easily recognizable. 325
Conversely, the second row showcases more subtle pheno- 326
types, which may be challenging to detect, even for special- 327
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Figure 7. We translated real untreated (Wild-type) images to the
treated (mutated) condition using PhenDiff, CycleGAN, and Phen-
LDiff, all the models were trained on datasets of 100 images. For
PhenDiff, we can see that the translated images do not resemble
the cell images in the source class but are rather new samples from
the target distribution than translated cells. For CycleGAN, the
translated images are very similar to the source class, but the qual-
ity is somewhat lower and the image does not recapitulate well
the target class phenotype. In contrast, for the images translated
with our method, we can see that they produce the desired pheno-
types for the cells that were present in the provided image from
the source class, indicating a successful translation.

ists. For instance, in Fig.2(d), untreated cell images from328
the Golgi dataset were translated to resemble treated cells.329
Changes in Golgi apparatus morphology due to Nocoda-330
zole treatment are noticeable, with the apparatus fragment-331
ing into smaller stacks. In Fig.2(c), when translating res-332
cued WT images to diseased ones, we observed a decrease333
in dopaminergic neurons and dendritic complexity, as well334
as an increase in alpha-synuclein (red channel), more ex-335
amples of translations can be found in Appendix A.2. To336
confirm these subtle observations, we used CellProfiler [9]337
to quantify the changes detected by Phen-LDiff. For exam-338
ple, to confirm that the Golgi apparatus is more scattered in339
the treated case, we measured the area it occupies in both340
conditions. Similarly, for the LRRK2 dataset, we measured341
the area occupied by neurons (green channel) in both syn-342
thetic and real image. In Fig. 6, the measurements align343
with the observed changes spotted by Phen-LDiff. Indeed,344
there is a significant difference between the measurements345
in the treated (WT) versus treated (mutated) cases, suggest-346
ing that we are identifying meaningful changes. All these347
now-visible differences can assist biologists in better under-348
standing these diseases and the effects of treatments.349

4.4. Comparing our method to the existing ones350

Using generative models to identify cellular variations is a351
growing area of research due to their potential in advancing352
biological studies [2, 3, 27]. Although methods like Phen-353
Explain [27] can identify these variations in synthetic im-354
ages, they struggle with real images due to the difficulty355

(a)

(b)

Figure 8. In this figure, we trained both PhenDiff and Phen-LDiff
on a subset of 50 images from the BBBC021 dataset. Top: The
memorization histogram is close to 1, indicating very strong mem-
orization for PhenDiff. Bottom: Phen-LDiff shows less memo-
rization and achieves better generalization compared to PhenDiff.

of inverting images using GANs. This challenge was over- 356
come in PhenDiff [3] by leveraging the inversion properties 357
of DDIM. However it still necessitated large datasets that 358
are hard to get in biology. Our approach proposes the use of 359
a pretrained latent diffusion model to enable effective per- 360
formance even with limited data availability. 361

We compare our method to two representative models: 362
PhenDiff, which uses diffusion models (DMs) trained from 363
scratch, and CycleGAN [44], which is based on GANs. 364
As shown in Fig. 7, our method effectively highlights phe- 365
notypic cellular changes induced by the target conditions. 366
Specifically, the Golgi apparatus appears more scattered, 367
there is an increase in α-synuclein, and the transcription fac- 368
tor translocates to the nucleus in the translocation datasets. 369
These observations are less apparent with PhenDiff and Cy- 370
cleGAN. For instance, in CycleGAN, the translation quality 371
is lower, likely due to limited data, which makes learning 372
the target distribution challenging. In the case of PhenDiff, 373
although some phenotypic variations are reconstructed, the 374
translated images differ substantially from the original ones, 375
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Table 1. Performance Metrics Across Different Datasets to evaluate

Method BBBC021 Translocation LRKK2 Golgi
FID Cycle loss FID Cycle loss FID Cycle loss FID Cycle loss

CycleGAN 75.98 528.83 40.56 643.12 71.23 428.48 32.28 341.36
Phendiff 33.31 2555.38 60.65 1704.54 74.23 2633.73 23.66 958
Ours 24.30 1707.38 32.79 1021 18.57 923.98 30.31 773.26

making direct comparison with real images difficult. Addi-376
tional translation examples are provided in the Appendix377
B.1.378

To quantitatively compare the performance of each trans-379
lation method, we evaluated the quality of the translated380
images using FID [17] and assessed similarity to the orig-381
inal images using cycle loss. For the cycle loss, an image382
is translated from the original domain to the target domain383
and back, and we compute the L2 norm between the orig-384
inal and reconstructed images. As shown in Table 1, our385
method achieves a better FID score on almost all datasets.386
However, CycleGAN shows a lower cycle consistency loss387
while producing lower-quality translations compared to the388
other models. This is primarily due to the cycle consis-389
tency loss used in CycleGAN training, which helps in re-390
constructing images but fails to produce accurate translation391
and thus identify phenotypic changes. Our method offers392
the best trade-off between capturing phenotypic variations393
and maintaining proximity to the initial target distribution.394

To better understand the good translation performance of395
our method, we compared the memorization and generaliza-396
tion abilities of PhenDiff and our model on 50 images per397
class from the BBBC021 dataset. Following the same strat-398
egy as previously described, generalization was assessed by399
calculating the cosine similarity between images generated400
from the same seed by two models trained on two indepen-401
dent datasets of 50 images each. Memorization was eval-402
uated by calculating the cosine similarity between a gener-403
ated image and its closest match from the training dataset.404
In Fig. 8, we can clearly see that PhenDiff falls into a mem-405
orization regime, whereas Phen-LDiff shows less memo-406
rization and greater generalization. Further comparisons us-407
ing other datasets and sizes are presented in Appendix B.2.408
These results suggest that fine-tuned models achieve better409
generalization in low-data regimes, which explains the good410
translation performance of our method.411

Additionally, we compared the training time of Phen-412
Diff and Phen-LDiff on two NVIDIA L40S GPUs using413
the BBBC021 dataset. Training took approximately 6 hours414
for PhenDiff and around 2 hours for Phen-LDiff. This dif-415
ference would be even more significant with larger train-416
ing images, demonstrating the computational efficiency of417
Phen-LDiff.418

5. Conclusion 419

In this work, we propose Phen-LDiff, a method for 420
image-to-image translation using fine-tuned Latent Diffu- 421
sion Models (LDMs) to identify phenotypic variations from 422
limited microscopy data. Our approach demonstrates that 423
LDMs can be effectively fine-tuned on biological datasets, 424
capturing their underlying distributions even when data is 425
limited. We found that certain fine-tuning approaches, such 426
as full model fine-tuning and attention fine-tuning, can lead 427
to memorization. In contrast, methods like LoRA and SVD- 428
iff promote better generalization, even with small datasets 429
containing as few as 100 images per class. Our method en- 430
ables image-to-image translation by first inverting an im- 431
age into a latent space, followed by conditional genera- 432
tion to highlight phenotypic variations between conditions. 433
We tested this approach across multiple biological datasets, 434
showing its capability to reveal both apparent and subtle 435
differences between experimental conditions. When com- 436
pared to other representative methods, Phen-LDiff outper- 437
formed them in translation quality, even with limited image 438
datasets. Furthermore, our method avoids memorization 439
and is computationally more efficient than diffusion mod- 440
els trained from scratch, reducing training time significantly 441
without compromising quality. 442

We anticipate that Phen-LDiff can contribute to biolog- 443
ical research and drug discovery by enabling experts to 444
gain deeper insights into disease mechanisms and treatment 445
effects, especially in low-data regimes where traditional 446
methods struggle. This efficiency and ability to generalize 447
make Phen-LDiff a promising tool for advancing precision 448
in phenotypic analysis. 449
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