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ABSTRACT

Blind Image Quality Assessment (BIQA) has advanced significantly through deep
learning, but the scarcity of large-scale labeled datasets remains a challenge.
While synthetic data offers a promising solution, models trained on existing syn-
thetic datasets often show limited generalization ability. In this work, we make a
key observation that representations learned from synthetic datasets often exhibit
a discrete and clustered pattern that hinders regression performance: features of
high-quality images cluster around reference images, while those of low-quality
images cluster based on distortion types. Our analysis reveals that this issue stems
from the distribution of synthetic data rather than model architecture. Conse-
quently, we introduce a novel framework SynDR-IQA, which reshapes synthetic
data distribution to enhance BIQA generalization. Based on theoretical derivations
of sample diversity and redundancy’s impact on generalization error, SynDR-IQA
employs two strategies: distribution-aware diverse content upsampling, which en-
hances visual diversity while preserving content distribution, and density-aware
redundant cluster downsampling, which balances samples by reducing the density
of densely clustered areas. Extensive experiments across three cross-dataset set-
tings (synthetic-to-authentic, synthetic-to-algorithmic, and synthetic-to-synthetic)
demonstrate the effectiveness of our method. Additionally, as a data-based ap-
proach, SynDR-IQA can be coupled with model-based methods without increas-
ing inference costs. The source code will be publicly available.

1 INTRODUCTION

Blind Image Quality Assessment (BIQA) aims to automatically and accurately evaluate image qual-
ity without relying on reference images Li et al. (2016); Yan et al. (2019). It plays a crucial role in
enhancing user experience in multimedia applications, improving the robustness of downstream im-
age processing algorithms, and guiding the optimization of image enhancement methods. However,
the BIQA task is challenging due to its complexity and high association with human perception.

In recent years, mainstream BIQA methods have greatly surpassed traditional methods owing to the
powerful representational capabilities of deep learning models. However, the success of deep learn-
ing largely relies on large-scale annotated datasets. The high cost of acquiring subjective quality
labels limits the growth of existing datasets. The availability of reference images and the controlla-
bility of quality degradation in synthetic distortions suggest that low-cost data augmentation through
artificially synthesized data appears to be a feasible solution. In practice, training directly on existing
synthetic distortion datasets results in suboptimal quality representations with limited generalization
capabilities.

We observe a key phenomenon: models trained on synthetic data tend to produce a discrete and
clustered feature distribution. Specifically, as shown in Fig. 1 high-quality image features form dis-
tinct clusters based on reference images, while low-quality image features gather based on distortion
types. Medium-quality image features lack smooth transitions and tend to attach to high/low-quality
clusters. This discontinuous representation is detrimental to the performance of regression tasks like
BIQA Zha et al. (2022); Li et al. (2024b). We believe that this phenomenon is primarily caused by
two core problems in synthetic distortion datasets:
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Figure 1: (a), (b), and (c) present UMAP McInnes et al. (2018) visualizations of the same repre-
sentation learned from the synthetic distortion dataset KADID-10k Lin et al. (2019) by the baseline
model He et al. (2016). The different colors in each figure convey different meanings: in (a), the
colors represent the corresponding Mean Opinion Score (MOS) values, with higher values indicat-
ing better quality; in (b), the colors correspond to the reference images; and in (c), the colors denote
the types of distortions.

• 1) Insufficient content diversity, which is caused by the limited reference images in synthetic
distorted datasets. This leads to the model’s tendency to overfit, hindering the formation of a
globally consistent quality representation.

• 2) Excessive redundant samples, which stem from the distorted images in synthetic distorted
datasets being uniform combinations of reference images, distortion types, and distortion intensi-
ties. This induces the model to overly focus on these repetitive patterns while neglecting broader
information, thereby exacerbating the overfitting problem.

To understand these issues thoroughly, we theoretically derive the impact of sample diversity and
redundancy on generalization error. Based on this theoretical foundation, we design a framework
called SynDR-IQA from a novel perspective, which reshapes the synthetic data distribution to im-
prove the generalization ability of BIQA. Specifically, to address the issue of insufficient content
diversity, we propose a Distribution-aware Diverse Content Upsampling (DDCUp) strategy. By
sampling reference images from an unlabeled candidate reference set based on the content dis-
tribution of existing training set to generate distorted images, we increase the diversity of visual
instances, helping the model learn consistent representations across different content. To label the
newly generated distorted images, we employ a key assumption: similar content under the same
distortion conditions should result in similar quality degradation. Based on this assumption, we
generate pseudo-labels for the newly generated images referencing given labeled data correspond-
ing to similar reference images in the training set, ensuring the reasonableness and consistency of
the generated pseudo-labels. To address the issue of excessive redundant samples, we design a
Density-aware Redundant Cluster Downsampling (DRCDown) strategy. It identifies high-density
redundant clusters in the training dataset and selectively removes samples from these clusters while
retaining samples from low-density regions. This mitigates the negative impact of redundant sam-
ples while alleviating data distribution imbalance, thus helping the model learn more generalizable
representations. Our contributions can be summarized as follows:

• We observed the key phenomenon that models trained on synthetic data exhibit discrete and clus-
tered feature distributions, and provide an in-depth analysis of the underlying causes. Through the-
oretical derivation, we demonstrate the impact of sample diversity and redundancy on the model’s
generalization error.

• From a novel perspective of reshaping synthetic data distribution, we proposed the SynDR-IQA
framework, which includes a DDCUp strategy and a DRCDown strategy, to enhance the general-
ization capability of BIQA models.

• Extensive experiments across various cross-dataset settings, including synthetic-to-authentic,
synthetic-to-synthetic, and synthetic-to-algorithmic, validated the effectiveness of the SynDR-
IQA framework. Additionally, as a data-based approach, SynDR-IQA can be integrated with
existing model-based methods without adding inference costs.
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2 RELATED WORK

Deep Learning-based BIQA Methods. Deep learning has revolutionized BIQA, leading to signifi-
cant advancements in accuracy and robustness Kang et al. (2014); Kim & Lee (2016). Recent works
have explored various innovative approaches to address the challenges in this field. Zhu et al. Zhu
et al. (2020) proposed MetaIQA, employing meta-learning to enhance generalization across diverse
distortion types. Su et al. Su et al. (2020) introduced a self-adaptive hyper network architecture for
adaptive quality estimation in real-world scenarios. Ke et al. Ke et al. (2021) developed MUSIQ, a
multi-scale image quality transformer processing native resolution images with varying sizes. Shin
et al. Shin et al. (2024) proposed QCN, utilizing comparison transformers and score pivots for im-
proving cross-dataset generalization. Xu et al. Xu et al. (2024) demonstrated the effectiveness of
injecting local distortion features into large pretrained vision transformers for IQA tasks. Despite
these advancements, the success of deep learning-based BIQA methods heavily relies on large-scale
annotated datasets. The high cost and time-consuming nature of acquiring subjective quality la-
bels for real-world images significantly limit the growth of existing datasets. This limitation has
prompted researchers to explore the potential of leveraging synthetic distortions to generalize to
real-world distortions.

Synthetic-to-Real Generalization in BIQA. Due to the significant domain differences between
synthetic distortions and real-world distortions, models trained on synthetic distortion data often
perform poorly when facing real-world images. To bridge this gap, several studies have explored
Unsupervised Domain Adaptation (UDA) techniques. Chen et al. Chen et al. (2021b) proposed
a curriculum-style UDA approach for video quality assessment, adapting models from source to
target domains progressively. Lu et al. Lu et al. (2022) introduced StyleAM, aligning source and
target domains in the feature style space, which is more closely associated with image quality. Li et
al. Li et al. (2023) developed FreqAlign, which excavates perception-oriented transferability from
a frequency perspective, selecting optimal frequency components for alignment. Most recently,
Li et al. Li et al. (2024a) proposed DGQA, a distortion-guided UDA framework that leverages
adaptive multi-domain selection to match data distributions between source and target domains,
reducing negative transfer from outlier source domains. However, previous work has neglected the
distributional issues of synthetic distortion datasets. In this work, we introduce a novel framework
SynDR-IQA to enhance the syn-to-real generalization ability of BIQA by reshaping the distribution
of synthetic data.

3 METHODOLOGY

In this section, we introduce the SynDR-IQA framework, which aims to enhance the generalization
capability of BIQA models by reshaping the synthetic data distribution. We begin with a problem
formalization for BIQA, establishing the foundational context for our work. Then, we conduct a
theoretical analysis exploring the impact of sample diversity and redundancy on the generalization
error. Building upon this theoretical foundation, we detail the two core components of SynDR-
IQA: Distribution-aware Diverse Content Upsampling (DDCUp), which addresses the challenge of
limited diversity in synthetic datasets and Density-aware Redundant Cluster Downsampling (DRC-
Down), which mitigates the issue of data redundancy.

3.1 PROBLEM FORMALIZATION

BIQA aims to predict the perceptual quality of images without reference. Let X denote the
space of all possible images, and Y = [0, 1] represent the range of quality scores (for simplic-
ity). The BIQA task is formalized as learning a function f : X → Y that maps an input im-
age to its quality score. The optimal function f∗ is defined by minimizing the expected risk:
f∗ = argminf∈F E(x,y)∼D[L(f(x), y)], where F is the hypothesis space, D is the true distribution
of images and quality scores, and L is a loss function. Since the true data distribution is inaccessi-
ble, in practice, we instead minimize the empirical error on the training dataset D̂ = {(xi, yi)}ni=1:
f̂ = argminf∈F

1
n

∑n
i=1 L(f(xi), yi).

3
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Figure 2: This figure shows the core concepts of two strategies in SynDR-IQA. The DDCUp
strategy (upper) selects images from candidate reference sets that are similar in distribution but
diverse in content to the training reference sets for synthesizing distorted samples. The pseudo-labels
of these samples depend on the nearest neighbors of their reference images. The DRCDown strategy
(lower) identifies high-density clusters in the training dataset and selectively removes samples from
these clusters while retaining samples from low-density regions.

3.2 THEORETICAL ANALYSIS

The construction of synthetic distortion datasets follows a systematic process: applying predefined
distortion types at various intensity levels to a set of reference images Lin et al. (2019). This gen-
eration mechanism exhibits two key characteristics: First, low-intensity distortions produce images
nearly identical to their references, while high-intensity distortions generate images predominantly
characterized by distortion-specific patterns. Second, the dataset generation typically employs uni-
form sampling across reference images, distortion types, and intensity levels. These two charac-
teristics jointly lead to a fundamental issue: samples are drawn from different local distributions
rather than following identical sampling from the true distribution, resulting in a discretely clustered
structure in the distribution space.

To understand how this clustered distribution affects model generalization, we need to extend the
classical generalization error analysis to account for samples being drawn from different local dis-
tributions rather than the true underlying distribution. To formalize this extension, we model the
synthetic dataset D̂ = {(xi, yi)}ni=1 as comprising m clusters, where each cluster consists of one
i.i.d. sample from the true distribution D, along with its associated ki − 1 samples drawn indepen-
dently from the corresponding local distribution Di ⊂ D. This formal characterization leads to the
following generalization bound:

Theorem 1 (Generalization Bound for Clustered Synthetic Data). Let F be a hypothesis class of
functions f : X → Y , and D̂ = {(xi, yi)}ni=1 be a dataset consisting of m i.i.d. samples from true
distribution D, along with their respective ki − 1 redundant samples independently drawn from the
corresponding local distributions Di ⊂ D. With probability at least 1− δ, for all f ∈ F , we have:

|R(f)−Remp(f)| ≤ 2Radm(F) +
√

2 log(2/δ)

n
+

√
η log(2/δ)

8m
+

2 log(2/δ)

3m
(1)
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where R(f) is the true risk, Remp(f) is the empirical risk, Radm(F) is the Rademacher complexity
based on m distinct samples, n =

∑m
i=1 ki is the total number of samples, and η = 1

m

∑m
i=1

1
ki

is defined as redundancy heterogeneity which quantifies the degree of imbalanced distribution of
redundant samples in the dataset.

Proof. Please refer to the Appendix A.1 for complete proof.

According to Theorem 1, we can observe that the upper bound of the generalization error is in-
fluenced by the Rademacher complexity Radm(F), total sample size n, number of i.i.d. samples
m (also referred to as diverse samples), and redundancy heterogeneity η. Excluding model-related
factors (captured by Radm(F)), the bound reveals that the number of distinct samples m plays
a primary role in determining the upper bound. Enhancing the sampling of diverse samples can
effectively lower this upper bound. Balancing samples to reduce redundancy heterogeneity η can
also effectively decrease the upper bound of the generalization error. While increasing redundant
samples from local distributions can enlarge n and reduce the second term, it may lead to higher
redundancy heterogeneity η, potentially amplifying the third term degrading overall generalization
performance.

These theoretical insights motivate us to reshape the sample distribution from the perspectives of in-
creasing content diversity (increasing m) and balancing sample density (decreasing η) to improve
the generalization performance of BIQA.

3.3 SYNDR-IQA FRAMEWORK

Building upon the theoretical insights, we propose the SynDR-IQA framework as shown in Fig. 3,
which consists of two primary strategies: distribution-aware diverse content upsampling and density-
aware redundant cluster downsampling. These strategies collectively aim to reshape the synthetic
data distribution to obtain more generalizable BIQA models.

3.4 DISTRIBUTION-AWARE DIVERSE CONTENT UPSAMPLING

To enhance the generalization ability of BIQA models, we introduce a DDCUp strategy. This
method aims to enrich the training data with diverse visual content while preserving the underly-
ing content distribution of the original training set.

Algorithm 1 Distribution-aware Diverse Content Upsampling Strategy
Input: Training datasetD, Training reference setDr, Candidate reference setDc, Feature extractor

f(·), Distance metric Dist(·)
Output: Upsampled training dataset D′

1: Initialize Dnew
r ← ∅

2: DistT ← {Dist(f(xi
r), f(x

j
r))|xi

r, x
j
r ∈ Dr, i ̸= j}

3: for each xc ∈ Dc do
4: DistC ← Dist(f(xc), f(Dr))
5: if Min(DistC) > Median(DistT ) and Max(DistC) < Max(DistT ) then
6: if Dnew

r is {} then
7: Dnew

r ← Dnew
r ∪ {xc}

8: else
9: DistN ← Dist(f(xc), f(Dnew

r ))
10: if Min(DistN) > Median(DistT ) then
11: Dnew

r ← Dnew
r ∪ {xc}

12: end if
13: end if
14: end if
15: end for
16: D′ ← D ∪ {D,Dr,GenSyn(Dnew

r , ...)}
17: return D′

5
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Algorithm 1 details the DDCUp strategy. We select additional reference images from KADIS-
700k Lin et al. (2019) to build a candidate reference set. To avoid introducing excessive noise,
we limit its size to be equal to that of training reference set. A feature extractor f , pre-trained on
ImageNet, is used to extract features of the reference images from both the training reference set
and the candidate reference set. A distance metric, Dist(·) (cosine distance in our implementation),
is utilized to guide the selection process. Our algorithm ensures that the selected images are similar
in content to the training dataset while also being sufficiently distinct from each other (lines 5 and
10), thereby promoting diversity and preventing redundancy.

Algorithm 2 Synthetic Data Generation
Input: Training dataset D, Training reference set Dr, Selected referance images from candidate

reference set Dnew
r , Feature extractor f(·), Distance metric Dist(·), Number of nearest neigh-

bors k, Distortion algorithm GenDist(·), Number of distortion types T , Number of distortion
level L

Output: Generated synthetic dataset DGenSyn

1: Initialize DGenSyn ← ∅
2: for each xnew ∈ Dnew

r do
3: nns← kNN(f(xnew), f(Dr), k,Dist) {k-Nearest Neighbors of xnew}
4: nns← {nn | Dist(f(xnns[0]

r ), f(xnew))− Dist(f(xnn
r ), f(xnew)) < 0.05, nn ∈ nns}

5: w ← Softmax({Dist(f(xnn
r ), f(xnew)) | nn ∈ nns})

6: for each t ∈ T do
7: for each l ∈ L do
8: x

(t,l)
new ← GenDist(xnew, t, l)

9: y
(t,l)
new ←

∑
nn∈nns wnny

(t,l)
nn

10: DGenSyn ← DGenSyn ∪ {(x(t,l)
new, y

(t,l)
new)}

11: end for
12: end for
13: end for
14: return DGenSyn

After selecting diverse reference images, we generate corresponding distorted images and pseudo-
labels to augment the training dataset. Algorithm 2 details this process. For each selected reference
image, we apply the same distortion generation process used to create the training dataset. Notably,
to reduce the increase of redundant samples and prevent additional label noise, only distortion in-
tensities of levels 1, 3, and 5 are implemented. To generate reliable pseudo-labels for these newly
distorted images, we leverage the assumption that similar content under the same distortion condi-
tions should result in similar quality degradation. For each new reference image xnew, we iden-
tify its k nearest neighbors (kNN) within the original training set’s reference images based on the
features’ distances. To further enhance the reliability of the pseudo-labels, we filter these nearest
neighbors, retaining only those whose feature distance to xnew is within a certain threshold (line 4).
The pseudo-label for each distorted image of xnew is then calculated as a weighted average of the
labels of its nearest neighbors’ corresponding distorted images, where the weights are determined
by the softmax of the features’ distances.

3.5 DENSITY-AWARE REDUNDANT CLUSTER ROWNSAMPLING

An overabundance of redundant samples can bias the model, hindering its ability to generalize to
unseen data. It also contributes to increased redundancy heterogeneity (η in Theorem 1), further
increasing the generalization error. Therefore, we propose a DRCDown strategy to mitigate the
negative impact of redundant samples and reduce η, thereby further enhancing the model’s general-
ization performance.

Algorithm 3 details the DRCDown strategy. Similar to the DDCUp strategy, we utilize the feature
extractor f(·) to obtain feature representations of the training samples. We then identify pairs of
similar samples based on both the distance metric Dist(·) and label distance (L1 in our implemen-
tation) (line 5). It ensures that we remove redundancy without discarding hard samples with tiny
feature difference yet large quality difference. The thresholds for the distances of feature and label
are empirically set to 0.1, and 1 (for MOS values in [0, 10]), separately. By considering both feature
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and label similarity, we aim to specifically target and reduce the density of high-density clusters that
contribute significantly to redundancy heterogeneity.

Algorithm 3 Density-aware Redundant Cluster Downsampling Strategy
Input: Training dataset D, Feature extractor f(·), Distance metric Dist(·), Number of samples N ,

Threshold for minimum union size Tu

Output: Downsampled dataset Ddown

1: Initialize Ddown ← ∅
2: Initialize SimPairs← ∅
3: for i← 1 to N − 1 do
4: for j ← i+ 1 to N do
5: if Dist(f(xi), f(xj)) < 0.1 and |yi − yj | < 1 then
6: SimPairs← SimPairs ∪ {(xi, xj)}
7: end if
8: end for
9: end for

10: Unions← DSU(SimPairs) {Union disjoint sets of similar pairs}
11: for each u ∈ Unions do
12: if Length(u)/2 > Tu then
13: u← {randomly select Max(⌊Length(u)/2⌋, Tu) samples among union}
14: end if
15: Ddown ← Ddown ∪ u
16: end for
17: return Ddown

After identifying similar sample pairs, we employ a disjoint set union (DSU) data structure to group
these pairs into clusters (line 9). For each cluster whose size is greater than 2Tu, we randomly
downsample it to max(⌊Nu/2⌋, Tu) samples, where Nu is the original cluster size (line 12). This
threshold Tu prevents excessive downsampling, ensuring that the downsampled dataset retains suf-
ficient information for effective training. By selectively removing samples from over-represented
regions, the DRCDown strategy effectively reduces redundancy and promotes a more balanced data
distribution, directly addressing the issue of high redundancy heterogeneity and thereby contributing
to improved generalization performance. This reduction in η helps to lower the generalization error
bound as established in Theorem 1, leading to a more robust and generalizable IQA model.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

Datasets and Protocols. We conduct experiments on eight IQA datasets including four synthetic
distortion datasets LIVE Sheikh et al. (2006), CSIQ Chandler (2010), TID2013 Ponomarenko et al.
(2013), KADID-10k Lin et al. (2019), three authentic distortion datasets LIVEC Ghadiyaram &
Bovik (2015), KonIQ-10k Hosu et al. (2020), BID Ciancio et al. (2010), and the dataset PIPAL Jin-
jin Gu (2020) with both synthetic and algorithmic distortions. The models’ performance in predic-
tion accuracy and monotonicity is assessed using Spearman’s Rank Correlation Coefficient (SRCC)
and Pearson’s Linear Correlation Coefficient (PLCC). Both coefficients range from -1 to 1, with
values near 1 signifying better performance.

Implementation Details. In our experiments, we use the same model architecture (ResNet-50) and
loss function (L1Loss) as DGQA Li et al. (2024a). For the synthetic-to-authentic and synthetic-
to-algorithmic settings, we train the model using distortion types selected by DGQA, while in the
synthetic-to-synthetic setting, training covers all distortion types. To prevent content overlap when
training within datasets, we apply 80/20 split based on reference images. This random train-test
splitting is repeated ten times, with the median SRCC and PLCC reported. For cross-database
experiments, models are trained on KADID-10k and tested on other datasets. During training, we
randomly sample one patch of resolution 224×224 from each image, and random horizontal flipping
is employed for data augmentation. The mini-batch size is set to 32, with a learning rate of 2 ×
10−5. The Adam optimizer, with a weight decay of 5× 10−4, is used to optimize the model for 24

7
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Table 1: Performance comparison on the synthetic-to-authentic setting (KADID-10k→LIVEC,
KonIQ-10k, and BID). The average results are in the last column. And the bolded results imply
top performance.

Methods LIVEC KonIQ-10k BID Average
SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC

RankIQA Liu et al. (2017) 0.491 0.495 0.603 0.551 0.510 0.367 0.535 0.471
DBCNN Zhang et al. (2018) 0.572 0.589 0.639 0.618 0.620 0.609 0.613 0.606
MetaIQA Zhu et al. (2020) 0.464 0.464 0.501 0.504 0.301 0.428 0.422 0.465
HyperIQA Su et al. (2020) 0.490 0.487 0.545 0.556 0.379 0.282 0.472 0.442
MUSIQ Ke et al. (2021) 0.517 0.524 0.554 0.573 0.575 0.600 0.549 0.566
GraphIQA Sun et al. (2022) 0.388 0.407 0.427 0.430 0.524 0.533 0.446 0.456
VCRNet Pan et al. (2022) 0.561 0.548 0.517 0.525 0.542 0.545 0.540 0.540
KGANet Zhou et al. (2024) 0.575 - 0.528 - - - - -
CLIPIQA Wang et al. (2023) 0.643 0.629 0.684 0.702 0.627 0.581 0.651 0.637
CLIPIQA+ Wang et al. (2023) 0.512 0.543 0.511 0.515 0.474 0.442 0.499 0.500
Q-Align Wu et al. (2024) 0.702 0.744 0.668 0.665 - - - -
DANN Ajakan et al. (2014) 0.499 0.484 0.638 0.636 0.586 0.510 0.574 0.543
UCDA Chen et al. (2021b) 0.382 0.358 0.496 0.501 0.348 0.391 0.408 0.417
RankDA Chen et al. (2021a) 0.451 0.455 0.638 0.623 0.535 0.582 0.542 0.553
StyleAM Lu et al. (2022) 0.584 0.561 0.700 0.673 0.637 0.567 0.640 0.600
FreqAlign Li et al. (2023) 0.618 0.588 0.748 0.721 0.674 0.708 0.680 0.673
DGQA Li et al. (2024a) 0.696 0.690 0.681 0.687 0.770 0.753 0.716 0.710
SynDR-IQA 0.713 0.714 0.727 0.735 0.788 0.764 0.743 0.737

epochs. In testing, five patches per image are sampled, and their average prediction is used as the
final output. This implementation is carried out using PyTorch, with all experiments conducted on
NVIDIA TITAN Xp GPUs.

4.2 PERFORMANCE EVALUATION

1) Performance on the synthetic-to-authentic setting. We first evaluate the generalization capabil-
ity of SynDR-IQA when transferring from synthetic to authentic distortions. Specifically, we train
the models on KADID-10k and test them on LIVEC, KonIQ-10k, and BID, respectively. The results
of the comparison between SynDR-IQA and 17 classical or state-of-the-art BIQA methods, includ-
ing 11 deep learning-based methods (RankIQA Liu et al. (2017), DB-CNN Zhang et al. (2018),
MetaIQA Zhu et al. (2020), HyperIQA Su et al. (2020), MUSIQ Ke et al. (2021), GraphIQA Sun
et al. (2022), VCRNet Pan et al. (2022), KGANet Zhou et al. (2024), CLIPIQA Wang et al. (2023),
CLIPIQA+ Wang et al. (2023), Q-Align Wu et al. (2024)) and 6 UDA-based methods (DANN
Ajakan et al. (2014), UCDA Chen et al. (2021b), RankDA Chen et al. (2021a), StyleAM Lu et al.
(2022), FreqAlign Li et al. (2023), and DGQA Li et al. (2024a)), are summarized in Table 1.

In Table 1, it can be seen that SynDR-IQA achieves state-of-the-art performance across all three
authentic datasets. Our method is only slightly outperformed by FreqAlign in KADID-10k→KonIQ-
10k scenario (SRCC) and by Q-Align in KADID-10k→LIVEC scenario (PLCC). Compared to the
next best method, DGQA, our method improves the average SRCC and PLCC across the three
datasets by 2.7% and 2.7%, respectively. The significant improvement demonstrates the superior
generalization capability of SynDR-IQA when transferring from synthetic to authentic distortions.

2) Performance on the synthetic-to-algorithmic setting. We further evaluate SynDR-IQA in the
synthetic-to-algorithmic setting, where models trained on KADID-10k are tested on the algorithmic
distortions in the PIPAL dataset. Table 2 compares our method with the baseline DGQA across
different types of algorithmic distortions.

As shown in Table 2, SynDR-IQA achieves consistent improvements over DGQA for most distortion
types. Notably, for PSNR-originated SR and GAN-based SR distortions, our method outperforms
DGQA by over 4% in SRCC. The only exception is the Denoising category, where SynDR-IQA
shows a slight decrease. However, the overall average performance indicates that our method effec-
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Table 2: Performance comparison on the setting of synthetic-to-algorithmic (KADID-
10k→algorithmic distortions on PIPAL). The average results are in the last row. The relative im-
provements over DGQA are indicated in subscript.

Distortion Type DGQA SynDR-IQA
SRCC PLCC SRCC PLCC

Traditional SR 0.5419 0.5404 0.5845+4.26% 0.5680+2.76%

PSNR-originated SR 0.5810 0.5956 0.6263+4.53% 0.6342+3.86%

SR with kernel mismatch 0.1629 0.1353 0.1998+3.69% 0.1629+2.76%

GAN-based SR 0.5393 0.5279 0.5749+3.56% 0.5552+2.73%

Denoising 0.5588 0.5193 0.5557−0.31% 0.5023−1.70%

SR and Denoising Joint 0.4470 0.4390 0.4835+3.65% 0.4691+3.01%

Average 0.4718 0.4596 0.5041+3.23% 0.4820+2.24%

Table 3: Performance comparison on the synthetic-to-synthetic setting (single database evaluation
on KADID-10k, KADID-10k→LIVE, CSIQ, and TID2013). The average results are in the last row.

Methods KADID-10k LIVE CSIQ TID2013
SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC

Baseline 0.8528 0.8526 0.9173 0.8988 0.7965 0.8017 0.7077 0.7220
SynDR-IQA 0.8922 0.8974 0.9258 0.9014 0.8069 0.8092 0.7147 0.7328

tively generalizes to algorithmic distortions, demonstrating its robustness in handling complex and
unseen distortion types.

3) Performance on the synthetic-to-synthetic setting. To evaluate the effectiveness of SynDR-IQA
within synthetic distortion scenarios, we conduct both single-dataset evaluation on KADID-10k and
cross-dataset evaluations, training on KADID-10k and testing on LIVE, CSIQ, and TID2013. The
results are summarized in Table 3.

From Table 3, SynDR-IQA demonstrates superior performance over the baseline in both in-dataset
and cross-dataset evaluations. On KADID-10k, our method achieves 0.8922 (SRCC), indicating bet-
ter fitting to the training data. In cross-dataset testing, SynDR-IQA maintains higher performance,
showing enhanced generalization to other synthetic distortion datasets. These results confirm that
our approach enables the model to learn more robust and generalized feature representations.

4.3 ABLATION STUDY

To understand the contributions of each component in SynDR-IQA, we perform a series of ablation
experiments on the synthetic-to-authentic setting, as shown in Table 4. The results are reported in
terms of SRCC. In this table, CD refers to adding the full candidate dataset in training, CD+SEL
denotes DDCUp, and DOWN signifies DRCDown.

Effect of Candidate Dataset. Comparing a) and b), we observe that while the performance on
KonIQ-10k improves, there is a slight decrease in performance on LIVEC and BID. This suggests
that simply increasing data content is not always beneficial. Introducing the complete candidate
dataset enriches content diversity but also includes samples with significant distributional differences
from the training dataset and new redundant samples, which may hinder model generalization.

Effect of Distribution-aware Diverse Content Upsampling. Comparing a), b), and e), we find that
by selectively increasing diversity while maintaining data distribution through our DDCUp strategy,
the model’s performance improves significantly. This approach effectively balances content diver-
sity and distribution consistency, leading to better generalization across different datasets.

Effect of Density-aware Redundant Cluster Downsampling. Comparing a) and c), we note that
implementing DRCDown alone already shows a consistent improvement over the baseline. This in-
dicates that controlling sample density effectively addresses data redundancy and imbalance issues,
resulting in more precise and generalizable feature representations.
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Table 4: Ablation study of SynDR-IQA components on the synthetic-to-authentic setting. The
symbols ✓and indicate the inclusion of a component.

Index CD SEL DOWN LIVEC KonIQ-10k BID Average
a) 0.6958 0.6810 0.7696 0.7155
b) ✓ 0.6901 0.7105 0.7677 0.7228
c) ✓ 0.6962 0.6887 0.7793 0.7214
d) ✓ ✓ 0.7095 0.7107 0.7775 0.7326
e) ✓ ✓ 0.7219 0.7119 0.7822 0.7387
f) ✓ ✓ ✓ 0.7127+1.69% 0.7268+4.58% 0.7884+1.88% 0.7426+2.71%

Figure 3: (a), (b), and (c) show the UMAP visualization of features extracted from LIVEC using
the same model under different training processes: (a) is trained directly within the LIVEC; (b) is
trained on KADID-10k based on DGQA; (c) is trained on KADID-10k based on SynDR-IQA.

The combination of all components yields the best overall performance, achieving a remarkable
2.71% improvement in average SRCC compared to the baseline. These results demonstrate the
impact of the components we proposed in SynDR-IQA, which together contribute to a more robust
and generalized model.

Visualization Analysis. We implemented the same model under three different training processes:
directly on the LIVEC database, on KADID-10k based on DGQA, and on KADID-10k based on
SynDR-IQA. Using the trained models, we extracted features from images in LIVEC for UMAP
visualization, as shown in Fig. 4.3. It can be observed that the quality representation obtained
from training on KADID-10k based on DGQA remains relatively dispersed. However, by using
SynDR-IQA, we achieve representations closer to those obtained from training on authentic distor-
tion samples, thus validating the effectiveness of our method.

5 CONCLUSION

In this work, we aim to address the critical challenge of limited generalization ability in BIQA mod-
els trained on synthetic datasets. Our investigation reveals a key pattern: representations learned
from synthetic datasets often exhibit discrete and clustered distributions, with high-quality image
features clustering around reference images and low-quality features clustering based on distortion
types, which significantly hinders regression performance in BIQA tasks. Guided by this observa-
tion, we conduct theoretical derivations to understand the impact of sample diversity and redundancy
on generalization error. This theoretical foundation leads to the development of our novel frame-
work, SynDR-IQA, designed to reshape synthetic data distribution for enhancing BIQA generaliza-
tion. The proposed SynDR-IQA consists of two key strategies: 1) DDCUp, which enhances content
diversity while preserving the content distribution of the training dataset; 2) DRCDown, which
optimizes sample distribution by reducing the density of dense clusters. We validate the effective-
ness of SynDR-IQA through extensive experiments across three cross-dataset settings (synthetic-
to-authentic, synthetic-to-algorithmic, and synthetic-to-synthetic). The results consistently demon-
strate improved generalization ability of BIQA models trained with our framework.
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A APPENDIX

A.1 THE PROOF OF THEOREM 1

Step 1. Building Generalization Error.

We define the supremum of the absolute difference between the true risk R(f) and the empirical
risk Remp(f):

Φ(X) = sup
f∈F
|R(f)−Remp(f)| .

By applying McDiarmid’s inequality, with probability at least 1− δ/2:

Φ(X) ≤ E[Φ(X)] +

√
2 log(2/δ)

n
,

where n is the total number of samples.

Step 2. Bounding with Rademacher Complexity.

We upper bound the expectation using Rademacher complexity:

E[Φ(X)] ≤ 2 Radm(F),

where Radm(F) is the empirical Rademacher complexity based on m i.i.d samples.

Step 3. Bounding Additional Error from Clustered Data Distribution.

Dataset Decomposition. To simplify the analysis, we assume that redundant samples drawn from
the corresponding local distributions Di ⊂ D have the same input x but potentially different labels
y. Since samples are independent, considering different inputs x does not affect the generality of the
conclusion.

We decompose the dataset into m i.i.d inputs {x1, x2, . . . , xm}, where each input xi is indepen-
dently repeated ki times with possibly different labels yi1, yi2, . . . , yiki

. For each input xi, define
the random variable Yi representing the average loss over its repetitions:

Yi =
1

ki

ki∑
j=1

l(f(xi), yij),

where l(f(xi), yij) denotes the loss function evaluated at xi with label yij .

Bounding Variance of Yi. Since Y = [0, 1] and the loss function is L1, we have l(f(xi), yij) ∈
[0, 1] and can upper bound the variance of Yi:

Var(Yi) ≤
1

4ki
.
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Figure 4: Qualitative results of SynDR-IQA on LIVEC. For each image, the top number repre-
sents the human-annotated ground-truth score, normalized to the range [0, 10]; the middle number
represents our model’s predicted quality score; and the bottom number represents the quality score
predicted by CLIP-IQA Wang et al. (2023). The ground-truth scores of these images progressively
increase from left to right and from top to bottom.

Application of Bernstein’s Inequality. We define

Z =
1

m

m∑
i=1

(Yi − µi),

where µi = E[Yi].

Applying Bernstein’s inequality, with probability at least 1− δ/2:

|Z| ≤
√

η log(2/δ)

8m
+

2 log(2/δ)

3m
,

where η = 1
m

∑m
i=1

1
ki

.

4. Final Generalization Error Bound. Combining the results from steps 1, 2 and 3, and using the
union bound to ensure a total probability of at least 1− δ, we finally obtain the generalization error
bound:

|R(f)−Remp(f)| ≤ 2 Radm(F) +
√

2 log(2/δ)

n
+

√
η log(2/δ)

8m
+

2 log(2/δ)

3m
.

A.2 QUALITATIVE RESULTS

To qualitatively demonstrate the effectiveness of our method, we showcase several representative
examples from LIVEC in Fig. A.1. The examples span diverse scenarios with various quality scores,
distortions, scenes, and content. Notably, our model, trained solely on the synthetic distortion dataset
KADID-10k, generates predictions that align well with human-annotated ground truth scores on
these real-world images, validating the effective synthetic-to-real generalization capability of our
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Figure 5: (a), (b), and (c) present UMAP McInnes et al. (2018) visualizations of the same repre-
sentation learned from the synthetic distortion dataset KADID-10k Lin et al. (2019) by Swin-T Liu
et al. (2021). The different colors in each figure convey different meanings: in (a), the colors rep-
resent the corresponding Mean Opinion Score (MOS) values, with higher values indicating better
quality; in (b), the colors correspond to the reference images; and in (c), the colors denote the types
of distortions.

Table 5: Performance comparison between baseline and SynDR-IQA using Swin-T backbone on the
synthetic-to-authentic setting.

Method LIVEC KonIQ-10k BID Average
SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC

Baseline 0.620 0.641 0.600 0.625 0.729 0.684 0.649 0.650
SynDR-IQA 0.670 0.693 0.719 0.752 0.777 0.750 0.721 0.731

approach. Furthermore, compared to the state-of-the-art method CLIP-IQA Wang et al. (2023), our
approach shows significantly better alignment with human perception.

A.3 ARCHITECTURE-AGNOSTIC ANALYSIS

To demonstrate that our findings and method are architecture-agnostic, we conduct additional exper-
iments using Swin Transformer Tiny (Swin-T) Liu et al. (2021) as the backbone network, following
the same experimental protocol as our main experiments.

The UMAP visualization of features learned by Swin-T on KADID-10k (Fig. A.3) exhibits pat-
terns consistent with our previous observations, confirming that the identified dataset characteristics,
rather than architectural choices, are the primary source of the generalization challenges.

As shown in Table 5, our method significantly improves the baseline performance with Swin-T back-
bone, achieving an average SRCC improvement of 7.2%. These results support two key claims: 1)
the generalization challenges stem from dataset properties rather than architectural limitations, and
2) our proposed SynDR-IQA framework is effective across different neural architectures, demon-
strating the generality of our approach.

A.4 COMPARISON WITH MODELS TRAINED ON AUTHENTIC DISTORTION DATASET

To further demonstrate the effectiveness of our SynDR-IQA framework, we compare our model
trained only on synthetic data (KADID-10k) with state-of-the-art models trained on SPAQ Fang
et al. (2020), which is a large-scale authentic distortion dataset containing 11125 images. The com-
parative experimental results are from paper Wu et al. (2024). This comparison aims to investigate
how well our synthetic-trained model can approach the performance of models trained on authentic
distortions.

Table 6 shows the performance comparison on LIVEC and KonIQ-10k. Despite using only syn-
thetic training data, our method achieves competitive performance compared to models trained on
authentic distortions, with only a minor performance gap.
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Table 6: Performance comparison with SOTA models trained on authentic distortion dataset SPAQ.

Methods Training LIVEC KonIQ-10k Average
Dataset SRCC PLCC SRCC PLCC SRCC PLCC

DBCNN Zhang et al. (2018) SPAQ 0.702 0.748 0.684 0.702 0.693 0.725
MUSIQ Ke et al. (2021) SPAQ 0.813 0.798 0.753 0.680 0.783 0.739
CLIPIQA+ Wang et al. (2023) SPAQ 0.719 0.755 0.753 0.777 0.736 0.766
SynDR-IQA KADID-10k 0.713 0.714 0.727 0.735 0.720 0.725

A.5 LIMITATIONS

While SynDR-IQA demonstrates significant improvements in synthetic-to-algorithmic generaliza-
tion scenarios, there are still notable performance gaps with practical availability.We think the pri-
mary challenge stems from the fundamental difference between existing synthetic distortion patterns
and algorithmic distortion characteristics. Current synthetic distortion datasets primarily focus on
traditional degradation types (e.g., blur, noise, compression), which differ significantly from the
complex patterns introduced by modern image processing algorithms, especially those involving
deep learning-based methods.

This limitation highlights the need for synthetic distortion generation methods that can produce
synthetic distortions with algorithmic distortion and other complex characteristics while maintaining
controllable image quality degradation. We believe addressing this limitation through future research
will be crucial for further improving the generalization capability of BIQA models across different
distortion scenarios.
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