
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CASS: NVIDIA TO AMD TRANSPILATION WITH

DATA, MODELS, AND BENCHMARK

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce CASS, the first large-scale dataset and model suite for cross-architecture
GPU code transpilation, targeting both source-level (CUDA ↔ HIP) and assembly-
level (Nvidia SASS ↔ AMD RDNA3 translation. The dataset comprises 70k verified
code pairs across host and device, addressing a critical gap in low-level GPU code
portability. Leveraging this resource, we train the CASS family of domain-specific
language models, achieving 95% source translation accuracy and 37.5% assembly
translation accuracy, substantially outperforming commercial baselines such as
GPT-4o, Claude, and Hipify. Our generated code matches native performance
in over 85% of test cases, preserving runtime and memory behavior. To support
rigorous evaluation, we introduce CASS-Bench, a curated benchmark spanning
16 GPU domains with ground-truth execution. All data, models, and evaluation tools
will be released as open source to foster progress in GPU compiler tooling, binary
compatibility, and LLM-guided hardware translation.

1 INTRODUCTION

Graphics Processing Units (GPUs) are foundational to modern machine learning and scientific
computing workloads due to their high-throughput parallelism. Nvidia’s Compute Unified Device
Architecture (CUDA) (Harris, 2024) has become the dominant programming model for GPU
acceleration, but its tight coupling to proprietary hardware introduces severe vendor lock-in: CUDA
code cannot run on non-Nvidia GPUs due to incompatible instruction set architectures (ISAs) (NVIDIA
Corporation, 2021). As a result, organizations with large CUDA-based codebases face steep engineering
costs when migrating to alternative platforms. Meanwhile, AMD GPUs, offering potential favorable
performance-per-dollar (AMD, 2024a; Verge, 2024), are increasingly adopted across both data centers
and consumer devices (Financial Times, 2024), creating a growing need to execute legacy CUDA
programs on AMD hardware without full rewrites in software (Janik, 2024).

In response, AMD introduced the Heterogeneous-computing Interface for Portability (HIP) (AMD,
2024b), a C++ GPU API built into the Radeon Open Compute platforM (ROCm) stack (Advanced
Micro Devices (AMD), 2024), designed to mirror CUDA’s functionality while supporting cross-platform
development. HIP enables a unified codebase for both Nvidia and AMD GPUs. Tools like
HIPIFY (Advanced Micro Devices, Inc., 2025), a static translator, assist migration by converting
CUDA-specific constructs into their HIP equivalents, streamlining adoption of the ROCm stack.
However, HIPIFY only operates at the source level and cannot execute precompiled CUDA binaries.
Furthermore, it exhibits a high failure rate when converting CUDA programs, highlighting the need
for more reliable and lower-level transpilation approaches (Zahid et al., 2024).

Translating GPU assembly across vendors is hindered by divergent ISAs and compilation pipelines.
Nvidia employs a proprietary toolchain centered on nvcc, producing PTX and low-level SASS (Harris,
2024), while AMD uses GCN/RDNA architectures compiled via the open-source ROCm stack using
hipcc (Advanced Micro Devices (AMD), 2024) (Figure 2 provides a detailed breakdown of the
alternative stacks). Bridging this gap at the assembly level is critical for democratizing the hardware
computing landscape, transfer of hardware-specific optimizations across vendors, and enabling
automation beyond source-level rewrites, especially for legacy CUDA codebases rich in low-level
tuning. Our work introduces the first foundation for Nvidia-to-AMD assembly and source translation,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

focusing on correctness and alignment. While not optimization-aware yet, it paves the way for future
systems that preserve and adapt performance-critical patterns across GPU backends.

To address the lack of cross-architecture GPU translation datasets, we introduce CASS (CUDA–AMD
ASsembly and Source Mapping), a large-scale corpus of 70k semantically aligned CUDA–HIP source
pairs and their corresponding host (CPU – x86 ISA) and device (GPU) assemblies for Nvidia (SASS) and
AMD (RDNA3) platforms. Each sample comprises functionally equivalent low-level code across ven-
dors, verified through successful compilation and execution, enabling instruction-level analysis across ex-
ecution boundaries. Unlike generic code corpora like The Stack (Lozhkov et al., 2024a), which lack GPU-
aligned and compilable content, CASS provides complete source and binary representations across both
GPU compute stacks. To construct CASS, we developed a fully open-source pipeline that scrapes, syn-
thesizes, translates (via HIPIFY (Advanced Micro Devices, Inc., 2025)), compiles, and aligns GPU code.
We evaluate CASS along two dimensions: (1) instruction coverage, capturing diverse SASS and RDNA3
opcodes; and (2) domain coverage, spanning real-world compute kernels from ML, graphics, and HPC.
CASS is the first dataset to enable source- and assembly-level translation research for GPU architectures.

To validate the utility of our dataset, we introduce CASS-Bench, the first benchmark tailored
to cross-architecture GPU transpilation. It spans 16 diverse GPU domains with execution-verified
source and assembly pairs, providing a standardized testbed for future work in low-level translation and
performance-aware code generation. Building on this benchmark, we present the CASS model family, a
suite of domain-specific large language models fine-tuned for both source- and assembly-level GPU code
translation. These models are trained on our curated corpus and demonstrate significant improvements
over SoTA proprietary systems such as GPT-4o (Hurst et al., 2024), Claude-3.7 (Anthropic, 2025),
and traditional tools like HIPIFY (Advanced Micro Devices, Inc., 2025)—achieving 95% accuracy
in source-level translation and 37.5% in assembly translation.

Our contributions are summarized as follows:

• CASS Dataset. We introduce CASS, the first large-scale dataset for GPU transpilation,
containing 70k semantically aligned Nvidia ↔ AMD pairs at both the source (CUDA ↔
HIP) and assembly levels (SASS ↔ RDNA3), covering 16 real-world GPU domains.

• CASS-Bench. We contribute the first evaluation benchmark for cross-architecture GPU
translation, with 40 curated tasks across 16 domains, including functionally verified outputs
and aligned CUDA/HIP source and SASS/RDNA3 assembly.

• CASS Models. We release domain-specialized CASS LLMs trained for cross-architecture code
translation. Our 7B model achieves 95% source and 37.5% assembly accuracy, outperforming
GPT-4o and Claude (0%) on CASS-Bench. Crucially, 85% of translated assemblies preserve ex-
ecution runtime and memory compared to native, confirming semantic and performance fidelity.

• CASS Dataset Pipeline. We designed a scalable pipeline for scraping, synthesizing,
transpiling, and compiling CUDA/HIP code into aligned host and device assemblies across
Nvidia and AMD GPUs.

The rest of the paper is organized as follows: §2 reviews prior work on Nvidia-to-AMD and assembly
translation. §3 describes our data collection, conversion, and filtering pipeline. §4 analyzes dataset
structure and coverage. §5 outlines model training and evaluation, with results and ablations in §6.
Finally, §7 lists limitations and future work, followed by §8 concluding remarks.

2 RELATED WORKS

In this section, we describe prior work in GPU translation efforts (§2.1), assembly-level transpilation
(§2.2), and related benchmarks (and their shortcomings) in the space (§2.3).

2.1 TRANSLATING FROM NVIDIA TO AMD

The fragmentation of GPU software ecosystems has driven the need for robust CUDA-to-HIP translation
tools. HIPIFY (AMD ROCm Documentation, 2024) statically converts CUDA source code into
HIP source code, enabling ROCm compatibility via direct syntax substitution. Operating at a lower
abstraction, CuPBoP-AMD (Chen et al., 2023) translates NVVM IR to HIP-compatible LLVM IR

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Table 1: Comparison of Domain/Characteristics across Different Datasets

Domain/ ComputeEval Rodinia SHOC Poly Babel Ours
Characteristics NVIDIA Bench Bench Stream
CUDA (source) ✓ ✓ ✓ ✓ ✓ ✓
OpenCL (source) ✗ ✓ ✓ ✓ ✓ ✓
SASS (assembly) ✗ ✗ ✗ ✗ ✗ ✓
RDNA3 (assembly) ✗ ✗ ✗ ✗ ✗ ✓

using the LLVM toolchain (Lattner & Adve, 2004; The Clang Team, 2025), offering more flexible
intermediate-level interoperability. Earlier, GPU Ocelot (Diamos et al., 2009) explored dynamic binary
translation, recompiling CUDA to AMD/x86 ISAs at runtime. Although innovative, it was limited
by poor scalability and high overhead, making it impractical for modern GPU workloads. All these
tools have lacked consistent updates to keep up with CUDA advances, suffer from usability issues,
and operate only at the source level.

More recently, ZLUDA (Janik, 2024) introduced a runtime system for executing unmodified CUDA
binaries on AMD GPUs without source access by intercepting CUDA APIs and translating PTX/SASS
into AMD-compatible code via LLVM. Originally targeting Intel, it now supports AMD RDNA3
through runtime patching. ZLUDA operates at the LLVM IR level rather than the hardware assembly.
While a reasonable level in the stack to target, ZLUDA would not be able to benefit from low-level,
backend Nvidia optimizations (operating below the PTX level), and is limited to the AMD stacks
backend optimizations. In our work, we target assembly-to-assembly translation, in an effort to leverage
hardware-specific optimizations below the intermediate representation (IR) level, that may be missing
altogether in the corresponding AMD codebase.

2.2 ASSEMBLY-TO-ASSEMBLY TRANSLATION

Translating assembly across ISAs is challenging due to divergent instruction sets and execution models.
Recent work employs language models for this task, including CRT (Heakl et al., 2025), a lightweight
transpiler from x86 assembly (CISC) to ARM (RISC), and Guess & Sketch (Lee et al., 2023), which
integrates language models with symbolic reasoning to translate between ARMv8 and RISC-V. These
recent successes open the door for assembly-to-assembly translation in the unexplored GPU-to-GPU
space. A key contributing factor to their success is the large CPU-centric dataset enabling training
from one ISA to another. Given the lack of such a rich dataset in the GPU space, a primary goal of this
work is to enable such an exploration and transpilation across GPU vendors, democratizing compute in
the critical GPU and ML-acceleration landscape, where Nvidia/CUDA currently dominate the market.

2.3 DATASETS AND BENCHMARKS FOR CUDA AND HIP

As shown in Table 1, existing benchmarks in the GPU space generally focus on runtime performance,
do none target the assembly level, and do not have paired/aligned data across Nvidia/AMD
codebases. ComputeEval (NVIDIA, 2024) includes only CUDA code for hardware evaluation.
Rodinia (Che et al., 2009) and SHOC (Danalis et al., 2010) provide heterogeneous benchmarks
using CUDA/OpenCL/OpenMP but omit AMD code and assembly. PolyBench (Grauer-Gray et al.,
2012) evaluates compilers with CUDA/OpenCL kernels, yet lacks assembly-level or AMD support.
BabelStream (Deakin et al., 2016) benchmarks HIP/CUDA/OpenCL memory bandwidth but excludes
assembly and domain diversity. Hetero-Mark (Sun et al., 2016) targets CPU–GPU workloads where
GPU code is minimal. The Stack (Lozhkov et al., 2024a;b) dataset nearly 200k CUDA files but no AMD
coverage or aligned assembly. In contrast, CASS uniquely offers 70k semantically aligned CUDA–HIP
source and SASS–RDNA3 assembly pairs across both host and device, enabling instruction-level
analysis and forming the first dataset purpose-built for cross-vendor GPU assembly translation.

To the best of our knowledge, no existing dataset provides paired source- and assembly-level
Nvidia-AMD code, hindering effective training and benchmarking.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

 Q
w

en2.5-
 32B-C

oder

Generate
BatchNorm

optimized for
Memory

Generate
BatchNorm

optimized for
Memory

Generate
BatchNorm

optimized for
Memory

Generation
Prompts

CUDA
RepositoriesCUDA

RepositoriesCUDA
RepositoriesScrape Relevant

Repositories
Stack Data

D
eduplication

CASS
Dataset

Variable-Augmented Personas

BatchNorm optimized
for <optimization>

Fluid simulation using
<method> optimized
for <optimizations>

Templates

Compute

ML
Variables

Mem. bandwidth

Occupancy

Shared Memory

Throughput

Synchronization

...

Meshless

Spectral

Finite Diff.

Level Set

....

Scraped
HIP FilesScraped

HIP FilesScraped
HIP Files

Synthetic
HIP FilesSynthetic

HIP FilesSynthetic
HIP Files

CUDA Files
CUDA Files

Scraped
CUDA Files

Synthetic
CUDASynthetic

CUDASynthetic
CUDA Files

Hipify

Filtration
Non-CUDA
Files

Long/Short
Files

BoilerPlate
Files

No kernel
files

Compile &
Match
Outputs

Figure 1: CASS pipeline: We collect CUDA code from public repositories and synthesize additional
samples via prompt-based LLM generation. After filtering and deduplication, all CUDA files are
translated to HIP using HIPIFY, then compiled to extract host and device assembly. Matched outputs
form the CASS dataset with aligned source and assembly pairs across Nvidia and AMD stacks.

3 METHODS

This section outlines the end-to-end methodology behind CASS, including data collection, code
conversion, and compilation for Nvidia and AMD GPUs. We built the low-level assembly corpus
from high-level CUDA code using three strategies: scraping public repositories, generating synthetic
samples, and applying targeted code generation frameworks.

3.1 CUDA CODE SCRAPING

We leveraged the Stackv2 dataset (Lozhkov et al., 2024b) to extract CUDA source files. This dataset,
curated from a vast array of public code repositories, offers deduplicated and license-compliant samples,
facilitating the assembly of a diverse corpus of GPU-oriented code. To maximize the number of compiled
files in the later stage, we used the dataset’s metadata to identify and download the top 200 repositories
with the largest number of CUDA files. This repository-level download preserved the original directory
structure and relative imports, as shown in Figure 1, and improved compilation success by 23.7%
compared to isolated file scraping. After extraction, we applied additional filtering to remove overly
long files (> 7k lines), trivially short files (<10 lines), naive boilerplate samples (e.g., “Hello World”),
and files lacking CUDA kernel definitions. This process resulted in a final set of 24k usable samples.

3.2 SYNTHETIC DATA GENERATION

To circumvent the issue of low architectural and semantic diversity in underrepresented GPU kernels from
“real-world” code pairs, we employed a coding-oriented large language model (Qwen2.5-Coder32B)
to synthesize CUDA kernel code using our variable-augmented persona strategy. We found this
important because the amount of GPU code online in general is limited, both in quantity and diversity,
and hence one of the goals of CASS is to address this problem for ourselves and others in the space.

The process begins by defining a set of natural language prompt templates with variable placeholders.
For example, a template might read:

Generate a CUDA kernel for cloth simulation with a {size}X{size} grid. Optimize
for {optimization}.

To fill these templates, we prepared predefined lists of variable values. For instance, {size} was
instantiated with values such as 32, 64, and 128, while {optimization} was sampled from options
like “memory bandwidth”, “register usage”, and “multi-GPU scaling”. This allowed us to systematically
generate a broad range of prompts, each specifying different values for the placeholders in the templates.
Appendix A.8 includes full details on prompts, variables, and value ranges used for synthetic data
generation.

These prompts were then passed to the LLM, which generated CUDA source files accordingly.
While this method introduced some functional inconsistencies that required significant post-generation
filtering (syntactic errors, missing definitions, or invalid memory operations), it enabled the creation

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

nvcc

nvcc nvcc

Source
(CUDA)

Binary

Assembly
(SASS)

gcc

Object

Source
(HIP)

cuobjdump

HIPI

Assembly
(RDNA3)

HIPI

BitCode

Assembly

Object

hipcc

Executable

BitCode

Object

Shared Binary

Injection .incbin

Fat Binary Executable

IR
(PTX) IR

Assembly

Device operations Host operations Text Tool name

Labels

CUDA Compilation Pipeline HIP Compilation Pipeline

Figure 2: The Nvidia (left) and AMD (right) stacks illustrate the compilation process for CUDA and HIP.
Blue denotes device-side steps; green denotes host-side steps. Nvidia’s stack is opaque; accessing device
assembly (SASS) requires first compiling to binary, then using cuobjdump. In contrast, AMD’s
process is transparent, allowing direct inspection and modification of device assembly (RDNA3) before
host integration.

of rich and diverse CUDA samples. In total, we generated 85k CUDA samples, of which 49.1%
compiled successfully, yielding a final set of 46.3k valid files of synthetic data (complementing the
24k ”real-world” date described in §3.1).

3.3 TRANSPILATION AND COMPILATION

After collecting CUDA files from the previous stages, we performed deduplication to ensure all samples
are unique in our dataset. We then used AMD’s Hipify tool (Advanced Micro Devices, Inc., 2025)
to convert CUDA source files by replacing CUDA-specific API calls with HIP equivalents. Files that
failed conversion (approx. 43.9%) were discarded. Once CUDA–HIP pairs were available, we compiled
them to host and device assemblies using -Os compilation flag to reduce code size, achieving a 9.3%
average token reduction compared to O3. Given the architectural divergence of the two stacks (see
Figure 2), their compilation pipelines differed substantially, requiring significant effort to engineer
and standardize our described workflow.

In Figure 2, a key distinction between the CUDA and HIP compilation pipelines lies in how they man-
age host and device assembly separation. In ROCm, the device binary is typically embedded into the host
binary during the BitCode-to-assembly transition. We modified this behavior by deferring insertion until
after host assembly was converted to object code, enabling: (1) independent extraction of pure host (CPU)
and device (GPU) assemblies, and (2) selective recombination for controlled translation and evaluation.

Conversely, Nvidia provides no access to its binary injection process, device and host assemblies
remain intertwined, with no official method for extraction or reintegration (NVIDIA Corporation, 2025).
Since our goal was to support host-to-host and device-to-device transpilation, recombination on the
CUDA side was unnecessary. Instead, we developed a regex-based filtering pipeline to disentangle
host and device assembly sections during CUDA compilation.

After compiling both stacks to SASS and RDNA3, we retained only samples that compiled
successfully on both Nvidia and AMD pipelines, accounting for asymmetric failures. The final dataset
includes matched CUDA–HIP source pairs, SASS–RDNA3 device assemblies, and host assemblies.
In total, 64k samples were collected after this stage.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.4 OPENCL PIPELINE

Table 2: Dataset composition
by source and size

Dataset Collected Final

Synthetic 85.5k 40.6k
Stack 124.1k 24.1k
OpenCL 6.6k 5.9k
Total – 70.7k

OpenCL stands as an independent pipeline in generating Nvidia to
AMD mapping datasets outside of the CUDA/HIP framework. In
other words, it compiles down to the assembly level without going
through the aforementioned stacks, operating as a single “source” for
GPU code deveolpment (Group, 2025). Approximately 6k OpenCL
code snippets were collected from the Stack dataset and compiled
down to the device assemblies. On the Nvidia stack, a wrapper C++
function was used to encapsulate the clBuildProgram library provided
by OpenCL (Group, 2020) and convert them into PTX, after which
the CUDA stack was used to compile them down to assemblies. On
the AMD stack, clang was used to directly transpile the OpenCL files into device assemblies whilst
forcing it to emit intermediate LLVM during this process (The Clang Team, 2025).

The final instruction training dataset (CASS) comprises 70,694 aligned samples spanning a broad
range of domains, with a primary focus on GPU compute and GPU-related data structures (Figure 4,
Table 2). Each sample includes both CUDA and HIP source code alongside its compiled assembly repre-
sentation, with pairwise source/assembly alignments verified to compile successfully. All compilations
were performed on an Nvidia A100 PCIe machine for the CUDA stack (SASS sm85 ISA) and on AMD
Radeon RX 7900 XT GPUs (RDNA3 ISA) for the AMD stack.

4 CASS AND CASS-BENCH DATASETS

This section presents and details our two complementary datasets: the large-scale CASS corpus and
the evaluation-focused CASS-Bench. We first analyze CASS to characterize structural divergences
between CUDA and HIP at both source and assembly levels, examining factors such as code length,
syntactic similarity, and opcode diversity. We then introduce CASS-Bench, a curated benchmark
spanning diverse GPU domains with source–assembly pairs, designed to provide a common ground for
evaluating cross-architecture translation methods.

Synthetic Stack OpenCL
0

500

1.0k

1.5k

2.0k

2.5k

3.0k

Li
ne

s
of

 C
od

e

864
1.2k

1.5k

1.4k
905

2.3k

1.2k
1.0k

887

734

Total: 2.2k

Total: 3.1k

Total: 2.1k
Total: 1.9k

Total: 1.5k

Total: 1.0k

CUDA Device
CUDA Host
HIP Device
HIP Host

(a)

OpenCL-Device
Stack-Device

Stack-Host
Stack-Source

Synthetic-Device
Synthetic-Host

Synthetic-Source

0

20

40

60

80

100

C
H

R
F

Sc
or

e

(b)

Figure 3: Comparison of structural and syntactic patterns in CASS: (a) verbosity across subsets and
backends; (b) syntactic similarity of translated code.

4.1 DATASET ANALYSIS

CASS reveals pronounced structural divergence between CUDA and HIP at both source and assembly
levels, underscoring the inherent complexity of cross-architecture GPU transpilation. We analyze this by
looking at the length of the assembly files, their syntactic similarity, and opcode diversity.

Length of Assembly Files. Figure 3 (left) shows that AMD device assembly is, on average, twice as
long as Nvidia’s in both synthetic and Stack subsets, while Nvidia’s device assembly exceeds HIP device
assembly by approx. 50% in the OpenCL set. We found an exponential relationship between source
complexity and assembly size, with CUDA producing more verbose outputs than HIP for equivalent
code. This highlights the growing difficulty of assembly-level translation as code complexity scales. See
appendix A.5.1 for full details.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Syntax Similarity. As illustrated in Figure 3 (right), the CHRF (Popović, 2015) score, which
measures character-level similarity between sequences, indicates that HIP and CUDA assembly exhibit
low syntactic similarity for both device and medium similarity to host code, particularly in the OpenCL
and Stackv2 subsets. In contrast, the source code translations, especially in the synthetic subset, show
high overlap, highlighting that surface-level syntax is better preserved in the source code than in the
compiled assembly representations.

Opcode Diversity. We noticed that tensor operations dominate both CUDA and HIP assembly,
especially in device code, with memory-related instructions such as mov and call appearing most
frequently (refer to appendix A.5). Additionally, HIP opcodes like s_mov_b32 and v_add_co_u32
are used extensively reflecting low-level vector and memory operations unique to AMD’s ISA, while
Nvidia is dominated by its own variant of common instructions such as movq, call, and jmp, with
greater host-side integration (refer to appendix A.5). Both stacks share common control and memory
ops (e.g., mov, test), but HIP provides finer-grained access to GPU internals, revealing deeper
visibility into parallelism. The synthetic subset emphasizes memory-oriented instructions, aligning with
LLM-driven template optimizations. We further conduct a t-SNE visualization of opcode embeddings
generated by BERTCoder to examine the semantic relationship between Nvidia and AMD instructions.
The resulting clusters indicate that, despite differences in backend implementations, the two vendors
exhibit semantically aligned opcode distributions across both device and host levels. A more detailed
view of these clusters is provided in the appendix (Figure 6).

4.2 CASS-BENCH

CASS-Bench was created to provide a standardized benchmark for assembly-to-assembly transpila-
tion, allowing fair evaluation and comparison of models on execution-verified cross-architecture tasks.
The benchmark is a 40-sample evaluation suite spanning 16 GPU-centric domains, each represented
by 1–5 curated prompts. For each, we (1) used Claude-3.7 to generate a CUDA implementa-
tion; (2) compiled and executed on Nvidia hardware to obtain reference outputs; then (3) prompted
Claude-3.7 to generate the corresponding AMD code. If outputs mismatched due to compilation
errors, formatting differences or random generators variance, the AMD code was regenerated. Only
samples with manually verified output equivalence were included. All final Nvidia–AMD pairs were
processed using our pipeline (§3) to extract aligned host and device assembly. Figure 4 (right) shows the
category distribution of CASS-Bench.

5 EXPERIMENTS

We evaluate the CASS dataset by instruction-supervised fine-tuning the Qwen2.5-Coder (Hui et al.,
2024) models at various parameter scales. Two variants are developed: one for assembly translation
(SASS → RDNA3) and another for source translation (CUDA → HIP). We benchmark these models
against both proprietary and open-source baselines, including larger-scale systems.

ML6.4%

GRAHPICS
5.7%

CRYPTO

5.1%

SIM
ULATIO

N

4.1%

CASS-Instruct

COMPUTE35.2%

DATA STRUCTURE

42.5%

Para
lle

l A
lgo

rith
ms

Im
ag

e P
roc

es
sin

g

Scie
nti

fic
 C

om
pu

tin
g

Lin
ea

r A
lge

bra

Dee
p L

ea
rni

ng
Math

Phy
sic

s S
im

ula
tio

n

Data
 S

tru
ctu

res

Grap
h

Mem
ory

 O
pe

rat
ion

s

Bas
ic

Ope
rat

ion
s

Vec
tor

 O
pe

rat
ion

s

Hist
og

ram
ming

Sign
al

Proc
es

sin
g

Dyn
am

ics

Sea
rch

0

1

2

3

4

5

C
ou

nt

5

4 4 4 4 4

3

2 2 2

1 1 1 1 1 1

Figure 4: CASS coverage across dataset and benchmark (left) domain distribution of training samples
(right) category distribution in CASS-Bench.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Performance of different models on our CASS-Bench. Bold cells refer to the best results.

Model Assembly Accuracy (%) Source-to-Source Accuracy (%)
To

ol
s ZLUDA 2.5% 27.5%

Hipify – 87.5%
L

L
M

s GPT-4o 0% 90.0%
Gemini-2.0-Flash 0% 80.0%
Claude-3.7 0% 90.0%
Qwen2.5-Coder-32B 25.0% 85.0%

O
ur

s CASS-1.5B 12.5% 90.0%
CASS-3B 20.0% 92.5%
CASS-7B 37.5% 95.0%

Instruction Supervised Finetuning. To ensure that input samples fit within the 16K-token context
window of the LLM, we normalized CUDA assembly code by removing redundant whitespace and
comments, which reduced token count by roughly 15%. No preprocessing was applied to HIP assembly
code due to its sensitivity to whitespace changes. We fine-tuned the Qwen2.5-Coder models at
1.5B, 3B and 7B parameter scales on 4xA100 GPUs, using a batch size of 4, gradient accumulation
of 32 (effective batch size of 512) and a learning rate of 1×10−5. The relatively aggressive learning
rate was selected due to the dataset’s distributional divergence from the models’ pretraining corpus.
Training employed DeepSpeed (Rasley et al., 2020) with optimizer state sharding to maximize hardware
efficiency, achieving 98% GPU utilization. Additionally, we incorporated Liger Kernel (Hsu et al.,
2024) and Paged Adam optimizer (Loshchilov & Hutter, 2017) to accelerate training and manage
memory more effectively. We utilized LLaMA-Factory (Zheng et al., 2024) to implement all of these
optimizations. All models were trained with a 16K-token context window. At inference time, we applied
RoPE (Su et al., 2024) extrapolation to support up to 32.7K tokens. Inference was efficient, requiring
approximately 56 seconds per a 16K-token sample.

Evaluation Protocol. For both source and assembly transpilation, the LLM-generated code (HIP
source or host/device assembly) was compiled and executed. The resulting outputs were then compared
against the ground truth from CASS-Bench to verify functional correctness.

6 RESULTS

Assembly-to-Assembly Performance. Table 3 reports CASS-Bench results across LLMs and
tools. All baselines, including proprietary and large open models, such as GPT-4o (Hurst et al., 2024),
Gemini-2.0-Flash (Hassabis & Kavukcuoglu, 2024), and Claude-3.7 (Anthropic, 2025), failed with 0%
accuracy, except Qwen2.5-Coder-32B (Hui et al., 2024), which reached 25%. ZLUDA (Janik, 2024), a
runtime-level system, achieved only 2.5% assembly accuracy despite operating directly on compiled
binaries, which may be attributed to its compatibility with RNDA1. In contrast, our CASS models
reached up to 37.5%, surpassing all the baselines by a large margin and highlighting that our dataset
imparts essential assembly-level knowledge absent from existing tools and models.

Code Efficiency and Analysis. Assembly accuracy varies across domains, with 0% in math, data
structures, and graph tasks, 25–50% in linear algebra and memory operations, and up to 100% in
physics simulations—highlighting the challenge of preserving low-level semantics. Despite this, the
translated code closely matches the original in execution: memory usage deviates by less than ±0.3%,
and execution time stays within ±11.8%, with over 85% of samples falling within ±5.6% for both
metrics, confirming that our model preserves both memory and runtime efficiency during assembly
translation. Each test was executed 20 times, and the reported values reflect the average across runs
to mitigate noise and ensure statistical reliability. For more details, refer to Figures 5 and 7 in the
appendix.

Source-to-Source Performance. To further validate the utility of the dataset, we also evaluated source
transpilation performance as shown in Table 3. This task aligns more closely with some of the pretraining

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

objectives of many proprietary models, as reflected in their relatively strong performance (ranging
from 80% to 90%). Nonetheless, even the smallest CASS model (1.5B) significantly outperformed all
baselines, achieving 90% accuracy. The 7B variant showed an outstanding state-of-the-art performance
of 95% accuracy. Although our CUDA dataset was entirely translated by Hipify and we retained only
semantically aligned samples, our model surpassed Hipify’s source-to-source capability by 7.5%.

Table 4: Ablation study on the impact of different data.

Experiment Source Accuracy Assembly Accuracy ∆ Impact
Stack subset 87.5% 17.5% -
+Synthetic 95.0% 30.0% +12.5%
+OpenCL 95.0% 32.5% +2.5%
+RoPE Extrapolation 95.0% 37.5% +5.0%

Ablation Study. Table 4 shows that us-
ing only The Stack data yields 17.5% as-
sembly accuracy. Adding synthetic data im-
proves it by +12.5%, highlighting its role in
learning low-level patterns. OpenCL adds
+2.5%, providing complementary coverage,
while RoPE extrapolation pushes accuracy
to 37.5% by extending context capacity.

Hardware Generalization. To demonstrate the generalizability of our methodology across GPU
architectures, we extend our pipeline to a second device pairing (RTX4090 ↔ RX7900 XT). Results show
similar generalization as our first GPU pair, with 32.5% assembly accuracy, confirming the feasibility
and challenges of ISA variations. Additionally, it showcases the need for a CASS and CASS-Bench,
as data is a limiting factor in both the training and the inference stages. Nevertheless, we envision
that our proposed methodology and code will enable future contributions for more crowd-sourced ISA
pairings.

7 LIMITATIONS AND FUTURE WORK

While our work establishes a strong foundation for cross-architecture GPU translation, several
points of improvement remain. The current assembly translation accuracy, though state-of-the-art,
highlights the inherent difficulty of low-level code generation, a challenge we explicitly address with
the introduction of CASS-Bench, the first benchmark for this task. We hope it will catalyze future
research into more robust translation models.

Furthermore, while the CASS dataset is the largest of its kind, covering 70k aligned samples, real-
world deployment may benefit from even broader architectural and domain coverage. Our dataset
provides a critical starting point for data-efficient training in a field where high-quality, aligned examples
are scarce.

Finally, the 16K-token context window limited the inclusion of certain vendor-specific optimizations.
We see this as an opportunity for future work to explore longer-context models or hierarchical compilation
strategies, building on the pipeline and alignment methodology introduced here.

8 CONCLUSION

We present CASS, the first large-scale dataset and model suite for cross-architecture GPU code
transpilation, encompassing 70k aligned pairs of source and assembly code for both Nvidia and AMD
platforms. Our dataset uniquely bridges both source-to-source (CUDA to HIP) and assembly-to-assembly
(SASS to RDNA3) mappings, addressing a critical gap in low-level code portability. To validate its
effectiveness, we train the CASS model family, which achieves 95% accuracy in source translation
and 37.5% in assembly translation, substantially outperforming both proprietary and open-source
baselines. Furthermore, our transpiled code preserves functional behavior: over 85% of samples match
native execution in both memory usage and runtime. We also introduce CASS-Bench, a purpose-built
evaluation suite spanning 16 GPU-centric domains. All models, data, and benchmarks are released
as open-source resources, establishing a foundation for future research in compiler tooling, hardware
interoperability, and performance-aware code generation.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Advanced Micro Devices (AMD). Amd rocm™ 6: Open software platform for gpu
computing. Technical report, Advanced Micro Devices, Inc., 2024. URL https:
//www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/
product-briefs/amd-rocm-6-brief.pdf.

Advanced Micro Devices, Inc. HIPIFY Documentation, 2025. URL https://rocm.docs.amd.
com/projects/HIPIFY/en/latest/. Accessed: 2025-04-28.

AMD. Gaming gpu benchmarks. https://www.amd.com/en/products/graphics/
gaming/gaming-benchmarks.html, 2024a. Accessed: 2025-05-15.

AMD. HIP: Heterogeneous-computing Interface for Portability. https://github.com/
ROCm-Developer-Tools/HIP, 2024b. Accessed: 2025-04-30.

AMD ROCm Documentation. HIP Porting Guide, 2024. URL https://rocm.docs.amd.com/
projects/HIP/en/docs-6.0.0/user_guide/hip_porting_guide.html. Ac-
cessed: 2025-01-29.

Anthropic. Claude 3.7 sonnet and claude code, February 2025. URL https://www.anthropic.
com/news/claude-3-7-sonnet. Accessed: 2025-05-14.

Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Sheaffer, Sang-Ha Lee, and Kevin
Skadron. Rodinia: A benchmark suite for heterogeneous computing. In 2009 IEEE international
symposium on workload characterization (IISWC), pp. 44–54. Ieee, 2009.

Jun Chen, Xule Zhou, and Hyesoon Kim. Cupbop-amd: Extending cuda to amd platforms. In Pro-
ceedings of the SC’23 Workshops of The International Conference on High Performance Computing,
Network, Storage, and Analysis, pp. 1093–1104, 2023.

Anthony Danalis, Gabriel Marin, Collin McCurdy, Jeremy S Meredith, Philip C Roth, Kyle Spafford,
Vinod Tipparaju, and Jeffrey S Vetter. The scalable heterogeneous computing (shoc) benchmark suite.
In Proceedings of the 3rd workshop on general-purpose computation on graphics processing units,
pp. 63–74, 2010.

Tom Deakin, James Price, Matt Martineau, and Simon McIntosh-Smith. Gpu-stream v2. 0: Benchmark-
ing the achievable memory bandwidth of many-core processors across diverse parallel programming
models. In High Performance Computing: ISC High Performance 2016 International Workshops, Ex-
aComm, E-MuCoCoS, HPC-IODC, IXPUG, IWOPH, Pˆ 3MA, VHPC, WOPSSS, Frankfurt, Germany,
June 19–23, 2016, Revised Selected Papers 31, pp. 489–507. Springer, 2016.

Gregory Diamos, Andrew Kerr, and Sudhakar Yalamanchili. Gpuocelot: A dynamic compilation
framework for ptx. https://github.com/gtcasl/gpuocelot, 2009. Accessed: 2025-
04-28.

Financial Times. Nvidia’s rivals take aim at its software dominance. 2024. URL https://www.ft.
com/content/320f35de-9a6c-4dbf-b42f-9cdaf35e45bb. Accessed: 2025-05-14.

Scott Grauer-Gray, Lifan Xu, Robert Searles, Sudhee Ayalasomayajula, and John Cavazos. Auto-tuning
a high-level language targeted to gpu codes. in 2012 innovative parallel computing (inpar). IEEE,
Piscataway, NJ, USA, pp. 1–10, 2012.

Khronos Group. clbuildprogram - opencl 3.0 reference pages. https://registry.khronos.
org/OpenCL/sdk/3.0/docs/man/html/clBuildProgram.html, 2020. Accessed:
2025-05-14.

The Khronos Group. Opencl guide. https://github.com/KhronosGroup/
OpenCL-Guide, 2025. Accessed: 2025-05-14.

Mark Harris. An even easier introduction to cuda. NVIDIA Developer Blog, 2024. URL https:
//developer.nvidia.com/blog/even-easier-introduction-cuda/.

10

https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/product-briefs/amd-rocm-6-brief.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/product-briefs/amd-rocm-6-brief.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/product-briefs/amd-rocm-6-brief.pdf
https://rocm.docs.amd.com/projects/HIPIFY/en/latest/
https://rocm.docs.amd.com/projects/HIPIFY/en/latest/
https://www.amd.com/en/products/graphics/gaming/gaming-benchmarks.html
https://www.amd.com/en/products/graphics/gaming/gaming-benchmarks.html
https://github.com/ROCm-Developer-Tools/HIP
https://github.com/ROCm-Developer-Tools/HIP
https://rocm.docs.amd.com/projects/HIP/en/docs-6.0.0/user_guide/hip_porting_guide.html
https://rocm.docs.amd.com/projects/HIP/en/docs-6.0.0/user_guide/hip_porting_guide.html
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://github.com/gtcasl/gpuocelot
https://www.ft.com/content/320f35de-9a6c-4dbf-b42f-9cdaf35e45bb
https://www.ft.com/content/320f35de-9a6c-4dbf-b42f-9cdaf35e45bb
https://registry.khronos.org/OpenCL/sdk/3.0/docs/man/html/clBuildProgram.html
https://registry.khronos.org/OpenCL/sdk/3.0/docs/man/html/clBuildProgram.html
https://github.com/KhronosGroup/OpenCL-Guide
https://github.com/KhronosGroup/OpenCL-Guide
https://developer.nvidia.com/blog/even-easier-introduction-cuda/
https://developer.nvidia.com/blog/even-easier-introduction-cuda/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Demis Hassabis and Koray Kavukcuoglu. Introducing gemini 2.0: our new ai model for the agentic
era, December 2024. URL https://blog.google/technology/google-deepmind/
google-gemini-ai-update-december-2024/. Accessed: 2025-05-14.

Ahmed Heakl, Sarim Hashmi, Chaimaa Abi, Celine Lee, and Abdulrahman Mahmoud. Guaranteed
guess: A language modeling approach for cisc-to-risc transpilation with testing guarantees. arXiv
preprint arXiv:2506.14606, 2025.

Pin-Lun Hsu, Yun Dai, Vignesh Kothapalli, Qingquan Song, Shao Tang, Siyu Zhu, Steven Shimizu,
Shivam Sahni, Haowen Ning, and Yanning Chen. Liger kernel: Efficient triton kernels for llm training.
arXiv preprint arXiv:2410.10989, 2024.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Andrzej Janik. Zluda: Cuda on non-nvidia gpus. https://github.com/vosen/ZLUDA, 2024.
Accessed: 2025-04-28.

Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong program analysis and
transformation. In Proceedings of the International Symposium on Code Generation and Optimization,
pp. 75–86, San Jose, CA, USA, 2004. IEEE Computer Society. doi: 10.1109/CGO.2004.1281665.
URL https://doi.org/10.1109/CGO.2004.1281665.

Celine Lee, Abdulrahman Mahmoud, Michal Kurek, Simone Campanoni, David Brooks, Stephen
Chong, Gu-Yeon Wei, and Alexander M Rush. Guess & sketch: Language model guided transpilation.
arXiv preprint arXiv:2309.14396, 2023.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane Tazi,
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. Starcoder 2 and the stack v2: The next
generation. arXiv preprint arXiv:2402.19173, 2024a.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane Tazi,
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. Starcoder 2 and the stack v2: The next
generation. arXiv preprint arXiv:2402.19173, 2024b.

NVIDIA. Computeeval: Evaluating large language models for cuda code generation. https:
//github.com/NVIDIA/compute-eval, 2024. Accessed: May 2025.

NVIDIA Corporation. Turing Compatibility Guide for CUDA Applications, 2021. URL https://
docs.nvidia.com/cuda/archive/11.4.2/turing-compatibility-guide/
index.html. Version 11.4.2.

NVIDIA Corporation. CUDA Binary Utilities, 2025. https://docs.nvidia.com/cuda/
cuda-binary-utilities/index.html.

Maja Popović. chrf: character n-gram f-score for automatic mt evaluation. In Proceedings of the tenth
workshop on statistical machine translation, pp. 392–395, 2015.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System optimizations
enable training deep learning models with over 100 billion parameters. In Proceedings of the 26th
ACM SIGKDD international conference on knowledge discovery & data mining, pp. 3505–3506,
2020.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

11

https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/
https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/
https://github.com/vosen/ZLUDA
https://doi.org/10.1109/CGO.2004.1281665
https://github.com/NVIDIA/compute-eval
https://github.com/NVIDIA/compute-eval
https://docs.nvidia.com/cuda/archive/11.4.2/turing-compatibility-guide/index.html
https://docs.nvidia.com/cuda/archive/11.4.2/turing-compatibility-guide/index.html
https://docs.nvidia.com/cuda/archive/11.4.2/turing-compatibility-guide/index.html
https://docs.nvidia.com/cuda/cuda-binary-utilities/index.html
https://docs.nvidia.com/cuda/cuda-binary-utilities/index.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yifan Sun, Xiang Gong, Amir Kavyan Ziabari, Leiming Yu, Xiangyu Li, Saoni Mukherjee, Carter
McCardwell, Alejandro Villegas, and David Kaeli. Hetero-mark, a benchmark suite for cpu-gpu
collaborative computing. In 2016 IEEE International Symposium on Workload Characterization
(IISWC), pp. 1–10. IEEE, 2016.

The Clang Team. Clang: a c language family frontend for llvm, 2025. URL https://clang.
llvm.org/. Accessed: 2025-01-29.

The Verge. Amd radeon rx 9070 xt review: performance that beats
the price. https://www.theverge.com/gpu-reviews/624423/
amd-radeon-rx-9070-xt-review-benchmarks-price, 2024. Accessed: 2025-05-
15.

Anwar Hossain Zahid, Ignacio Laguna, and Wei Le. Testing gpu numerics: Finding numerical
differences between nvidia and amd gpus. In SC24-W: Workshops of the International Conference for
High Performance Computing, Networking, Storage and Analysis, pp. 547–557. IEEE, 2024.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. arXiv
preprint arXiv:2403.13372, 2024.

12

https://clang.llvm.org/
https://clang.llvm.org/
https://www.theverge.com/gpu-reviews/624423/amd-radeon-rx-9070-xt-review-benchmarks-price
https://www.theverge.com/gpu-reviews/624423/amd-radeon-rx-9070-xt-review-benchmarks-price

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 COMPUTATIONAL RESOURCES AND ENVIRONMENTAL IMPACT

A.1.1 HARDWARE USED

All experiments were conducted on two distinct machines to generate architecture-specific outputs. For
AMD-related compilation and execution, we used a workstation equipped with an Intel i7-14700KF
CPU and an AMD Radeon RX 7900 XT GPU. For Nvidia-related outputs, we used a server with an
AMD EPYC 9654 CPU and an Nvidia A100 (80GB) GPU. Furthermore, to ensure consistency and
reproducibility across platforms, all file generation was performed within Docker containers tailored to
each architecture.

A.1.2 CARBON FOOTPRINT

Energy consumption was measured using the CodeCarbon tool during fine-tuning experiments
conducted on 4×A100 (40GB) GPUs for 2 epochs across 70,000 samples. The results are as follows:

• Qwen2.5-Coder 1.5B. 20.13 kWh, corresponding to approximately 12.11 kg CO2 emissions;
• Qwen2.5-Coder 3B. 34.27 kWh, corresponding to approximately 20.72 kg CO2 emissions.

These measurements align with expected energy usage benchmarks for models of similar size and
training duration.

0

20

40

60

80

100

Ac
cu

ra
cy

0% 0% 0%

25% 25%

50% 50% 50%

40%

100%100% 100% 100% 100% 100% 100% 100% 100%

80%

100%

Assembly Code Source Code

Figure 5: Source and assembly-level accuracy across categories.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

40 20 0 20 40
Dimension 1

40

20

0

20

40

Di
m

en
sio

n
2

Categories
Memory Ops
Tensor Ops
Control Flow
Thread Sync
Kernel Ops
Math Functions
Data Structures
Error Handling
Io Operations
Other

Datasets
Synthetic
Stack
Opencl

Code Types
Cuda Device
Cuda Host
Hip Device
Hip Host

Figure 6: t-SNE projection of CUDA and HIP assembly embeddings.

A.2 PROMPTING STRATEGY FOR CLOSED-SOURCE MODELS

For the results reported in the paper, we evaluated the assembly-to-assembly translation capacity of
closed-source models (GPT-4o, Gemini-2.0-Flash, Claude-3.7) using the instruction:

You are given a CUDA assembly (SASS) code and you are required to convert it into
HIP assembly (RDNA3) code without changing the functionality. The code output
from CUDA and HIP should be the same when executed.

We also experimented with more advanced prompting strategies, adding few-shot examples of (SASS,
RDNA3) pairs and applying chain-of-thought (CoT) prompting, but observed no significant performance
gains. This outcome likely stems from the limited prior exposure these models have low-level GPU
assembly code during pretraining. Even with better prompting, the models lack the internal structure or
inductive bias needed to reason over hardware-specific instruction patterns.

A.3 EVALUATION ON ZLUDA

To assess ZLUDA’s ability to execute CUDA code on AMD GPUs, we designed a two-track evaluation
strategy targeting both source-level and binary-level workflows (the latter being akin to assembly-level
translation). In the source-to-source setting, we leveraged access to the original CUDA source files to
manually compile them into PTX using nvcc. These PTX files were then ingested by ZLUDA, which
translated them into AMD-compatible LLVM IR before lowering them into native executables targeting
RDNA3 hardware. In the assembly-to-assembly setting, we instead compiled the CUDA source into a
complete executable and invoked it directly. ZLUDA intercepted the CUDA runtime calls, dynamically
translated the embedded PTX or SASS, and executed the resulting code on the AMD backend. This dual
strategy allowed us to assess both ZLUDA’s static translation capabilities and its runtime interoperability
under realistic execution conditions.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

0.100 0.075 0.050 0.025 0.000 0.025 0.050 0.075 0.100
Memory Usage Difference (%) with Std Dev

38
34
30
26
40

1
27
24
37
14
13

9
29
39
12
10
11

4
19

5
8

28
2

16
33

3
22

7
36
31
17

6
32
25
23
21
18

Fi
le

Less memory than Ground Truth

More memory than Ground Truth

-0.0800% ±0.01%
-0.0745% ±0.01%

-0.0587% ±0.02%
-0.0480% ±0.01%

-0.0427% ±0.01%
-0.0427% ±0.01%
-0.0426% ±0.02%

-0.0162% ±0.02%
-0.0160% ±0.02%

-0.0107% ±0.02%
-0.0107% ±0.01%
-0.0106% ±0.01%

-0.00534% ±0.01%
-0.00534% ±0.01%

-0.00318% ±0.01%
0.00457% ±0.01%
0.00514% ±0.01%
0.00527% ±0.01%
0.00533% ±0.01%

0.0105% ±0.01%
0.0128% ±0.01%

0.0160% ±0.01%
0.0206% ±0.01%
0.0213% ±0.01%

0.0320% ±0.01%
0.0340% ±0.01%

0.0376% ±0.01%
0.0479% ±0.01%

0.0534% ±0.01%
0.0534% ±0.02%
0.0534% ±0.01%
0.0543% ±0.01%

0.0586% ±0.01%
0.0640% ±0.01%
0.0641% ±0.02%

0.0748% ±0.01%
0.0801% ±0.01%

4 2 0 2 4 6
Execution Time Difference (%) with Std Dev

3
37
29
22

5
36

4
12
40

2
14
18
25

7
26

9
32

8
19
11
39
34
10
38
27
33

1
23
17
24
31
28
30
13
16
21

6

Fi
le

Faster than Ground Truth

Slower than Ground Truth

-3.14% ±0.58%
-2.80% ±0.60%

-2.03% ±0.77%
-1.93% ±0.35%

-1.53% ±0.62%
-1.52% ±0.67%

-1.27% ±0.65%
-1.18% ±0.53%

-1.01% ±0.70%
-0.51% ±0.70%
-0.48% ±0.85%

-0.26% ±0.66%
-0.26% ±0.68%
-0.25% ±0.69%

0.00% ±0.73%
0.15% ±0.19%

0.22% ±0.63%
0.23% ±0.09%
0.26% ±0.60%

0.48% ±0.77%
0.50% ±0.62%
0.53% ±0.43%

1.18% ±0.62%
1.31% ±0.72%

1.55% ±0.66%
1.81% ±0.54%
1.81% ±0.62%

2.06% ±0.67%
2.07% ±0.65%
2.09% ±0.60%

2.17% ±0.61%
2.55% ±0.73%
2.58% ±0.71%

2.70% ±0.88%
3.08% ±0.75%

3.71% ±0.69%
4.95% ±0.57%

Figure 7: Comparison of memory usage (left) and execution time (right) between predicted and ground
truth HIP programs, measured via compilation and runtime profiling.

Figure 8: Relationship between source and assembly-level LoC in the CASS dataset. Scatter plot
comparing source code lines of code (LoC) to the corresponding assembly LoC for both CUDA and
HIP backends across the Stackv2 and Synthetic subsets. Trend lines and density contours illustrate that
CUDA typically produces more verbose assembly output than HIP for equivalent source sizes.

A.4 CASS DOMAIN COVERAGE

To obtain the domain-level breakdown shown in Figure 4, we developed a static analysis pipeline
that categorizes each source file based on its content. The classification is performed by matching
the file’s text against curated sets of domain-specific keywords corresponding to seven high-level
categories: general compute, simulation, data structure, machine learning, graphics, cryptography,
and scientific computing. Each keyword set includes terms commonly associated with the respective
domain; for example, the machine learning category includes terms such as neural, gradient,
and activation, while cryptography includes hash, encrypt, and signature. For a given
file, the domain with the highest keyword match count is assigned. If no keywords are matched, a
default label (e.g., general compute) is applied. After all files are processed, their assignments are
aggregated to produce the final domain distribution. This process provides a simple yet straightforward
and interpretable way of grouping source files by their functional domain.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 9: Opcode Category Distribution by Dataset and Code Type. Stacked bar chart showing the
distribution of assembly instructions across 10 opcode categories for device and host code in the
Synthetic, Stackv2, and OpenCL subsets. Each bar represents a (dataset, code type) pair, illustrating the
functional composition of the code across memory, tensor, control flow, synchronization, and other
operations.

(a) HIP assembly opcodes. (b) CUDA assembly opcodes.

Figure 10: Most frequent opcodes in HIP and CUDA assembly. Word clouds depicting the most common
opcodes in HIP and CUDA assembly files. The size of each opcode reflects its relative frequency in the
compiled dataset, highlighting structural and architectural differences between the two backends.

0k 50k 100k 150k 200k 250k 300k
Training Steps

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Source Accuracy (7B)
Source Accuracy (3B)
Source Accuracy (1.5B)
Assembly Accuracy (7B)
Assembly Accuracy (3B)
Assembly Accuracy (1.5B)

Figure 11: Accuracy vs. training steps for source/assembly across CASS model scales (1.5B, 3B, 7B).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.5 EXTRA DATA ANALYSIS

A.5.1 LENGTH OF ASSEMBLY FILES

As shown in the Figure 8 We found an exponential relationship between source complexity and assembly
size, with CUDA producing more verbose outputs than HIP for equivalent code. This highlights the
growing difficulty of assembly-level translation as code complexity scales.

A.5.2 OPCODE DIVERSITY

Taking a deeper dive into the low-level instructions representation shown in Figure 10, a few extra
insights can be drawn. In the HIP case, many opcodes, such as s_mov_b32, v_add_co_u32, and
s_waitcnt, come directly from AMD’s GPU instruction set. These reflect fine-grained control over
the hardware, including scalar and vector operations and synchronization. On the other hand, the CUDA
assembly is mostly made up of x86-64 instructions like movq, call, jmp, and pushq, which are
typically used on the CPU. This suggests that the CUDA output includes more host-side code or that
GPU instructions are hidden behind a higher level of abstraction. Still, both stacks share common
instructions like mov and test, showing that some basic control and memory operations are similar.
In general, HIP provides more visibility into what the GPU is doing, while CUDA hides many of those
low-level details behind a more unified host-device model.

A.6 PERFORMANCE DEGRADATION ANALYSIS

We analyzed failed kernel translations and categorized them by key operation types. Among the failed
cases, we found: 100% involved control flow (e.g., for, while), 75% accessed global memory,
62.07% used synchronization (e.g., __syncthreads()), 10.34% involved atomic operations (e.g.,
atomicAdd), 6.82% used shared memory, and 11.36% included local arrays. It’s important to
emphasize that these categories are not mutually exclusive, as most failed files involve multiple
overlapping operation types. Moreover, as shown in Figure 5 in the paper, assembly-level failures are
concentrated in Math, Data Structures, Graph, and parts of ML domains, indicating that control-heavy
or abstract computation tasks remain the most challenging for the model. These trends suggest that
failures are strongly correlated with increased kernel complexity, particularly in terms of global memory
access and memory synchronization, which likely strain the model’s limited context and structural
understanding at the assembly level.

A.7 STRATIFIED BENCHMARKING

We performed a stratified evaluation of the assembly benchmark by grouping samples based on input
length measured in tokens: easy (<9k), medium (9k-12k), and hard (>12k). The model’s accuracy
decreases with input length, 35.0% (easy), 33.33% (medium), and 17.65% (hard), highlighting that
longer sequences pose greater challenges, likely due to context compression.

A.8 SYTHETIC GENERATION

To generate large-scale, diverse CUDA programs, we design a multiprocessing Python pipeline that
interacts with a locally hosted large language model via a chat-based API. The pipeline leverages a
wide array of handcrafted prompt templates, each parameterized with variables such as problem size,
optimization target, algorithm type, and architectural features (see Appendix A.8.1). At runtime, these
templates are instantiated with randomly sampled values from curated sets covering domains like matrix
operations, graph algorithms, scientific computing, machine learning, and sparse computation (see
Table 5). Each worker process independently generated prompts, sends them to the model, extracts
valid CUDA code from the response, and saves the output in a structured format. Robust fault-tolerance
mechanisms—including retry logic, output validation, and file existence checks—ensure resilience to
model failures and concurrent access.

Additionally, to avoid reproducing training data seen by the LLM, we apply both prompt-space
and output-space deduplication: (1) prompt templates are checked for novelty against LLM training
corpora, where verifiable, and (2) generated samples are structurally parsed and filtered using AST and
opcode similarity to eliminate near-duplicates. The system supports parallel generation with controlled

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

API concurrency and automatic resumption from previous checkpoints, enabling scalable and efficient
generation of compilable CUDA code samples suitable for downstream benchmarking or training.

Table 5: Representative values for prompt placeholders used in the synthetic code generation.

Placeholder Example Values
{size} 64, 1024, 16384
{dimension} 1, 3, 6
{optimization} memory coalescing, shared memory usage, warp-level programming
{operation} sum, histogram, L2 norm
{algorithm} matrix multiplication, radix sort, BFS
{radius} 1, 5, 13
{graph format} adjacency matrix, CSR, edge list
{md algorithm} Verlet integration, leapfrog, Runge-Kutta
{linear solver} conjugate gradient, Jacobi, multigrid
{numerical method} finite difference, spectral, Crank-Nicolson
{factorization method} SVD, LU, eigenvalue decomposition
{conv layer count} 2, 6, 12
{neuron count} 64, 512, 2048
{sparse format} CSR, ELL, HYB
{nbody algorithm} Barnes-Hut, brute force, particle mesh
{filter type} Gaussian, Sobel, Gabor
{filter size} 3, 7, 15
{resolution} 720p, 1080p, 4K
{segmentation algorithm} watershed, region growing, U-Net
{signal transform} FFT, wavelet, Hilbert
{optimization algorithm} Adam, simulated annealing, particle swarm
{crypto algorithm} AES, RSA, Argon2
{cracking method} brute force, dictionary attack, rainbow table
{hash algorithm} SHA-256, BLAKE3, Bcrypt
{data structure} binary tree, hash table, bloom filter
{collision strategy} linear probing, cuckoo hashing, separate chaining

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A.8.1 PROMPT TEMPLATES FOR SYNTHETIC CUDA CODE GENERATION

The prompts used, listed below, were designed with variations in computation patterns (e.g., memory
operations, thread sync, and control flow) and domains (e.g., ML, simulation, graphics), with the intent
of diversifying the scope of the synthetic samples.

BASIC OPERATIONS

1. Implement a CUDA kernel for {size}D FFT (Fast Fourier Transform).
Optimize for {optimization}.

2. Generate a CUDA implementation for {size}D stencil computation with
radius {radius}. Optimize for {optimization}.

3. Write a CUDA kernel for parallel reduction to compute the {operation}
of an array of size {size}. Focus on {optimization}.

4. Create a CUDA implementation for convolution operation with a {size}x{
size} filter. Focus on {optimization} optimization.

5. Generate a CUDA kernel for matrix multiplication of two matrices A and
B of size {size}x{size}. Include error handling and optimize for {

optimization}.

GRAPH ALGORITHMS

1. Write a CUDA implementation for graph coloring of a graph with {size}
nodes. Focus on {optimization}.

2. Implement a CUDA kernel for community detection in a graph with {size}
nodes using the {community_algorithm} algorithm.

3. Implement a CUDA kernel for graph processing that computes {algorithm}
on a graph with {size} nodes. Optimize for {optimization}.

4. Generate a CUDA kernel for finding strongly connected components in a
directed graph with {size} nodes. Optimize for {optimization}.

5. Create a CUDA implementation for breadth-first traversal on a graph
with {size} nodes stored in {graph_format}. Optimize for {
optimization}.

SCIENTIFIC COMPUTING

1. Write a CUDA implementation for {size}D fluid simulation using {method
}. Focus on {optimization}.

2. Create a CUDA kernel for Monte Carlo simulation of {size} paths for
option pricing. Focus on {optimization}.

3. Implement a CUDA solver for {size}x{size} sparse linear system using {
linear_solver}. Focus on {optimization}.

4. Generate a CUDA implementation for {size}D heat equation solver using
{numerical_method}. Optimize for {optimization}.

5. Create a CUDA kernel for molecular dynamics simulation of {size}
particles using {md_algorithm}. Optimize for {optimization}.

MACHINE LEARNING

1. Generate a CUDA kernel for k-means clustering of {size} data points in
{dimension}D space. Optimize for {optimization}.

2. Implement a CUDA kernel for {size}x{size} matrix factorization using {
factorization_method}. Optimize for {optimization}.

3. Create a CUDA implementation for computing attention mechanism in a
transformer with {size} tokens. Focus on {optimization}.

4. Implement a CUDA kernel for backpropagation in a convolutional neural
network with {conv_layer_count} conv layers. Optimize for {
optimization}.

5. Write a CUDA implementation for training a neural network with {
layer_count} layers and {neuron_count} neurons per layer. Focus on {
optimization}.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

SPARSE OPERATIONS

1. Generate a CUDA kernel for sparse FFT computation. Optimize for {
optimization}.

2. Implement a CUDA kernel for sparse tensor operations with {size} non-
zero elements. Optimize for {optimization}.

3. Write a CUDA implementation for sparse convolution with {size}x{size}
filter on sparse input. Focus on {optimization}.

4. Create a CUDA implementation for sparse matrix-matrix multiplication
in {sparse_format} format. Focus on {optimization}.

5. Generate a CUDA kernel for sparse matrix-vector multiplication where
the matrix has approximately {size} non-zero elements. Optimize for {
optimization}.

SIMULATION

1. Generate a CUDA kernel for cloth simulation with {size}x{size} grid.
Optimize for {optimization}.

2. Write a CUDA implementation for raytracing of a scene with {size}
objects. Focus on {optimization}.

3. Create a CUDA implementation for {algorithm} of {size} particles in a
{dimension}D space. Focus on {optimization}.

4. Create a CUDA implementation for fluid-structure interaction with {
size} boundary elements. Focus on {optimization}.

5. Implement a CUDA kernel for N-body simulation of {size} particles
using {nbody_algorithm}. Optimize for {optimization}.

IMAGE AND SIGNAL PROCESSING

1. Create a CUDA implementation for feature extraction from {size}x{size}
images. Focus on {optimization}.

2. Generate a CUDA kernel for image segmentation using {
segmentation_algorithm}. Optimize for {optimization}.

3. Write a CUDA implementation for real-time video processing of {
resolution} frames. Focus on {optimization}.

4. Implement a CUDA kernel for signal processing with {size}-point {
signal_transform}. Optimize for {optimization}.

5. Implement a CUDA kernel for image filtering using {filter_type} filter
of size {filter_size}x{filter_size}. Optimize for {optimization}.

OPTIMIZATION ALGORITHMS

1. Implement a CUDA kernel for simulated annealing with {size} states.
Optimize for {optimization}.

2. Generate a CUDA kernel for genetic algorithm with population size {
size}. Optimize for {optimization}.

3. Write a CUDA implementation for {optimization_algorithm} with {size}
variables. Focus on {optimization}.

4. Write a CUDA implementation for gradient descent optimization with {
size} parameters. Focus on {optimization}.

5. Create a CUDA implementation for particle swarm optimization with {
size} particles in {dimension}D space. Focus on {optimization}.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

CRYPTOGRAPHY AND SECURITY

1. Generate a CUDA kernel for homomorphic encryption operations. Optimize
for {optimization}.

2. Write a CUDA implementation for secure hashing using {hash_algorithm}.
Focus on {optimization}.

3. Generate a CUDA kernel for {crypto_algorithm} encryption/decryption.
Optimize for {optimization}.

4. Create a CUDA implementation for blockchain mining with difficulty {
size}. Focus on {optimization}.

5. Implement a CUDA kernel for password cracking using {cracking_method}.
Optimize for {optimization}.

DATA STRUCTURES

1. Create a CUDA implementation for priority queue with {size} elements.
Focus on {optimization}.

2. Create a CUDA implementation for {data_structure} with {size} elements.
Focus on {optimization}.

3. Implement a CUDA kernel for operations on a B-tree with {size} nodes.
Optimize for {optimization}.

4. Generate a CUDA kernel for skip list operations with {size} elements.
Optimize for {optimization}.

5. Write a CUDA implementation for hash table with {size} buckets using {
collision_strategy}. Focus on {optimization}.

A.8.2 QUALITATIVE COMPARISON WITH OTHER LLMS

We highlight several cases where CASS-7B outperforms existing LLMs such as Claude, Qwen-
Coder, and GPT-4o in faithfully transpiling CUDA to HIP. For example, in one instance, CASS-7B
correctly transpiled the CUDA code while preserving the exact string constants from the original
program, including the label CUDA in the output format string. Maintaining these strings is essential
for preserving the intended user-facing behavior, particularly in logging or debugging scenarios where
clarity and consistency matter. In contrast, Claude, Qwen-Coder, and GPT4o unnecessarily altered the
string to say HIP, despite the output still originating from a CUDA kernel. This substitution introduces
a semantic error, as the original string refers to CUDA, not HIP, and should remain unchanged.

CASS-7B

printf("tanh(%f) = %f CUDA vs %f (CPU)\n",
h_input[idx], h_output[idx], tanh(h_input[idx]));

Claude, Qwen-Coder, GPT4o

printf("tanh(%f) = %f (HIP) vs %f (CPU)\n",
h_input[idx], h_output[idx], tanh(h_input[idx]));

In another example, CASS-7B retained the classical CUDA-style kernel launch syntax using triple
angle brackets (<<<...>>>), while also ensuring that the generated code remained compilable by
correctly including the required HIP header <hip/hip runtime.h>. This demonstrates a high
degree of structural fidelity to the source code, which is especially important for developers familiar with
standard CUDA conventions. In contrast, other models such as Claude and Qwen-Coder replaced the
launch expression with the HIP-specific macro hipLaunchKernelGGL, which, while functionally
valid, deviates from the original representation. More critically, they failed to include the necessary
HIP header, rendering the output uncompilable. This example highlights how CASS-7B goes beyond
syntactic accuracy to produce code that is both faithful to the original structure and immediately usable
in a real compilation setting.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

CASS-7B

#include <hip/hip_runtime.h>
#include <iostream>
...
add<<<(N + 255) / 256, 256>>>(d_a, d_b, d_c, N);

Claude, Qwen-Coder

#include <iostream>
...
hipLaunchKernelGGL(add, (N + 255) / 256, 256, 0, 0, d_a, d_b, d_c, N);

Lastly, when verifying numerical correctness, CASS-7B preserved the original logging behavior by
correctly emitting output to std::cout, as in the source code. This choice maintains consistency with
the original program’s semantics, especially in distinguishing between standard output and error streams;
important in contexts where output may be redirected or parsed. In contrast, GPT-4o unnecessarily
altered the output stream to std::cerr, which, while syntactically valid, changes the runtime
behavior of the program. Such a change could lead to unexpected side effects in downstream tools
or logging pipelines. This example further demonstrates CASS-7B’s attention to both structural and
behavioral fidelity in its translations.

CASS-7B

std::cout << "Error at element " << i << ": " << h_output[I]
<< " vs. expected " << h_reference[i] << std::endl;

GPT4o

std::cerr << "Error at element " << i << ": " << h_output[i]
<< " vs expected " << h_reference[i] << std::endl;

22

	Introduction
	Related Works
	Translating from Nvidia to AMD
	Assembly-to-Assembly Translation
	Datasets and Benchmarks for CUDA and HIP

	Methods
	CUDA Code Scraping
	Synthetic Data Generation
	Transpilation and Compilation
	OpenCL Pipeline

	CASS and CASS-Bench Datasets
	Dataset Analysis
	CASS-Bench

	Experiments
	Results
	Limitations and Future Work
	Conclusion
	Appendix
	Computational Resources and Environmental Impact
	Hardware used
	Carbon footprint

	Prompting Strategy for Closed-source Models
	Evaluation on ZLUDA
	CASS Domain Coverage
	Extra Data Analysis
	Length of Assembly Files
	Opcode Diversity

	Performance Degradation Analysis
	Stratified Benchmarking
	Sythetic Generation
	Prompt Templates for Synthetic CUDA Code Generation
	Qualitative Comparison with Other LLMs

