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ABSTRACT

Dynamic human movement necessitates a dynamic representation of the body.
The mechanisms underlying the initiation, development, and maintenance of such
representations can provide a biological perspective to developing more flexible
representations within computational agents. Taking inspiration from the prenatal
twitches shown to initiate the human neuromotor representation, we question how
these same twitches, present throughout development, may also facilitate sub-
sequent motor adaptation. Across three experiments, we examine the influence
twitches, as a form of intrinsic behavioral variability, may have in facilitating mo-
tor adaptation to novel situations. In a series of simulated reaching tasks, we
trained agents to reach targets while overcoming behavioral, physiological, and
neurological changes. Overall, we found evidence that agents exposed to intermit-
tent behavioral variability outperformed their counterparts, showing greater neural
weight variability, indicative of greater exploration. Taken together, this work pro-
vides a biologically plausible computational framework for flexible representation
development.

1 INTRODUCTION

Dynamic representations of the human body are essential for adapting to the dynamic internal
changes and external stimuli we experience every day. Our bodies change dramatically as we
develop, growing and lengthening through adolescence, where at the same time, we are tasked
with learning a multitude of novel skills (i.e., walking, holding, driving). Similarly, as we progress
through adulthood, we again may face changes and challenges, albeit typical bodily shrinkage or, for
some, the dramatic loss of a limb or degradation of the mind. Despite this, humans show an affinity
for adapting to these changes. Much of this may be due, in part, to the dynamic representations we
build about our bodies throughout development (Wang et al., 2022). How these representations form
and change in response to novel stimuli, however, is still unclear.

Traditionally, the human motor mapping was thought to be a static two-dimensional somatotopic
representation of the body, mapping specific regions of the body (e.g., body, leg, face, hips) to spe-
cific parts of the cortical folds of the motor cortex (Penfield & Boldrey, 1937). An abundance of de-
velopmental biology evidence has supported this dogma, pointing to myoclonic twitches as the cat-
alyst for this representation (Blumberg et al., 2013b; Chehade & Gharbawie, 2023; Gentilucci et al.,
1989; Grodd et al., 2001; Inácio et al., 2016; Petersson et al., 2003; Sokoloff et al., 2020). During
human gestation, as motorneurons differentiate, innervating the skeletal muscles, these neurons be-
gin to spontaneously fire, cascading rhythmic action potentials along nearby muscle cells (Blumberg
et al., 2013a; Thomason et al., 2018). Through mechanisms unknown, these myoclonic twitches, a
form of spontaneous muscle activation (SMA), develop a spatiotemporal organization that can be
seen as clustered twitches within body areas of ethological significance (Blumberg et al., 2013a).
These same twitches, though lessened in frequency and intensity postnatally, persist throughout the
lifespan, apparent during periods of rest. How these twitches play a subsequent role in our motor
representation postnatally remains a topic of debate (Sokoloff et al., 2020).

Despite this evidence for a static, spatially-dependent, somatotopic motor mapping, research has also
begun to show evidence that the mapping is more dynamic than previously assumed. In a follow-
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up to the foundational study supporting a somatotopic representation of the body, evidence showed
that the same regions of the motor cortex produced multi-jointed and stereotype actions when stimu-
lated for ecologically valid periods, contrasting the single-jointed actions seen previously (Graziano,
2016). Similar multi-jointed actions were found longitudinally as well. In a series of studies ob-
serving infant-rat behaviors and their neural correlates, evidence showed developmental changes
in the mapping between neurons and actions. Specific neurons in the rats that elicited twitch-like
movements at eight to ten weeks (8-10) old, mirroring a somatotopic representation, now, by twelve
weeks (12), elicited action-oriented movements (Dooley & Blumberg, 2018). Similar sensory repre-
sentational changes were noted as well in human infants, several months postnatal (Dall’Orso et al.,
2021). This culminating evidence has led researchers to view our motor representation as more dy-
namic than originally presumed, developing initially as somatotopic mappings of the body followed
by a more ethological mapping of the body shortly after birth. The mechanistic underpinnings that
could initialize, update, and maintain such a dynamic representation, however, remain a topic of
contention.

While it has become more widely agreed upon that the human motor mapping represents both a
somatotopic and ethological representation of the body, there remains a lack of understanding as
to how the representational developmental trajectory influences subsequent behavioral adaptations
to novel stimuli. Emerging evidence has led us to investigate the benefit of intrinsic behavioral
variability (IBV), such as SMAs, in representational maintenance and flexibility for skill learning
(Kuebrich & Sober, 2015; Leitão & Gahr, 2024; Sokoloff et al., 2020). Just as SMAs have been
argued to initiate the somatotopic motor representation prenatally, we hope to explore how inject-
ing variable behavior into a system throughout training may also serve to improve representational
organization and subsequent performance. As such, we hypothesize that IBV facilitates a flexible
representation of an agent’s behavioral repertoire and self, encouraging adaptation throughout train-
ing. To address this hypothesis, we explored training agents in various adaptation tasks, injecting
behavioral variability in three (3) different intervals throughout training:

1.1 TRAINING HYPOTHESIS [H0]

This agent will be given no IBV, building on neurological and computational evidence by Graziano
and colleagues showing that what initially appeared globally as a somatotopic representation of
the body, may simply be an amalgam of ethological actions (Aflalo & Graziano, 2006; Graziano,
2016; Meier et al., 2008). As such, this hypothesis argues that learning across a diverse array of
environments will provide sufficient training for later adaptation.

1.2 PRE-TRAINING IBV HYPOTHESIS [H1]

This agent will simulate IBV before training, building on neurological theories that the human motor
representation is initialized somatotopically prenatally via SMAs but is subsequently overridden by
ethological actions. In contrast to the H0 Theory, this theory argues that flexible representations
must be initialized by variable behaviors, as evidenced by Blumberg and colleagues (Thomason
et al., 2018).

1.3 INTERMITTENT IBV HYPOTHESIS [H2]

This agent will simulate variable behaviors before and throughout training, building on arguments
that post-natal SMAs may play a role similar to that of their prenatal counterparts (Blumberg et al.,
2013b; Sokoloff et al., 2020). As such, this hypothesis argues that in addition to initializing the rep-
resentation, the interspersed variable behaviors improve a representation’s flexibility by preventing
overtraining on a context-specific action, facilitating organization throughout training.

We will compare these agents of various levels of IBV to assess their impact on overall performance.
In doing so, we plan to provide computational evidence that IBVs, such as SMAs, play a pivotal role
in neuromotor adaptation.

2
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2 SIMULATION

All simulations were run in Python, using PyBullet for the physics simulations and PyTorch for the
neural network implementation (Greff et al., 2022; Paszke et al., 2017; Van Rossum & Drake, 2009).

2.1 ENVIRONMENT

The agent was placed in an empty environment with a floor. Depending on the task, one or more
objects may appear at a specified distance from the agent and are regarded as targets that the agent
must move toward. Gravity was set at −9.8m/s2 along the z-axis.

2.2 AGENT

Composed of four (4) joints, the agent resembles the human pointer finger fixed to the ground (see
Figure 1). The joint closest to the ground is revolute, allowing for 360° rotation across the z-axis.
The proceeding three (3) joints are hinges but constricted to rotate up to 90° across the y-axis. Each
joint’s angle of rotation, relative to the parent link, and current velocity serve as the inputs into the
neural network architecture, which will, in turn, direct subsequent movements as its outputs.

Joint 1: 360° Z-Axis

J2: 90° Y-Axis

J3: 90° Y-Axis

J4: 90° Y-Axis

End Effector

Figure 1: Agent schematic

2.3 NEURAL ARCHITECTURE

Using PyTorch, we initialize a fully interconnected feed-forward neural network composed of eight
(8) inputs and eight (8) outputs corresponding to the four (4) joints and their respective velocities.
The network included a single (1) hidden layer composed of rectified linear unit action function
nodes. The number of nodes in the hidden layer were manually changed depending on the com-
plexity of the experiment (see below). We trained the network on various tasks using unsupervised
and supervised learning (see Algorithm 1). Backpropagation was optimized via Adaptive Moment
Estimation (Kingma & Ba, 2017).

2.4 INTRINSIC BEHAVIORAL VARIABILITY MODEL

The goal of the Intrinsic Behavioral Variability (IBV) model was to inject variable behavior into the
agent’s representation, mirroring prenatal SMAs. Similar to evidence that prenatal SMAs initiate the
human somatotopic representation within humans (Thomason et al., 2018), we designed the model
for self-identification of the agent. We argue that this model, in building a representation of the self
rather than of goal-directed motor actions, can provide variable behavior to the neural network while
also mirroring the theorized neurological function of building somatotopic representations. Using
unsupervised learning, backpropagating a loss value between the joint angle and velocity input and
the joint angle and velocity output via a mean squared error, this model works to build representa-
tions of its motor system, correlating its desired outputs with its inputs. This framework is based on
work also using unsupervised learning mechanisms to examine self-organization (Petersson et al.,
2003).

2.5 REACHING MODEL

The goal of the Reaching model was to train the agent to reach a given target, mirroring the formation
of ethological action representations through exploration of the environment. To do so, this model

3
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trains the neural network using supervised learning, backpropagating a loss value between the motor
output and inverse kinematics as a ground truth via a mean squared error. Supervised learning has
been widely theorized to underlying motor learning (Kawato, 1990; Raymond & Medina, 2018).

Algorithm 1 Agent Training
1: function TRAIN(params)
2: env, robot← InitializeSimulation(params.agent type, params.box type)
3: brain← CreateNeuralNetwork(input size, params.hidden size, output size)
4: if params.load file exists then
5: LoadWeights(brain, params.load file)
6: end if
7: for time step← 1 to params.time limit do
8: current state← GetRobotState(robot)
9: if params.train type = ’IBV Model’ then

10: output← brain.ForwardPass(current state)
11: ApplyActions(robot, output)
12: loss← CalculateLoss(current state, output)
13: else if params.train type = ’Reach Model’ then
14: target← CalculateInverseKinematics(robot, GetBoxPosition())
15: loss← TrainOnBatch(brain, current state, target)
16: output← brain.ForwardPass(current state)
17: ApplyActions(robot, output)
18: if CheckCollision(robot, box) then
19: break
20: end if
21: end if
22: UpdateNetwork(brain, loss)
23: SaveData(robot, loss, time step)
24: StepSimulation(env)
25: end for
26: SaveResults(brain, params.save file)
27: return time step
28: end function

Input: agent type: ”robot arm”, box type: ”++”, load file: ”previous weights.pth”,
time limit: 1000, train type: ”Reach Model”, hidden size: 8,
save file: ”simulation results”

Output: final step
29: params← {agent type, box type, load file, time limit, train type, hidden size, save file}
30: final step← Train(params)
31: print ”Simulation completed at step:”, final step

Using the IBV and Reaching models interchangeably, we can mirror neuromotor development, train-
ing agents on a reaching task and intermittently training the agent on intrinsically variable behaviors,
testing their performance across various novel internal and external stimuli.

3 EXPERIMENT 1: NOVEL SKILL LEARNING

From birth, humans are tasked with learning a plethora of new skills; we question how intrinsically
variable behaviors may benefit motor skill learning. In this task, we looked at how well each agent
performed when learning a novel skill.

3.1 TASK

For this task (see Figure 2), we used the Reaching model to train agents to reach for targets within
the agent’s vicinity. Over the first six hundred (600) epochs, agents reached for three (3) targets,
each randomly selected to appear at a specific distance equidistant from the agent. Then, for two
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hundred (200) epochs the agents continuously trained to reach for a novel target in a novel location
also equidistant from the agent that it had never trained on prior. Finally, for two hundred (200)
epochs, the agents returned to training on the original three (3) targets appearing randomly. We
wanted to examine the agent’s ability to learn a diverse array of skills, learn a novel one, and then
relearn the prior skill. Each epoch allowed for a maximum of one thousand (1000) timesteps, ending
earlier if the agent reached the target within the timestep window. For each epoch, at each timestep,
the agents’ end effector position, the loss error, and the neural network weight matrix were recorded.

For agents simulating IBV (i.e., H1 and H2), the agents would train on the IBV model prior to the
start of training for one (1) extended epoch of 10,000 timesteps, to mimic the prenatal period. For
H2, as this hypothesizes that IBVs encourage flexibility when repeatedly trained, every hundred
(100) epochs of target-reaching included one (1) epoch of training on the IBV model, mimicking
the postnatal period.

To assess possible performance differences between each agent, each agent was run twenty-five (25)
times, using a different random seed.

Epoch 600 Epoch 800

1000

  800

  600

  400

  200

       0
  0 200 400 600 800 1000

Epoch

Ti
m

es
te

p

H0
H1
H2

Principal Component 1 Principal Component 1

Pr
in

ci
pa

l C
om

po
ne

nt
 2

Pr
in

ci
pa

l C
om

po
ne

nt
 2

M
ea

n 
D

is
ta

nc
e

M
ea

n 
D

is
ta

nc
e

Group
Group

H1
H0

H2
H1
H2

H0

H0 H1 H2
H0 H1 H2

6

5

4

3

2
3

4

5

6

7

-2.0   -1.5    -1.0  -0.5    0.0    0.5    1.0    1.5    2.0    -2.0   -1.5    -1.0  -0.5    0.0    0.5    1.0    1.5    2.0    

2.0

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

-2.0

2.0

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

-2.0

Epoch 1000

Principal Component 1

Pr
in

ci
pa

l C
om

po
ne

nt
 2

M
ea

n 
D

is
ta

nc
e

Group
H0 H1 H2

3

4

5

6

7

2

 2.0

 1.5

 1.0

 0.5

 0.0

-0.5

-1.0

-1.5

-2.0
-2.0   -1.5    -1.0  -0.5    0.0    0.5    1.0    1.5    2.0    

H2

H0
H1

Figure 2: Experiment 1 behavioral performance.

3.2 ANALYSIS

To analyze possible differences between the performance of the agents, we looked at their average
behavioral performance on the reaching task and their neural weight changes over twenty-five (25)
runs for robustness.

To assess the agents’ behavioral performance, we averaged each agent’s performance (i.e., the num-
ber of timesteps it took for agents to reach the target) over the twenty-five (25) runs for each reaching
epoch over time. We then compared the overall performance of the three (3) agents using ANOVA
and a post-hoc Tukey’s HSD test, if necessary.

To assess agents’ neural network differences, we averaged the agents’ weight matrices at each epoch
of training. We then performed principal component analysis (PCA) on the matrices to reduce the
dimensionality of the data for insight into neural weight changes in variability at various points in
training. We compared agents’ variability using ANOVA and the Mann-Whitney U Test.

3.3 RESULTS

For Experiment 1, we found a significant overall difference in behavioral performance between
agents (F (2, 2997) = 555.86, p = 4.74×10−206). A post-hoc Tukey’s HSD test showed significant
differences between all agents when compared to one another.

We also found a significant difference in neural net weight variability between agents (F (2, 72) =
16.56, p = 1.21 × 10−6) (see Figure 3). Mann-Whitney U test showed that the Intermittent IBV
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Hypothesis [H2] had a greater neural net weight variability when compared to the Training Hypoth-
esis [H0] and Pre-Training IBV Hypothesis [H1] after initially training on the first three (3) targets
(U = 100, p = 3.90× 10−5 and U = 83, p = 8.86× 10−6), after learning to reach the novel target
(U = 46, p = 2.45 × 10−7 and U = 43.00, p = 1.80 × 10−7), and after returning to the three (3)
targets (U = 28, p = 3.58 × 10−8 and U = 45.00, p = 2.21 × 10−7), respectively. There was an
insignificant difference between H0 and H1.
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Figure 3: Experiment 1 neural performance.

3.4 SUMMARY

In this task, we looked to see how well each agent performed when learning a novel skill. We
found that H2 outperformed H1 and H0 overall, learning the initial three targets, the novel target,
and returning to the initial three targets faster than the others, evidence that interspersed behavioral
variability improved performance and flexibility. In addition, we saw that H2 showed a higher rate of
learned representational variability throughout training, evidence that intermittent IBV may increase
exploration of the environment and flexibility of the neural network for novel learning and retention.

4 EXPERIMENT 2: AMPUTATION

Throughout development, the human motor systems change in numerous ways; in this experiment,
we question how IBV may benefit adaptation to internal changes. In this task, we looked at how
well each agent performed when adapting to amputation.

4.1 TASK

For this task (see Figure 4), we again used the Reaching model to train agents to reach for targets.
After the initial six-hundred (600) epochs of reaching for three (3) targets randomly, however, we
removed the third link and joint of the agents, increasing its overall size to compensate for its loss
link. The agents were then tasked with reaching for the same three (3) targets over another six
hundred (600) epochs.

Each agent was run twenty-five (25) times.
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Figure 4: Experiment 2 behavioral and neural performance.

4.2 RESULTS

For this study, we chose to look at the Pre-Training IBV Hypothesis [H1] and the Intermittent IBV
Hypothesis [H2] exclusively. We chose this approach to emphasize the neuromotor developmental
evidence that IBVs are essential to representation initialization within humans (Blumberg et al.,
2013b). In addition, Experiment 1 gave strong indication that the Pre-Training IBV Hypothesis
[H1] would mirror H0’s results. We found a significant overall difference in performance between
H2 and H1 (F (1, 2400) = 116.76, p = 1.31 × 10−26). We also found that H2 had a higher rate
of representational variability pre- (F (1, 48) = 62.52, p = 3.04 × 10−10) and post- (F (1, 48) =
4.57, p = 0.0376) the amputation than H1.

4.3 SUMMARY

In this task, we looked to see how well each agent performed when adapting to an amputation. We
found that H2 outperformed H1 overall, adapting faster to the physiological changes, evidence that
interspersed behavioral variability improves performance and flexibility to morphological changes.
In addition, we saw that H2 showed a higher rate of representational variability pre- and post-
amputation, evidence that intermittent IBV may increase the flexibility of the agent’s representation
for adaptation to internal changes.

5 EXPERIMENT 3: NEURAL STROKE

Whether through neurogenesis or stroke, our brains can change quite dramatically over time. In
this experiment, we examined how IBV may improve an agent’s adaptation to such representational
dramatic changes. In this task, we looked at how well each hypothesis performed when adapting to
neural network knockouts.

5.1 TASK

For this task (see Figure 5), rather than augmenting the physiological state of the agents, we choose
to restrict their neurological capacity. After the initial six hundred (600) epochs of reaching for three
(3) targets, we silenced a single hidden neural node from the trained eight (8) node neural network,
effectively simulating a neural stroke. The agents were then tasked with reaching for the same three
(3) targets over another three-thousand (3000) epochs, due to the severity of the augmentation.

Each agent was run twenty-five (25) times.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Principal Component 1

Group

Epoch 600 Epoch 3600

P
rin

ci
pa

l C
om

po
ne

nt
 2

P
rin

ci
pa

l C
om

po
ne

nt
 2

Principal Component 1

H1
H2

M
ea

n 
D

is
ta

nc
e

Group
H1 H2

4

5

6

7

8

H1 H2

M
ea

n 
D

is
ta

nc
e

2.8

H1
H2

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

  -2          -1          0           1           2   -2          -1          0           1           2

 2

 1

0

-1

-2

 2

 1

0

-1

-2

Figure 5: Experiment 3 behavioral and neural performance.

5.2 RESULTS

We found a significant overall difference in performance between the Intermittent IBV Hypothesis
[H2] and the Pre-Training IBV Hypothesis [H1] (F (1, 7198) = 56.97, p = 4.98 × 10−14). We
also found that H2 had a higher rate of representational variability pre- (F (1, 48) = 38.40, p =
1.25× 10−7) and post- (F (1, 48) = 5.18, p = 0.0274) the neural stroke than H1.

5.3 SUMMARY

In this task, we looked to see how well each agent performed when adapting to a neural net-
work knockout. We found that H2 outperformed H1 overall, adapting faster to the representational
changes, evidence that interspersed behavioral variability improves performance and flexibility to
representational changes. In addition, we saw that H2 showed a higher rate of representational vari-
ability pre- and post-stroke, evidence that intermittent IBV may increase the flexibility of the neural
network for adaptation to severe internal changes.

6 DISCUSSION

In this study, we examined the impact intrinsic behavioral variability plays in facilitating a flexible
and dynamic representation. Across three (3) experiments we tested agents of varying behavioral
variability, examining the influence IBV may have on overall behavioral performance while simul-
taneously observing the underlying neural representational changes involved. In Experiment 1, we
tested the influence of IBV in adapting to external changes: in learning a novel motor skill. We
found that agents with intermittent IBV outperformed those with less persistent IBV, evidence that
persistent IBV may facilitate a representation more flexible to learning novel motor tasks. This is
especially true when observing each agent’s performance when learning to reach the novel target
and then returning to the original three (3) targets. In the Intermittent IBV Hypothesis [H2]’s be-
havioral performance (see Figure 2), there were distinct spikes in performance, most likely due to
the intermittent IBV training. When compared to its significantly higher representational variability,
it can be argued that the IBV, though in the short term reduced performance, encouraged broader
exploration of the environment, increasing overall performance.

In Experiments 2 and 3, we tested the influences of IBV in adapting to amputation and neural
deficit. We again found H2 outperforming its counterparts. Network analyses showed higher rates
of representational variability in H2 pre- and post-deficit, evidence that H1 may have overfitted to
a suboptimal solution while H2’s continued IBV encouraged the discovery of more optimal (i.e.,
faster) solutions. We note, however, that though H2 performance outpaced H1, the neural weight
variability by the end of training between both agents were more closely similar. It can be argued
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that H2’s persistent IBV training gave it a behavioral advantage throughout but, with time, enough
training on a task could elicit similar neural weight variability and solution discovery. Overall, we
showed strong computational evidence that IBV plays a fundamental role in facilitating a motor
representation by encouraging adaptation to behavioral, physiological, and neurological changes,
supporting neuromotor developmental theory.

When taken in the context of human embodied development, this paper’s results align strongly with
our evolving understanding of human neuromotor development. Numerous papers have begun to
show evidence that the motor cortex’s representation of the body is not only more dynamic but also
more complex than previously imagined (Berlot et al., 2020; Ejaz et al., 2015; Gordon et al., 2023;
Graziano, 2016; Makin & Krakauer, 2023). The organization, and developmental trajectory, how-
ever, have yet to be fully described. Our work seeks to formalize this representational trajectory. We
argue that, prenatally, IBVs such as SMAs serve to initiate a representation of the body, as argued
by Blumberg and colleagues (Thomason et al., 2018). This representation postnatally, however, has
been shown to change dramatically (Dooley & Blumberg, 2018). As actions are learned and incor-
porated within the motor cortex (Graziano, 2016), these same SMAs, now present during postnatal
rest (Sokoloff et al., 2020), serve as a means of “resetting” our representation towards its initial state.

The interweaving of action representations and self-organizing representations prevent any singular
actions from being prioritized within the representation, encouraging a more flexible and dynamic
mapping. This would support evidence that behavioral entrenchment in an action does not neces-
sarily alter neural representations of the individual motor units (Beukema et al., 2019; Beukema &
Verstynen, 2018). Heavily trained actions become localized rather than globalized. In Experiment 1,
simulations with intermittent IBV not only learned novel tasks faster, but also recovered previously
learned skills faster, evidence in favor of SMAs playing a role in maintaining prior skill knowledge,
while being able to efficiently learn new ones. Experiments 2 and 3 further support this claim, show-
ing better adaptation to ingrained representations of the agent’s internal configurations when trained
with IBV. Together, this work provides computational evidence that SMAs play a fundamental role
in facilitating a motor representation of both the body’s form and function, encouraging adaptation
throughout development.

This work also aligns strongly with the ongoing developmental robotics literature on action gen-
eration. Another form of SMA, motor babbling, the seemingly incoherent attempt at vocalization
by infants is a commonly studied phenomenon in robotics (Aoki et al., 2016; Bullock et al., 1993;
Caligiore et al., 2008; Mahoor et al., 2017). Researchers have used the concept, of eliciting random
movements within robots, to build an inverse kinematics model of its environment. These same
models have been used for self-modeling; and when iteratively used, have been shown to allow
adaptation to physiological augmentation (Bongard et al., 2006).

One compelling aspect of Experiment 1’s task design was the potential for agents to recall previously
learned skills after learning a novel one. The Intermittent IBV Hypothesis [H2] appeared to over-
come this issue of catastrophic interference, relearning and improving upon the initial task faster
than its counterparts. This result speaks to evidence within both neuroscience and connectionist
theory that the brain may form distributed representations for context-specific situations (Ellefsen
et al., 2015; McCloskey & Cohen, 1989; Plas et al., 2024), enabling flexible learning, retention,
and maintenance. Future questions to be explored include the impact of training schedules on the
representational efficiency of low-resourced agents.

A question that arises from this work, however, is whether we can consider IBV as simply noise
in the system. Research has shown that noise can sometimes elicit better long-term performance
by preventing overfitting (Gupta & Gupta, 2019). Though we include a supplemental experiment
(see Appendix: Figure 6) showing the Intermittent IBV Hypothesis [H2] outperforming the Training
Hypothesis [H0] with noise injected into the network (p < 0.05), we do not neglect the notion that
noise may play a role in human motor learning and adaptation. In hindsight, we consider IBV such
as SMAs as a form of noise within the motor cortex, degrading representations as to prevent over-
training. In future work, we plan to scale these simulations, exploring various augmentations such as
ecologically-relevant gradual growth trajectories, and mapping behaviors to specific neural weight
representations.
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7 CONCLUSION

How we represent our dynamic bodies defines how we interact with the dynamic world around us.
In this paper, we argue that our motor representations are just as dynamic, exploring the influence
intrinsic behavioral variability such as spontaneous muscle activations have in motor representa-
tions. Across three experiments, we show evidence that intrinsic behavioral variability facilitates
the initialization, maintenance, and updating of agents’ representation by encouraging adaptation to
behavioral, physiological, and neurological changes. Taken together, this work provides a biologi-
cally plausible computational framework for understanding the neurological and behavioral effects
intrinsic behavioral variability may have on the manifestation of human neuromotor adaptation.
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A APPENDIX

Figure 6: Supplemental experiment.
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