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ABSTRACT

Existing score-based methods for directed acyclic graph (DAG) learning from
observational data struggle to recover the causal graph accurately and sample-
efficiently. To overcome this, in this study, we propose DrBO (DAG recovery via
Bayesian Optimization)—a novel DAG learning framework leveraging Bayesian
optimization (BO) to find high-scoring DAGs. We show that, by sophisticatedly
choosing the promising DAGs to explore, we can find higher-scoring ones much
more efficiently. To address the scalability issues of conventional BO in DAG
learning, we replace Gaussian Processes commonly employed in BO with dropout
neural networks, trained in a continual manner, which allows for (i) flexibly mod-
eling the DAG scores without overfitting, (ii) incorporation of uncertainty into the
estimated scores, and (iii) scaling with the number of evaluations. As a result,
DrBO is computationally efficient and can find the accurate DAG in fewer trials
and less time than existing state-of-the-art methods. This is demonstrated through
an extensive set of empirical evaluations on many challenging settings with both
synthetic and real data.

1 INTRODUCTION

Learning directed acyclic graphs (DAGs) encoding the underlying causal relationships, also known
as causal discovery, provides invaluable insights about interventional outcomes and counterfactuals,
and thus significant research effort has been dedicated on this frontier. Our study focuses on the
score-based framework—a major class of causal discovery methods which casts the DAG learn-
ing problem as an optimization problem, maximizing over the space of DAGs a predefined score
function measuring how a DAG G fits the observed data D:

G∗ = argmax
G∈DAGs

S (D,G) . (1)

There are several challenges associated with this formulation. First, this optimization problem is
NP-hard in general (Chickering, 1996), due to the combinatorial search domain that scales super-
exponentially with the graph size (Robinson, 1977) and the acyclicity condition that is nontrivial to
maintain. The second challenge is computational cost, as the score evaluation can be expensive for
complex models (Zhu et al., 2020; Wang et al., 2021), and hence, methods requiring too many trials
will incur a heavy computational expense.

Bayesian Optimization (BO) has emerged as an effective approach for expensive black-box opti-
mization thanks to its sample efficiency.1 Its applicability covers many domains due to the perva-
siveness of optimization tasks in virtually every field. The central idea is that past evaluation data
can reveal potential candidates to evaluate next, and effectively exploiting them allows us to arrive
at better solutions using fewer evaluations. However, while BO has been employed for active causal
discovery (Toth et al., 2022; Zhang et al., 2024) to suggest cost-effective intervention strategies to
discover causal graphs from active experiments, its power is yet to be harnessed for the problem of
observational causal discovery, where no active intervention is available.

We have identified two potential difficulties preventing BO to optimize Eq. (1). The first is the
limited scalability of BO in general, which is usually restricted to only a few hundred dimensions
and thousands of evaluations (Wang et al., 2023), while DAG learning often involves far more trials
(Zhu et al., 2020; Wang et al., 2021; Duong et al., 2024). The second challenge is how to efficiently
optimize the “acquisition function” measuring the potential of DAG solutions in BO. This itself is a
score-based DAG learning problem and is expected to be cheaper than the original problem as it is
repeated many times in the BO pipeline, thus requiring to be very efficient to be practical.

1“Sample” in “sample efficiency” refers to the number of trials.
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Present study. In this study, we tackle these obstacles and bring forth the benefits of BO into causal
discovery with the introduction of DrBO (DAG recovery via Bayesian Optimization)2—a novel
causal discovery algorithm that leverages BO to find the highest-scoring DAG. More particularly, we
solve the aforementioned challenges by several key design choices. (i) Inspired by Yu et al. (2021);
Massidda et al. (2024); Duong et al. (2024), we devise a low-rank DAG representation that relaxes
the constrained optimization in Eq. (1) to an unconstrained optimization problem with a dimension-
ality growing linearly with the number of nodes (Sec. 4.1), enabling the use of BO with an amenable
dimensionality. (ii) We replace the Gaussian processes (GPs) in conventional BO approaches that
scale cubically w.r.t. the number of evaluations with dropout neural networks (Srivastava et al.,
2014; Guo et al., 2021), which offer expressive uncertainty-aware modeling capabilities, as well as
faster acquisition function calculation and optimization (Sec. 4.3). (iii) Our surrogate model learns
the DAG score indirectly via node-wise local scores, allowing us to predict the DAG scores more
accurately with enhanced training information, compared with learning a direct map from a DAG
to its score and not exploiting the local scores (Sec. 4.4). (iv) Instead of being retrained every step
with all data, our neural networks are trained continually, enabling our method to scale better with
the number of trials (Sec. 4.5).

Contributions. The main contributions of our study are summarized as follows:

1. To facilitate sample-efficient causal discovery, we propose DrBO—a causal discovery
method employing BO to optimize for the DAG score. DrBO is specifically designed
for causal discovery, aiming to be not only accurate, but also computationally manageable.
To our knowledge, this is the first score-based causal discovery method based on BO for
purely observational data.

2. We demonstrate the effectiveness of our method on a comprehensive set of experiments,
showing that DrBO can consistently surpass state-of-the-art baselines on various condi-
tions, with fewer evaluations and less time, signifying the sample efficiency of BO in our
design. In addition, extensive ablation studies verify the significance of our design choices.

2 RELATED WORK

Causal discovery methods can be broadly categorized into two major classes, namely constraint-
based and score-based methods. The former category (Spirtes et al., 2000; Colombo et al., 2012)
involves performing a series of hypothesis tests to recover the undirected skeleton of the causal
graph, before orienting the edges using graphical rules. On the other hand, score-based causal dis-
covery recasts the problem as a combinatorial optimization task. Classical methods (Chickering,
2002; Ramsey et al., 2017; Ramsey, 2015) greedily traverse the DAG space by adding and remov-
ing edges one-at-a-time to maintain acyclicity. Recent advances include relaxing the combinatorial
optimization to a continuous optimization problem (Zheng et al., 2018; Yu et al., 2019; Zheng et al.,
2020; Yu et al., 2021; Zhang et al., 2022; Bello et al., 2022; Annadani et al., 2023). In addition, meth-
ods based on Reinforcement learning (RL) (Zhu et al., 2020; Wang et al., 2021; Yang et al., 2023a;
Duong et al., 2024) have recently emerged as competitive search strategies. We also acknowledge
interventional causal discovery studies (Hauser & Bühlmann, 2012; Brouillard et al., 2020; Lippe
et al., 2022) where interventional data is exploited to help identify the causal DAG, however, here
we focus on the more challenging setting where no intervention is available.

Furthermore, Bayesian causal discovery studies are an intriguing direction (Deleu et al., 2022; Tran
et al., 2023; Annadani et al., 2023), where the aim is to infer the posterior distribution over causal
graphs given observed data, in order to quantify uncertainty in DAG estimates. Meanwhile, our use
of BO involves quantifying uncertainty in DAG scores, so despite sharing the term “Bayesian”, these
studies are distant from us. Moreover, while Bayesian optimization has been employed for causal
discovery in the active setting (Toth et al., 2022; Zhang et al., 2024), these methods utilize BO to
suggest optimal interventions to quickly recover the causal DAG, necessitating the ability to perform
active experiments. Meanwhile, our study utilizes BO to optimize for the score function that can be
calculated purely from observational data. In addition, causal Bayesian optimization (Aglietti et al.,
2020; 2021), which deals with optimizing a variable of interest that is part of a causal system with
known DAG via a series of interventions suggested by BO, is also a different problem from ours.

2The source code will be publicly released upon publication.
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3 BACKGROUND

Notations. In this paper, unless specifically indicated, normal lowercase letters indicate scalars (e.g.,
x, y) or functions (e.g., f , g), while bold lowercase letters represent vectors (e.g., x, y), and bold
uppercase letters denote matrices (e.g., X). Meanwhile, subscripts and bracketed superscripts index
dimensions and samples, respectively, e.g., x(j)

i denotes the i-th dimension of the j-th sample.

3.1 BAYESIAN OPTIMIZATION

We provide here only the details necessary to understand our contributions. For a more compre-
hensive review of BO, see Wang et al. (2023), for example. Consider a maximization of a function
f that is expensive to evaluate: x∗ = argmaxx∈X f (x). BO is a class of sequential optimization
methods, which iteratively (i) proposes potential candidate(s) to evaluate based on an “acquisition
function”, then (ii) evaluates said candidate(s), and (iii) updates its statistical model with the newly
acquired observations. More specifically, BO defines a probabilistic “surrogate” model over the
distribution f given observed data X,y, i.e., P (f | X,y), to define the acquisition function.

Surrogate model. To model P (f | X,y), Gaussian process (GP) is the standard in BO since it
offers a closed-form solution (Rasmussen, 2003). Assuming we have observed a dataset of n evalu-
ations X =

[
x(1), . . . ,x(n)

]⊤
and y =

[
y(1), . . . , y(n)

]⊤
, where x ∼ X = Rd and y := f (x), GP

assumes that y follows a multivariate Gaussian distribution governed by a mean function µ : X → R
and positive-definite covariance function κ: X × X → R: y ∼ N (µ (x) ,KX,X) where KX,X :=[
κ
(
x(i),x(j)

)]
i,j=1,...,n

is the n× n covariance matrix. Using Bayes’ theorem, the posterior of the
function value at a new location x is given analytically as: P (y | x,X,y) = N

(
µ (x) , σ2 (x)

)
where µ (x) := kx,XK−1

X,Xy and σ2 (x) := κ (x,x) − k⊤
X,xK

−1
X,XkX,x. GPs scale poorly with n

due to the need to invert KX,X, so alternative statistical models like random forest (Hutter et al.,
2011), Bayesian linear regression (Snoek et al., 2015), and Bayesian neural network (Springenberg
et al., 2016) have been employed as more scalable surrogate models.

Acquisition functions (AFs) in BO judge how promising an arbitrary candidate x is based on the
posterior inferred by the surrogate model, to make a more informed candidate suggestion. As an
example, upper confidence bound (UCB) is a common choice, designed to minimize regret in the
multi-armed bandit literature (Srinivas et al., 2010) and given by AF (x) := µ (x) + βσ (x), where
β > 0 is a hyperparameter controlling the exploitation-exploration trade-off. Another promising
acquisition is Thompson sampling (TS, Thompson, 1933), which is a stochastic function that uses
a random draw from the posterior as the potential indicator: AF (x) ∼ P (y | x,X,y).

3.2 STRUCTURAL CAUSAL MODEL

Let x ∈ Rd be the random vector capturing the system of interest, and D =
{
x(k)

}n
k=1

denote an
i.i.d. dataset of n samples from P (x). The structural causal model (SCM, Pearl, 2000; 2009) among
said variables can be described by (i) a DAG G = (V, E) where each node i ∈ V = {1, . . . , d} corre-
sponds to a random variable xi, and each edge (j → i) ∈ E ⊂ V×V implies that xj is a direct cause
of xi, (ii) a set of functions {fi}ni=1 dictating the causal mechanisms, and (iii) a noise distribution

P (ε). Together, these components define a generative process xi := fi

(
xpaGi

, εi

)
,∀i = 1, . . . , d,

where paGi = {j ∈ V | (j → i) ∈ E} is the set of direct causes (a.k.a. structural parents) of node i
in G, and ε ∼ P (ε) is the noise vector. Then, the observational causal discovery problem is con-
cerned about recovering the DAG G from the observational dataset D. In addition, following (Zhu
et al., 2020; Wang et al., 2021; Yang et al., 2023a;b; Duong et al., 2024), we also assume: (i) causal
sufficiency: there is no unobserved confounders among the variables; (ii) causal minimality: there
is no function fi that is constant to any of its argument (Peters et al., 2014); and (iii) identifiable
causal models: this means G is the unique causal graph that can induce P (x), and thus it is possible
to be recovered. For instance, while general linear-Gaussian models are known to be unidentifiable
(Spirtes et al., 2000), examples for identifiable causal models include linear-Gaussian models with
the equal-variance assumption (Peters et al., 2014) and nonlinear additive noise models (ANMs) in
general (Hoyer et al., 2008). Our experiments will adopt these identifiable models.

3.3 SCORE-BASED CAUSAL DISCOVERY

A critical component of score-based causal discovery is the proper specification of a scoring func-
tion. With the proper scoring function, the optimization of the score is equivalent to reaching to
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ground truth DAG. Consistent scoring functions (Chickering, 2002) are known to satisfy this re-
quirement. In the main text, we demonstrate our method with the Bayesian Information Criterion
(BIC, Schwarz, 1978), which is a consistent score as shown by Haughton (1988) and is widely con-
sidered in numerous existing studies (Chickering, 2002; Zhu et al., 2020; Wang et al., 2021; Yang
et al., 2023a;b; Duong et al., 2024).

More formally, let θ :=
{
{fi}di=1 , P (ε)

}
be the parameters of an SCM, then the BIC score is given

by SBIC (D,G) := 2 ln p
(
D | θ̂,G

)
− |G| lnn, where θ̂ := argmaxθ p (D | θ,G) is the maximum-

likelihood estimator of the causal model parameters, n is the sample size of D, and |G| denotes the
number of edges in G. The generality of BIC allows for its adaptation to numerous causal models. In
the main paper, we showcase our method with the BIC defined for the popular additive noise model
(ANM, Hoyer et al., 2008): xi := fi

(
xpai

)
+εi, where εi ∼ N

(
0, σ2

i

)
. In the general form, where

the noise variances can be non-equal, the BIC for ANM is specified as follows:

SBIC-NV (D,G) := −n
d∑

i=1

lnMSEi

(
paGi

)
− |G| lnn, (2)

where NV stands for “non-equal variance” and MSEi

(
paGi

)
:= 1

n

∑n
j=1

(
x
(j)
i − f̂i

(
x
(j)

paGi

))2
is

the mean squared error after regressing xi on xpaGi
. In addition, if we further assume that the noise

variables have equal variances (Bühlmann et al., 2014) then the BIC yields:

SBIC-EV (D,G) := −nd ln
∑d

i=1 MSEi

(
paGi

)
d

− |G| lnn. (3)

Eqs. (2) and (3) are common in prior studies (Zhu et al., 2020; Wang et al., 2021; Yang et al.,
2023a;b; Duong et al., 2024), and we also provide their derivation in Appendix B.

3.4 PARAMETRIZED DAG GENERATION

For effective acquisition function optimization, we find it crucial for our method to be able to quickly
generate candidate DAGs within specific regions determined by a low-dimensional search space.
This would help narrow down the regions of interest and improve the quality of suggested candi-
dates. A potential approach towards this end is autoregressive DAG generation techniques (Wang
et al., 2021; Deleu et al., 2022; Yang et al., 2023a; Deleu et al., 2024), which break down the DAG
generation into multiple sequential steps. However, each step of the generation process is com-
putationally involved due to their autoregressive nature (Duong et al., 2024), accumulating into a
significant DAG generation cost. Recently, constraint-free DAG representations with a quadratic
complexity are proposed in (Yu et al., 2021; Massidda et al., 2024; Duong et al., 2024), which in-
troduce different maps from an unconstrained real-valued representation to the space of DAGs. For
example, the Vec2DAG operator in (Duong et al., 2024) takes as input a continuous “node potential”
vector p ∈ Rd and strictly upper-triangular “edge potential” matrix E ∈ Rd×d to deterministically

create a DAG: Vec2DAG (p,E) := H (grad (p))⊙H
(
E+E⊤), where H (x) :=

{
1, if x > 0,

0, otherwise
is the entry-wise Heaviside step function, ⊙ is the Hadamard product, and grad (p)ij := pj − pi is
the gradient flow operator (Lim, 2020).

Example. Consider a system of 3 nodes with potentials p = [−1, 3, 2] and E =

[
0 2 −4
0 0 7
0 0 0

]
.

Then, Vec2DAG (p,E) = H

([
0 4 3
−4 0 −1
−3 1 0

])
⊙ H

([
0 2 −4
2 0 7
−4 7 0

])
=

[
0 1 0
0 0 0
0 1 0

]
.

This is the adjacency of the DAG 1 → 2 ← 3, where the edge directions and connectivities are
determined by the first and second terms of Vec2DAG, respectively.

Using this approach, it is simple to sample candidate DAGs whose representations are in the neigh-
borhood around some values p and E of interest.
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Algorithm 1 The DrBO method for causal discovery.

Require: Dataset D =
{
x(j) ∈ Rd

}n
j=1

of d nodes and n observations, score function S (D, ·),
DAG rank k, batch size B, no. of preliminary candidates C, and total no. of evaluations T .

Ensure: A DAG Ĝ that maximizes S (D,G).
1: Initialize empty experienceH := ∅ and node-wise dropout neural nets: {DropoutNNi}

d
i=1.

2: while |H| < T do
3: Generate random DAGs:

{
G(j) := τ

(
z(j)
)}C

j=1
where z ∈ [−1, 1]d(1+k). ▷ Sec. 4.1.

4: Sample local scores:
{{

l
(j)
i ∼ DropoutNNi

(
paG

(j)

i

)}d

i=1

}C

j=1

. ▷ Sec. 4.3.

5: Combine local scores:
{
AF(j) := Combine

(
l
(j)
1 , . . . , l

(j)
d

)}C

j=1
. ▷ Sec. 4.4.

6: Select top B candidates with highest AF values: j1, . . . , jB := argtopB
j=1,...,C

AF(j). ▷ Sec. 4.2.

7: Evaluate these candidates and update experience: H := H∪
{(
G(j), S

(
D,G(j)

))}
j=j1,...,jB

.
8: Update the neural nets on newH. ▷ Sec. 4.5.
9: end while

10: Get highest-scoring DAG so far: Ĝ := argmaxG∈H S (D,G).
11: Prune Ĝ if needed. ▷ Sec. 4.6.

4 DrBO: DAG RECOVERY VIA BAYESIAN OPTIMIZATION

An overview of our framework is illustrated in Algorithm 1. In the following, we describe the
proposed DrBO algorithm step-by-step.

4.1 SEARCH SPACE

To effectively utilize BO, the search space should be unconstrained. Thus, following Yu et al.
(2021); Massidda et al. (2024); Duong et al. (2024), we transform the constrained combinatorial
optimization problem in Eq. (1) to an unconstrained optimization task. However, the dimension-
ality of O

(
d2
)

of their search spaces can still be reduced to mitigate the effect of the curse of
dimensionality, facilitating easier acquisition function optimization. For this purpose, we consider a
low-rank adaptation (Fang et al., 2023) of Vec2DAG (Duong et al., 2024) that offers a search space
that grows linearly with the number of nodes. Specifically, each node i is now associated with a
low-dimensional embedding vector ri ∈ Rk with k ≪ d, and two nodes i and j are connected if and
only if ⟨ri, rj⟩ > 0. The total dimensionality of this search space is thus d · (1 + k). More formally,
given a node potential p ∈ Rd and an embedding matrix R ∈ Rd×k, we define the following map

τ (p,R) := H (grad (p))⊙H
(
R ·R⊤) . (4)

The following Lemma ensures the acyclicity of the DAG corresponding to τ (p,R).

Lemma 1. For all d, k ∈ N+, p ∈ Rd and R ∈ Rd×k, let τ : Rd × Rd×k → {0, 1}d×d be defined
as in Eq. (4). Then, τ (p,R) represents a binary adjacency matrix of a DAG.

The proof can be found in Appendix A.1. In addition, like Vec2DAG, our variation also exhibits the
following scale-invariance property.

Lemma 2. For all d, k ∈ N+, p ∈ Rd and R ∈ Rd×k, let τ : Rd × Rd×k → {0, 1}d×d be defined
as in Eq. (4). Then, for all α > 0, τ (p,R) = τ (αp, αR).

The proof is provided in Appendix A.2. This insight allows us to restrict the search domain to a fixed
range (e.g., [−1, 1]) for numerical stability. For brevity, the remaining parts of this manuscript will
use vector z of d · (1 + k) dimensions as the concatenation of p and the flattened R, and we adopt
the notation τ (z) ≡ τ (p,R). In short, we can now translate the original optimization problem in
Eq. (1) to the following unconstrained optimization problem:�



�
	z∗ := argmax

z∈Rd(1+k)

S (D, τ (z)) . (5)

5
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Obviously, if k ≥ d then R · R⊤ is full-rank, so τ can represent any DAG possible (Theorem 1,
Duong et al., 2024), and thus G∗ := τ (z∗) is a maximizer of Eq. (1) for any maximizer z∗ of Eq. (5).
While this may not hold for k < d, our empirical evaluations reveal that this representation suffices
even for very complex graphs.

4.2 ACQUISITION FUNCTION OPTIMIZATION

To perform each step of the BO pipeline (Sec. 3.1), we use the acquisition function obtained so far
to select a batch of B most promising candidates to evaluate, also known as Batch BO (Joy et al.,
2020). This is done by first generating C ≥ B preliminary candidates

{
z(j)
}C
j=1

from a hypercube
centered at the current best solution z∗ (see Appendix C.1 for more details). Subsequently, we
evaluate the acquisition function of the DAGs induced by these candidates,3 and choose the top B
candidates based on the acquisition function values. The quality of the candidates batch strongly
depends on C, i.e., if we can evaluate the acquisition function of a lot of candidates, then the top
B candidates are likely to have higher values. However, this also increases computational cost, so
our acquisition function must scale well with the number of candidates C to mitigate this overhead,
which leads us to the next point.

4.3 SURROGATE MODELING WITH DROPOUT NETWORKS

To overcome the scalability issues of standard BO due to the use of GPs as discussed earlier, we in-
stead pursue neural networks, which are well-known for their scalability and flexibility (Snoek et al.,
2015). Our networks must be able to model uncertainty to help the optimizer prioritize evaluating
uncertain but promising candidates. Towards this end, we employ dropout activations (Srivastava
et al., 2014), whose original purpose was to reduce overfitting in training neural networks, and were
later found to be also useful as an approximate Bayesian inference method (Gal & Ghahramani,
2016), and thus have been successfully applied to BO (Guo et al., 2021). We provide a detailed
discussion on this choice compared with other models in Appendix C.2.

Specifically, we devise a single-layer neural network with dropout activation as follows. Let p ∈
(0, 1) be the dropout rate, d denotes the dimensionality of the input, h is the number of hidden units,
W1 ∈ Rd×h and W2 ∈ Rh×1 are weight matrices, b1 ∈ Rh and b2 ∈ R are biases. Our dropout
networks are then defined as:

DropoutNN (x) := W⊤
2

(
BatchNorm

(
ReLU

(
1

1− p

(
(1−m) ◦

(
W⊤

1 x+ b1

)))))
+ b2,

where we also follow common practice to employ Batch Normalization (Ioffe & Szegedy, 2015)
for improved training efficiency, and m ∼ Bernoulli (p)

h is drawn for every invocation of
DropoutNN (x) in both train and test modes. By training this model on observed data X and y
with the square loss, performing a stochastic forward pass y ∼ DropoutNN (x) can be interpreted
as drawing from an approximate posterior y ∼ q (y | x,X,y) (Gal & Ghahramani, 2016). Us-
ing Thompson sampling, we do not need to characterize the whole posterior and this mere sample
suffices for acquisition function optimization (Russo & Van Roy, 2014; Eriksson et al., 2019).

4.4 INDIRECT SURROGATE MODELING

A naı̈ve surrogate modeling approach for DAG learning is modeling a direct map from a DAG to its
score. However, DAG scores can typically be decomposed into independent node-wise components,
which can be further exploited for better modeling. For example, the BIC scores in Eqs. (2) and (3)
involve the local components

{
MSEi

(
paGi

)}d
i=1

observable after each DAG score invocation. To
exploit these information to the fullest, we propose to learn local surrogate models predicting the
node-wise scores, then combine them using the rule in Eq. (2) or (3), depending on the situation.

Particularly, for each node i, we use the evaluation data
{(

paG
(j)

i ,MSEi

(
paG

(j)

i

))}
j=1

, where

G(j) is the j-th evaluated DAG, to train a dropout network DropoutNNi predicting lnMSEi from
paGi , which is represented by a binary vector of d dimensions. The models are independent among
all nodes instead of being shared to avoid spurious correlations. To summarize, for a dataset of

3Our AFs do not take as input z, but τ (z) instead, as many z’s can produce the same DAG.
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d nodes, we jointly train d local surrogate models {DropoutNNi}
d
i=1. To sample the DAG score

of a graph G, we first sample each local score li ∼ DropoutNNi

(
paGi

)
, then combine them with

AF (G) := CombineBIC−NV (l1, . . . , ld) := −n
∑d

i=1 li − |G| lnn, if the non-equal variance BIC

score is being considered, or AF (G) := CombineBIC−EV (l1, . . . , ld) := −nd ln
∑d

i=1 eli

d −|G| lnn
for the case of equal variance BIC score, which resemble Eqs. (2) and (3), respectively.

4.5 CONTINUAL MODEL TRAINING

Upon acquiring a batch of B of new evaluations, the neural networks require retraining to update
their weights. To avoid retraining with all data so far, which scales at least quadratically with the
number of evaluations, we adopt a continual training approach (Wang et al., 2024) that only updates
the models with the new data and a small portion of past data to mitigate forgetting. Specifically,
we perform ngrads gradient steps within each BO iteration, each of which is calculated on the B new
datapoints and a replay buffer of nreplay past observations using Reservoir Sampling (Vitter, 1985).

4.6 FINALIZING THE RESULT

Pruning the resultant DAG is common practice to suppress the redundant edges (Bühlmann et al.,
2014; Zheng et al., 2018; Wang et al., 2021; Bello et al., 2022; Duong et al., 2024), and is also
employed in our framework. This can be done by thresholding the weight matrix for linear data
(Zheng et al., 2018), or employing significance testing for nonlinear data using generalized additive
model regression (CAM pruning, Peters et al., 2014), or conditional independence testing under the
faithfulness assumption (Duong et al., 2024). More details are provided in Appendix C.3.

5 EXPERIMENTS

In this section, we verify our claim in the introduction: DrBO is both more accurate and sample-
efficient than existing approaches in score-based observational DAG learning. We show this by
comparing our DrBO method with a number of the most recent advances in causal discovery
that are based on sequential optimization, including gradient-based methods DAGMA (Bello et al.,
2022), COSMO (Massidda et al., 2024), GOLEM (Ng et al., 2020), NOTEARS (Zheng et al., 2018)
with TMPI constraint (Zhang et al., 2022), as well as RL-based approaches CORL (Wang et al.,
2021) and ALIAS (Duong et al., 2024). We note that CORL, ALIAS, and DrBO directly optimize
the BIC score, COSMO, DAGMA, and NOTEARS optimize the penalized least-square loss, while
GOLEM optimizes a penalized log-likelihood. For gradient-based methods, we consider a gradient
update equivalent to one DAG evaluation. Additional information, including implementation details
and metrics, are provided in Appendix D.

5.1 RESULTS ON SYNTHETIC DATA

We consider the standard Erdős-Rényi (ER) graph model (Erdős & Rényi, 1960) to generate data,
where graphs with d nodes and de edges on average are referred to as dERe graphs (e.g, 10ER4).

5.1.1 LINEAR-GAUSSIAN DATA

After simulating a DAG G, we sample edge weights with wji ∼ U ([−2,−0.5] ∪ [0.5, 2]) like prior
studies (Zheng et al., 2018; Zhu et al., 2020; Wang et al., 2021). Then, we generate a dataset of
n = 1,000 i.i.d. samples according to a linear-Gaussian SCM xi :=

∑
j∈pai

wjixj + εi, where
εi ∼ N (0, 1). For fairness, we prune the DAGs returned by DrBO, along with ALIAS and CORL
as prescribed in their papers, by thresholding the weight matrix obtained via linear regression at 0.3.
This is not done for DAGMA and COSMO because their implementations already incorporated the
same pruning scheme.

Dense graphs. We stress-test our method with complex structures in Figure 1(a). As depicted in
the first column, our method is the only approach that can achieve absolute overall performance in
all five metrics, surpassing the second- and third-best methods ALIAS and CORL by large margins
of more than 20% in each metric, while gradient-based methods DAGMA and COSMO struggle
with much worse performance. From the second and third columns, our DrBO approach can reach
higher BIC scores, and thus lower SHDs, very sharply with the number of evaluations, highlighting
its sample-efficiency. Lastly, the fourth column shows that our method’s SHD improvement over
time is continuous and faster in terms of runtime than all other baselines.
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(a) Dense graphs with Linear-Gaussian data (DAGs with 30 nodes and ≈240 edges). For fairness,
summary metrics (first column) are calculated at 50,000 evaluations for all methods.
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(b) Large graphs with Linear-Gaussian data (DAGs with 100 nodes and ≈200 edges). For
fairness, summary metrics (first column) are calculated at 50,000 evaluations for all methods.
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(c) Nonlinear data with Gaussian processes (DAGs with 10 nodes and ≈40 edges). For fairness,
summary metrics (first column) are calculated at 20,000 evaluations for all methods.

Figure 1: DAG learning results on Synthetic data. First column: overall performance in terms
of True Positive Rate (TPR, higher is better), Precision, Recall, and F1 score (higher is better), as
well as False Discovery Rate (FDR, lower is better). Second column: we track the best Bayesian
Information Criterion (BIC, higher is better) so far at every optimization step. Third and Fourth
columns: we monitor the Structural Hamming Distance (SHD, lower is better) of the DAG whose
best BIC so far at every optimization step. Shaded areas in the line plots indicate 95% confidence
intervals over 5 random datasets. NOTEARS+TMPI usually stops early before the time limit.

Large-scale graphs. Next, we demonstrate the scalability of our method on high-dimensional
graphs of 100 nodes, having up to 10,000 edges. Our results in Figure 1(b) shows that DrBO
is still the leading method for high-dim data, where it obtains absolute overall performance along
with the lowest SHD among all methods in limited runtime.

5.1.2 NONLINEAR DATA

Following prior works (Zhu et al., 2020; Wang et al., 2021; Yang et al., 2023a; Duong et al.,
2024), we demonstrate our method on nonlinear datasets generated using Gaussian processes from
Lachapelle et al. (2020). Specifically, we employ the datasets generated according to an ANM
xi := fi

(
xpai

)
+ εi where fi is drawn from a Gaussian process prior with a unit bandwidth RBF

kernel, and εi ∼ N
(
0, σ2

i

)
with non-equal noise variances σ2

i sampled uniformly in [0.4, 0.8].
ALIAS, CORL, and DrBO optimize SBIC−NV, while COSMO, DAGMA, and NOTEARS+TMPI
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optimize the least-square objective. The empirical results reported in Figure 1(c) confirms that our
DrBO method also excels on complex nonlinear data in both accuracy and computational cost.
This is evidenced by the leading overall performance (first column), along with a vanishing SHD of
only 0.4 at the end of the learning curve, surpassing other methods by a visible gap both in SHD and
convergence speed.

5.2 RESULTS ON REAL DATA AND STRUCTURES

Table 1: Causal Discovery Performance on Real-world Structures (Scutari, 2010). The per-
formance is measured in Structural Hamming Distance (SHD, lower is better). The numbers are
mean± std over 5 independent datasets with 1,000 observational samples. For fairness, all methods
are limited to 20,000 evaluations.

Dataset Alarm Asia Cancer Child Earthquake
Method (37 nodes, 46 edges) (8 nodes, 8 edges) (5 nodes, 4 edges) (20 nodes, 25 edges) (5 nodes, 4 edges)

ALIAS (Duong et al., 2024) 26.8± 7.8 0.2± 0.5 0.0± 0.0 2.8± 1.6 0.0± 0.0
CORL (Wang et al., 2021) 19.8± 8.6 0.0± 0.0 0.0± 0.0 1.6± 2.3 0.0± 0.0

COSMO (Massidda et al., 2024) 26.8± 4.0 4.0± 1.6 2.2± 0.8 11.6± 2.3 2.2± 0.8
DAGMA (Bello et al., 2022) 25.0± 5.3 2.6± 1.3 1.0± 1.2 8.0± 5.2 1.0± 1.2

GOLEM (Ng et al., 2020) 4.8± 6.2 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0
NOTEARS+TMPI (Zheng et al., 2018; Zhang et al., 2022) 7.0± 7.9 0.4± 0.9 0.0± 0.0 0.0± 0.0 0.0± 0.0

DrBO (Ours) 1.0± 2.2 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0
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Figure 2: Causal Discovery Per-
formance on the Benchmark
Sachs Dataset (Sachs et al., 2005).
NOTEARS+TMPI stops early before
the max no. of evaluations is reached.

Benchmark data. We verify the performance of our
method on real data using the popular benchmark flow cy-
tometry dataset (Sachs et al., 2005), concerning a protein
signaling network based on expression levels of proteins
and phospholipids. We employ the observational portion
of the dataset containing 853 observations and a known
causal network with 11 nodes and 17 edges. The evalu-
ations shown in Figure 2 verifies the effectiveness of our
method on real data, where it effortlessly achieves a state-
of-the-art SHD of 9 with fewer evaluations compared with
the competitors.

Real-world structures. To further illustrate the capabili-
ties of our approach on real-world scenarios, we conduct
experiments on real structures provided by the BnLearn
repository (Scutari, 2010). Each dataset contains 1,000
observational samples and a ground truth causal network
belonging to real-world applications with varying size.
Additional details regarding these datasets are given in
Appendix D.3. The results are presented in Table 1, highlighting that our method is the only ap-
proach that can consistently achieve zero SHD on four out of five real-world structures. On the
Alarm dataset, which appears to be most challenging, our DrBO method still leads with much
lower SHD compared with all other baselines.

5.3 SUPPLEMENTARY RESULTS

Extended Causal Discovery Settings. We investigate the performance of DrBO in extended sce-
narios in Appendix F as follows. Varying sample sizes: we show in Figure 4 that our method can
achieve low SHDs even with limited data. Different graph models: in Table 3, DrBO achieves
low SHDs and surpasses competitors for both ER and SF graphs, even on the dense graphs. Dif-
ferent noise distributions: Table 4 shows that DrBO also outperforms the baselines under five
different noise types. BGe score: Figure 5 confirms that our method can work with a different score
and match the score of ground truth graphs with low structural errors. Discrete Data: in Figure 6,
we show that DrBO also obtains the highest scores and lowest SHDs compared with the baselines
for non-continuous data. Standardized Data: we show in Figure 7 that our method is also robust
against data standardization for both linear and nonlinear data.

Additional baselines. In Appendix G, we also examine other baselines that are not based on se-
quential optimization, showing that DrBO also significantly outperforms these methods on linear,
nonlinear, as well as real data.

Runtime Comparison. In Appendix H, we also detail the numerical runtime among all methods.
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Figure 3: Ablating our design choices. All configurations are evaluated on 5 linear-Gaussian
datasets of 1,000 samples on 30ER8 graphs. Shaded areas indicate 95% confidence intervals.

5.4 ABLATIONS

In Figure 3, through ablation studies, we justify the design choices outlined in the Introduction,
showing that every component contributes considerately to the accuracy and/or scalability of our
method. The remaining hyperparameters of our algorithm are also studied in Appendix F.2.

6 CONCLUDING REMARKS

This study presents DrBO, a novel BO method to search for high-scoring DAGs. We have shown
that, by meticulously choosing promising DAGs to evaluate, we can find the optimal one more
efficiently and cost-effectively. Our comprehensive experiments demonstrate that DrBO performs
well even in many intricate settings like dense graphs, high-dimensional, and nonlinear data.

Regarding limitations, in our method, the surrogate model architecture is manually chosen and re-
mains fixed through the course of optimization, and thus is prone underfitting at the end. To mitigate
this, incremental neural architecture search techniques (Liu et al., 2018; Geifman & El-Yaniv, 2019)
can be employed to facilitate autonomous architecture selection and scaling. In addition, our con-
tinual learning component is simple and can benefit from more advanced techniques (Wang et al.,
2024) to further improve the performance of our surrogate models.

For future developments, it would be an interesting direction to combine our approach with ac-
tive causal discovery methods to recover the causal structure even more efficiently. Moreover, our
method can be extended to solve causal discovery problems with hidden confounders, where the
outputs are no longer DAGs.
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A PROOFS

A.1 PROOF OF LEMMA 1

Proof. The acyclicity of Eq. (4) is ensured by the first term: H (grad (p)). This is a binary matrix
representing the adjacency matrix of a directed graph. In this graph, the presence of an edge i → j
is equivalent to pi < pj . As such, a cycle i1 → . . . → i1, if exists, would lead to pi < pi, which
is contradictory, meaning this graph must be a DAG. Multiplying this adjacency matrix with the
second term H

(
R ·R⊤), which is also a binary matrix, has the effect of removing already existing

edges in this graph, and thus cannot introduce any cycle. This concludes our proof.

A.2 PROOF OF LEMMA 2

Proof. For any α > 0, we have H (pi − pj) = H (α (pi − pj)) = H (αpi − αpj) and

H
(
R ·R⊤) = H

(
α2R ·R⊤) = H

(
(αR) · (αR)

⊤
)

. Thus, H (grad (p)) ⊙ H
(
R ·R⊤) =

H (grad (αp))⊙H
(
(αR) · (αR)

⊤
)

, concluding our proof.

B DERIVING BIC SCORES

Recall that for a causal model with parameters θ :=
{
{fi}di=1 , P (ε)

}
, the general BIC is given by

SBIC (D,G) := 2 ln p
(
D | θ̂,G

)
− |G| lnn, (6)

where θ̂ := argmaxθ p (D | θ,G) is the maximum-likelihood estimator of the causal model param-
eters, n is the sample size of D, and |G| denotes the number of edges in G. The first term in Eq. (6)
is a log-likelihood objective similar to GOLEM (Ng et al., 2020), GraN-DAG (Lachapelle et al.,
2020), etc., while the second term penalizes extra edges.

The flexibility of Eq. (6) allows for the adoption of BIC in various causal models by simply specify-
ing the likelihood model. In the following, we derive the BIC scores for additive noise models with
non-equal and equal variances, as well as logistic models.

B.1 BIC FOR ANM WITH NON-QUAL VARIANCES

Let us consider an ANM defined by

xi := fi

(
xpaGi

)
+ εi, ∀i = 1, . . . , d, (7)

where the noise is assumed to be Gaussian with fixed variance: εi ∼ N
(
0, σ2

i

)
∀i = 1, . . . d. The

likelihood of a dataset D =
{
x(j)

}n
j=1

under this model is given by

L = ln p
(
D | G, {fi}di=1 , {σi}di=1

)
= −1

2

d∑
i=1

∑n
j=1

(
x
(j)
i − fi

(
x
(j)

paGi

))2
σ2
i

−n

2

d∑
i=1

lnσ2
i+constant.

(8)

Taking its derivative and setting it to zero, we can solve for the parameters as follows:

σ̂2
i =

1

n

n∑
j=1

(
x
(j)
i − f̂i

(
x
(j)

paGi

))2
︸ ︷︷ ︸

MSEi

, (9)

where
{
f̂i

}d

i=1
are least-square estimators obtained by minimizing

(
x
(j)
i − fi

(
x
(j)

paGi

))2
over a

restricted hypothesis class f ∼ F . Following past studies (Zhu et al., 2020; Wang et al., 2021; Yang
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et al., 2023a;b; Duong et al., 2024), we use linear regression for linear data and Gaussian process
regression for nonlinear data. However, any other regression method can be used as desired.

Subsequently, the first term in Eq. (8) cancels out and the maximum log-likelihood is reduced to

L̂ = −n

2

d∑
i=1

lnMSEi + constant. (10)

Finally, the BIC score for ANMs with non-equal variances is obtained by:

SBIC-NV (D,G) = −n
d∑

i=1

lnMSEi − |G| lnn. (11)

B.2 BIC FOR ANM WITH EQUAL VARIANCES

By setting σi = σ ∀i = 1, . . . , d, we repeat the previous steps and obtain the following solution for
the maximum likelihood estimators:

σ̂2 =
1

d

d∑
i=1

1

n

n∑
j=1

(
x
(j)
i − f̂i

(
x(j)
pai

))2
︸ ︷︷ ︸

MSEi

. (12)

The maximum likelihood now is given by

L̂ = −nd

2
ln

∑d
i=1 MSEi

d
+ constant. (13)

Finally, we obtain the the BIC score for ANMs with equal variances as follows:

SBIC-EV (D,G) = −nd ln
∑d

i=1 MSEi

d
− |G| lnn. (14)

B.3 BIC FOR BINARY DATA WITH LOGISTIC REGRESSION

From the formulation in Eq. (6), we can also adapt it to non-continuous data. For example, let us
consider the logistic causal model governed by

xi ∼ Bernoulli
(
fi

(
xpaGi

))
. (15)

where fi models the conditional probability of xi given xpaGi
.

The log-likelihood of data under this model is determined by

L = ln p
(
D | G, {fi}di=1

)
=

d∑
i=1

n∑
j=1

(
x
(j)
i ln fi

(
x
(j)

paGi

)
+
(
1− x

(j)
i

)
ln
(
1− fi

(
x
(j)

paGi

)))
.

Maximizing this objective and plugging it into Eq. (6) gives us with the BIC for logistic model:

SBIC-Logistic (D,G) = 2L̂ − |G| lnn. (16)

The first term is equivalent to the logistic loss used in, e.g., DAGMA (Bello et al., 2022), while the
second term punishes redundant edges as always.
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C ADDITIONAL DISCUSSIONS AND DETAILS

C.1 PRELIMINARY CANDIDATE GENERATION

In Sec. 4.2, we generate a set of C preliminary candidates in a hyperrectangle centered at the best
solution so far z∗. This hyperrectangle can be seen as a single “trust region” in BO (Eriksson et al.,
2019; Daulton et al., 2022). More specifically, our trust region is the intersection of the search space
[−1, 1]d(1+k) and the hypercube of length L centered at z∗. Following Eriksson et al. (2019), we
adaptively update L according to the learning progress. This is done by maintaining a success (and
failure) counter that keeps track the number of consecutive BO iterations that improves (or fails to
improve, resp.) the DAG score. After nsucc consecutive successes, we enlarge L by two times in
order to shift the focus to other regions, and after nfail consecutive failures, we shrink it by two times
to zoom more into the current region. In all experiments, we use the fixed values of nsucc = 3,
nfail = 5, and L is initialized with the value of 1 and is clipped to be within [0.01, 2] after each
update.

To produce the preliminary candidates on which we generate Thompson samples, for the very first
suggestions, following Eriksson et al. (2019), we employ the Latin hypercube design (LHD, McKay
et al., 2000), which is a space-filling method used to generate near-random samples from a multi-
dimensional space, which ensures that each dimension of the hypercube is evenly covered, while
random sampling can lead to an unevenly covered space. For subsequent suggestions, we follow the
established procedure in (Eriksson et al., 2019) to first generate a scrambled Sobol sequence (Owen,
1998) within the current trust region, then we use the perturbation value in the Sobol sequence with
probability min

{
1, 20

d(1+k)

}
for each given candidate and dimension, and the value of the center

z∗ otherwise. As noted in (Regis & Shoemaker, 2013; Eriksson et al., 2019), perturbing only a few
dimensions can lead to a significant performance improvement for high-dim scenarios.

C.2 SCALABLE SURROGATE MODELING

The literature of BO is vast and here we only discuss a few promising alternative approaches to scale
up surrogate models in BO, and justify of our dropout neural network choice.

Bayesian neural networks (BNN) are a also natural replacement thanks to the flexibility of neural
networks combined with the inherent ability to model uncertainty of the Bayesian ideology (Sprin-
genberg et al., 2016). However, to stay as close as possible to a truly Bayesian treatment, i.e., char-
acterizing the exact posterior distributions, they require stochastic gradient Markov Chain Monte
Carlo (MCMC) to sample from the posterior, which necessitates several sampling steps to reach the
desirable posterior (Springenberg et al., 2016). Meanwhile, in our method, we sacrifice the accuracy
of the posterior inference, so that we can sample from the posterior faster with a single forward pass
through the dropout neural networks. That being said, our DAG learning accuracy is still strong,
which justifies this sacrifice.

Sparse GPs (or Approximate GPs) have also been studied to enhance scalability of GPs (Snelson
& Ghahramani, 2005; Hensman et al., 2015; Titsias, 2009). However, they do not scale well with
dimensionality (Wang et al., 2018).

Random forest (RF) has also been considered as an alternative surrogate model in BO (Hutter et al.,
2011). An RF is composed of multiple decision trees, each of which is constructed from a portion
of the training set and a few random dimensions. Therefore, uncertainty modeling in RF is achieved
via the variation of the individual trees’ predictions. While RF is known to be efficient, especially
in tabular data, we find it more straightforward to train neural networks continually (Wang et al.,
2024) compared with tree-based models (Utgoff, 1989; Utgoff et al., 1997). This is crucial for our
BO framework to scale with the number of iterations as aforementioned.

Ensembling methods (Wang et al., 2018; Guo et al., 2018) sidestep the scalability challenge of BO
with the use of an ensemble of models trained on different partitions of the samples and dimensions.
A similar idea is also proposed in (Eriksson et al., 2019), where local GPs are trained on multiple
local trust regions of the search space. However, these methods require training multiple models,
and managing them is less straightforward than maintaining a single neural network like our method,
which also scales very well with a strong causal discovery performance.
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C.3 PRUNING TECHNIQUES

Pruning is typically employed in causal discovery to reduce false positive estimates, and there are
several approaches depending on the causal model as follows.

Linear data. For linear data, given the resultant DAG G that needs to be pruned, linear regression
is used to find the linear coefficients {ŵij}(i→j)∈G associating with the edges in G. Then, only the
weights satisfying a certain absolute strength α is kept, while the remaining are removed. In other
words, the edge (i→ j) ∈ G is kept iff |ŵij | > α. Typically, the weights in the true generative
process for linear models are sampled from U ([−2,−0.5] ∪ [0.5, 2]), and the common value for α
is 0.3 (Zheng et al., 2018; Zhu et al., 2020; Wang et al., 2021; Bello et al., 2022; Massidda et al.,
2024; Duong et al., 2024).

Nonlinear additive model. For nonlinear data under additive models, a common approach is based
on feature selection using generalized additive model (GAM) regression (Bühlmann et al., 2014),
also known as CAM pruning. Particularly, each node i is regressed on its parents xpaGi

using GAM,
then the significance test of covariates is conducted, and a parent is kept if its p-value is lower than
the significance level of 0.001. This is also done in (Zhu et al., 2020; Wang et al., 2021; Massidda
et al., 2024; Rolland et al., 2022; Sanchez et al., 2023; Duong et al., 2024).

Non-additive models. For general non-additive models, conditional independence (CI) testing can
also be employed to prune edges. To be more specific, the Faithfulness assumption (Peters et al.,
2017) implies that any conditional independence observed in data reflects the corresponding d-
separation in the causal graph, so if xi ⊥⊥ xj | xpai\{j} for some j ∈ pai, then j is an extra
edge and needs to be removed. This follows the same idea of constraint-based causal discovery
(Spirtes et al., 2000; Colombo et al., 2012) and feature selection via Markov Blankets (Koller &
Sahami, 1996; Xing et al., 2001). As observed in (Duong et al., 2024), CI-based pruning leads to
better performance on the Sachs dataset compared with CAM pruning, and hence we also employ it
for all methods on the Sachs dataset. The specific CI test is the popular kernel-based method KCIT
(Zhang et al., 2011) with a significance level of 0.001.

D EXPERIMENT DETAILS

D.1 DAG LEARNING METRICS

We evaluate the performance of each method using the following standard measures, each of which
calculates the disparity between an estimated DAG and the ground truth DAG:

• Structural Hamming Distance (SHD, lower is better): this is the most common metric
in causal discovery, which counts the minimum number of edge additions, removals, and
reversals to turn the estimated DAG into the true graph.

• BIC score (higher is better): we also monitor the BIC score of the estimated DAG for
all methods in the main text (despite the fact that some baselines do not optimize this
score). For linear data, we use the BIC with equal variances and linear regression, while
for nonlinear data, BIC with non-equal variance with Gaussian process regression is used,
and BIC with logistic regression is employed for binary data.

• True Positive Rate (TPR, higher is better): this measures the ratio of correctly recovered
edges over the true edges in the ground truth DAG.

• False Discovery Rate (FDR, lower is better): this measures the proportion of incorrectly
estimated edges over all estimated edges.

• Precision, Recall, and F1: this measures the binary classification performance by treating
the binary adjacency matrix as a set of individual binary classification tasks.

D.2 SYNTHETIC CAUSAL GRAPHS

Our synthetic causal graphs involve one of the two well-known graph models:

• Erdős-Rényi (ER, Erdős & Rényi, 1960): the edges in this type of graph are added inde-
pendently with fixed probability. To generate a DAG of d nodes with an expected in-degree
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of e, we first generate an undirected graph where edges are added with probability 4de
d(d−1) ,

then orient the edges using a random permutation over the list of nodes.

• Scale-Free (SF, Barabási & Albert, 1999): these are graphs where the degree distribution
follows a power law, where a few nodes have many connections while others have only a
few connections. To generate SF graphs with ≈ de edges, we start with an empty graph
then repeatedly grow it by attaching new nodes, each with k edges, that are preferentially
attached to existing nodes.

Remark 1. It is noteworthy that the majority of methods perform well only for graphs with up to
e = 4 (Zheng et al., 2018; Zhu et al., 2020; Ng et al., 2020; Yu et al., 2021; Wang et al., 2021; Bello
et al., 2022; Yang et al., 2023b). Indeed, it was noted in (Bello et al., 2022) that ER4 and SF4 are
the hardest settings. However, in this study, we have shown that our DrBO method is still very
accurate on much denser ER8 and SF8 graphs.

D.3 BNLEARN DATASETS

The BnLearn repository4 (Scutari, 2010) contains a set of Bayesian networks of varying sizes and
complexities from different real-world domains. The chosen networks in our study include Alarm
(Beinlich et al., 1989), Asia (Lauritzen & Spiegelhalter, 1988), Cancer (Korb & Nicholson, 2010),
Child (Spiegelhalter, 1992), and Earthquake (Korb & Nicholson, 2010). However, these datasets
only describe the conditional probability distributions of discrete variables, while the baselines con-
sidered in our method are mostly implemented for continuous data. Since the purpose of this ex-
periment is to show that our method can correctly recover real structures, we use the networks
from the BnLearn to generate continuous data. Specifically, we employ linear-Gaussian SCMs as
in Sec. 5.1.1 to generate synthetic data adhering to real causal networks, and each dataset contains
only 1,000 observational samples.

D.4 IMPLEMENTATIONS AND PLATFORM

Implementations. We employ the following implementations for the considered baselines as fol-
lows:

• DAGMA (Bello et al., 2022): we use the official implementation provided by the authors
at https://github.com/kevinsbello/dagma.

• COSMO (Massidda et al., 2024): we use the original implementation attached as supple-
mentary material at https://openreview.net/forum?id=KWO8LSUC5W.

• CORL (Wang et al., 2021): we employ the official implementation provided in the
gCastle library (Zhang et al., 2021) at https://github.com/huawei-noah/
trustworthyAI.

• ALIAS (Duong et al., 2024): we reimplement their method by following the exact instruc-
tions and libraries described.

• GOLEM (Ng et al., 2020): we adopt the implementation provided by gCastle (Zhang et al.,
2021) at https://github.com/huawei-noah/trustworthyAI.

• NOTEARS+TMPI (Zheng et al., 2018; Zhang et al., 2022): we replace the DAG constraint
in NOTEARS’ implementation at https://github.com/xunzheng/notears
with the TMPI constraint at https://github.com/zzhang1987/
Truncated-Matrix-Power-Iteration-for-Differentiable-DAG-Learning.

Platform. The majority of our experiments are conducted on a 24-core Intel processor with 4.9 GHz
frequency, and an NVIDIA GPU with 16G of CUDA memory and compute capability of 8.9. The
only exception is the case of CORL on large graphs (Figure 1(b)) which requires more than 16Gb
of CUDA memory, and therefore these experiments are conducted on an NVIDIA A100 GPU with
32G of CUDA memory instead.

4Data is publicly downloadable at https://www.bnlearn.com/bnrepository
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E HYPERPARAMETERS

We provide the specific set of hyperparameters for our DrBO method in Table 2.

Table 2: Hyperparameters for DrBO. Unless specifically indicated, the default hyperparameters
here are used for all experiments.

Hyperparameter Experiment
Linear data Nonlinear data with GPs Sachs data

Normalize data No No Yes
Scoring function SBIC-EV with linear regression SBIC-NV with GP regression SBIC-NV with GP regression
Pruning method Linear pruning No pruning CIT pruning

Batch size B 64
DAG rank k 8

No. training steps ngrads 10
No. preliminary candidates C 100,000

Optimizer Adam
Learning rate 0.1

Replay buffer size nreplay 1,024
No. hidden units 64

Dropout rate 0.1

For ALIAS and CORL, apart from the recommended default hyperparameters, for fairness, we also
use the same batch size of 64 as ours (except for CORL which requires the batch size to be at least
the number of nodes, so for 100-node graphs we have to set the batch size to 100), as well as the same
scoring function and pruning method as ours in each experiment. Regarding COSMO and DAGMA,
we use the linear and nonlinear versions specific to each experiment and the hyperparameters are set
as recommended. We also use the same BIC score and pruner specific to each experiment to track
the progress of all methods in Figure 1.

Regarding the number of evaluations, for all methods, we run more than needed then cut off at
common thresholds.

Remark 2. Following the same line as in (Bello et al., 2022; Zheng et al., 2018) and many studies
in this field, we intentionally avoid hyperparameter tuning. This is to prevent injecting spurious
information of the dataset characteristics into the causal discovery results, which is against the idea
of causality. Therefore, we use a fixed set of hyperparameters for each method in each setting. The
hyperparameters of baseline methods are chosen as recommended in the original manuscripts, while
ours are chosen based on common practice and prior experience. Indeed, our ablation studies reveal
that there are better hyperparameter choices that can further improve the performance of our method.

F ADDITIONAL CAUSAL DISCOVERY SETTINGS

F.1 DIFFERENT SAMPLE SIZES

In Figure 4, we test our method with varying sample sizes on linear-Gaussian data. The results
indicate that our method is already very accurate with SHD ≈ 0 at merely 500 samples.
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Figure 4: Causal Discovery Performance with Varying Sample Sizes. We apply our DrBO
method on linear-Gaussian data with 20ER4 graphs. Shaded areas represent 95% confidence interval
over 5 runs.

F.1.1 DIFFERENT GRAPH TYPES

We evaluate our method on different graph types, namely ER and SF, with varying densities, as
shown in Table 3. Our method perfectly identifies the correct DAG in all cases for both graph
models, even in the dense graphs ER8 and SF8.

Table 3: Causal Discovery Performance with Different Graph Types. The considered graph mod-
els include Erdős-Rényi (Erdős & Rényi, 1960) and Scale-Free (SF, Barabási & Albert, 1999), with
expected in-degrees of 2 and 8 corresponding to the case of sparse and dense structures, respectively.
We compare our DrBO method with ALIAS (Duong et al., 2024) and DAGMA (Bello et al., 2022)
on linear-Gaussian datasets with 20 variables and 10,000 samples. The numbers are mean± std over
5 random datasets. For fairness, all methods are limited to 10,000 score evaluations.

Graph Expected In-degree Method SHD ↓ FDR ↓ TPR ↑

ER

2
ALIAS 21.6± 7.2 0.32± 0.12 0.68± 0.08

DAGMA 25.8± 7.3 0.28± 0.13 0.55± 0.07

DrBO (ours) 0.0± 0.0 0.00± 0.00 1.00± 0.00

8
ALIAS 84.2± 7.5 0.15± 0.03 0.53± 0.04

DAGMA 122.4± 4.7 0.19± 0.03 0.28± 0.02

DrBO (ours) 0.0± 0.0 0.00± 0.00 1.00± 0.00

SF

2
ALIAS 13.6± 2.7 0.18± 0.09 0.71± 0.02

DAGMA 23.4± 9.8 0.25± 0.19 0.53± 0.13

DrBO (ours) 0.0± 0.0 0.00± 0.00 1.00± 0.00

8
ALIAS 68.8± 9.0 0.34± 0.08 0.52± 0.06

DAGMA 94.4± 8.1 0.49± 0.11 0.2± 0.06

DrBO (ours) 0.0± 0.0 0.00± 0.00 1.00± 0.00

F.1.2 DIFFERENT NOISE DISTRIBUTIONS

To examine the performance of our method compared with others under noise misspecification, in
Table 4, we evaluate causal discovery performance various noise distributions. Specifically, we con-
sider linear SCM xi :=

∑
j∈pai

wjixj+εi, where εi is drawn from one of the following distributions

• Exponential noise: εi ∼ Exp (1) ,∀i = 1, . . . , d, where 1 is the scale parameter.
• Gaussian noise: εi ∼ N (0, 1) ,∀i = 1, . . . , d, where 0 is the mean and 1 is the variance.
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• Gumbel noise: εi ∼ Gumbel (0, 1) ,∀i = 1, . . . , d, where 0 is the location parameter and
1 is the scale parameter.

• Laplace noise: εi ∼ Laplace (0, 1) ,∀i = 1, . . . , d, where 0 is the location parameter and
1 is the scale parameter.

• Uniform noise: εi ∼ U (−1, 1) ,∀i = 1, . . . , d, where the minimum value is −1 and
maximum value is 1.

Remark 3. We note that our BIC score is kept unchanged for different noises to show that our
method can work well beyond the assumed Gaussian noise.

Table 4: Causal Discovery Performance with Different Noise Distributions. We consider 5 noise
distributions: Exponential, Gaussian, Gumbel, Laplace, and Uniform. Our DrBO method is com-
pared with ALIAS (Duong et al., 2024) and DAGMA (Bello et al., 2022) on linear-Gaussian datasets
with 20 variables and 10,000 samples. The numbers are mean ± std over 5 random datasets. For
fairness, all methods are limited to 20,000 score evaluations.

Noise Type Method SHD ↓ FDR ↓ TPR ↑

Exponential
ALIAS 36.2± 13.3 0.24± 0.07 0.75± 0.09

DAGMA 56.6± 6.8 0.22± 0.10 0.37± 0.05

DrBO (ours) 0.4± 0.6 0.00± 0.01 0.99± 0.01

Gaussian
ALIAS 34.2± 11.4 0.23± 0.08 0.77± 0.05

DAGMA 57.2± 7.6 0.25± 0.09 0.39± 0.09

DrBO (ours) 0.0± 0.0 0.00± 0.00 1.00± 0.00

Gumbel
ALIAS 36.6± 12.9 0.26± 0.08 0.77± 0.06

DAGMA 54.8± 7.4 0.25± 0.04 0.44± 0.08

DrBO (ours) 0.2± 0.5 0.00± 0.01 1.00± 0.01

Laplace
ALIAS 36.4± 14.2 0.26± 0.07 0.76± 0.09

DAGMA 56.0± 8.8 0.25± 0.08 0.40± 0.09

DrBO (ours) 0.0± 0.0 0.00± 0.00 1.00± 0.00

Uniform
ALIAS 34.4± 13.0 0.24± 0.08 0.77± 0.05

DAGMA 59.0± 7.3 0.26± 0.08 0.39± 0.09

DrBO (ours) 0.0± 0.0 0.00± 0.00 1.00± 0.00

F.1.3 BGE SCORE FOR MARKOV EQUIVALENCE CLASS DISCOVERY

Here, we show that our method is not restricted to the BIC score and can be extended to other
scores as well. We consider the Bayesian Gaussian equivalent (BGe, Geiger & Heckerman, 1994;
Heckerman et al., 1995) score for learning the Markov Equivalence Class (MEC) of DAGs in linear-
Gaussian settings. The BGe score assigns equal scores to DAGs belonging to the same MEC, and
can be decomposed as the sum of local scores as follows:

SBGe (D,G) =
d∑
i

LocalBGei
(
paGi

)
. (17)

We refer readers to, for example, Kuipers et al. (2014), for the specific formula of the BGe score.
To adapt our method with this score, we simply train each dropout network DropoutNNi to predict
LocalBGei from paGi and combine them using Eq. (17). It can be seen that this adaptation does not
involve changing any other component of our method.
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We report the results in Figure 5, where we compare DrBO with two popular baselines that are
well-known to recover the MEC, namely PC (Spirtes et al., 2000) and GES (Chickering, 2002).5
The results illustrate that our method can find the DAGs with the highest BGe scores, while the
scores from PC’ and GES’s estimations are well below those of the ground truths. As a result, our
recovered structures are more accurate than the baselines.

−7.105 −7.100 −7.095 −7.090 −7.085

Ground truth DAG’s BGe
×105

−7.105

−7.100

−7.095

−7.090

−7.085

Es
ti

m
at

ed
D

A
G

’s
B

G
e

×105

r = 1.00
SHD-C = 0.6±1.1

DrBO (Ours)

−7.8 −7.6 −7.4 −7.2

Ground truth DAG’s BGe
×105

−7.8

−7.6

−7.4

−7.2

Es
ti

m
at

ed
D

A
G

’s
B

G
e

×105

r = 0.10
SHD-C = 1.2±2.0

PC

−7.8 −7.6 −7.4 −7.2

Ground truth DAG’s BGe
×105

−7.8

−7.6

−7.4

−7.2

Es
ti

m
at

ed
D

A
G

’s
B

G
e

×105

r = −0.04
SHD-C = 1.9±2.6

GES

Figure 5: BGe for Markov Equivalence Class Discovery. We compare the BGe score of ground
truth DAGs and the estimations from DrBO with two popular baselines PC (Spirtes et al., 2000)
and GES (Chickering, 2002). Each point corresponds to one of 50 random datasets with linear
Gaussian data on ER graphs of 5 nodes and 5 edges on average. The Pearson correlation coefficient
r between the scores of the estimated and ground truth DAGs are included. In addition, we also
report the SHD-C metric, which measures the structural distance between MECs.

F.1.4 DISCRETE DATA

In this section, we show that our method is not limited to continuous data either. To demonstrate,
we consider binary data with logistic causal models:

xi ∼ Bernoulli
(
fi

(
xpaGi

))
.

We adapt our method to this situation by simply changing the BIC score to take into account logistic
models. More particularly, we use the BIC score for logistic data as in Eq. (16), where the maximum
log-likelihood can be decomposed into

L̂ =

d∑
i=1

LocalMLLi,

where LocalMLLi =
∑n

j=1

(
x
(j)
i ln f̂i

(
x
(j)

paGi

)
+
(
1− x

(j)
i

)
ln
(
1− f̂i

(
x
(j)

paGi

)))
, with f̂i being

the maximum-likelihood estimator found via logistic regression.

Then, we employ our local surrogate models DropoutNNi to model LocalMLLi, and the acquisi-
tion function values are obtained by summing the local score samples. Again, this adaptation only
involves changing the scoring function and does not modify any other component of our BO frame-
work.

We report the causal discovery performance under binary data in Figure 6, where we also compare
DrBO with the state-of-the-art DAGMA, which is now set to use the logistic loss supported. It
can be seen that our method also performs well for binary data, where it consistently obtains the
highest scoring graphs, resulting in a low structural error. Meanwhile, DAGMA usually finds only
sub-optimal solutions which lead to high structural errors.

5We use the gCastle library (Zhang et al., 2021) for their implementations, where hyperparameters are left
as default.
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Figure 6: Causal Discovery performance on Binary Data. We compare our DrBO method using
the BIC score for the logistic model with DAGMA (Bello et al., 2022) using the logistic loss. Each
point corresponds to one of 50 random datasets with logistic data on ER graphs of 5 nodes and 5
edges on average. The Pearson correlation coefficient r between the scores of the estimated and
ground truth DAGs are included. In addition, we also report the SHD-C metric, which measures the
structural distance between MECs.

F.1.5 STANDARDIZED DATA

As discussed in Reisach et al. (2021), marginal variances may contain crucial information about the
causal ordering among the causal variables, and thus revealing the causal DAG by simply sorting the
variables by increasing variances. For this reason, in this section, we investigate the causal discovery
performance of the proposed method in comparison with the baselines under uninformative marginal
variances, by standardizing the observed data to have zero mean and unit variance per dimension,
before feeding it to causal discovery methods.

Linear-Gaussian data. Since the noise variances are non-equal after standardization, we employ
the non-equal variance versions of the methods that support it, including ALIAS, CORL, GOLEM,
and DrBO. In addition, as the data is standardized, the usual threshold of 0.3 for pruning is no
longer appropriate because significant edge weights may be rescaled to much smaller values after
standardization, so in this experiment, we increase the sample size to 100,000 to reduce weight
estimation variance, and lower the pruning threshold to 0.01. The results presented in Figure 7(a)
confirm that our method is still robust for standardized data. Overall, while all methods obtain a non-
zero SHD due to the difficulty of standardized data, which render the linear-Gaussian SCM uniden-
tifiable, our method still outperforms other baselines significantly, where we achieve an SHD≈3,
while the second-best SHD is nearly 20, highlighting DrBO’s improved effectiveness over existing
approaches in this intricate scenario. Additionally, even though the same pruning threshold is used
for all methods, our method barely predicts any extra edge, while other baselines still suffer from
high false discovery rate. Moreover, our method does not predict too many reverse edges, as op-
posed to most methods, showing that while data standardization negatively impacts causal discovery
performance to some extent, the effect on our method is minimal.

Nonlinear data with GPs. Figure 7(b) presents the results for nonlinear data with GPs with stan-
dardization, showing that our method can achieve a very low SHD and surpasses other methods
considerably. This result is similar to Figure 1(c), where the same datasets employed are not stan-
dardized, indicating that the performance of our method is not affected by data standardization in
this case, which could be potentially thanks to the fact that nonlinear ANMs remain identifiable after
standardization.
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(a) Linear-Gaussian Data (DAGs with 10 nodes and ≈20 edges). For fairness, all metrics are
calculated at 20,000 evaluations for all methods.
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(a) Nonlinear Data with GPs (DAGs with 10 nodes and ≈40 edges). For fairness, all metrics are
calculated at 20,000 evaluations for all methods.

Figure 7: Causal Discovery Performance on Standardized Data. Performance metrics are Struc-
tural Hamming Distance (SHD), number of Missing, Extra, and Reverse edges. Lower values are
more preferable. Error bars indicate 95% confidence intervals over 5 simulations.

F.2 ABLATION EXPERIMENTS

F.2.1 EFFECT OF DROPOUT NETWORKS

In Figure 3(b), we compare our dropout networks as the surrogate model with exact GPs and approx-
imate GPs. Approximate GPs learn a set of pseudo data points called inducing points and conduct
inference via these points instead of the real data (Hensman et al., 2015). Here we use a small
number of 100 inducing points for Approximate GPs, to see they can scale well with few inducing
points. Due to the limited scalability and intensive memory requirement for GPs, we can only use
C = 10,000 preliminary candidates on which we sample from the posteriors, while our default
hyperparameter is C = 100,000 using dropout networks.

F.2.2 EFFECT OF CONTINUAL TRAINING

In Figure 3(d), we compare the continual training approach with fully retraining using all data. For
continual learning, we use default hyperparameters nreplay = 1,024, B = 64, and ngrads = 10,
meaning for each BO iteration, we perform 10 gradients update, each update is calculated from
1,024+64 = 1,088 datapoints. To ensure fairness, we also use ngrads = 10 epochs and a mini-batch
size of 1,088 for the full retraining approach.

F.2.3 EFFECT OF EVALUATION BATCH SIZE (B)

In Figure 8, we show the influence of the evaluation batch size B onto the performance and scala-
bility of our method. Overall, it is clear that smaller batch sizes lead to better SHD but much worse
runtime since the surrogate model is updated more frequently, and vice versa. However, B = 64
seems to achieve balance, where it enables SHD ≈ 0 and lower runtime than smaller batch sizes.
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Figure 8: Effect of Evaluation Batch Size B. We evaluate our method on linear-Gaussian data
with 20ER4 graphs and 1,000 observations. Error bars indicate 95% confidence intervals over 5
runs. The number of evaluations is limited to 20,000.

F.2.4 EFFECT OF NUMBER OF PRELIMINARY CANDIDATES (C)

We show the variation our DrBO’s performance w.r.t. different numbers of preliminary candidates
C in Figure 9, showing that the best performance and runtime can be achieved at 10,000 candidates,
and even with 10x more candidates, the runtime of our method increases only slightly.
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Figure 9: Effect of Number of Preliminary Candidates C. We evaluate our method on linear-
Gaussian data with 20ER4 graphs and 1,000 observations. Error bars indicate 95% confidence
intervals over 5 runs. The number of evaluations is limited to 20,000.

F.2.5 EFFECT OF NUMBER OF TRAINING STEPS PER BO ITERATION (nGRADS)

We study the effect of the number of gradient steps in each BO iteration (ngrads) in Figure 10. In
general, small values may lead to underfitting and large values may be prone to overfitting, so values
in the middle are better for this hyperparameter.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

0 2 4 6 8

1

5

10

20

50N
o.

tr
ai

ni
ng

st
ep

s
(n

gr
ad

s)

Structural Hamming Distance

5 10 15 20

Minutes

Figure 10: Effect of Number of Training Steps per BO Iteration ngrads. We evaluate our method
on linear-Gaussian data with 20ER4 graphs and 1,000 observations. Error bars indicate 95% confi-
dence intervals over 5 runs. The number of evaluations is limited to 20,000.

F.2.6 EFFECT OF REPLAY BUFFER SIZE (nREPLAY)

In Figure 11, we show that higher values for the replay buffer size significantly reduces SHD but
does not considerately influence the runtime.
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Figure 11: Effect of Replay Buffer Size nreplay. We evaluate our method on linear-Gaussian data
with 20ER4 graphs and 1,000 observations. Error bars indicate 95% confidence intervals over 5
runs. The number of evaluations is limited to 20,000.

F.2.7 EFFECT OF LEARNING RATE

Figure 12 depicts that the learning rate has a weak effect on the performance and scalability of our
method, where any value below 1 can achieve the same level of SHD and runtime. The SHD only
becomes large for a high learning rate of 1.
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Figure 12: Effect of Learning Rate. We evaluate our method on linear-Gaussian data with 20ER4
graphs and 1,000 observations. Error bars indicate 95% confidence intervals over 5 runs. The
number of evaluations is limited to 20,000.

F.2.8 EFFECT OF NUMBER OF HIDDEN UNITS

We present in Figure 13 that the number of hidden units in our dropout networks also has a visible
effect on our method’s performance, but not much on the runtime. Specifically, a moderate value
of 32 achieves a vanishing SHD with the equivalent runtime as others. Meanwhile, to many hidden
units may challenge the training process so performance may drop.
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Figure 13: Effect of Number of Hidden Units h. We evaluate our method on linear-Gaussian data
with 20ER4 graphs and 1,000 observations. Error bars indicate 95% confidence intervals over 5
runs. The number of evaluations is limited to 20,000.

F.2.9 EFFECT OF NUMBER OF DROPOUT RATE

Figure 14 suggests that the performance of our method improves with higher dropout rates, while
the runtime does not vary significantly.
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Figure 14: Effect of Dropout Rate p. We evaluate our method on linear-Gaussian data with 20ER4
graphs and 1,000 observations. Error bars indicate 95% confidence intervals over 5 runs. The
number of evaluations is limited to 20,000.

G ADDITIONAL BASELINES

Apart from the score-based competitors compared so far, here we also consider additional baselines
for comparison, such as conventional methods PC (Spirtes et al., 2000) and GES (Chickering, 2002).
In addition, ordering-based methods have also been gaining popularity (Reisach et al., 2021; Rolland
et al., 2022; Sanchez et al., 2023; Montagna et al., 2023). These methods sidestep the acyclicity issue
by first learning a topological ordering of the causal DAG, then pruning the fully-connected DAG
induced by the ordering to obtain the causal structure.

In Table 5, we provide a comprehensive comparison between our method and conventional methods
PC and GES, as well as popular ordering-based method, including sortnregress (Reisach et al.,
2021), SCORE (Rolland et al., 2022), and DiffAN (Sanchez et al., 2023), on linear, nonlinear, as
well as real data. The empirical evaluations indicate that our method is also able to surpass these
methods in all metrics and settings.
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Table 5: Comparison with Ordering-based Methods. We compare our method with conventional
methods PC (Spirtes et al., 2000) and GES (Chickering, 2002), as well as popular ordering-based
algorithms sortnregress (Reisach et al., 2021), SCORE (Rolland et al., 2022), and DiffAN (Sanchez
et al., 2023). The orderings produced by those methods are first transformed into respective fully
connected DAGs. Then, for fairness, all DAGs, including ours, are pruned using the weight matrix
thresholded at 0.3 for linear data, CAM pruning (Bühlmann et al., 2014) for nonlinear data, and
KCIT (Zhang et al., 2011) for the Sachs dataset. The figures are mean± std over 5 datasets, except
for the Sachs dataset. Note that DrBO’s result in Figure 1(c) with SHD ≈ 0.4 is obtained without
pruning, while using CAM pruning leads to a few missing edges as shown below.

Dataset Method SHD ↓ FDR ↓ TPR ↑ F1 ↑

Linear Data
(10ER2 graphs,
1,000 samples)

PC 10.8± 5.1 0.29± 0.1 0.49± 0.2 0.56± 0.2
GES 11.6± 6.4 0.40± 0.2 0.61± 0.2 0.58± 0.2
sortnregress 2.0± 2.6 0.10± 0.1 0.94± 0.1 0.92± 0.1
SCORE 0.0± 0.0 0.0± 0.0 1.00± 0.0 1.00± 0.0
DiffAN 16.6± 4.9 0.54± 0.1 0.49± 0.1 0.48± 0.1

DrBO (ours) 0.0± 0.0 0.0± 0.0 1.00± 0.0 1.00± 0.0

Linear Data
(30ER8 graphs,
1,000 samples)

PC 227.0± 8.6 0.44± 0.0 0.10± 0.0 0.17± 0.0
sortnregress 101.4± 21.8 0.24± 0.0 0.80± 0.1 0.78± 0.0
SCORE 247.0± 11.8 0.76± 0.1 0.05± 0.0 0.08± 0.1
DiffAN 236.0± 3.7 0.58± 0.1 0.16± 0.1 0.23± 0.1

DrBO (ours) 1.6± 1.5 0.00± 0.0 0.99± 0.0 1.0± 0.0

Nonlinear Data
(10ER4 graphs,
1,000 samples)

PC 32.2± 2.2 0.50± 0.2 0.21± 0.1 0.29± 0.1
GES 29.6± 5.6 0.43± 0.2 0.30± 0.1 0.38± 0.1
sortnregress 27.4± 3.3 0.42± 0.1 0.37± 0.1 0.45± 0.1
SCORE 9.4± 4.6 0.11± 0.1 0.83± 0.1 0.86± 0.1
DiffAN 18.6± 3.8 0.34± 0.1 0.61± 0.1 0.63± 0.1

DrBO (ours) 4.2± 1.3 0.00± 0.0 0.90± 0.0 0.95± 0.0

Sachs et al. (2005),
(11 nodes, 17
edges, 853
samples)

PC 11 0.25 0.35 0.39
GES 11 0.25 0.35 0.39
sortnregress 13 0.44 0.29 0.38
SCORE 12 0.33 0.35 0.46
DiffAN 16 0.75 0.12 0.16

DrBO (ours) 9 0.11 0.47 0.62

H TIME COMPARISONS

Table 6: Runtime comparison on 30ER8 linear-Gaussian data (experiment in Figure 1(a)).

Method
Max number of evaluations

10,000 20,000 50,000

SHD Runtime (mins) SHD Runtime (mins) SHD Runtime (mins)
ALIAS 208.8± 13.1 0.5± 0.0 165.0± 18.0 1.1± 0.0 105.2± 2.9 2.4± 0.0
CORL 169.0± 17.1 1.1± 0.0 162.0± 13.4 2.1± 0.0 145.4± 29.3 5.2± 0.1

COSMO 213.6± 17.4 0.6± 0.0 203.4± 21.0 1.1± 0.0 195.8± 10.8 2.8± 0.0
DAGMA 222.2± 11.2 0.0± 0.0 218.8± 10.6 0.0± 0.0 181.6± 22.4 0.0± 0.0

DrBO (ours) 2.0± 1.2 4.6± 0.0 2.0± 1.4 9.2± 0.0 1.6± 1.5 22.9± 0.1
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Table 7: Runtime comparison on 100ER2 linear-Gaussian data (experiment in Figure 1(b)).

Method
Max number of evaluations

10,000 20,000 50,000

SHD Runtime (mins) SHD Runtime (mins) SHD Runtime (mins)
ALIAS 230.4± 32.7 2.7± 0.3 136.8± 30.2 5.5± 0.3 32.0± 16.7 13.5± 0.6
CORL 148.0± 42.9 11.1± 0.1 120.2± 18.1 22.0± 0.2 81.0± 19.9 54.2± 0.5

COSMO 111.0± 10.9 0.8± 0.0 111.8± 12.2 1.5± 0.0 112.6± 13.4 3.7± 0.0
DAGMA 124.8± 17.4 0.0± 0.0 93.6± 16.1 0.1± 0.0 6.6± 4.0 0.3± 0.0

DrBO (ours) 29.2± 16.7 12.7± 0.1 3.4± 4.3 25.4± 0.3 1.4± 1.1 62.7± 0.8

Table 8: Runtime comparison on 10ER4 nonlinear data with Gaussian processes (experiment in
Figure 1(c)).

Method
Max number of evaluations

1,000 2,000 20,000

SHD Runtime (mins) SHD Runtime (mins) SHD Runtime (mins)
ALIAS 15.8± 4.4 4.0± 0.2 12.6± 4.2 5.8± 0.2 4.0± 2.3 8.0± 0.3
CORL 10.4± 3.4 20.9± 3.0 9.2± 2.3 26.5± 3.1 8.4± 3.0 29.9± 2.4

COSMO 34.8± 2.6 0.3± 0.1 33.0± 3.3 0.4± 0.1 25.6± 4.1 1.8± 0.1
DAGMA 40.4± 2.3 0.0± 0.0 38.4± 2.7 0.1± 0.0 34.2± 3.5 0.8± 0.1

DrBO (ours) 2.2± 1.6 3.7± 0.8 0.4± 0.5 3.9± 0.9 0.4± 0.5 6.1± 1.0
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