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Abstract

In psycholinguistics, the creation of controlled001
materials is crucial to ensure that research out-002
comes are solely attributed to the intended003
manipulations and not influenced by extrane-004
ous factors. To achieve this, psycholinguists005
typically pretest linguistic materials, where a006
common pretest is to solicit plausibility judg-007
ments from human evaluators on specific sen-008
tences. In this work, we investigate whether009
Language Models (LMs) can be used to gen-010
erate these plausibility judgements. We inves-011
tigate a wide range of LMs across multiple lin-012
guistic structures and evaluate whether their013
plausibility judgements correlate with human014
judgements. We find that GPT-4 plausibil-015
ity judgements highly correlate with human016
judgements across the structures we examine,017
whereas other LMs correlate well with hu-018
mans on commonly used syntactic structures.019
We then test whether this correlation implies020
that LMs can be used instead of humans for021
pretesting. We find that when coarse-grained022
plausibility judgements are needed, this works023
well, but when fine-grained judgements are024
necessary, even GPT-4 does not provide sat-025
isfactory discriminative power.026

1 Introduction027

Psycholinguistic research explores humans’ ex-028

ceptional language comprehension abilities, aim-029

ing to uncover underlying mechanisms through030

experiments and cognitive modelling (Frazier,031

1987; Lewis and Vasishth, 2005; Gibson, 2000;032

Levy, 2008; MacDonald et al., 1994; Futrell et al.,033

2020; Tabor and Hutchins, 2004). Researchers034

use measures such as reading times and compre-035

hension accuracy to compare sentences with dis-036

tinct processing demands. As an example, Ness037

and Meltzer-Asscher (2019) investigated reading038

times to determine if sentences with two animate039

nouns (e.g., (1a), (2a)) pose greater processing040

challenges than those with one animate and one041
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Figure 1: Correlation between average human plau-
sibility ratings and average LLM plausibility ratings
across four pretesting datasets, along with the fitted
linear regression and Pearson correlation. We plot the
LLM with the highest correlation (GPT-4 in all cases,
except one where GPT-3.5 is shown).

inanimate noun (e.g., (1b), (2b)). Longer reading 042

times in the (a) sentences would indicate that sim- 043

ilarity between the noun phrases interferes with 044

processing. 045

1. (a) The photographer that the manager sent 046

was helpful. 047

(b) The contract that the manager sent was 048

helpful. 049

2. (a) The worker that the contractor brought fell 050

down. 051

(b) The ladder that the contractor brought fell 052

down. 053

Careful construction of linguistic stimuli is cru- 054

cial in psycholinguistic studies to minimize con- 055

founding factors. Controlling sentence plausibility 056

ensures that processing differences stem from ex- 057
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perimental manipulations rather than external fac-058

tors. In our example, making sure that the sen-059

tences “the manager sent the photographer” and060

“the manager sent the contract” have roughly the061

same plausibility, and likewise that “The photog-062

rapher was helpful” and “The contract was help-063

ful” have roughly the same plausibility, is neces-064

sary to attribute processing variations to the sim-065

ilarity in animacy. Moreover, maintaining overall066

high sentence plausibility prevents unrelated pro-067

cessing difficulties and reduces data noise.068

Controlling sentence plausibility is therefore es-069

sential in sentence processing experiments, and070

is typically accomplished through pretests, where071

participants rate sentence plausibility on a scale,072

guiding the selection of materials for the main ex-073

periment. However, plausibility pretesting is a074

time- and resource-consuming process, involving075

multiple iterations and prolonged data collection076

with different participant groups.077

Recently, Large Language Models (LLMs)078

(Vaswani et al., 2017; Devlin et al., 2019; Lewis079

et al., 2020; Raffel et al., 2020; Touvron et al.,080

2023) have shown human-like performance on081

various language understanding tasks without082

task-specific training (Brown et al., 2020). Pre-083

vious studies have established a strong correlation084

between LMs’ predicted probabilities and human085

reading time (Fernandez Monsalve et al., 2012;086

Smith and Levy, 2013; Hofmann et al., 2020; Hao087

et al., 2020; Hollenstein et al., 2021; Shain et al.,088

2022). Thus, it is natural to ask – can LMs provide089

plausibility judgements that are similar to human090

judgments and consequently be used to reduce the091

cost of psycholinguistic pretesting?092

In this study, we investigate the correlation be-093

tween LMs and human plausibility judgments. To094

accomplish this, we examine four sets of sentences095

that represent a variety of syntactic structures and096

plausibility levels, for which human judgements097

have been collected in prior work in the course of098

pretesting (Chow et al., 2016; Rich and Wagers,099

2020; Huang et al., 2023). We then gather multiple100

LM judgements for these sets from a wide range101

of LMs, and compare average human plausibility102

ratings and average LLM plausibility ratings.103

Our findings indicate that while several LLMs104

exhibit high correlation with human judgments on105

common syntactic structures, only GPT-4 shows106

strong correlation on the rarer syntactic structures.107

Figure 1 displays the average plausibility ratings108

of the LLM with the highest correlation against 109

average human ratings, along with a linear re- 110

gression model. The Pearson correlation between 111

LLM and human judgments is consistently high 112

across all the datasets. Interestingly, the fitted lin- 113

ear regressions are quite similar across three of the 114

datasets, indicating robustness in the translation of 115

LLM judgements into human judgements. 116

Based on these findings, we examine if using 117

LLMs instead of humans can lead to similar out- 118

comes when filtering materials in the course of 119

pretesting. We find that when pretesting requires 120

coarse-grained plausibility judgements, i.e., when 121

it is used to filter out implausible sentences, LLMs 122

perform well. However, when fine-grained plausi- 123

bility judgements are needed, e.g., to ensure that 124

a pair of sentences has similar plausibilty ratings, 125

even GPT-4’s performance is not satisfactory yet. 126

To summarize, in this work we thoroughly in- 127

vestigate the correlation between human and LM 128

plausibility judgements across a wide range of 129

LMs and syntactic structures. We find that many 130

LLMs perform well on simple syntactic struc- 131

tures, and GPT-4 performs well across-the-board. 132

We translate this finding into a method for us- 133

ing LLMs to provide plausibility judgements, and 134

find that performance is high when coarse-grained 135

judgements are needed, but still lagging behind 136

when fine-grained judgements are necessary. 137

2 Experimental Setup 138

An experiment is defined by instantiating three 139

parameters: (a) the LM used for eliciting plausi- 140

bility judgements, (b) the prompt provided as in- 141

put to the LM, and (c) the linguistic dataset used. 142

We leverage data from existing pretests for which 143

human plausibility ratings were already collected 144

(Chow et al., 2016; Rich and Wagers, 2020; Huang 145

et al., 2023), and also create our own pretest ma- 146

terials and collect human plausibility judgements 147

for them. 148

In all experiments, we generate 20 plausibility 149

ratings per sentence per LM, using a scale from 1 150

to 7. We now describe the datasets (§2.1), LMs 151

(§2.2), and prompts (§2.3). 152

2.1 Datasets 153

We use four datasets, which cover a wide range of 154

linguistic phenomena. Table 1 provides examples 155

from all datasets. 156
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Dataset Structure Plaus. Example Num.

Chow et al. (2016) Emb. Obj. Quest. Plaus The park ranger documented which eagle the hunter
had shot.

60

Emb. Obj. Quest. Implaus The park ranger documented which hunter the eagle
had shot.

60

Huang et al. (2023)

Emb. Decl. Plaus The suspect showed that the file deserved further
investigation during the murder trial.

24

Emb. Decl. Implaus The new doctor demonstrated that the melon ap-
peared increasingly likely to succeed.

24

Adj. Cl. Plaus Once the new chef started, the restaurant separated
mediocre cooks from gifted ones.

24

Adj. Cl. Implaus After the technician called, the smile stopped work-
ing almost immediately to his surprise.

24

Pass. Rel. Cl. Plaus The patient who was refused the treatment contin-
ued causing uncomfortable scenes in the ER.

24

Pass. Rel. Cl. Implaus The yoga instructor who was offered the beard de-
manded immense physical effort from everyone.

24

Adj. Cl. Plaus After the esteemed reviewer reads, the book gains
more attention due to his glowing praise.

18

Adj. Cl. Implaus Even if the mother calls, her boys continue causing
problems with the other kids on the playground.

18

Sim. Trans. Cl. Plaus The suspect changed the file. 108
Sim. Cl. w. Mod. Plaus The technician stopped working almost immedi-

ately after the argument.
81

Sim. Cl. w. Mod. Implaus The tournaments remain essentially the same for the
rest of the year.

18

Intrans. Cl. Plaus The producer starts. 24
Intrans. Cl. Implaus The dog hatched. 6
Ditrans. Pass. Plaus The operator was brought the machine. 42
Ditrans. Pass. Implaus The clerk was granted the finger. 6
Trans. Cl. Implaus The cleaner ate the book. 15
Mul. Mod. Implaus A prodigious profile quietly lay ahead of the unstop-

pable crowd.
11

Rich and Wagers (2020) Passive Plaus The knife had been recently sharpened. 144
Passive Implaus The shirt had been recently sharpened. 48

Ours Simple Plaus The nurse fetched the patient. 10
Simple Plaus The nurse fetched the intern. 40

Table 1: Breakdown of the data we used based on origin, syntactic structure, plausibility, and number of items,
along with examples for each type. Emb. : Embedded, Obj.: Object, Quest.: Question, Decl.: Declarative, Adj.:
Adjoined, Cl.: Clause, Pass: Passive, Rel.: relative, Sim.: Simple, Trans.: Transitive, Mod.: Modification, Mul.:
Multiple

1. Chow et al. (2016): 60 sentence pairs from Ex-157

periment 1 in Chow et al. (2016), consisting158

of semantically plausible and implausible sen-159

tences with an embedded object question struc-160

ture. Each sentence has 30 plausibility ratings,161

collected for a subsequent experiment.162

2. Huang et al. (2023): 491 sentences from163

the Syntactic Ambiguity Processing bench-164

mark (Huang et al., 2023), consisting of dis-165

ambiguated garden-path sentences or parts of166

these sentences. Each sentence has 19.6 plau-167

sibility ratings on average.168

3. Rich and Wagers (2020): 48 sets of 4 sentences169

each consisting of three semantically plausi-170

ble and one semantically implausible sentences171

with a common syntactic structure. Each sen-172

tence has 10 plausibility ratings. 173

4. Our data: 50 plausible sentences with a sim- 174

ple syntactic structure, composed for a fu- 175

ture experiment on similarity-based interfer- 176

ence. These materials consist of 40 sentence 177

pairs (one sentence is shared among 4 pairs). 178

Each sentence has 40 plausibility ratings. 179

Table 1 showcases examples of sentences from the 180

different datasets for each syntactic structure and 181

plausibility variation that was tested. The table 182

also includes the corresponding item counts for 183

each sentence structure. 184

2.2 Models 185

We test the following LMs: 186
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Closed-source models:187

• GPT-4 (OpenAI, 2023), a LLM released by188

OpenAI, available through an API.1 This LM is189

widely considered to be one of the best existing190

LMs, if not the best (Bubeck et al., 2023).191

• ChatGPT (GPT-3.5), a chat LLM released by192

OpenAI, available through an API193

• InstructGPT (text-davinci-003) (Ouyang et al.,194

2022), an instruction-finetuned LLM released195

by OpenAI, available through an API196

Open-source models: We also used several197

open-source models available on the HuggingFace198

Hub (Wolf et al., 2019), through the FastChat199

(Zheng et al., 2023) servers (allowing simulating200

the OpenAI API):201

• LLaMa (Touvron et al., 2023), a foundation202

model released by Meta Research, trained on203

non-proprietary open-domain data.204

• Alpaca (Taori et al., 2023), a model based on205

LLaMa, instruction fine-tuned based on instruc-206

tion data generated by InstructGPT.207

• Vicuna (Chiang et al., 2023), a model based on208

LLaMa, fine-tuned on chat data from ChatGPT,209

available through ShareGPT.2210

• Falcon-Instruct (Almazrouei et al., 2023),211

based on the Falcon foundation model released212

by Abu Dhabi TII, fine-tuned on a mix of chat213

and instruction data.214

• StableLM,3 a model released by Stability AI,215

fine-tuned on instruction and chat data.216

• MPT Chat,4 a model based on MosaicML’s217

MPT foundation model, finetuned on chat and218

instruction data.219

We decode from the LMs by sampling with a220

temperature,which is set to 1.5 for closed-source221

models and 0.3 for open-source models.222

2.3 Prompts223

Our prompts start with an instruction for the LM224

to provide a plausibility score on a scale from 1 to225

7 (see exact prompts in Appendix A). We then pro-226

vide examples for plausibility judgements, which227

are either global and fixed across datasets, or spe-228

cific for each dataset:229

1https://openai.com/blog/openai-api
2https://sharegpt.com/
3https://huggingface.co/stabilityai/

stablelm-tuned-alpha-7b
4https://huggingface.co/mosaicml/mpt-7b-chat

Data Best corr. Model Prompt SH

Chow et al. 0.850 GPT-4 Glob. 0.943
Rich et al. 0.793 GPT-4 Glob. 0.868
Huang et al. 0.835 GPT-4 Glob. 0.898
Ours 0.792 GPT-3.5 Glob. 0.912

Chow et al. 0.916 GPT-4 Spec. 0.943
Rich et al. 0.806 GPT-4 Spec. 0.868
Huang et al. 0.852 GPT-4 Spec. 0.898
Ours 0.778 GPT-4 Spec. 0.912

Table 2: Highest Pearson correlation achieved for each
of the datasets along with the split-half (SH) correla-
tion analysis of human judgements, which provides an
approximate upper bound. GPT-4 is the best LM in all
cases, except for our dataset with a global prompt. In
that case the correlation of GPT-4 is 0.761.

• Global: We provide four examples for each 230

possible plausibility score (28 examples over- 231

all). Examples include a wide range of syntactic 232

structures, inspired by the four datasets, but in- 233

cluding additional structures. 234

• Specific: For each dataset, we provide three 235

examples (21 overall) that illustrate syntactic 236

structures that appear in this dataset. 237

3 Results 238

Table 2 presents the highest Pearson correlation 239

between average human and LLM ratings for 240

each dataset and each prompt. The top half 241

presents the highest correlation using the global 242

prompt, whereas the bottom half uses the specific 243

prompt. Additionally, the table includes the split- 244

half correlation of human plausibility judgments, 245

i.e, we randomly split human data in each exam- 246

ple into two halves and measure the correlation be- 247

tween simulated sets of humans. This provides a 248

rough upper bound on the correlation that can be 249

achieved with a model. 250

Overall, The correlation of the highest-scoring 251

model with human judgements is high, hovering 252

around 0.8-0.9. Moreover, this correlation is typi- 253

cally just a few points under the split-half correla- 254

tion. 255

Table 2 also shows that GPT-4 is a strong 256

and robust baseline for human judgements, since 257

it achieves the highest correlation in almost all 258

the setups. When using our dataset with global 259

prompts, the best model is GPT-3.5, where GPT-4 260

is slightly behind with a correlation of 0.761. 261

Finally, the results suggest an advantage to 262

the specific prompt, with the highest correlation 263
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Figure 2: A breakdown of the correlation for the specific prompt for a subset of the models.
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Figure 3: The correlation of the model that uses specific prompt when examples are included (full bar) versus when
they are excluded (hatched bar).

achieved by prompts with examples resembling264

the judged sentences for almost all datasets.265

Next, we will further analyse the performance266

of the different models and the importance of hav-267

ing examples in the prompt.268

3.1 Model breakdown269

Figure 2 shows the Pearson correlation with the270

specific prompt for 7 selected models across our 4271

datasets (Results for all models and for the global272

prompt are provided in Appendix B).273

First, as previously evidenced in Table 2, GPT-274

4 is a strong baseline, with a high correlation with275

human performance across all datasets. The other276

models from OpenAI also perform well, except277

on Chow et al. (2016) where a big drop in per-278

formance is noted for all the models that are not279

GPT-4. We conjecture that this is due to rarity of280

the syntactic structure of the sentences from Chow281

et al. (2016).282

Figure 2 also shows that Alpaca and Vicuna283

have a better performance than LLaMa, their base284

model, at equivalent sizes, showing that instruc-285

tion or chat fine-tuning improves correlation with286

human judgements. 287

Falcon-40B-Instruct is the best open source 288

model, with performance comparable to text- 289

davinci-003 model which is 4.5 times larger. 290

Alpaca-65B, LlaMa-65B and Vicuna-13B also 291

have a decent correlation with human judgements 292

for the datasets with simple syntactic structures 293

but perform poorly on data from Chow et al. 294

(2016). The correlation of all the other open 295

source models with human judgements is rela- 296

tively low across all the datasets and is reported 297

in Appendix B. 298

3.2 Importance of prompt examples 299

To analyze the importance of examples in the 300

prompt, we ran experiments on a prompt that 301

includes only the instruction, without examples, 302

and compared its correlation to the correlation 303

achieved with the specific prompt. Results for this 304

experiment are in Figure 3. 305

Unsurprisingly, for most of the models and 306

datasets, the prompt with examples has higher cor- 307

relation with human judgments than the prompt 308

without examples. 309
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Figure 4: Recall-precision curve when filtering out im-
plausible sentences. Blue is for the specific prompt, red
is for the global prompt. We also mark for a few points
the threshold value that results in a particular recall-
precision result. For Chow et al. and Huang et al. we
reach very high precision while keeping a large fraction
of the sentences. For Rich et al. we can keep roughly
half the sentences with precision of 0.8-0.9.

4 Methodology310

In §3, we saw significant correlation between311

plausibility judgments of humans and GPT-4. We312

now evaluate directly the performance of LLM313

judgments when replacing human judgements.314

Plausibility judgements can be used in differ-315

ent ways for constructing experimental materials.5316

5In some cases, judgements are not used to control exper-
imental materials, but are rather entered as predictors in the
analysis of the main experiment, accounting for some of the
variability.
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Figure 5: Recall-precision curve when filtering out
plausible sentences. Blue is for the specific prompt, red
is for the global prompt. We also mark for a few points
the threshold value that results in a particular recall-
precision result. In both setups, we can obtain very
high precision while keeping most of the sentences.

Three common uses are: (a) filtering out implau- 317

sible sentences by requiring a minimum average 318

plausibility rating, (b) filtering out plausible sen- 319

tences by requiring a maximum average plausibil- 320

ity rating, and (c) filtering out sentence pairs that 321

have dissimilar average plausibility ratings. We 322

evaluate the performance of LLMs across these 323

operations. 324

4.1 Mapping LLM judgements to human 325

judgements 326

We simulate using LLM judgements in two setups: 327

(a) assuming no human ratings are collected, and 328

(b) assuming a minimal amount of human ratings. 329

We then evaluate the performance of LLMs with 330

recall-precision curves, to see if we can achieve 331

high precision (i.e, accepting only “good” sen- 332

tences), while retaining high recall (i.e., keeping 333

most of the ‘good’ sentences). 334

No human ratings: We collect LLM ratings 335

from GPT-4 with the specific prompt. We then lin- 336

early map the LLM ratings into human ratings by 337

fitting for every dataset a linear regression model 338
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on data from the other three datasets.339

With human ratings: We assume access to a340

small amount of human ratings. Specifically, if D341

is the size of a dataset, we use human ratings for342

max(0.1·D, 15) sentences. Then, we collect LLM343

ratings with different OpenAI models and prompts344

and select the model and prompt combination that345

leads to the highest correlation with human rat-346

ings. We can also learn a linear map from LLM347

ratings to human ratings with this small amount of348

data.349

4.2 Filtering out implausible sentences350

The first pretest use we discuss is filtering im-351

plausible sentences by rejecting sentences under a352

given threshold (e.g. 5, as in Huang et al. (2023).353

We map LM ratings to human ratings with the lin-354

ear regression model and then apply a threshold to 355

filter out implausible sentences.6 356

Figure 4 shows recall-precision curves for the 357

aforementioned datasets, varying the threshold for 358

classifying a sentence as plausible (the positive 359

class in the recall-precision curve is plausible sen- 360

tences). Overall, GPT-4 exhibits high performance 361

in this setup. For Chow et al. (2016) and Huang 362

et al. (2023), we can achieve very high precision, 363

while keeping most of the sentences. For Rich 364

and Wagers (2020), performance is lower, but still 365

we can cover roughly half the dataset with preci- 366

sion around 0.8-0.9. This aligns with the fact that 367

this dataset has the lowest correlation with human 368

judgments and includes rarer syntactic structures 369

compared to the other two datasets. 370

4.3 Filtering out plausible sentences 371

The second pretesting scenario is the opposite of 372

the first one – when the experiment requires im- 373

plausible sentences, plausible sentences are fil- 374

tered out by rejecting sentences with an average 375

rating over some threshold (e.g. 3). We apply the 376

same procedure for mapping LLM ratings to hu- 377

man ratings. 378

Figure 5 shows recall-precision curves for these 379

datasets, varying the threshold for classifying a 380

sentence as implausible (here the positive class are 381

implausible sentences). We observe high perfor- 382

mance overall, suggesting that predicting implau- 383

sibility is easier than predicting plausibility. 384

4.4 Comparing plausibility of sentence pairs 385

The last pretest use we examine is comparing the 386

plausibility of a pair of sentences and verifying 387

that it is roughly similar. This is typically done by 388

obtaining human ratings for both sentences, and 389

running a t-test to check if the null hypothesis that 390

they originate from the same underlying distribu- 391

tion is rejected, in which case the pair is filtered 392

out.7 393

Using a t-test with LMs is non-trivial, because 394

(as we discuss in §5) the variance in plausibility 395

ratings for LMs is dramatically lower compared 396

to humans, which in turn affects the t-test results. 397

Instead, we propose to set a threshold for the dif- 398

ference between the average plausibility ratings of 399

6Since we evaluate with a recall-precision curve, the lin-
ear mapping is not necessary but is helpful for having the
output label in a similar scale to humans.

7It is also possible to use cumulative link models (Taylor
et al., 2021) to test the difference between sentences, but this
is currently less common
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GPT-3.5 along with the average standard deviation for
human judgements.

the two sentences, and examine if there exists a400

threshold for which we can reject/accept the same401

sentence pairs that are rejected/accepted using t-402

test with human ratings. Specifically, we will draw403

a recall-precision curve, where the positive class404

are sentence pairs accepted according to the hu-405

man rating t-test.406

We apply this method for our dataset, using407

GPT-3.5-Turbo with the global prompt, which ob-408

tained the highest correlation with human judge-409

ments (0.792). We find the performance is low410

– we are unable to find a point on the recall-411

precision curve where precision is high and recall412

is substantial. Figure 6 shows the recall-precision413

curve, and as is evident, precision quickly drops414

to around 0.4-0.45, and the maximal F1 obtained415

is 0.55, which is achieved when the difference be-416

tween plausibility ratings is larger than 3.69.417

To analyze this, we label each pair with its418

human-based gold label, and plot in Figure 7 the419

difference in average plausibility judgements for420

both humans and our LM. Clearly, the difference421

is a good discriminating feature for human ratings,422

but is a bad discriminating feature for the LM. This423

shows that while correlation between human rat-424

ings and LM ratings is high (0.792), it captures425

mostly coarse-grained structure, but is not power-426

ful enough to make fine-grained distinctions like427

predicting if two sentences have the same level of428

plausibility. Moreover, when we measure the cor-429

relation between the difference in average plausi-430

bility ratings between humans and LMs, we find431

only a moderate Pearson correlation of 0.312. 432

5 Variance of Humans vs. LMs 433

Thus far, we saw that the average plausibility rat- 434

ings of humans and LLMs correlate well. It is im- 435

portant to note that this is not the case w.r.t vari- 436

ance. Explicitly, human variance is much higher 437

than the variance of LMs, despite the high tem- 438

perature used for sampling, which is 1.5. Fig- 439

ure 8 shows the standard deviation for GPT-4 and 440

GPT-3.5 on all the datasets when using the spe- 441

cific prompt, as well as the standard deviation for 442

human judgements. Standard deviation for these 443

LMs is dramatically lower than humans, i.e., we 444

obtain relatively similar plausibility judgements 445

when sampling multiple times from the model. 446

A possible theoretical explanation for this phe- 447

nomenon is that the outputs of LMs can be viewed 448

as an average over multiple samples, since pre- 449

training is done on texts from many authors. Thus, 450

when sampling plausibility ratings from a LM, we 451

are sampling from an average of plausibility rat- 452

ings. Let each human rating ri be a sample from 453

a distribution with mean µ and variance σ2. We 454

can view each sample from a LM as an average 455

of N human ratings: 1
N

∑N
i=1 ri. This is a ran- 456

dom variable with mean µ and variance σ2

N . This 457

observation can be used to estimate for a particu- 458

lar sentence what is the number N of humans that 459

the LM is averaging over, by computing the ratio 460

between the observed variance of humans and the 461

observed variance of the LM for that sentence. 462

6 Conclusion 463

We investigate the correlation between plausibility 464

judgements of humans and language models and 465

find high correlation for simple syntactic struc- 466

tures overall, and high correlation throughout for 467

GPT-4. We show language models can be used 468

to provide coarse-grained plausibility judgements, 469

which can reduce the cost of and accelerate psy- 470

cholinguistic research. We view this work as 471

a first step in this direction, where future work 472

can improve the correlation through finetuning 473

and prompt engineering and further investigate the 474

utility of language models for conducting psy- 475

cholinguistic research. 476
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A Prompt examples655

We experimented with various prompts, some spe-656

cific for the syntactic structure under study and657

one global prompt meant to range over a wide ar-658

ray of syntactic structures and be general enough659

to capture all of them. We also experimented660

with a prompt without examples. The instruc-661

tions remain the same across the prompts; the only662

changed elements are the examples.663

In all the showcased prompts we show only 1 ex-664

ample per score.665

A.1 Global prompt666

We created a prompt showcasing a variety of syn-667

tactic structures, in an attempt to create a general668

prompt that will be diverse enough to fit a large669

number of pretesting samples. There are at most 4670

examples per score. Figure 9 shows an example of671

the prompt.672

A.2 Prompt for our data673

For our data, we wrote a prompt using the specific674

syntactic structure used in the materials. There are675

at most 3 examples per score. Figure 10 shows a676

prompt with 1 example per score.677

A.3 Prompt for Chow et al.678

For Chow et al. (2016) data, we wrote a prompt679

using the specific syntactic structure used in the680

materials. There are at most 3 examples per score.681

Figure 11 shows a prompt with 1 example per682

score.683

A.4 Prompt for Huang et al.684

For (Huang et al., 2023), given the wide array of685

syntactic structures present in the data, we covered686

the different types of syntactic structures in the ex-687

amples for each of the scores. There are at most688

3 examples per score. Figure 12 shows a prompt689

with 1 example per score.690

B Full results691

The correlation for all the models and the datasets692

are presented in Table 3.693

11



You will read sentences and judge how natural they sound. You will need to judge,
on a scale from 1 to 7, how natural/plausible the presented sentence sounds, and
explain yourself shortly.
All presented sentences will be grammatically correct.
Important: you are encouraged to use the whole scale.

Here are some examples:

They spent their week-end at the beach, sipping iced tea.
The plausibility score is 6 (it is plausible that people would spend their week-end
at the beach).

The farmer planted the fruits from which the seeds came.
The plausibility score is 3 (it’s more likely to plant seeds than fruits).

The table occupied most of the space in the kitchen.
The plausibility score is 5 (it is a somewhat plausible situation, maybe it is a
small kitchen).

Because he slept nine hours, he woke up completely exhausted.
The plausibility score is 1 (sleeping is not supposed to make you tired).

The policeman stopped the plane.
The plausibility score is 4 (it is a situation that might happen but is a bit unlikely).

The witness observed which policeman the robber had caught.
The plausibility score is 2 (in general, policemen catch robbers, not the other way
around).

I’m so thirsty, can you please pour me a glass of water?
The plausibility score is 7 (it is highly plausible that someone thirsty would like
to drink water).

The sentence:
The chef prepared the meal

The plausibility score is:

Figure 9: Example of a global prompt
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You will read sentences and judge how natural they sound. You will need to judge,
on a scale from 1 to 7, how natural/plausible the presented sentence sounds, and
explain yourself shortly.
All presented sentences will be grammatically correct.
Important: you are encouraged to use the whole scale.

Here are some examples:

The librarian ordered the audio book.
The naturalness score is 5 (a librarian might order an audio book but in general
they order physical books)

The farmer bought a ski.
The naturalness score is 2 (it is an unnatural/implausible situation)

The handyman repaired the car.
The naturalness score is 3 (it is a somewhat unnatural, handymen repair things in
houses)

The barista prepared the cappuccino.
The naturalness score is 6 (it is likely that a barista would prepare a cappuccino)

The teacher scolded the shoe.
The naturalness score is 1 (it is really unnatural/implausible situation)

The policemen caught the thief.
The naturalness score is 7 (it is highly likely that policemen would try and catch a
thief)

The cook prepared the cocktail.
The naturalness score is 4 (a cook might prepare a cocktail but it is a bit unlikely)

The sentence: The nurse fetched the intern. The plausibility score is:

Figure 10: Example of a prompt for our data
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You will read sentences and judge how natural they sound. You will need to judge,
on a scale from 1 to 7, how natural/plausible the presented sentence sounds, and
explain yourself shortly.
All presented sentences will be grammatically correct.
Important: you are encouraged to use the whole scale.

Here are some examples:

The director recalled which scene the editor had cut.
The plausibility score is 6 (it is plausible that a director knows which scene has
been cut from the movie).

The tour guide guessed which landmark the visitor had photographed.
The plausibility score is 5 (it is relatively plausible that a tour guide might
guess which landmark a tourist might photograph).

The detective identified which officer the suspect had recognized.
The plausibility score is 4 (suspects might know some police officer and recognize
them)

The zoologist noted which lion the antelopes had hunted.
The plausibility score is 1 (lions hunts antelopes, not the other way around).

The journalist revealed which politician the lobbyist had influenced.
The plausibility score is 3 (it can happen that politicians influence lobbyists but
it’s supposed to be the other way).

The accountant knew which employee the CEO had promoted.
The plausibility score is 7 (it is highly plausible that an accountant would know
who got promoted since he handles the money).

The pilote remembered which plane the airline had represented.
The plausibility score is 2 (planes represent airlines in general, not the opposite).

The sentence:
The park ranger documented which eagle the hunter had shot.

The plausibility score is:

Figure 11: Example of a prompt for Chow et al.’s data
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You will read sentences and judge how natural they sound. You will need to judge,
on a scale from 1 to 7, how natural/plausible the presented sentence sounds, and
explain yourself shortly.
All presented sentences will be grammatically correct.
Important: you are encouraged to use the whole scale.

Here are some examples:

The firefighter who was denied the transplant went to the moon.
The plausibility score is 2 (people really rarely go to the moon).

The prison guard, which the inmate despised, robbed a bank.
The plausibility score is 4 (a prison guard robbing a bank might happen but is
unlikely).

The firefighters put out the fire.
The plausibility score is 7 (it is really plausible, the role of firefighters is to
put out fires).

The mechanic fixed the problematic cars with his eyes closed.
The plausibility score is 1 (it is highly unlikely that a mechanic can fix cars
without seeing).

The teacher left.
The plausibility score is 5 (it is a somewhat plausible situation, maybe the class
is over).

The fish ate the sponge.
The plausibility score is 3 (it is somewhat unlikely that a fish would eat a sponge
but it might happen).

The scientist showed that the invention worked well.
The plausibility score is 6 (it is plausible that a scientist would show the
efficiency of an invention).

The sentence:
The new chef started.

The plausibility score is:

Figure 12: Example of a prompt for Huang et al.
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Model Prompt Chow et al. Rich et al. Huang et al. Ours

GPT4 Specific 0.916 0.806 0.852 0.778
Global 0.850 0.793 0.835 0.761

GPT3.5 Specific 0.517 0.644 0.753 0.788
Global 0.481 0.703 0.794 0.792

Davinci-003 Specific 0.475 0.637 0.713 0.629
Global 0.323 0.678 0.628 0.729

LlaMa-65b Specific 0.197 0.452 0.692 0.511
Global 0.130 0.608 0.634 0.641

Alpaca-65b Specific 0.278 0.554 0.673 0.570
Global 0.241 0.652 0.651 0.622

Falcon-40b Specific 0.379 0.566 0.746 0.675
Global 0.363 0.665 0.682 0.608

LlaMa-13b Specific -0.026 0.317 0.516 0.476
Global 0.157 0.521 0.464 0.263

Vicuna-13b Specific 0.107 0.473 0.605 0.525
Global 0.185 0.582 0.612 0.575

Alpaca-13b Specific 0.200 0.061 -0.005 -0.081
Global -0.140 0.057 -0.063 -0.021

LlaMa-7b Specific 0.066 0.171 0.248 0.324
Global 0.034 0.283 0.190 0.086

Vicuna-7b Specific 0.021 0.313 0.478 0.359
Global 0.072 0.473 0.496 0.336

Alpaca-7b Specific 0.067 0.292 0.299 0.409
Global -0.043 0.375 0.275 0.430

Falcon-7b Specific 0.148 0.237 0.238 0.358
Global 0.167 0.317 0.207 0.203

Mpt-7b Specific 0.111 0.331 0.395 0.432
Global 0.034 0.314 0.350 0.455

StableLM-7b Specific 0.006 0.157 0.000 -0.211
Global 0.062 0.066 -0.102 -0.123

Table 3: Correlation for all the tested models on all of the datasets
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