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ABSTRACT

Enabling embodied agents to complete complex human instructions from natu-
ral language is crucial to autonomous systems in household services. Conven-
tional methods can only accomplish human instructions in the known environment
where all interactive objects are provided to the embodied agent, and directly de-
ploying the existing approaches for the unknown environment usually generates
infeasible plans that manipulate non-existing objects. On the contrary, we pro-
pose an embodied instruction following (EIF) method for complex tasks in the
unknown environment, where the agent efficiently explores the unknown envi-
ronment to generate feasible plans with existing objects to accomplish abstract
instructions. Specifically, we build a hierarchical embodied instruction follow-
ing framework including the high-level task planner and the low-level exploration
controller with multimodal large language models. We then construct a seman-
tic representation map of the scene with dynamic region attention to demonstrate
the known visual clues, where the goal of task planning and scene exploration is
aligned for human instruction. For the task planner, we generate the feasible step-
by-step plans for human goal accomplishment according to the task completion
process and the known visual clues. For the exploration controller, the optimal
navigation or object interaction policy is predicted based on the generated step-
wise plans and the known visual clues. The experimental results demonstrate that
our method can achieve 45.09% success rate in 204 complex human instructions
such as making breakfast and tidying rooms in large house-level scenes.

1 INTRODUCTION

Building intelligent autonomous systems (Huang et al., 2023; Mu et al., 2024; Brohan et al., 2022;
Ahn et al., 2022) to complete household tasks such as making breakfast and tidying rooms is highly
demanded to reduce the laborer cost in our daily life. The agent is required to understand the visual
clues of the surrounding scene and the language instructions, and feasible action plans are then
generated for object interaction with the goal of high success rate and low action cost to accomplish
human demands.

To achieve this, end-to-end methods (Pashevich et al., 2021; Zhang & Chai, 2021; Van-
Quang Nguyen, 2020) directly generate the low-level actions from raw image input and natural
language with the supervision of expert trajectories. To reduce the learning difficulties in the com-
plex task, modular methods (Ding et al., 2023; Inoue & Ohashi, 2022; Murray & Cakmak, 2022;
Liu et al., 2022), sequentially learn the instruction comprehension, state perception, spatial memory
construction, high-level planning and low-level control to complete human goals. Since embod-
ied agents are expected to complete more diverse and complex instructions, large language models
(LLMs) are widely employed in EIF (Lu et al., 2023; Wu et al., 2023; Gordon et al., 2018; Misra
et al., 2017; Shah et al., 2023) due to their strong reasoning power and high generalization ability.
However, existing methods can only generate plans in known environments where categories of all
interactable objects in the scene are given to LLMs. Since the agent does not know the objects in
the unknown environment, the generated plans are usually infeasible because of interacting with
non-existing objects. Figure 1 (a) demonstrates an example of existing methods, where the agent is
unaware that no bottles exist in the unknown environment. Interacting with the non-existent bottles
based on the infeasible plan fails to accomplish the human goals of water serving.
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Figure 1: Comparison between conventional EIF methods and our approach in unknown environ-
ments. Existing methods fail to complete the instruction even with long exploration cost, while our
method efficiently achieves the goal with efficient navigation and object interaction.

In realistic deployment scenarios, household agents usually work in unknown environments without
stored scene maps. Building scene maps in advance cannot accurately represent the scene, where
object properties such as location and existence change frequently due to human activity in daily life.
For example, the mug may be on the dining table and the coffee table respectively when humans
are having dinner and watching TV. Meanwhile, potatoes might have been consumed and tomatoes
are then purchased for the next breakfast. Therefore, failing to generate feasible plans in unknown
environments strictly limits the practicality of the embodied agents. The agent working in realistic
deployment scenarios is required to build real-time scene maps, where feasible plans are generated
with minimal exploration cost.

In this paper, we propose an EIF method for complex tasks in the unknown environment. Differ-
ent from conventional methods that assumes knowing interactable objects in advance, our method
navigates the unknown environment to efficiently discover objects that are relevant to the complex
human requirements. Therefore, the embodied agent can generate feasible task plans in realistic
indoor scenes where the locations and existence of objects are frequently changing. Figure 1 (b)
also demonstrates the same example of water serving implemented by our method, and our agent
efficiently discovers the mug and uses it as the receptacle of water because no bottles exist in the
scene. We first construct a hierarchical EIF framework including the high-level task planner and
the low-level exploration controller with multi-modal LLMs, which are finetuned by the large-scale
generated trajectories of the complex EIF tasks. We then design a scene-level semantic representa-
tion map to depict the visual clues in the known area, through which the goals of the task planner
and the exploration controller can be aligned to feasibly complete human instructions.

More specifically, the goal of the task planner is to generate feasible plans for human instruction
including navigation and manipulation in natural language. The task planner predicts the next
step based on the semantic representation map and the task completion process. The exploration
controller aims at discovering task-related objects with low action cost, which selects the optimal
navigation policy from all navigable borders or object interaction policy according to the semantic
representation map and the generated step-wise plans. For the scene-level semantic feature map, we
project the CLIP features of collected RGB images during exploration to the top-down map with
dynamic region attention, which preserves the task-relevant visual information in the map without
redundancy. The experimental results in ProcTHOR (Deitke et al., 2022) simulation environment
show that our method can achieve 45.09% success rate in 204 complex human instructions in large
house-level scenes.

2 RELATED WORKS

Embodied Instruction Following: The EIF task requires the robot to follow human instructions
represented by natural language in the interactive environment. A key challenge for the EIF task

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

is generating interaction goals and actions grounded in the deployment environment according to
the instructions. Prior works (e.g., LACMA (Yang et al., 2023), E.T. (Pashevich et al., 2021), M-
TRACK (Song et al., 2022)) have explored end-to-end transformer architecture to generate grounded
low-level interaction actions based on the current environment perception, modular approaches (e.g.,
HLSM (Blukis et al., 2022), FILM (Min et al., 2021), LLM-Planner (Song et al., 2023)) propose
enhancing the generalization of unseen scenes with hierarchical planners. However, prior arts have
focused on single-room environments, which are designed for known environments where visual
clues of the whole scene can be easily acquired by looking around. The low scalability of the scene
scale limits their ability to discover required visual clues in unknown environments for feasible
action generation.

Scene Representation for Visual-language Navigation: Visual-language navigation requires
agents to explore unknown environments to locate target objects and follow natural language in-
structions. The primary challenge lies in efficiently representing expansive unknown scenes for gen-
erating navigation policies. Existing scene representations consist of three categories: 2D semantic
maps, 3D geometric maps and scene graphs. Early works (Batra et al., 2020; Anderson et al., 2018)
constructed the 2D semantic maps by projecting visual clues in the top-down view, which are lever-
aged for navigation frontier selection for target finding. PONI (Ramakrishnan et al., 2022) proposed
a scoring network for all potential frontiers of unseen regions 2D semantic maps, and L3MVN (Yu
et al., 2023) determined the semantic relevance of the objects around each frontier to the target by
BERT (Devlin et al., 2018). To embed the geometric information, 3D geometric maps are investi-
gated by fusing the structure and semantic information. LERF (Kerr et al., 2023) and ConceptFusion
(Jatavallabhula et al., 2023) integrated fine-grained alignment of semantic features with 3D maps in
SLAM, multi-view fusion, and NeRF (Mildenhall et al., 2021) for multiple downstream tasks. To
reduce the storage overhead, scene graphs (Gu et al., 2023; Hughes et al., 2022) are proposed to
represent objects or concepts as nodes and spatial relations as edges to represent the scene topology
efficiently. SayPlan (Rana et al., 2023) enabled agents to focus on task-relevant nodes by integrat-
ing subgraph folding and replanning mechanisms. Inspired by the above approaches, we construct
semantic feature maps to empower embodied agents to explore unknown environments, where task-
relevant information can be acquired for action generation with low exploration cost.

3 PROBLEM STATEMENT

Given the human instruction I in natural language, the robot should generate a sequence of ac-
tion primitives including (PickUp, Place, Open, Close, ToggleOn, ToggleOff,
Slice) to complete the instruction. The agent can only acquire the scene information for in-
struction following via an RGB-D camera mounted on the agent, through which the agents build a
semantic map S to generate the feasible interaction. In realistic deployment, the embodied agent
usually work in unknown environments, where the location and existence of objects in the house-
level scene are not known. Therefore, we add an additional action primitive (Navigation) to
enable the agent to explore the scene for visual information collection.

The agent consists of a high-level planner that reasons step-by-step plans P = {pi}Ti=1 from human
instructions and a low-level controller that predicts the specific actions A = {aij}

τi
j=1 for each step

for scene navigation or object interaction. T means the number of steps to achieve the human goal,
and τi is the number of special actions to achieve the ith step in the high-level plan. The high-level
planner is represented by natural language (e.g. Step 2. Heat the potato) given the human instruction
(e.g. Can you make breakfast for me?), and the low-level controller transfers the step-by-step plans
into executable actions with action primitives, location and target objects (e.g. Place, potato, (10,
8) or Navigate, frontier, (2, 3)). Finally, the agent only manipulates the existing relevant objects
to achieve human goals.

4 APPROACH

In this section, we first introduce the overall pipeline of our EIF method designed for unknown
environments, and then we describe the details of the high-level planner and the low-level controller.
Moreover, we elaborate the construction of the online semantic feature maps that ground the planner

3
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Figure 2: Overview of our approach. The scene feature map is constructed based on real-time
RGB-D images, which is leveraged as visual clues for the high-level planner and the low-level
controller. The planner generates the step-wise plans, which are leveraged to predict the specific
actions in the controller. The optimal border between unknown and known regions is selected for
scene exploration, and the scene feature map is updated with the visual clues seen in during the
exploration.

and the controller to the physical scene. Finally, we demonstrate the model training and the inference
of our framework in practical deployment.

4.1 OVERALL PIPELINE

In realistic deployment scenarios of household robots, the physical world is usually unknown for
the agent because the existence and locations frequently change due to human activity. Therefore,
the agents are required to construct the online scene feature map according to the real-time visual
perception during the robot navigation, through which the agent generates feasible step-by-step plans
to achieve the human goal and the efficient exploration trajectories for the unknown scene including
navigation and object interaction to complete each step in the plan. Figure 2 demonstrates the overall
pipeline of our agent. The scene feature map represents the visual clues of the scene in the top-down
view based on the collected RGB-D images during exploration, where the pre-trained features of
regions with higher relevance to the instruction are assigned with higher importance for feature map
construction. The high-level planner generates the plans for the next step with natural language
based on the task completion process and the semantic feature map, and the low-level controller
predicts the templated action primitives, location and target objects for executable navigation or
manipulation based on the scene feature map and the plan for the next step.

4.2 HIERARCHICAL EMBODIED AGENTS FOR EIF IN UNKNOWN ENVIRONMENTS

We decompose EIF in unknown environments into two sub-tasks including the high-level planning
and the low-level exploration. The generated high-level plans are leveraged as guidance for the
agent to select the most relevant regions for exploration, and the predicted low-level actions update
the semantic feature maps to provide visual clues for feasible plan generation. Both the planner and
the explorer are implemented by a finetuned LLaVA model.

High-level planner: The planner generates the plan for the next step in natural language, which
considers the textual information including the human instruction and the completed steps and the
visual clues represented by the semantic feature maps. The forward pass of the high-level planner
HP can be represented as follows:

pi = HP (I, {pk}i−1
k=1;Si−1) (1)

where Si means the semantic feature maps updated in the ith step and we leverage a LLaVA model
whose visual encoder is the ViT-L/14 architecture for the high-level planner.
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Low-level controller: The low-level controller predicts the specific actions including the action
primitives, locations, and target objects according to the generated high-level plans and the semantic
feature maps, which explores the unknown scene and completes the step-wise plan. The forward
pass of the low-level controller LC can be represented as follows:

{aij , lij , oij} = LC(pi, {f i
m}m; {sim}m) (2)

where lij and oij are the predicted location and target objects for the jth actions in the ith step of
the high-level plan. Meanwhile, f i

m means the textual features of the mth segment of the frontier
between known and unknown regions for Si, where m represents the number of frontier segments
in the entire Si. The textual features are demonstrated by the coordinate of the middle point for
the frontier segment. sim denotes the semantic features of the mth frontier segments, which is
demonstrated by the semantic feature map patches containing the corresponding frontiers. The low-
level controller not only explores the unknown scene with navigation and object interaction but also
completes the step-wise plans by manipulating the target object (e.g. pick up the tomato). For action
primitives except for navigate, the predicted actions are implemented on the target objects. For
navigate, the robot just moves to the predicted locations without object interaction.

4.3 ONLINE SEMANTIC FEATURE MAPS

The high-level planner and the low-level controller should be aligned so that they can generate
feasible plans and exploratory actions to achieve human instructions in the unknown environment.
The semantic feature maps can be leveraged for alignment since they provide visual clues of the
scene for both the high-level planner and the low-level controller. In realistic deployment scenarios
of household robots, the existence and locations frequently change due to human activity. Therefore,
we propose an online semantic feature map that is dynamically updated during the exploration of
the unknown scene for each human instruction.

Semantic feature maps represent the visual cues from image observations in top-down view. Com-
pared with simple semantic maps which store the object categories of pixels, our semantic feature
maps can represent implicit relationships between objects in the scene, which provides crucial in-
formation for effective exploration policy generation. For EIF in unknown environments, the visual
information collected in the ith timestep contains the RGB image Ci and the depth image Di. To en-
able the semantic feature maps to acquire high generalization ability in diverse human instructions,
we leverage CLIP to extract the pixel-wise visual features f ixy at time i for the pixel in xth row and
yth column of Ci by fusing the feature of the entire image and that of the instance mask containing
the corresponding pixel. The visual features contribute to the projected location in the scene feature
map in the top-down view, which can be depicted as follows:

Fi
uv =

∑
x,y

f ixy · I(P((x, y), Di) ∈ S(u, v)) (3)

where Fi
uv means the contribution to the element in the uth row and vth column of the semantic

feature map from the visual information collected in time i, and P((x, y), Di) demonstrates the
projected coordinates in the top-down view for of the pixel (x, y) based on the depth image Di.
S(u, v) means the pixel in the uth row and vth column in the semantic feature map, and the indicator
function I(·) equals one for true and zero otherwise.

The semantic feature map is updated at each time step during the exploration process, where the
agent observes new visual information for recording. Since the house for embodied instruction
following in realistic world is usually very large, regarding all images with equal importance in
semantic feature map construction leads to significant information redundancy. Meanwhile, different
visual clues usually make various contribution to the given human instruction. Therefore, we should
assign large importance to relevant visual clues when updating the semantic feature maps, so that
sufficient visual information can be represented without redundancy for high-level planning and
low-level exploration. The task relevance can be acquired as follows. The high-level planner is also
required to generate the demanded objects {Ok}k for the predicted corresponding step-wise plan,
which are leveraged to construct three prompts including (a) the image contains {Ok}k, (b) the
image does not contain {Ok}k and (c) the image contains nothing. We then leverage a pre-trained
LongCLIP (Zhang et al., 2024) to predict the similarity score between the image and all prompts.
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Finally, the online semantic feature map is updated with dynamic region attention:

Si
uv = (1− wi)S

i−1
uv + wiF

i
uv, wi = ci/

1

i

i∑
k=1

ck (4)

where Si
uv means the features in the ith row and jth column of the semantic feature maps at time

i. The normalized weight wi represents the importance of the current semantic features compared
with known visual clues, where ck is the original similarity score between the image and the prompt
in the kth time step. The online semantic feature maps contain rich visual information, and the
most relevant regions can be explored via navigating the optimal border and interacting with related
objects to achieve human goals with minimized action cost.

4.4 TRAINING AND INFERENCE

Training: The training samples for the high-level planner consist of human instruction, current
completed plans, current semantic feature maps and the groundtruth plan for the next step, and those
for the low-level controller include plan for the next step, textual and semantic features for current
border segments and the groundtruth action sequences representing primitives, location and targets.
The details of input and output are provided in Appendix B.

We leverage GPT-4 and the ProcTHOR simulator to generate the large-scale dataset to train the
LLaVA-based high-level planner. We annotate several seed instructions and leverage GPT-4 to
generate more instructions and corresponding plans based on the object list for each scene in the
ProcTHOR, where samples with logical errors are filtered with PDDL parameters (Shridhar et al.,
2020a). We then implement the generated plans in ProcTHOR and collect the navigation trajectories,
RGB-D images, object locations and robot poses as the training data. Finally, the generated samples
are parsed into high-level planning samples and low-level action data. We follow the supervised
fine-tuning paradigm in LLM for training the LLaVA model in high-level planner and low-level
controller, where we mask out pi and {aij}

τi
j=1 in the ith step. In the training stage, we propose to

construct counterfactual samples to motivate the inference ability of the foundation model on EIF.
Specifically, we remove the target objects in the scene descriptions from the original samples and
replace them with target objects that have similar other properties such as usage through an artifi-
cial mapping method. Diverse contexts are created for the foundation model fine-tuning to mitigate
overfitting to fixed scene layouts, with the expectation that the foundation model generates suitable
target objects through mining connections between human instructions and the scene objects at a
deep level. For example, the fine-tuned high-level planner can adaptively select interactive cups,
mugs, or bowls based on the scene information to satisfy the demand of drinking water.

Inference: The high-level planner generates the planning for the next step based on the current
RGB-D image and scene information represented by the semantic map, and the low-level controller
predicts the action primitives, target object and interaction position based on the generated step-wise
plan. The semantic feature maps are updated when implementing the low-level action sequences.
The high-level planner will generate the plans for the next step only when the current low-level
action is successfully achieved. The detailed process is illustrated in Appendix C.

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

Training configurations: We employed the LLaVA-7B architecture with the Vincua-1.3-7B pre-
training weights for the high-level planner and the low-level controller, which is finetuned with our
generated data by the LoRA strategy. For the visual encoder, we sampled 32 visual embeddings from
each frontier in the semantic feature maps up to 256 tokens as scene information representation. We
generated 2k instructions with three subparts (1386 target-specific short, 333 target-specific long
and 332 abstract instructions) for 2509 scenes in ProcTHOR, which results in 30k groundtruth plans
for training the high-level planner. We implemented the plans in ProcTHOR with A∗ algorithm to
collect the expert trajectory as the groundtruth for training low-level controller. Target-specific short
and long instructions mean those containing objects to be interacted (e.g. Place the egg in the bowl)
for task achievements, whose number of step plan is respectively lower than 15 and not. Abstract
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Table 1: Comparison with different EIF methods across different instructions in the ProcTHOR
simulator, where LLM-P∗ represents the LLM-P without performing re-planning.

Method Normal-scale Large-scale
SR PLWSR GC PLWGC Path SR PLWSR GC PLWGC Path

Target-specific Short
LLM-P∗ 27.86 23.49 41.50 35.35 25.27 17.16 11.70 33.25 22.87 65.75
LLM-P 28.36 23.62 42.33 35.57 27.47 18.63 12.64 35.21 24.63 63.47
FILM 5.97 5.97 11.17 11.17 16.55 0.49 0.49 4.84 4.84 33.68
Ours 45.77 40.75 57.88 51.14 23.29 45.09 34.41 58.21 43.13 59.11

Target-specific Long
LLM-P∗ 5.97 5.14 18.91 17.26 60.56 1.52 0.82 15.28 13.05 78.03
LLM-P 5.97 4.80 19.65 17.30 64.89 1.52 1.01 16.04 14.17 64.14
FILM 0.00 0.00 4.14 4.14 79.17 0.00 0.00 6.26 6.26 70.14
Ours 13.43 12.44 27.11 24.67 62.21 19.70 17.34 35.61 31.08 78.99

Abstract
LLM-P∗ 1.32 0.92 15.68 12.57 38.69 6.16 2.83 16.92 11.21 70.92
LLM-P 3.95 2.33 16.78 12.45 36.27 6.16 3.58 18.15 12.42 67.20
FILM 0.00 0.00 4.87 4.87 33.23 0.00 0.00 8.02 8.02 49.45
Ours 10.53 8.09 24.23 19.68 35.90 9.59 5.74 21.30 15.01 61.54

instructions do not contain the interacted objects in the instructions (e.g. Make a simple lunch for
me). We also generate 201, 67 and 152 data for each subpart as the test set. We utilized 8 NVIDIA
3090 GPUs to finetune the high-level planner and the low-level controller for an hour in the training
stage. More details are provided in Appendix B.

Sink

Tomato

Knife

Figure 3: Example visualization of dy-
namic region attention weights.

Metrics: Following the ALFRED benchmark (Shridhar
et al., 2020a), we use success rates (SR), goal condition
success (GC), path length and their path-length-weighted
(PLW) counterparts for evaluation. SR means the ratio
of the cases where the agent completely achieve the hu-
man instructions, and GC measures the ratio of objects
in the state of goal achievements. PLWSR and PLWGC
calculate SR and GC weighted by the expert trajectory
planning step number divided by the actual execution step
number, which measures the trade-off between perfor-
mance and efficiency.

Simulated environments: We perform extensive exper-
iments in the ProcTHOR simulators, where the step size
of translation and rotation for the agent is 0.25m and 90◦

respectively. ProcTHOR contains 10k house-level scenes with objects from 93 categories, where
the agent receives 600 × 600 RGB-D images in the egocentric view. We divide the scenes into
normal-scale ([0, 10]) and large-scale ([10, 16]) ones based on the side length of the room.

5.2 COMPARISON WITH BASELINES

Table 1 demonstrates the results on ProcTHOR for LLM-Planner, FILM and our method, where
our approach significantly outperforms the state-of-the-art-method LLM-Planner. Although LLM-
Planner utilizes the rich commonsense embedded in LLMs to generate plans for the agent, it fails
to align the pre-trained LLMs with the scene information. The generated plans are usually infea-
sible due to the non-existence of the objects for interaction, and the re-planning module suffers
from low success rate and low efficiency. On the contrary, our method construct the semantic fea-
ture maps which grounds the pre-trained multimodal LLMs to the realistic physical scene, and the
unknown environment can be efficiently explored by understanding the visual clues for executable
plan generation. In the target-specific short task setting, it is observed that our method outperforms
LLM-Planner and FILM by 17.41% and 39.80% success rate in normal scale scenes, respectively. It
is worth noting that our method loses less than 2% success rate in transferring to large-scale scenes,
while LLM-Planner and FILM lose 34% and 91% success rate, respectively, which demonstrates the
excellent scalability of our method in scene scales. Our approach remains leading in performance
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91

18

12

23

31

25

10
6

Total failure

Navigation failure

Planning failure

Action missing

Interaction error

Target not found

Too close to targets

Perception error

Object in closed receptacle

Wrong targets or action
1

Figure 4: All failure cases on ProcTHOR
simulator.

Table 2: Effectiveness of our generated plans and explo-
ration actions.

Method GT Normal-scale & target-specific short
Plan. Exp. SR PLWSR GC PLWGC Path(m)

Ours

✓ ✓ 64.18 62.51 72.76 69.54 18.23
✓ - 49.75 47.20 60.07 56.38 21.64
- ✓ 55.72 53.20 66.67 62.71 14.70
- - 45.77 40.75 57.88 51.14 23.29

Table 3: Ablation study of different scene feature maps.

Method Normal-scale & target-specific short
SR PLWSR GC PLWGC Path(m)

No Map 41.29 35.03 54.25 46.54 27.59
No Attention 44.78 39.02 56.63 49.40 24.54
Random Attention 44.27 38.24 56.72 47.96 25.90
Ours 45.77 40.75 57.88 51.14 23.29

Move to the fridge 
to find an apple

Move to the fridge 
to find an apple

Open the fridge and 
pick up the apple

Open the fridge and 
pick up the apple

Try to find sink for 
cleaning apple

Try to find sink for 
cleaning apple

Try to find knife for 
slicing apple

Try to find knife for 
slicing apple

 Pick up knife for 
slicing apple

 Pick up knife for 
slicing apple

Put the apple in the 
sink to clean it

Put the apple in the 
sink to clean it

Fetch an apple for breakfast

unknown 
environment

frontier A

Unknown 
environment

Open
Fridge

[10.25, 12.50]

Open
Fridge

[10.25, 12.50]

Navigate
[13.25, 9.75]

Navigate
[13.25, 9.75]

Navigate
[11.25, 14.75]

Navigate
[11.25, 14.75]

PickUp
Knife

[12.25, 14.75]

PickUp
Knife

[12.25, 14.75]

Place
Sink

[13.25, 10.25]

Place
Sink

[13.25, 10.25]

Navigate
fridge

[10.25, 12.50]

Navigate
fridge

[10.25, 12.50]

Figure 5: An example of EIF in unknown environments. The agent only navigates the task-related
regions for visual clue collection with high efficiency, and generates feasible plans to complete the
abstract instructions.

in more challenging target-specific long and abstract tasks. Meanwhile, the leading PLWSR and
PLWGC metrics verify that our low-level controller can find the target object at a lower navigation
cost. Moreover, the success rate of conventional methods (e.g., FILM) in the large-scale scenes is
near zero, while our approach can achieve 9.59% success rate. Since the service robot is usually
deployed in house-level scenes, our method is proven to be more practical.

We demonstrate the qualitative results in Figure 5, where we show the step-wise plan, the exploration
process and the robot implementation during a whole sequence for EIF. In the beginning, the agent is
initialized in the bedroom area and selects the navigation borders outside the room for exploration,
as the instruction ’making breakfast’ is irrelevant to bedrooms. During the navigation, the agent
gradually knows to explore the kitchen area by observing the dining table and the counter, and it
is even aware that opening the fridge may find food for breakfast due to the rich commonsense in
our finetuned low-level controller. As a result, abstract instruction is achieved by serving diverse
food for breakfast, where only related regions are navigated with high exploration efficiency in the
unknown environment. Figure 4 illustrates the statistics of failure cases caused by different reasons.
The failure mostly comes from unsuccessful navigation because of the large house-level scene, and
the top reasons including ’too close to targets’ and ’fail to see closed space’ indicate that navigation
algorithms should be designed with high compatibility of the subsequent manipulation.
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Table 4: Ablation experimental results of exploration strategies in the task-specific short setting,
where No Exp. and No Front. represent no exploration and no frontiers exploration, respectively.

Method Normal-scale Large-scale
SR PLWSR GC PLWGC Path SR PLWSR GC PLWGC Path

No Exp. 29.85 29.09 42.08 40.92 6.09 11.27 10.68 24.26 22.99 5.32
No Front. 41.29 35.03 54.25 46.54 27.59 36.76 26.91 49.35 35.51 52.38
Ours 45.77 40.75 57.88 51.14 23.29 45.09 34.41 58.21 43.13 59.11

5.3 ABLATION STUDIES

Effectiveness of the high-level planner and the low-level controller: We evaluated the variants of
our method where the planner and the controller are respectively replaced with the groundtruth step-
wise plans and groundtruth action sequences. It is important to note that some of the failure causes
(e.g., too close to the target) illustrated in Figure 4 could not be resolved even with GT step-by-
step planning and navigation goals. Table 2 demonstrates the results where the performance of our
methods is close to that of the groundtruth, which indicates the effectiveness of our LLaVA-based
planner and controller. Moreover, the performance of active exploration in low-level controller
mainly influences the success rate, since it is important to find the correct objects to interact in
unknown environments. Meanwhile, low-level controller significantly impacts the path length since
directly exploring the related regions enables the agent to accomplish the instruction faster.

Effectiveness of the online semantic feature map: The semantic feature map provides visual
information of explored regions for the planner and the controller to generate feasible plans and
efficient actions, and we report the performance of different semantic maps to validate the effective-
ness of our method. Table 3 demonstrates the results for the settings of no semantic maps, semantic
maps with only category information, semantic feature maps without dynamic attention and our
semantic feature maps. The results demonstrate that the implicit rich semantic features are neces-
sary for effective exploration of unknown environments, and the dynamic attention also enhances
the performance of the semantic feature map as it removes the information redundancy for the large
house-level scenes. We also visualize the dynamic region attention when the agent builds the seman-
tic feature map in the unknown environment as illustrated in Figure 3. For the instruction Slice the
tomato for salad, the features of the kitchen area especially the tomato and the sink are considered
with high attention(The green color represents greater weight), which indicates that the dynamic
region attention learns relevant visual clues for feasible action generation.

Effectiveness of active exploration: Existing EIF frameworks often lack active exploration ca-
pabilities, making them difficult to deploy in unknown environments. Our approach addresses this
limitation by utilizing pre-trained models to construct fine-grained semantic feature maps and lever-
aging foundation models to generate task planning and interaction actions based on these maps. Ta-
ble 4 demonstrates the ablation experiments for different exploration strategies in the target-specific
short setting. In house-level unknown environments, the no-exploration strategy reduces success
rates by 15.92% and 33.82% for normal and large-scale settings, respectively, highlighting the im-
portance of active exploration in unknown environment EIF tasks. The efficiency of active frontier
exploration is demonstrated by the fact that the success rate of the navigation strategy without fron-
tier exploration is reduced by 4.48% and 8.30%, respectively, with comparable navigation costs
compared to our approach.

6 CONCLUSION

In this paper, we have proposed an EIF approach for unknown environments, where the agent is re-
quired to explore the environment efficiently to generate feasible action plans with existing objects to
achieve human instructions. We first build a hierarchical EIF framework including a high-level plan-
ner and a low-level controller, and then build a semantic feature map with dynamic region attention
to provide visual information for the planner and the controller. Extensive experiments demonstrate
the effectiveness and efficiency of our framework in the house-level unknown environment. How-
ever, this work lacks real manipulation implementation and the designed navigation policy ignores
the compatibility with manipulation. We will design mobile manipulation strategies for general tasks
and implement the closed-loop system on real robots in the future.
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A EXTENDED RELATED WORK

Detailed comparison to FILM: Both our approach and FILM are hierarchical EIF frameworks
containing high-level and low-level controllers. We provide the following detailed technical com-
parisons.

In terms of task planning, FILM employs language models (e.g., Bert) to classify task instructions
into fixed categories (7 categories on ALFRED) and generates step-by-step planning based on fixed
task parsing templates, which leads to poor scalability of FILM for complex task instructions. In-
stead, our approach uses a foundation model (LLaVA-7B) to parse task instructions based on the
context, resulting in excellent scalability of our approach on complex task instructions (long se-
quences, abstract).

In terms of scene map construction, FILM constructs maps with explicit object categories, which
results in the loss of significant fine-grained semantic information about objects (e.g., texture, usage).
Instead, we construct scene maps with semantic features extracted from pre-trained models, fully
exploring the semantic relationship between scenes and instructions, providing improved alignment
of scene information with task planning.

In terms of reasoning, FILM dynamically samples subgoals based on environmental response and
execution, and backtracks to previous subgoals to retry in case of interaction failure. Benefiting
from the geometric and semantic information embedded in the scene semantic feature maps, our
approach can dynamically generate high-level task planning and low-level interaction actions based
on the environment state, as well as leverage the scene frontier to efficiently explore the unknown
scene during reasoning.

Detailed comparison to LLM-Planner: Both our approach and LLM-Planner are hierarchical EIF
frameworks containing both high-level and low-level controllers, and utilize large language models
for task planning. We provide the following detailed technical comparisons.

In terms of scene map construction, LLM-Planner constructs scene maps in the same way as FILM
utilizing explicit semantics. In contrast, our approach employs semantic feature maps that can con-
tain more fine-grained information.

In terms of reasoning, LLM-Planner directly utilizes the scene object category list as scene infor-
mation, and the high-level controller generates the subgoals required to complete the instructions,
and then invokes the previously working low-level controller to ground the subgoals to specific
interaction actions. Meanwhile, LLM-Planner generates subgoals dynamically with re-planning
mechanism to better adapt to scene changes. On the contrary, our approach directly uses latent se-
mantic features as scene information, allowing the foundation model to fully exploit the relationship
between scene objects and instructions to generate efficient task planning and interaction actions.
Meanwhile, our approach can fully utilize the scene map geometry information to generate efficient
exploration strategies compared to LLM-Planner to fully perceive the unknown scene information.

B TRAINING AND TESTING DETAILS

High-level planner and low-level controller: In the supervised instruction fine-tuning stage, we
reduce memory usage via DeepSpeed ZeRO-2. The learning rate for the feature mapping layer and
the LLM backbone network is set to 2×10−5, and the batch size is set to 8. Fine-tuning is performed
for only one epoch. Since the semantic feature maps have been constructed through CLIP, the scene
visual tokens are directly fed into the mapping layer without the visual coder during the training
stage. The CE loss leveraged in the training process is represented by:

L = −E(XT ,R)∼D

[ M∑
m=1

log pθ(Rm|R<m,XV ,XT )
]

(5)

where XV denotes scene feature maps and XT means input text prompt tokens. R<m represents
the output text tokens before the mth token Rm and M arenumber of output tokens. In this way, the
pre-trained multimodal LLMs can be grounded to high-level planning and low-level control tasks in
realistic scenes, where executable plans and actions are generated based on the scene representation.
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Figure 6: Details of frontier representation and region attention weights.

Visual perception: We selected 100k images from the captured expert trajectories as the training
set for instance segmentation model Detic(Zhou et al., 2022), fine-tuning the pre-trained model with
the learning rate of 1 × 10−4 and performing 180k iterations. The batch size is set to 16 and the
Adam optimiser is applied.

FILM implementation details in ProcTHOR: FILM contains three modules: task classifier, pa-
rameter classifier and instance segmentation. We use the generated instruction-following dataset to
retrain the BERT-based task classifier and parameter classifier. Meanwhile, the instance perception
module is replaced with the fine-tuned Detic from ProcTHOR scene to ensure a fair comparison.
Depth information is directly used GT which is not the depth estimation model employed by FILM.

LLM-Planner implementation details in ProcTHOR: LLM-Planner mainly employs GPT-3 for
task planning, since LLM-Planner is only partially open-sourced and the cost of invoking GPT-
3’s API is expensive, we employ the LLaMA-7B model instead of GPT-3. To further improve
the performance of LLaMA-7B on EIF tasks, we fine-tune it using the generated instruction tuning
dataset LLaMA-7B to ensure a fair comparison. The instance segmentation employs the same Detic,
depth information from GT.

C INFERENCE DETAILS

Algorithm 1: Inference Process
input : Human instruction I , high level planner

HP , low-level controller LP , scene
observation O, maximum number of
performing step T .

initialization: Random load into the unknown
scene;

for i← 0 to T do
Constructing semantic feature map Si via (3);
Generate step planning pi based on Si via (1);
if end in pi then

Break
end
Compute attention wi and update Si by (4);
Generate action {aij , lij , oij}

τi
j via (2);

for j ← 0 to τi do
Execute aij ;

end
end

Overview: At the ith time, the agent
surrounds to perceive the scene informa-
tion and constructs semantic feature map
Si and frontiers mask. Then, the agent
will generate the ith high-level planning
pi based on the scene information, user in-
struction I and finished step-by-step plan-
ning {pk}i−1

k=1. The low-level controller
generates specific interaction actions aij ,
target objects oij and positions lij based on
pi, semantic feature {sim} and textual fea-
ture f i

m: 1) If the oij is observed by the
agent, lij will be the location recorded on
the map; 2) If not be observed, lij will be
the frontier position. During the inference
process, each instruction I performs up to
30 steps of high-level planning.

Frontier representation: We follow (Yu
et al., 2023) to generate frontier masks
that distinguish between known and un-
known regions based on the occupancy
map. Through connected component analysis, we obtain the mask of each frontier instance. We
further remove frontiers with areas smaller than the threshold (150 pixels) to reduce redundancy
exploration. We sample 32 visual embeddings as frontier tokens according to the frontier instance

14
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ProcTHOR SceneALFRED Scene

Figure 7: Comparison of ALFRED and ProcTHOR scene layouts and area distribution statistics
results.

mask on the corresponding region of the feature map, while utilizing the coordinates of their cen-
troids for the frontier text description. The specific representation is illustrated in Figure 6 (a).

Table 5: Results regarding frontier thresholds.

Thresholds SR Path(m)
70 45.77 36.50

100 46.27 30.41
150 45.77 23.29
200 43.28 19.32

Region Attention: Since the importance of
the observed image for the completed instruc-
tion is different for each frame, it is desirable
to assign higher weights to task-relevant visual
embeddings to enable LC to generate more ef-
ficient navigation exploration planning. HP
generates target objects that might be required
to interact to complete instruction I while gen-
erating pi and converts them into a sentence describing Ldec. However, measuring the relevance of
an image to the instruction with only a single description is not discriminative enough to highlight
task-relevant regions on the feature map. To this end, we add additional variants of descriptions to
calibrate the relevance of images to their corresponding descriptions for exploiting the prior knowl-
edge of the pre-trained models extensively. Specifically, we further expand Ldec into Ldec and Lnone

to match the input requirements of image and text alignment models such as CLIP. Ldec and Lnone

describe the image as not containing the target objects and not containing the objects, respectively.
We adopt LongCLIP (Zhang et al., 2024) to retrieve the similarity between

{
Ldec, Ldec, Lnone

}
and

RGB images as illustrated in Figure 6 (b), and consider the score of Ldec as the attention weight.

D MORE RESULT

Comparison of ALFRED and ProcTHOR scenes: Figure 7 illustrates the scene layout and scene
area statistics in ALFRED and ProcTHOR.The scenes in ALFRED are a single room (e.g., kitchen,
bedroom), and agents deployed in ALFRED can easily perceive the complete scene information,
which results in the agents being limited to generating plans in known environments. Meanwhile,
the scene area in ALFRED is centrally distributed in [10, 30] , and previous approaches are less
scalable in terms of scene size. On the contrary, the scenes in ProcTHOR are expansive house-level,
and agents deployed in ProcTHOR can only perceive partial scene information, which requires
the agents to construct real-time scene maps, in which feasible plans are generated with minimal
exploration cost. The scene area in ProcTHOR is centrally distributed in >100, which is more
scalable than ALFRED in terms of large-scale scenes.

Influence w.r.t. navigation frontier construction: Navigation frontier means the border between
the known and unknown regions, which are represented by multiple segments. We only select the
frontiers that are longer than a threshold as the candidates for agent navigation, because extremely
short frontiers usually indicate corner regions that reveals uninformative information. Therefore,
we can enhance the exploration efficiency significantly. Table 5 illustrates the success rate and path
length for different thresholds. The results demonstrate that low thresholds result is redundant nav-
igation with high path length, while high thresholds degrade the success rate because of important
scene information. We set the frontier threshold to 150 pixels to achieve higher performance and
navigation cost trade-off.
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Table 6: Ablation experiment results for high-
level task planner.

Method Normal & Short
SR GC Path(m)

FILM 5.97 11.17 16.55
Ours w/ BERT 24.38 39.81 20.64
Ours 45.77 57.88 23.29

Table 7: Ablation experiment results for the foun-
dation model on the sub-test dataset.

Method Normal & Short
SR GC Path(m)

GPT-4 35.00 53.33 19.39
Conv-LLaVA 40.00 58.33 17.40
Ours 45.00 61.67 21.03

Influence w.r.t. high level planner: To fur-
ther clarify the performance improvement of
the model, we follow the FILM setting and use
BERT to recognize the target objects from the
instructions and generate high-level plans by
filling the target objects into the correspond-
ing parsing templates according to the predicted
task categories. Table 6 illustrates the results
demonstrating that changing the LLaVA-7B to
BERT occurred with performance decreases,
and the performance still outperforms the FILM
due to the ability of the low-level controller to
explore unknown regions to find the target ob-
jects.

Influence w.r.t. foundation models: Ta-
ble 7 illustrates the results demonstrating that
grounding the foundation model of e.g. GPT-4
to downstream EIF tasks using only prompt is
not effective compared to fine-tuning MLLMs, which also suggests that the data synthesized by
GPT-4 cannot be used directly for training and still requires post-processing. Meanwhile, the per-
formance of different MLLMs (e.g. Conv-LLaVA (Ge et al., 2024)) does with little difference,
consistent with the conclusion of the language model scaling law (Kaplan et al., 2020) that the main
factor affecting language models of the same parameter size is the dataset scale.

Qualitative results: We demonstrate more unknown environment EIF execution sequences to
reflect the superiority of our approach.

E DATA

Training Data: Existing EIF datasets are still limited in instruction diversity and scene scale. We
design a dataset synthesis framework to minimize the generation cost and increase the scale of EIF
datasets, enabling agents to adapt to large-scale unknown scenes and complex tasks. Therefore,
the dataset synthesis framework consists of two main stages. The first stage is to employ GPT-4 to
generate extensive high-level planning with corresponding low-level actions based on prompt and
scene information, then filter logical error samples with TextWorld (Shridhar et al., 2020b). The
second stage is to execute the interactions specifically with the oracle in the simulator, grounding
the generated plans and actions into the physical scene and collecting expert trajectories.

TextWorld data generation: We collect object lists contained in each scene as scene information
in ProcTHOR, consisting of the location and size of each object. GPT-4 will generate task plans
based on the object information and prompts. Specifically, we annotated 22 seed tasks manually to
inspire GPT-4 to generate confirmed responses. Each response contains instructions, step-by-step
high-level actions, and corresponding low-level actions. We further employ self-instruction (Wang
et al., 2022) to ensure the diversity of instructions(The similarity filtering threshold is set to 0.9).
Meanwhile, GPT-4 will generate PDDL parameters that satisfy the ALFRED benchmarks to verify
the feasibility of the planning. The generated candidate samples are sent to TextWorld and check
whether the task can be executed based on the PDDL parameters to ensure the quality of the training
dataset.

Grounding the generated plans: The synthetic dataset that passes the PDDL check is fed into
the ProcTHOR simulator for specific interactions. We collect navigation trajectories in ProcTHOR
based on the planning generated in the first stage under oracle settings, which contain RGB images,
depth maps, segmentation masks, and robot poses. According to the semantic feature map building
approach presented in Section 4.3, we obtain real-time semantic feature maps Si, frontier text fea-
tures {f i

m}m, and semantic embedding {sim}m sequences as the agents perform interactions. Based
on the step-by-step planning generated by GPT-4, we split the above sequences into step-by-step
instruction-following samples. As for HP , we feed instruction I , scene information Si and com-
pleted steps {pk}i−1

k as prompts, expecting to generate the next step pi+1 to be done. Meanwhile, in
order to ensure the consistency of the high-level task planning, we require HP to give the planning
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Instruction: Prepare a vegetable for a salad by slicing it 
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Figure 8: Our approach active search for lettuce in the fridge to complete the instruction.

of all subsequent actions as illustrated in Figure 10 (a). For LC, we take the current pi, frontier
text features {f i

m}m and semantic features {sim}m as prompt, and expect LC to output the action
primitives executed by the agent under the oracle setting. Specifically, if the agent observes the
target object, LC generates the specific target and action primitive based on the input pi. If it does
not observe, we require LC to generate the closest frontier to the oracle path as the next exploration
region. LC training samples are as illustrated in Figure 10 (b).

F PROMPT

Figure 11 briefly demonstrates the prompt words employed to inspire GPT-4 in generating the EIF
dataset, which consists of the following four main parts:

System Prompt: Primarily designed to set up the GPT-4 contextual environment for generating
task planning based on a virtual robot. Specifically, the system prompts contain the tasks that the
GPT-4 needs to complete, and the role it needs to perform. Meanwhile, the rules that need to be
followed for the response are also given in detail.

Action Primitive: It is applied to constrain the scope of the interaction action generated by the GPT-
4 to ensure that it is executable. Each action primitive prompt contains both the action description
and response format. Specifically, the action description provides GPT-4 with information about
what each action primitive can perform in the simulator, e.g., Toggle to start an appliance, open to
unlock containers, etc., while the response format informs GPT-4 about how the action primitive
relates to the target object, e.g., the target of the Put action is a container rather than the object in the
hand.
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Figure 9: Our approach consistently completes complex instructions for preparing breakfast in large-
scale unknown scenes.

Response Format: Ensure consistency in response format to parse specific instructions, planning
and actions.

PDDL Params: Record the requirements for the completion of the instruction, including the target
object and its state. An interaction is only successful if the state of the target object in the scene
matches the PDDL parameter record.
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Instruction: 
Take an Apple from the Fridge, clean it .

Object List: 
[Laptop, SprayBottle, Spoon, Plate, Fridge, Apple]

Done Actions:
Step 1. Move towards the Fridge to get the Apple.
Step 2. Open the Fridge to access the Apple.
Step 3. Move to where the Apple is located inside the Fridge.

Human 
Value

Current Action:
Step 4. Pick up the Apple from the Fridge.

Planning Action:
Step 5. Move to the Fridge.
Step 6. Close the Fridge after taking the Apple out.
Step 7. Head over to the Sink to wash the Apple.
Step 8. Place the Apple in the Sink to wash it.
Step 9. Approach the Faucet to clean the Apple.
Step 10. Turn the Faucet on to wash the Apple.
Step 11. I finish the task

Planning Target: 
[Apple, Fridge, DiningTable, ButterKnife, Faucet, Sink]

Robot
Respone

Step 12. Move to the location of the DiningTable with the 
cooked Potato and where to go?
A. [80, 100]
B. [60, 23]

Human 
Value

The answer is A.
I will GotoLocation the DiningTable.

Robot
Respone

Explore Navigation

Step 2. Pick up the Tomato and where to go?
A. [114, 93]
B. [39, 30]
C. [120, 10]
D. [105, 57]

The answer is C.
I will PickupObject the Tomato so I need stay there.

Human 
Value

Robot
Respone

Interactive Action

(a) High-level planner sample (b) Low-level controller sample

###System Prompt:

Design a conversation between you and the person you are 
serving in the room. 
The answer should be the tone of the service robot located in the 
room and performing the action specifically. The generated 

instructions can be described in different tones…….

PickupObject(object)
Pick up an object. You can only hold one object at a time.
Augments:
- object: a string, the object to pick. Only the following objects can 
serve as the subject of this action: {PickupObject_list}

###Action Primitive:

###Response Format:

"instruction": "The task description in natural language",
"thought": "Your thoughts on the plan in natural language",

"action_list":[……]

###PDDL_params:

object_target: The subject being executed for this task, 
parent_target: This task requires placing the object-target into the 
receptacle indicated by this parameter, 
mrecep_target: Fill in the movable receptacles required for the task;
toggle_target: The 'toggle target' is the object that this task requires 
to be opened 
object_sliced: Should the object be sliced? This parameter can only 
be True or False.

Figure 10: Visualization of training samples for high-level planner and low-level controller.
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Take an Apple from the Fridge, clean it .

Object List: 
[Laptop, SprayBottle, Spoon, Plate, Fridge, Apple]

Done Actions:
Step 1. Move towards the Fridge to get the Apple.
Step 2. Open the Fridge to access the Apple.
Step 3. Move to where the Apple is located inside the Fridge.
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Current Action:
Step 4. Pick up the Apple from the Fridge.

Planning Action:
Step 5. Move to the Fridge.
Step 6. Close the Fridge after taking the Apple out.
Step 7. Head over to the Sink to wash the Apple.
Step 8. Place the Apple in the Sink to wash it.
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Planning Target: 
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(a) High-level planner sample (b) Low-level controller sample

###System Prompt:

Design a conversation between you and the person you are 
serving in the room. 
The answer should be the tone of the service robot located in the 
room and performing the action specifically. The generated 

instructions can be described in different tones…….

PickupObject(object)
Pick up an object. You can only hold one object at a time.
Augments:
- object: a string, the object to pick. Only the following objects can 
serve as the subject of this action: {PickupObject_list}

###Action Primitive:

###Response Format:

"instruction": "The task description in natural language",
"thought": "Your thoughts on the plan in natural language",

"action_list":[……]

###PDDL_params:

object_target: The subject being executed for this task, 
parent_target: This task requires placing the object-target into the 
receptacle indicated by this parameter, 
mrecep_target: Fill in the movable receptacles required for the task;
toggle_target: The 'toggle target' is the object that this task requires 
to be opened 
object_sliced: Should the object be sliced? This parameter can only 
be True or False.

Figure 11: Prompt words for GPT-4 synthetic EIF dataset.
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