
Published as a conference paper at ICLR 2026

DIFFUSIONBLOCKS: BLOCK-WISE NEURAL NET-
WORK TRAINING VIA DIFFUSION INTERPRETATION

Makoto Shing1, Masanori Koyama2, Takuya Akiba1

1Sakana AI, 2The University of Tokyo
{mkshing,takiba}@sakana.ai, masanori.koyama@weblab.t.u-tokyo.ac.jp

ABSTRACT

End-to-end backpropagation requires storing activations throughout all layers,
creating memory bottlenecks that limit model scalability. Existing block-wise
training methods offer means to alleviate this problem, but they rely on ad-hoc
local objectives and remain largely unexplored beyond classification tasks. We
propose DiffusionBlocks, a principled framework for transforming transformer-
based networks into genuinely independent trainable blocks that maintain com-
petitive performance with end-to-end training. Our key insight leverages the fact
that residual connections naturally correspond to updates in a dynamical system.
With minimal modifications to this system, we can convert the updates to those of
a denoising process, where each block can be learned independently by leveraging
the score matching objective. This independence enables training with gradients
for only one block at a time, thereby reducing memory requirements in proportion
to the number of blocks. Our experiments on a range of transformer architectures
(vision, diffusion, autoregressive, recurrent-depth, and masked diffusion) demon-
strate that DiffusionBlocks training matches the performance of end-to-end train-
ing while enabling scalable block-wise training on practical tasks beyond small-
scale classification. DiffusionBlocks provides a theoretically grounded approach
that successfully scales to modern generative tasks across diverse architectures.
Code is available at: https://github.com/SakanaAI/DiffusionBlocks.

1 INTRODUCTION

The memory bottleneck in neural network training. Modern AI led by generative mod-
els (Brown et al., 2020; Rombach et al., 2022; Touvron et al., 2023; Peebles & Xie, 2023) has
become integral to everyday life. These models rely on end-to-end backpropagation, which requires
storing intermediate activations across network layers during training. This fundamental require-
ment causes memory consumption to grow linearly with network depth, creating computational
bottlenecks that limit both research flexibility and practical deployment.

Block-wise training: promises and limitations. Block-wise training methods1 partition networks
into smaller components that can be trained independently, promising dramatic memory savings.
Despite this potential, existing approaches (Hinton, 2022; Bengio et al., 2006; Nøkland & Eidnes,
2019; Belilovsky et al., 2019; Siddiqui et al., 2024) consistently underperform end-to-end training.
The core challenge is twofold: (1) lack of theoretical grounding: existing methods rely on ad-hoc lo-
cal objectives without principled coordination between blocks, (2) limited applicability, where they
require paradigm-specific designs, task-specific objectives that do not naturally extend beyond clas-
sification. Their results are typically demonstrated only on custom architectures without providing
systematic procedures to be applied to modern architectures such as Transformers (Vaswani et al.,
2017) (Section 4), leaving their applicability to modern generative AI largely unexplored. Without
a systematic framework grounded in theory, block-wise training remains an unfulfilled promise.

1We use block-wise training to encompass all approaches that partition networks into independently train-
able components. This includes layer-wise training as the special case where each block contains one layer.

1

https://github.com/SakanaAI/DiffusionBlocks

Published as a conference paper at ICLR 2026

input

output

DiffusionBlocks

input

output

Standard Network

Requires backprop 
through all layers

Train each block independently 
for specific noise ranges

Only one block per step

Single pass during training

Diffusion Models

Recurrent-depth Models

DiffusionBlocks

DiffusionBlocks

Iterative Single pass

noise

max

min

+

+

+

Figure 1: Overview of DiffusionBlocks. Left: Standard networks require backpropagation through
all layers. Center: DiffusionBlocks partitions networks into blocks, each trained independently to
denoise within assigned noise ranges. Right: Applications. For diffusion models (top), inference
requires only the relevant block per denoising step. For recurrent-depth models (bottom), our frame-
work replaces iterative training with single-pass training, eliminating the computational overhead of
backpropagation through time.

Diffusion models: a mathematical foundation for decomposition. Score-based diffusion mod-
els (Song & Ermon, 2019; Song et al., 2021b) model the data distribution through a continuous-time
process that gradually adds noise, then learns to reverse this process by estimating the score function
at each noise level. Crucially, the denoising step at each noise level can be optimized independently
from other noise levels. This independence property provides the theoretical foundation that has
been missing from block-wise training approaches: it allows us to partition networks into blocks,
each responsible for a specific noise level range, without compromising global coherence.

Our approach: interpreting networks as diffusion processes. We propose DiffusionBlocks, a
framework that enables principled block-wise training by interpreting sequential layer updates in
transformer-based networks as discretized steps of a continuous-time diffusion process. Building on
the established connection between residual networks and differential equations (Haber & Ruthotto,
2017; Chen et al., 2018), we leverage the fact that residual connections naturally correspond to Euler
discretization of the probability flow ODE in diffusion models. This correspondence allows us to
partition networks with residual connections, particularly transformer-based networks, into blocks
that each handle specific noise-level ranges. These blocks can be trained completely independently,
requiring gradients for only one block at a time. Figure 1 illustrates the core concept of Diffusion-
Blocks. Unlike previous block-wise methods with ad-hoc objectives, our framework derives each
block’s training objective from score matching theory. As a result, consistent local optimization at
each noise level collectively yields a faithful approximation of the global reverse process, while also
allowing practitioners to seamlessly adopt techniques such as those of Karras et al. (2022) to further
enhance training.

Our main contributions are:

• Block-wise training via continuous-time diffusion interpretation: We show that
transformer-based networks can be interpreted as implementing discretized steps of
continuous-time diffusion processes (Section 2.2), enabling genuinely independent block
training. Each block learns to denoise within its assigned noise level range, requiring gra-
dients for only one block at a time during training (Section 3.1).

• Equi-probability partitioning for balanced learning: We propose a principled, diffusion
theoretic strategy that partitions noise levels based on equal cumulative probability mass,
ensuring balanced parameter utilization across blocks (Section 3.3).

2

Published as a conference paper at ICLR 2026

• Broad applicability with maintained performance: We conduct extensive experiments
(Section 5), demonstrating that DiffusionBlocks successfully applies to diverse architec-
tures (vision, diffusion, autoregressive, recurrent-depth, and masked diffusion), achieving
competitive performance to end-to-end backpropagation while requiring gradients for only
one block at a time. Additionally, our framework naturally extends to recurrent-depth mod-
els, transforming their multiple-iteration training into single-pass training (Section 5.5).

• Significant efficiency gains: During training, only one block requires gradient computa-
tion, reducing memory requirements proportionally to the number of blocks. For diffusion
models, inference requires only one relevant block per denoising step (Section 5.2). For
recurrent-depth models, our framework eliminates K iterations during training, demon-
strating up to K-fold reduction in training computation (Section 5.5).

2 PRELIMINARIES

2.1 SCORE-BASED DIFFUSION MODELS

We adopt the Variance Exploding (VE) formulation (Song et al., 2021b; Karras et al., 2022) where
a clean data y ∼ pdata is perturbed with Gaussian noise at noise level σ: zσ = y + σϵ where
ϵ ∼ N (0, I). For generations, we use the deterministic probability flow ODE that reverses the
noising process:

dzσ
dσ

= −σ∇z log pσ(zσ), (1)

where ∇z log pσ(zσ) is the score function. Using Tweedie’s formula, the score is approximated via a
denoiser Dθ(zσ, σ) that predicts clean data from noisy input: ∇z log pσ(zσ) ≈ Dθ(zσ,σ)−zσ

σ2 (Rob-
bins, 1992; Hyvärinen, 2005; Vincent, 2011). The denoiser is trained by minimizing:

L(θ) := Ez0∼pdata,σ∼pnoise,ϵ∼N (0,I)

[
w(σ)∥Dθ(y + σϵ, σ)− y∥22

]
, (2)

where w(σ) weights different noise levels and pnoise is the noise level distribution used during train-
ing. The choice of pnoise determines which noise levels are emphasized during training. Karras et al.
(2022) uses a log-normal distribution to concentrate training on perceptually important intermediate
noise levels where image structure emerges. The weighting w(σ) is designed to counteract the sam-
pling bias from pnoise, ensuring balanced gradient magnitudes across all noise levels (Karras et al.,
2022).

2.2 RESIDUAL CONNECTIONS AS EULER STEPS OF THE REVERSE DIFFUSION PROCESS

The connection between residual networks and differential equations has been established in prior
works (Haber & Ruthotto, 2017; Chen et al., 2018). We extend this perspective to show that residual
networks naturally implement discretized steps of the reverse diffusion process. Applying Euler
discretization to Eq. (1) with noise levels σ0 > σ1 > · · · > σT , we define ∆σℓ := σℓ−1 − σℓ > 0
and obtain:

zσl
= zσl−1

−∆σℓ · σℓ−1∇z log pσℓ−1
(zσℓ−1

) (3)

= zσℓ−1
+

∆σℓ

σℓ−1

(
zσℓ−1

−Dθ(zσℓ−1
, σℓ−1)

)
. (4)

As has historically been utilized in the development of the networks with sequential updates, this
update rule has an affinity with skip connections. In fact, modern architectures such as Transform-
ers (Vaswani et al., 2017) employ residual connections where each block updates its input through
an additive transformation: zℓ = zℓ−1 + fθℓ(zℓ−1) where zℓ ∈ Rd denotes the intermediate output
of the block ℓ, and fθℓ is the block transformation parameterized by θℓ. This structure appears in
ResNets (He et al., 2016), Transformers, and other modern architectures (Peebles & Xie, 2023; Tou-
vron et al., 2023; DeepSeek-AI et al., 2025). This scheme is also used in the recent development of
recurrent-depth models (Dehghani et al., 2019; Fan et al., 2025; Geiping et al., 2025), which apply
the same network parameters θ recursively K times: zk = zk−1 + fθ(zk−1) for k ∈ [K]. How-
ever, these methods suffer from the expensive backpropagation through time (BPTT), and various
measures have been taken to reduce its computational burden, for example, by gradient trunca-
tion (Williams & Zipser, 1995; Mikolov et al., 2010; Geiping et al., 2025). That being said, the

3

Published as a conference paper at ICLR 2026

Augment each block
with noise conditioning

Partition L layers into B blocks

Define noise and partition into
B intervals

max

min

noise

input

input

output

output

DiffusionBlocks

input + noise

(input , z)

output

output

Figure 2: 3-step conversion of a standard neural network to DiffusionBlocks at training phase.
Step 1: Partition L layers into B blocks. Step 2: Define noise distribution pσ (e.g., log-normal) and
partition the range [σmin, σmax] into B intervals {[σb, σb−1]}Bb=1, assigning each block a specific
noise range (Section 3.3). Step 3: Augment blocks with noise conditioning: extend input to x̃ =
(x, zσ) where zσ = y+σϵ, and incorporate noise-level conditioning (e.g., via AdaLN). Then, each
block is trained independently from other blocks to predict target y within its assigned noise range.

Standard Network – Training

1: Given: Network with parameters θ
2: Sample data (x,y)
3: z0 ← x
4: for ℓ = 1 to L do
5: zℓ ← zℓ−1 + fθℓ(zℓ−1)
6: end for
7: ŷ← zL
8: L ← Loss(ŷ,y)
9: Update all θ via backprop

DiffusionBlocks – Training

1: Given: A single block b ∈ [B] with parameters θb

2: Sample data (x,y)

3: Sample σ ∼ p
(b)
noise from [σb, σb−1]

4: ŷ← f̄θb|σ(x,y + σϵ), where ϵ ∼ N (0, I) ▷ Apply
block b to denoise

5: L ← w(σ) · Loss(ŷ,y) ▷ Weighted loss
6: Update only θb via backprop

Standard Network – Inference

1: Input: x
2: z0 ← x
3: for ℓ = 1 to L do
4: zℓ ← zℓ−1 + fθℓ(zℓ−1)
5: end for
6: Output: zL

DiffusionBlocks – Inference

1: Input: x, noise levels {σi}Ti=1 ▷ Typically, T = B
2: z0 ∼ N (0, σ2

maxI)
3: for i = 0 to T − 1 do
4: Select block b where σi ∈ [σb, σb−1]
5: ŷ← f̄θb|σi−1

(x, zi−1)

6: zi ← Euler step(zi−1, ŷ, σi−1, σi) ▷ Eq. (5)
7: end for
8: Output: zT

Figure 3: Training and inference algorithms for standard residual networks (left) versus Dif-
fusionBlocks (right). Given: A L-layer network partitioned into B blocks with noise ranges
{[σb, σb−1]}Bb=1, noise distribution pσ , and training data {(xn,yn)}Nn=1. The function w(σ) de-
notes the loss weighting, and f̄θb|· represents the noised-conditioned block with parameters θb.

critical observation is that, in the setting of the diffusion introduced in the previous section, Dθ

itself in Eq. (4) can be trained with Eq. (2) without BPTT, thereby providing a theoretically sound
optimization method of a dynamical system through an ensemble of local optimization. In the next
section, we provide a recipe for converting networks with skip connections into diffusion, thereby
replacing the backpropagation through layers with the optimization scheme analogous to Eq. (2).

4

Published as a conference paper at ICLR 2026

3 METHOD

3.1 CONVERTING A NEURAL NETWORK TO DIFFUSIONBLOCKS

Our goal in this section is to transform a given feedforward system into a discretized version of
the recursive denoising steps in the diffusion model. Throughout this paper, we denote by (x,y)
the input-output pairs where x represents the network input (e.g., images for classification) and y
is the target output (e.g., class label for classification). Figure 1 provides an overview: instead of
backpropagating through all layers, we partition networks into blocks that independently learn to
denoise within assigned noise level ranges. Consider a neural network in a form of a stack of set-
to-set maps (e.g. transformer-based networks) F = {fθℓ | ℓ ∈ [L]} with the same output and input
dimensions, so that fθℓ maps a variable set of tokens in Rd to the same number of tokens in Rd. The
original network therefore processes the input with fθL ◦ · · · ◦ fθ0 , followed possibly by a readout
module. Or, in more conventional formulation with the presence of residual, the original network
may update the ℓ-th layer input zℓ to the next layer via the rule zℓ+1 = zℓ + fθℓ(zℓ). We transform
this network into a stack of Diffusion Blocks through the following three steps (Figure 2).

Step 1: Block partitioning. We partition F into B blocks F = ⊎B
b=1Fb, where Fb contains layers

indexed by {ℓb−1 + 1, . . . , ℓb}. Let f̄θb
:= fθℓb ◦ · · · ◦ fθℓb−1+1

be the composition of layers in Fb.

Step 2: Noise range assignment. We define a noise distribution pnoise and define a noise range
[σmin, σmax]. We partition the range into B intervals {[σb, σb−1]}Bb=1. We recommend the choice
of log-normal for pnoise, following Karras et al. (2022), along with the partitioning strategy in Sec-
tion 3.3.

Step 3: Augmenting blocks with noise conditioning. Finally, we suit {f̄θb}b to the update rule
in Eq. (4) by letting f̄θb

play the role of Dθb
. Leveraging the assumption that f̄θb

is a map from a
set of tokens to a set of tokens, we alter the input f̄θb

from x to x̃ = (x, z). Additionally, we ex-
tend each block fθb

to incorporate noise-level conditioning through, for example, via normalization
(AdaLN) (Peebles & Xie, 2023). We denote this noise-conditioned version as f̄θb|σ . Altogether, the
update of the diffusion block constructed from F is given by:

zb = zb−1 +
∆σb

σb−1

(
zb−1 − [f̄θb|σb−1

(x, zb−1)]z
)
, (5)

where [f̄(·)]z is the set of tokens corresponding to z (i.e. f̄(·) = ([f̄(·)]x, [f̄(·)]z)). More abstractly
put, our modified update rule Eq. (5) can be rewritten as zb = αzb−1 + βf̄θb|σb−1

(x, zb−1) where α
and β are constants dependent on σ ratio. We note that our modification of the network into the stack
of diffusion blocks maintains most of the structure of the original, particularly in the presence of skip
connection, so that zℓ = zℓ−1 + fθℓ(zℓ−1) is the original update rule. At the time of inference, zb
serves as the intermediate estimator of the target variable, with z0 = σmaxϵ being the pure noise.
Please see Figure 6 in Appendix B for the conversion of this inference process.

3.2 BLOCK-INDEPENDENT TRAINING OF THE DIFFUSION BLOCKS

By the network modification recipe in the previous section, we transform the original feedforward
map to the recursive denoising map in a diffusion process. The advantage of this modification is
the fact that the objective in Eq. (2) can be optimized at any noise level σ independently without
knowledge of other noise levels. This allows us to define a training objective for each block b:

Lb(θb) := E
(x,y)∼pdata,σ∼p

(b)
noise,ϵ∼N (0,I)

[
w(σ) · Loss(f̄θb|σ(x,y + σϵ),y)

]
, (6)

where p
(b)
noise is the noise distribution pnoise with the support of [σb, σb−1] and renormalized, and

Loss(·, ·) is the inner loss function, typically L2 loss as in Eq. (2). Each block independently learns to
denoise within its assigned range, with training samples drawn according to the original distribution
pnoise. Collectively, the B blocks cover the entire noise distribution:

⋃B
b=1[σb, σb−1] = [σmin, σmax],

ensuring that the complete network can denoise at any noise level while each block specializes
in its designated range. This independence enables training with memory requirements for only
L/B layers, storing activations only for the active block, compared to all L layers required by

5

Published as a conference paper at ICLR 2026

standard training. More succinctly in comparison to the original network, we gain this block-wise
independence from the fact that f̄θb|σ(x,y+ σϵ) is now modified to predict y for each b. This way,
training for each block can be carried out without waiting to receive the output of the previous layer.
Please see Figure 5 in Appendix B for the training process in the specific adaptations for different
architectures. Figure 3 provides an algorithmic procedure of training and inference. This approach
achieves a B× memory reduction during training, as gradients are computed for only one block at a
time.

3.3 BLOCK PARTITIONING STRATEGY

A critical design choice in DiffusionBlocks is how to partition the noise level range [σmin, σmax]
into B intervals. A naive approach would divide the range uniformly: σb = σmin + b ·
(σmax − σmin)/B. However, this fails to account for the varying difficulty of denoising at dif-
ferent noise levels. Following Karras et al. (2022), we adopt a log-normal distribution for sam-
pling noise levels during training: log σ ∼ N (Pmean, P

2
std). This distribution concentrates proba-

bility mass at intermediate noise levels, which empirically contribute most to generation quality.

10 3 10 2 10 1 100 101 102

Noise level

0.00

0.05

0.10

0.15

0.20

0.25

0.30

D
en

si
ty

EDM PDF (log-normal)
Uniform Boundaries
Equi-Prob Boundaries

EDM PDF (log-normal)
Uniform Boundaries
Equi-Prob Boundaries

Figure 4: Equi-probability partitioning (B =
3). Blocks partition the log-normal pσ by equal
probability mass (orange boundaries), not uni-
form spacing (gray), concentrating capacity where
denoising is most challenging.

To preserve this distribution across the entire net-
work while ensuring each block handles equal de-
noising difficulty, we partition based on cumu-
lative probability mass. Specifically, we choose
boundaries {σb}Bb=1 such that each block han-
dles exactly 1/B of the total probability mass:∫ σb

σb−1
pnoise(σ)dσ = 1/B. The block boundaries

are computed as σb = exp(Pmean + Pstd · Φ−1(qb)),
where Φ−1 is the inverse standard normal CDF and
qb = qmin + b

B (qmax − qmin), with qmin /max =

Φ
(

log σmin /max−Pmean

Pstd

)
. This equi-probability par-

titioning ensures that each block handles an equal
amount of the training distribution’s probability
mass, leading to balanced parameter utilization. As
shown in Figure 4, blocks assigned to intermedi-
ate noise levels, where denoising is most challeng-
ing, receive narrower intervals, while blocks han-
dling very high or low noise levels receive wider intervals. This strategy optimizes learning effi-
ciency across all blocks. In Section 5.6, we demonstrate that this strategy contributes significantly
to the training of DiffusionBlocks. Also, see Appendix C for implementation details.

4 RELATED WORKS

Block-wise training methods. Various block-wise training approaches (Hinton, 2022; Bengio
et al., 2006; Nøkland & Eidnes, 2019; Belilovsky et al., 2019; Siddiqui et al., 2024) partition net-
works into independently trainable components but lack theoretical grounding, relying on heuris-
tic objectives that fail to guarantee global performance when optimized locally. Approaches like
Forward-Forward algorithm (Hinton, 2022) rely on contrastive objectives, which fundamentally
limit them to classification tasks and make adaptation to generation non-trivial. In contrast, Dif-
fusionBlocks leverages denoising score matching theory, which naturally decomposes into indepen-
dent local objectives without task-specific constructs, enabling application to both classification and
generative tasks.

Comparison with NoProp. Concurrently with our submission, Li et al. (2025) has also released
a backpropagation-free strategy in close relation to our philosophy. However, they present their
technique together with the custom CNN-based architecture in one package and evaluate only on
classification tasks, making it unclear how to apply their approach to modern architectures or tasks
other than the classification they showcase in their work. In contrast, DiffusionBlocks provides a
systematic procedure for converting any residual networks, particularly modern transformers, into
block-wise trainable models with minimal modifications. We partition the continuous noise range
using equi-probability partitioning and demonstrate success on both generative tasks and classifica-

6

Published as a conference paper at ICLR 2026

Table 1: ViT results on
CIFAR-100. DiffusionBlocks
achieves comparable accuracy
while training only 4 layers at
a time, outperforming Forward-
Forward algorithm.

Method Accuracy (↑)
ViT 60.25
+ Forward-Forward 7.85
+ DiffusionBlocks 59.30

Table 2: DiT results for image gener-
ation. FID is computed on both training
and test splits (train / test). DiffusionBlocks
achieves comparable scores while reducing
training memory and inference cost by 3×.

Dataset Method FID (↓)

CIFAR-10 DiT 32.84 / 39.83
+ DiffusionBlocks 30.59 / 37.20

ImageNet DiT 9.01 / 12.09
+ DiffusionBlocks 9.00 / 10.63

Table 3: Masked diffu-
sion model (MDM) results
on text8. DiffusionBlocks
improves BPC while training
with 3× less memory through
masking schedule partitioning.

Method BPC (↓)
MDM 1.56
+ DiffusionBlocks 1.45

tion tasks. In Section 5.6.1, we apply DiffusionBlocks to their architecture, and demonstrate that
our continuous-time block-wise training with equi-probability partitioning is more effective.

Stage-specific diffusion models. Several works train specialized models for different noise levels
in diffusion (Balaji et al., 2023; Fang et al., 2024; Park et al., 2024; Reuss et al., 2025). However,
these approaches train models jointly or fine-tune from shared parameters. DiffusionBlocks trains
blocks independently, with no shared parameters or joint fine-tuning, achieving complete isolation.

5 EXPERIMENTAL RESULTS

We evaluate DiffusionBlocks across diverse architectures and tasks to demonstrate its generality and
effectiveness. Detailed experimental configurations are provided in Appendix E. For each architec-
ture, we report task performance alongside the memory reduction factor B, where only L/B layers
require gradients during training.

Baselines. Because DiffusionBlocks is a framework for transforming networks into block-wise
trainable models, we evaluate its efficacy by comparing the modified network (trained block-wise)
against the original network (trained with end-to-end backpropagation). Other block-wise training
methods in practice today also include Forward-Forward (FF) (Hinton, 2022) and the concurrent
NoProp (Li et al., 2025). Fair comparison against these methods warrants careful experimental
design. Firstly, we compare against FF only on classification tasks (Section 5.1) since its contrastive
objective does not naturally extend to generation. Also, because NoProp is proposed together with a
custom architectural design rather than with a principled transformation procedure to be applied to
a vanilla network, the adaptation of NoProp to other architectures involves nontrivial design choices
and freedom. To enable fair comparison with NoProp, we therefore use their specific architecture as
the base diffusion model on which to apply our DiffusionBlocks (Section 5.6.1).

5.1 VISION TRANSFORMERS FOR IMAGE CLASSIFICATION

We first validate DiffusionBlocks on classification tasks using Vision Transformer (ViT) (Dosovit-
skiy et al., 2021) on CIFAR-100 (Krizhevsky, 2009). A 12-layer ViT is partitioned into B=3 blocks,
with noise added to class label embeddings during training. We compare against the Forward-
Forward algorithm, a representative block-wise training method that uses contrastive objectives.
Table 1 maintains baseline accuracy while requiring gradients for only 4 layers. Notably, Forward-
Forward achieves only 7.85% accuracy, highlighting the importance of principled denoising objec-
tives over ad-hoc contrastive approaches.

5.2 DIFFUSION MODELS FOR IMAGE GENERATION

Having established its effectiveness on classification tasks, we now turn to generative models. We
begin with image generation, where DiffusionBlocks provides both training and inference efficiency
benefits. We apply DiffusionBlocks to DiT (Peebles & Xie, 2023) within the EDM (Karras et al.,
2022) framework. We evaluate 12-layer DiT (DiT-S/2) on CIFAR-10 (Krizhevsky, 2009) and 24-
layer DiT (DiT-L/2) on ImageNet at 256×256 resolution (Deng et al., 2009), both with B=3 blocks.
During inference, we use Euler sampling with 50 steps and classifier-free guidance (scale 2.0) (Ho

7

Published as a conference paper at ICLR 2026

Table 4: Autoregressive (AR) transformer results for text generation. DiffusionBlocks maintains genera-
tion quality with 4× memory reduction on both LM1B and Openwebtext (OWT) datasets.

Dataset Method MAUVE (↑) PPL (Llama-2) (↓) PPL (GPT2-XL) (↓)

LM1B AR 0.50 14.58 38.87
+ DiffusionBlocks 0.71 12.32 30.99

OWT AR 0.85 15.05 25.24
+ DiffusionBlocks 0.82 14.99 26.33

Table 5: Recurrent-depth model results for text generation. DiffusionBlocks eliminates 32 training itera-
tions, achieving better performance with single-pass training.

Method MAUVE (↑) PPL (Llama-2) (↓) PPL (GPT2-XL) (↓)
Huginn (Geiping et al., 2025) 0.49 17.04 46.73
+ DiffusionBlocks 0.70 16.08 42.43

& Salimans, 2021). Table 2 shows that DiffusionBlocks achieves comparable FID scores with 3×
memory reduction. Additionally, inference requires only one block per denoising step, providing
computational savings proportional to the number of steps.

5.3 MASKED DIFFUSION MODELS FOR TEXT GENERATION

We extend DiffusionBlocks to masked diffusion language models using MD4 (Shi et al., 2024)
on the text8 dataset (Mahoney, 2011). While continuous diffusion models naturally map to our
framework through noise levels σ, extending DiffusionBlocks to discrete masked diffusion requires
careful adaptation. Specifically, we partition the masking schedule rather than continuous noise
levels, ensuring each block handles an equal share of the demasking work (details in Appendix D).
We use a 12-layer DiT-based transformer (Lou et al., 2024; Sahoo et al., 2024) partitioned into B=3
blocks. Table 3 shows that DiffusionBlocks achieves 1.45 bits-per-character (BPC) compared to
MD4’s 1.56, while using 3× less memory. This improvement confirms that our principled noise-
level partitioning effectively extends to discrete diffusion processes.

5.4 AUTOREGRESSIVE MODELS FOR TEXT GENERATION

We demonstrate that DiffusionBlocks successfully transforms standard autoregressive (AR) models,
which are architectures originally designed for next-token prediction, not denoising. Using 12-layer
Llama-2-style transformers (Touvron et al., 2023) with B=4 blocks, we evaluate on 1 Billion Words
Dataset (LM1B) (Chelba et al., 2014) and OpenWebText (OWT) (Gokaslan & Cohen, 2019). While
AR models are typically evaluated using perplexity, computing traditional perplexity is non-trivial
for our diffusion framework as it is not derived from ELBO. Instead, we evaluate using MAUVE (Pil-
lutla et al., 2021) scores following SEDD (Lou et al., 2024) to measure similarity between generated
and real text. We also report generative perplexity from two teacher models, Llama-2-7B and
GPT2-XL (Radford et al., 2019), following Lou et al. (2024); Sahoo et al. (2024). Table 4 shows
that DiffusionBlocks achieves comparable performance despite training only 3 layers at a time,
demonstrating the framework’s broad applicability beyond diffusion-native architectures.

5.5 RECURRENT-DEPTH MODELS FOR TEXT GENERATION

We now showcase a different application of DiffusionBlocks beyond block-wise training. As noted
in Section 2.2, the updates in recurrent-depth models naturally correspond to diffusion steps. Fol-
lowing Section 3.1, we apply DiffusionBlocks to Huginn (Geiping et al., 2025), a recurrent-depth
model that applies the same network multiple times, starting from noise. While Huginn uses 8-step
truncated BPTT to avoid the full BPTT over 32 iterations, DiffusionBlocks makes this optimization
even more efficient, because it only requires a single forward pass per training step. Table 5 shows
better performance on LM1B for text generation while eliminating 32 iterations. This demonstrates
that our framework enables fundamental training transformations beyond block-wise training.

8

Published as a conference paper at ICLR 2026

Table 6: Comparison with NoProp on CIFAR-100. DiffusionBlocks achieves both continuous-time formu-
lation and layer-wise training. All scores except DiffusionBlocks are taken from NoProp (Li et al., 2025). Note
that the Backprop in this table is the result of applying BPTT to the sampled paths of a specific form of SDE
that equationally resembles the process used in NoProp-DT. See Li et al. (2025) for the details.

Method Continuous Block-wise Accuracy (↑)
Backprop 47.80

NoProp-DT ✓ 46.06
NoProp-CT ✓ 21.31
NoProp-FM ✓ 37.57
(Ours) DiffusionBlocks ✓ ✓ 46.88

Table 7: Effect of block partitioning strategy
on CIFAR-10. Layer distribution indicates the
number of layers in each of the 3 blocks (total-
ing 12 layers).

Partitioning Strategy Layer Distribution FID (↓)

Uniform [4,4,4] 43.53
Uniform [3,6,3] 43.59
Uniform [6,4,2] 47.49
Uniform [2,4,6] 42.37
Equi-Probability [4,4,4] 38.03
Equi-Probability [3,6,3] 41.64
Equi-Probability [6,4,2] 45.42
Equi-Probability [2,4,6] 40.40

Table 8: Effect of block count on ImageNet. Fewer
blocks achieve better FID but require more layers per dif-
fusion step, creating a trade-off between quality and effi-
ciency. The scores that surpass the end-to-end backprop-
agation (B=1) are highlighted in bold.

Number of Blocks FID (↓) L/B (↓) Relative Speed
B = 1 12.09 24 1.0×
B = 2 9.90 12 2.0×
B = 3 11.11 8 3.0×
B = 4 11.90 6 4.0×
B = 6 14.43 4 6.0×

5.6 ANALYSIS

5.6.1 COMPARISON WITH NOPROP

We compare DiffusionBlocks with NoProp as an ablation study, applying to their custom CNN-
based architecture to isolate the effect of our continuous-time block-wise training using equi-
probability partitioning. Table 6 shows results on CIFAR-100 classification (details in Ap-
pendix E.6.1). DiffusionBlocks outperforms all NoProp variants. Notably, while maintaining com-
parable performance to the backpropagation, DiffusionBlocks is the only method that successfully
combines continuous-time formulation with block-wise training. This demonstrates that our equi-
probability partitioning with independent denoisers per block is crucial for continuous-time block-
wise training.

5.6.2 ABLATION STUDIES ON DESIGN CHOICES

We conduct ablation studies to analyze key design choices in DiffusionBlocks. All experiments
follow the configurations described in Section 5.2.2

Block partitioning strategy. Table 7 compares our equi-probability partitioning with uniform
partitioning on CIFAR-10. Equi-probability partitioning achieves significantly better FID across
all layer distributions. The improvement stems from allocating computational resources based on
denoising difficulty: equi-probability assigns more blocks to challenging intermediate noise levels
where most learning occurs, while uniform partitioning wastes capacity on trivial very high/low
noise regions. Notably, within equi-probability partitioning, uniform layer distribution (4-4-4)
achieves the best FID, demonstrating that practitioners can simply divide layers equally without
tuning since the noise-based partitioning automatically balances learning difficulty across blocks.

Number of blocks B. Table 8 summarizes the effect of varying the number of blocks on ImageNet
(see Appendix F.2 for the results on CIFAR-10). It reveals the trade-off between generation quality
and efficiency on ImageNet. Notably, moderate block counts (B=2 or B=3) achieve better FID than

2These ablations disable block overlap in Appendix C to isolate the effectiveness of each component, re-
sulting in the FID difference from Table 2.

9

Published as a conference paper at ICLR 2026

end-to-end training (B=1), suggesting that moderate block partitioning can actually improve per-
formance through specialization. As B increases further, quality gradually declines due to reduced
capacity per block, though inference speed improves linearly. The optimal B varies across tasks
(see Appendix F.3 for language modeling results).

6 CONCLUSION

We introduced DiffusionBlocks, a theoretically grounded framework that transforms residual net-
works into independently trainable blocks through continuous-time diffusion interpretation. By rec-
ognizing that residual connections naturally implement discretized diffusion steps, we provide a
systematic recipe requiring minimal modifications that maintains competitive performance across
diverse architectures while achieving B× memory reduction during training.

Future works. Our work opens several important directions for future research. First, while we
consistently used Euler discretization to match residual connections, other diffusion samplers (Song
et al., 2021a; Lu et al., 2023; Zhao et al., 2023) could be employed within blocks with modified inter-
block connections. Second, DiffusionBlocks currently requires matching input-output dimensions,
which limits its application to architectures like U-Net (Ronneberger et al., 2015). Third, while we
demonstrate DiffusionBlocks’ effectiveness on models trained from scratch, scaling to even larger
models would further demonstrate its practical impact. Particularly, a promising direction is to
convert pre-trained large models to DiffusionBlocks through fine-tuning rather than training from
scratch. Fourth, determining the optimal granularity of block partitioning presents an interesting
theoretical and practical challenge. While our experiments demonstrate that treating entire architec-
tural blocks (e.g., complete ViT blocks) as single denoising units works well, a principled method
for selecting the ideal partitioning granularity based on architecture and task characteristics could
further enhance the framework’s applicability. Finally, understanding why moderate block partition-
ing sometimes outperforms end-to-end training warrants theoretical investigation. We hypothesize
two contributing factors: (1) DiffusionBlocks employs a different optimization structure in which
each block is directly linked to the target through a denoising objective in Eq.(13), creating a learn-
ing signal that differs from standard end-to-end training; and (2) assigning different noise ranges
to different blocks may induce beneficial specialization effects. Combined with equi-probability
partitioning, this introduces a natural form of curriculum learning (Bengio et al., 2009) by allo-
cating balanced difficulty across blocks. Developing a formal theory and analysis for these effects
could reveal new principles for scalable and structured neural network optimization beyond memory
efficiency.

DiffusionBlocks represents a step toward democratizing large-scale model training by reducing com-
putational requirements without sacrificing performance, making advanced AI capabilities more ac-
cessible.

AUTHOR CONTRIBUTIONS

Makoto Shing conceptualized the DiffusionBlocks framework, developed its diffusion-theoretic for-
mulation connecting residual networks and continuous-time diffusion processes, implemented the
method, conducted all experiments, and wrote the manuscript. Masanori Koyama provided theoret-
ical insights into the diffusion-based interpretation and contributed to refining both the manuscript
and the conceptual positioning of the work. Takuya Akiba supervised the research and provided
technical guidance and feedback throughout the project. All authors contributed to the interpreta-
tion of results and manuscript revision.

ACKNOWLEDGEMENT

The authors would like to thank Stefano Peluchetti for helpful feedback on an earlier version of the
draft.

10

Published as a conference paper at ICLR 2026

REFERENCES

Hossein Aghagolzadeh and Mehdi Ezoji. Contrastive forward-forward: A training algorithm of
vision transformer. Neural Networks, 192:107867, 2025.

Marianne Arriola, Subham Sekhar Sahoo, Aaron Gokaslan, Zhihan Yang, Zhixuan Qi, Jiaqi Han,
Justin T Chiu, and Volodymyr Kuleshov. Block diffusion: Interpolating between autoregressive
and diffusion language models. In International Conference on Learning Representations, 2025.

Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg. Structured
denoising diffusion models in discrete state-spaces. In M. Ranzato, A. Beygelzimer, Y. Dauphin,
P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems,
volume 34, pp. 17981–17993. Curran Associates, Inc., 2021.

Yogesh Balaji, Seungjun Nah, Xun Huang, Arash Vahdat, Jiaming Song, Qinsheng Zhang, Karsten
Kreis, Miika Aittala, Timo Aila, Samuli Laine, et al. ediff-i: Text-to-image diffusion models with
an ensemble of expert denoisers. arXiv preprint arXiv:2211.01324, 2023.

Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Greedy layerwise learning can scale
to ImageNet. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), International Conference
on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp. 583–593.
PMLR, 09–15 Jun 2019.

Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy layer-wise training of
deep networks. In B. Schölkopf, J. Platt, and T. Hoffman (eds.), Advances in Neural Information
Processing Systems, volume 19. MIT Press, 2006.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In In-
ternational Conference on Machine Learning, pp. 41–48. Association for Computing Machinery,
2009.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien,
Eric Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, Usvsn Sai Prashanth, Edward Raff,
et al. Pythia: A suite for analyzing large language models across training and scaling. In An-
dreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan
Scarlett (eds.), International Conference on Machine Learning, pp. 2397–2430. PMLR, 2023.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.),
Advances in Neural Information Processing Systems, pp. 1877–1901. Curran Associates, Inc.,
2020.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, Phillipp Koehn, and Tony
Robinson. One billion word benchmark for measuring progress in statistical language modeling.
arXiv preprint arXiv:1312.3005, 2014.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc., 2018.

Ekin Dogus Cubuk, Barret Zoph, Jon Shlens, and Quoc Le. Randaugment: Practical automated
data augmentation with a reduced search space. In H. Larochelle, M. Ranzato, R. Hadsell, M.F.
Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp.
18613–18624. Curran Associates, Inc., 2020.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, et al. DeepSeek-R1: Incentivizing reasoning capability in
llms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser. Universal
transformers. In International Conference on Learning Representations, 2019.

11

Published as a conference paper at ICLR 2026

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 248–255, 2009.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. In M. Ran-
zato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural
Information Processing Systems, volume 34, pp. 8780–8794. Curran Associates, Inc., 2021.

Sander Dieleman, Laurent Sartran, Arman Roshannai, Nikolay Savinov, Yaroslav Ganin, Pierre H.
Richemond, Arnaud Doucet, Robin Strudel, Chris Dyer, Conor Durkan, et al. Continuous diffu-
sion for categorical data. arXiv preprint arXiv:2211.15089, 2022.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. In International Conference on Learning Representations, 2021.

Ying Fan, Yilun Du, Kannan Ramchandran, and Kangwook Lee. Looped transformers for length
generalization. In The Thirteenth International Conference on Learning Representations, 2025.

Gongfan Fang, Xinyin Ma, and Xinchao Wang. Remix-dit: Mixing diffusion transformers for multi-
expert denoising. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and
C. Zhang (eds.), Advances in Neural Information Processing Systems, volume 37, pp. 107494–
107512. Curran Associates, Inc., 2024.

Jonas Geiping, Sean McLeish, Neel Jain, John Kirchenbauer, Siddharth Singh, Brian R. Bartoldson,
Bhavya Kailkhura, Abhinav Bhatele, and Tom Goldstein. Scaling up test-time compute with
latent reasoning: A recurrent depth approach. arXiv preprint arXiv:2502.05171, 2025.

Aaron Gokaslan and Vanya Cohen. Openwebtext corpus. http://Skylion007.github.io/
OpenWebTextCorpus, 2019.

Ishaan Gulrajani and Tatsunori B Hashimoto. Likelihood-based diffusion language models. In
A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in
Neural Information Processing Systems, volume 36, pp. 16693–16715. Curran Associates, Inc.,
2023.

Eldad Haber and Lars Ruthotto. Stable architectures for deep neural networks. Inverse Problems,
34(1):014004, dec 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778, 2016.

Geoffrey Hinton. The Forward-Forward algorithm: Some preliminary investigations. arXiv preprint
arXiv:2212.13345, 2022.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In NeurIPS 2021 Workshop on
Deep Generative Models and Downstream Applications, 2021.

Aapo Hyvärinen. Estimation of non-normalized statistical models by score matching. Journal of
Machine Learning Research, 6(24):695–709, 2005.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and
A. Oh (eds.), Advances in Neural Information Processing Systems, volume 35, pp. 26565–26577.
Curran Associates, Inc., 2022.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge, 2015. URL http://vision.
stanford.edu/teaching/cs231n/reports/2015/pdfs/yle_project.pdf.

Qinyu Li, Yee Whye Teh, and Razvan Pascanu. NoProp: Training neural networks without back-
propagation or forward-propagation. In 4th Conference on Lifelong Learning Agents, 2025.

12

http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
http://vision.stanford.edu/teaching/cs231n/reports/2015/pdfs/yle_project.pdf
http://vision.stanford.edu/teaching/cs231n/reports/2015/pdfs/yle_project.pdf

Published as a conference paper at ICLR 2026

Xiang Li, John Thickstun, Ishaan Gulrajani, Percy S Liang, and Tatsunori B Hashimoto. Diffusion-
lm improves controllable text generation. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave,
K. Cho, and A. Oh (eds.), Advances in Neural Information Processing Systems, volume 35, pp.
4328–4343. Curran Associates, Inc., 2022.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the ratios
of the data distribution. arXiv preprint arXiv:2310.1683, 2024.

Justin Lovelace, Varsha Kishore, Chao Wan, Eliot Shekhtman, and Kilian Q Weinberger. Latent
diffusion for language generation. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt,
and S. Levine (eds.), Advances in Neural Information Processing Systems, volume 36, pp. 56998–
57025. Curran Associates, Inc., 2023.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast
solver for guided sampling of diffusion probabilistic models. arXiv preprint arXiv:2211.01095,
2023.

Matt Mahoney. About the test data, 2011. URL https://mattmahoney.net/dc/
textdata.html.

Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černocký, and Sanjeev Khudanpur. Recurrent
neural network based language model. In Interspeech 2010, pp. 1045–1048, 2010.

Arild Nøkland and Lars Hiller Eidnes. Training neural networks with local error signals. In Kama-
lika Chaudhuri and Ruslan Salakhutdinov (eds.), International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research, pp. 4839–4850. PMLR, 09–15 Jun
2019.

Byeongjun Park, Hyojun Go, Jin-Young Kim, Sangmin Woo, Seokil Ham, and Changick Kim.
Switch diffusion transformer: Synergizing denoising tasks with sparse mixture-of-experts. arXiv
preprint arXiv:2403.09176, 2024.

Gaurav Parmar, Richard Zhang, and Jun-Yan Zhu. On aliased resizing and surprising subtleties in
gan evaluation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 11410–11420, June 2022.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 4195–4205, 2023.

Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers, John Thickstun, Sean Welleck, Yejin Choi,
and Zaid Harchaoui. Mauve: Measuring the gap between neural text and human text using diver-
gence frontiers. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems, volume 34, pp. 4816–4828. Curran
Associates, Inc., 2021.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Moritz Reuss, Jyothish Pari, Pulkit Agrawal, and Rudolf Lioutikov. Efficient diffusion transformer
policies with mixture of expert denoisers for multitask learning. In The Thirteenth International
Conference on Learning Representations, 2025.

Herbert E. Robbins. An Empirical Bayes Approach to Statistics, pp. 388–394. Springer New York,
1992.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), pp. 10684–10695, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
ical image segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejan-
dro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI
2015, pp. 234–241. Springer International Publishing, 2015.

13

https://mattmahoney.net/dc/textdata.html
https://mattmahoney.net/dc/textdata.html

Published as a conference paper at ICLR 2026

Subham Sekhar Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin T
Chiu, Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language
models. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang
(eds.), Advances in Neural Information Processing Systems, volume 37, pp. 130136–130184.
Curran Associates, Inc., 2024.

Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis Titsias. Simplified and gener-
alized masked diffusion for discrete data. In A. Globerson, L. Mackey, D. Belgrave, A. Fan,
U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neural Information Processing Systems,
volume 37, pp. 103131–103167. Curran Associates, Inc., 2024.

Shoaib Siddiqui, David Krueger, Yann LeCun, and Stephane Deny. Blockwise self-supervised learn-
ing at scale. Transactions on Machine Learning Research, 2024. ISSN 2835-8856.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Interna-
tional Conference on Learning Representations, 2021a.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations, 2021b.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural Compu-
tation, 23(7):1661–1674, 2011.

Ronald J. Williams and David Zipser. Gradient-based learning algorithms for recurrent networks
and their computational complexity, pp. 433–486. L. Erlbaum Associates Inc., 1995.

Wenliang Zhao, Lujia Bai, Yongming Rao, Jie Zhou, and Jiwen Lu. Unipc: A unified predictor-
corrector framework for fast sampling of diffusion models. In A. Oh, T. Naumann, A. Globerson,
K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Information Processing Systems,
volume 36, pp. 49842–49869. Curran Associates, Inc., 2023.

A NOTATIONS

In this section, we provide the notations that we will be using in the ensuing mathematical formula-
tions and statements.

B EXTENSION TO DIVERSE ARCHITECTURES

While we have described DiffusionBlocks for standard residual networks where inputs and outputs
naturally live in the same d-dimensional space, the framework extends to specialized architectures.
Figures 5 and 6 illustrate how different model types can be converted to DiffusionBlocks for training
and inference, respectively.

For Vision Transformers (ViT) (Dosovitskiy et al., 2021) in classification tasks (top left), we adapt
DiffusionBlocks by adding noise to the class label embeddings while maintaining the standard ViT
architecture. Specifically, we create the input sequence by concatenating the [CLS] token, patch

14

Published as a conference paper at ICLR 2026

Notation Description
x ∼ X Conditioning/Input to the network (task-dependent: see below)
y ∈ Y Clean target data (task-dependent: see below)
σ ∈ R Noise level in continuous diffusion.
zσ ∈ Rd Noisy data at noise level σ: zσ = y + σϵ, where ϵ ∼ N (0, 1)
zℓ ∈ Rd Intermediate activation at layer/block ℓ
Dθ : Rd × R → Y Denoiser network with parameters θ
fθℓ : Rd → Rd Layer/block transformation with parameters θℓ
B Number of blocks
L Total number of layers

Examples of (x, y) on a task:
Image classification x: input image, y: class label
Image generation x: noisy image (optionally, and class label), y: clean image
Text Generation (AR) x: previous tokens, y: next token
Text Generation (AR) x: sequence with mask tokens, y: unmasked sequence

DiffusionBlocks

DiffusionBlocks

DiffusionBlocks

DiffusionBlocks

+ noise

<bos> Hello

Embedding Hello World

Embedding

World

([CLS],)

label

label

label

World

Autoregressive Models

Vision Transformer

Recurrent-depth Models

Diffusion Models

noise

noise

input

output

output

input + noise

(input , z)

output

([CLS], , z)

Label Embedding

+ noise

Figure 5: Converting different architectures to DiffusionBlocks: Training. During training,
noise is added to target outputs (labels, embeddings, or images) and each block learns to denoise
within its assigned noise range. Blocks are sampled randomly and trained independently, requiring
gradients for only one block at a time.

embeddings x, and the noisy label embedding zσ , where zσ = yemb + σϵ and yemb ∈ R is the
learnable continuous embeddings for the class label y. Each block b learns to denoise this label
representation conditioned on the patch embeddings x. The training loss is the standard cross-
entropy between the classification head’s output logits (applied to the [CLS] token) and the true
class labels, following the conventional ViT training procedure.

For diffusion models (top right), DiffusionBlocks provides a natural fit: these models already op-
erate by denoising, so partitioning simply assigns different noise ranges to different blocks without
architectural modifications. The standard denoiser Dθ(zσ, σ) becomes Dθb

(zσ, σ) for block b.

For discrete output spaces like language modeling (bottom left), we operate in the embedding
space following prior works (Dieleman et al., 2022; Li et al., 2022; Gulrajani & Hashimoto, 2023;
Lovelace et al., 2023). Noise is added after the embedding layer: given input tokens x, we compute
z = fin(x), then add noise zσ = z+ σϵ. For autoregressive models, the denoiser Dθb

(zi,σ, z<i, σ)
recovers the clean embedding of token i from its noisy version, conditioned on previous clean token
embeddings z<i. We minimize cross-entropy loss instead of L2 loss.

15

Published as a conference paper at ICLR 2026

DiffusionBlocks

DiffusionBlocks
DiffusionBlocks

DiffusionBlocks

(input ,)

<bos> Hello

Embedding

Embedding

Embedding

Hello

Hello

World

World

([CLS],)

Autoregressive Models

Vision Transformer

Recurrent-depth Models

Diffusion Models

input

output
output

([CLS], ,)

([CLS], ,)

(input ,)

Label Embedding

+

+

+

Figure 6: Converting different architectures to DiffusionBlocks: Inference. During inference,
blocks are applied sequentially from σmax to σmin. The figure shows the first denoising step where
block b = 1 transforms pure noise z0 into the next state z1. Only the relevant block is active at each
noise level, providing memory efficiency. ⊕ denotes the Euler step in Eq. (5).

For recurrent-depth architectures that apply the same network K times (bottom right), we interpret
the entire recurrence as a diffusion process. Instead of training with K forward passes through recur-
rent iterations, we train the network as a denoiser Dθ(zσ, x, σ) by sampling σ ∼ pσ and performing
a single forward pass to map noisy input to clean output, reducing computational cost by factor K
while maintaining the original K-iteration inference procedure.

Beyond these adaptations, DiffusionBlocks also applies to diffusion language models (Austin et al.,
2021; Lou et al., 2024; Sahoo et al., 2024; Shi et al., 2024), where the framework provides additional
benefits for text generation. We provide a detailed treatment of this application in Appendix D. These
diverse applications demonstrate that DiffusionBlocks provides a general recipe for transforming
various architectures into memory-efficient, independently trainable components.

C IMPLEMENTATION DETAILS IN DIFFUSIONBLOCKS

We introduce several practical considerations for effective training and inference.

Overlap between blocks. To smooth transitions across block boundaries, we slightly extend each
block’s noise interval in log-σ space. For a block b responsible for [σb, σb−1] with σb−1 > σb, we
define αb := (σb−1/σb)

γ , where γ ≥ 0, and train over the expanded range [σb/αb, αbσb−1]. Here γ
controls the degree of overlap: γ=0 recovers non-overlapping intervals, while γ > 0 yields smoother
transitions between blocks. In practice, we found γ ∈ [0.0, 0.1] effective, and we use 0.05 by default
and 0.1 for text generation.

Weighting and preconditioning. Following the EDM framework (Karras et al., 2022), we use
the weighting function: w(σ) = (σ2 + σ2

data)/(σ · σdata)
2 where σdata = 0.5 for all experiments.

The weighting is crucial for equi-probability partitioning to work effectively, as it counteracts the
sampling bias introduced by the log-normal distribution pσ . We also adopt EDM’s preconditioning
scheme, which involves input scaling to ensure stable training dynamics across all noise levels. See
Karras et al. (2022) for more details.

Normalizing embeddings. For tasks where the target variables are discrete (e.g. class labels in
image classification or token ids in text generation), DiffusionBlocks operates the diffusion process

16

Published as a conference paper at ICLR 2026

in the continuous embedding space (see Appendix B). A known issue in continuous relaxation of
discrete variables is embedding collapse, where all learned embeddings correspond to the same
vector (Dieleman et al., 2022). To prevent this, we follow the regularization strategy introduced
Dieleman et al. (2022) and apply L2 normalization to the embeddings.

Training and inference details. For training efficiency, blocks are randomly sampled per itera-
tion, requiring memory for only L/B layers. Blocks can alternatively be trained in parallel across
multiple GPUs when available. During inference, we generate samples by sequentially applying
blocks from σmax to σmin. While we use Euler steps in our experiments due to the natural corre-
spondence between residual connections and Euler discretization (Section 2.2), our framework is not
limited to this choice. By modifying the inter-block connections to match the discretization scheme
of other solvers, any diffusion sampling methods (Song et al., 2021a; Lu et al., 2023; Zhao et al.,
2023) can be employed. We leave this exploration for future work.

D MASKED DIFFUSION LANGUAGE MODELS AS DIFFUSIONBLOCKS

D.1 CONTINUOUS-TIME FORMULATION

We first recall the continuous-time formulation of masked diffusion language models (Sahoo
et al., 2024; Shi et al., 2024). Let x0 = (x01, . . . , x0n) denote a sequence of tokens and let
α(t) : [0, 1] → [1, 0] denote the masking schedule at continuous time t ∈ [0, 1], where α(t) rep-
resents the probability of remaining unmasked. The forward process progressively masks tokens
as:

q(xt | x0) =

n∏
i=1

q(xti | x0i) where xti =

{
x0i, with prob. α(t),
[MASK], with prob. 1− α(t).

(7)

The training objective in continuous form is:

L(θ) = Ex0

∫ 1

0

−α′(t)

1− α(t)
Ext∼q(xt|x0)

[∑
i:xti=[MASK]

CE(fθ(xt, t)i, x0i)

]
dt, (8)

where α′(t) = dα/dt < 0 and CE denotes cross-entropy loss. This form is equivalent to the
continuous-time NELBO (Shi et al., 2024; Sahoo et al., 2024), but expressed with a nonnegative
weight multiplying CE, which avoids sign ambiguity.

D.2 PARTITIONING INTO DIFFUSIONBLOCKS

To enable block-wise training, we partition the objective in Eq. (8) into B disjoint intervals in t. The
expected number of masked positions at time t is n(1−α(t)), so the effective density of contributions
is

−α′(t)

1− α(t)
· (1− α(t)) = −α′(t). (9)

Hence, the contribution of interval [ta, tb] is∫ tb

ta

−α′(t) dt = α(ta)− α(tb). (10)

This shows that the training mass is distributed uniformly in α, not in t.

Therefore, the natural partition boundaries are defined by equal decrements of α:

αb = 1− b
B , b = 0, . . . , B, (11)

with corresponding time boundaries obtained by inversion:

tb = α−1
(
1− b

B

)
. (12)

For a linear schedule α(t) = 1 − t, this simply yields tb = b/B. Each block b is then trained
independently on its assigned interval:

Lb(θb) = Ex0

∫ tb

tb−1

−α′(t)

1− α(t)
Ext∼q(xt|x0)

[∑
i: xti=[MASK]

CE (Dθb
(xt, t)i, x0i)

]
dt, (13)

17

Published as a conference paper at ICLR 2026

where Dθb
denotes the denoiser assigned to block b. The global loss decomposes as L =

∑B
b=1 Lb.

This derivation shows that DiffusionBlocks in masked diffusion models amounts to partitioning the
masking schedule α(t) rather than time. Each block is responsible for an equal decrement in α(t),
i.e. an equal share of the total “demasking work”, which ensures balanced parameter utilization and
true independence across blocks. This construction is directly analogous to the equi-probability
partitioning in continuous diffusion models described in Section 3.3.

E EXPERIMENTAL DETAILS

Unless otherwise specified, all experiments use the following settings. For DiffusionBlocks, we
adopt the EDM framework (Karras et al., 2022) with default parameters: log-normal noise distribu-
tion with Pmean = −1.2 and Pstd = 1.2, noise range [σmin, σmax] = [0.002, 80], and preconditioning
following the recommended configuration. Inference uses Euler sampling with 50 steps unless stated
otherwise. During training, blocks are sampled uniformly at random for each iteration.

E.1 VISION TRANSFORMERS FOR IMAGE CLASSIFICATION

For image classification experiments in Section 5.1, we use a 12-layer ViT with patch size 4, 128
hidden dimensions, 4 attention heads, and 0.1 dropout, partitioned into B=3 blocks (4 layers each).
We train for 500 epochs with batch size 128 and AdamW optimizer with learning rate 5 × 10−4.
We employ a cosine learning rate scheduler with a 10-epoch linear warmup. As data augmentation,
we apply random horizontal flipping (p = 0.5) and RandAugment (Cubuk et al., 2020) as data
augmentation.

Figure 5 (top left) illustrates the DiffusionBlocks adaptation for ViT. We add noise to the class label
embeddings and concatenate them with the patch embeddings. Each block learns to denoise the label
embedding conditioned on the patch embeddings. We use an overlap ratio γ = 0.05 and perform 4
denoising steps during inference (matching L/B= 12/3). The classification head is applied after the
final denoising step to produce class predictions. We minimize cross-entropy loss between predicted
and true class labels during training. For the Forward-Forward baseline, we adapt the Contrastive
Forward-Forward (FF) (Aghagolzadeh & Ezoji, 2025) implementation to ViT 3.

E.2 DIFFUSION MODELS FOR IMAGE GENERATION

For image generation experiments in Section 5.2, we use DiT-S/2 (12 layers) for CIFAR-10 and DiT-
L/2 (24 layers) for ImageNet-256. Both models are partitioned into B = 3 blocks. Training follows
the EDM framework with classifier-free guidance (Ho & Salimans, 2021) (10% label dropout). For
CIFAR-10, we train for 100 epochs with batch size 512 and AdamW optimizer with learning rate
10−4. For ImageNet, we resize to 256×256 and encode images by a pre-trained VAE (Peebles &
Xie, 2023)4. We also train 100 epochs with batch size 512 and AdamW optimizer with learning rate
5× 10−5. Overlap ratio is set to γ = 0.05.

In evaluation, we apply Euler sampling with 50 steps and classifier-free guidance (scale 2.0) on both
CIFAR-10 and ImageNet experiments. FID is computed using 50,000 generated samples against
the training and test sets, with the minimum of three evaluations reported following Karras et al.
(2022). For the training set, we use the official ADM (Dhariwal & Nichol, 2021) evaluation suite,
which computes FID against the entire training set as the reference distribution. For the test split,
we compute FID using clean-fid (Parmar et al., 2022).

E.3 MASKED DIFFUSION MODELS FOR TEXT GENERATION

In Section 5.3, we follow MD4’s training protocol with 256 sequence length, AdamW optimizer
with learning rate 3 × 10−4, weight decay 0.03, and 2,000 linear warmup steps. Training runs
for 100 epochs with batch size 256. The 12-layer DiT-based transformer (Lou et al., 2024; Sahoo
et al., 2024) uses 768 hidden dimensions and 12 attention heads, partitioned into B=3 blocks with

3https://github.com/HosseinAghagol/ContrastiveFF
4stabilityai/sd-vae-ft-ema

18

https://github.com/HosseinAghagol/ContrastiveFF
stabilityai/sd-vae-ft-ema

Published as a conference paper at ICLR 2026

overlap ratio γ = 0.05. Masking schedule follows MD4’s linear schedule. For block partitioning
in discrete diffusion, we apply equi-probability partitioning to the masking ratio distribution rather
than continuous noise levels in Appendix D. Bits-per-character (BPC) is evaluated on the text8 test
set following Shi et al. (2024).

E.4 AUTOREGRESSIVE MODELS FOR TEXT GENERATION

In Section 5.4, we use a 12-layer Llama-2-style transformer (Touvron et al., 2023) augmented with
time conditioning as in DiT (Peebles & Xie, 2023) with 768 hidden dimensions, 12 attention heads,
and the Llama-2 tokenizer with 32K vocabulary size. The model is partitioned into B=4 blocks with
an overlap ratio γ=0.1. Training uses sequence length 256 for LM1B and 3072 for OWT, batch size
256, AdamW with learning rate 3× 10−4, and 2500 warmup steps for 10 epochs.

Since DiffusionBlocks is not derived from ELBO-based objectives, computing traditional perplexity
is non-trivial. Instead, we evaluate using MAUVE scores following SEDD (Lou et al., 2024), which
measures the similarity between generated and real text distributions. For each test sample, we
generate 5 continuations of 50 tokens from 1K prompts and compute MAUVE against 1K reference
samples with the scaling factor 0.2. Additionally, we report generative perplexity, commonly used
in diffusion language models (Lou et al., 2024; Sahoo et al., 2024), by computing the perplexity
of generated text using teacher models (Llama-2-7B5 and GPT2-XL (Radford et al., 2019)6).
For generations, we use top-p sampling (0.95) for the baseline and 4 diffusion steps with greedy
sampling for DiffusionBlocks. The OWT test set is created by splitting 10% of the data since no
official test set exists.

Applying DiffusionBlocks to autoregressive models requires maintaining causal consistency during
training. When denoising future tokens, the model must condition on clean past tokens rather than
noisy ones to preserve the autoregressive property. Following Block Diffusion (Arriola et al., 2025),
we implement this using sequence concatenation: noisy and clean sequences are concatenated with
a modified causal attention mask that allows noisy tokens to attend to their corresponding clean past
tokens while preventing information leakage. This approach doubles sequence memory but main-
tains single forward pass efficiency. An alternative implementation computes key-value pairs sepa-
rately for clean and noisy sequences, combining them during attention computation. This requires
two forward passes but uses standard sequence memory. We adopt the concatenation approach for
computational efficiency.

E.5 RECURRENT-DEPTH MODELS

For Huginn (Geiping et al., 2025) described in Section 5.5, we use the default configuration: 2
prelude layers, 4-layer recurrent block, and 2 coda layers following Pythia-70M (Biderman et al.,
2023)7 architecture with 512 hidden dimensions and 8 attention heads. Unlike other architectures,
recurrent-depth models do not require block partitioning since the entire network is applied recur-
rently. Instead, we train the full network as a denoiser by sampling different noise levels σ at each
training step. While baseline Huginn uses stochastic recurrence depth (average 32 iterations) with
truncated BPTT (8 steps), DiffusionBlocks trains with single-pass diffusion. We train on LM1B for
15 epochs compared to Huginn’s 5 epochs. Despite this, our approach uses approximately 10×
less total computation since we avoid the 32× recurrent iterations during training.

E.6 ABLATION STUDIES

E.6.1 COMPARISON WITH NOPROP

We follow the experimental protocol of NoProp (Li et al., 2025). In the absence of publicly
available code, we implemented their NoProp-DT architecture augmented with time condition-
ing from NoProp-CT, following their specifications (Figure 5 in their paper). Training follows
NoProp-CT’s hyperparameters with AdamW optimizer, learning rate 10−4, batch size 128, and
1000 epochs on CIFAR-100. For DiffusionBlocks, we use B=3 blocks with overlap ratio γ = 0.1.

5https://huggingface.co/meta-llama/Llama-2-7b-hf
6https://huggingface.co/openai-community/gpt2-xl
7https://huggingface.co/EleutherAI/pythia-70m

19

https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/openai-community/gpt2-xl
https://huggingface.co/EleutherAI/pythia-70m

Published as a conference paper at ICLR 2026

Table 9: ViT results on Tiny-ImageNet. DiffusionBlocks shows consistent performance on
intermediate-scale classification dataset.

Method Accuracy (↑)
ViT 35.32
+ DiffusionBlocks 36.16

Following NoProp-CT’s evaluation protocol, we use 1000 Euler sampling steps instead of our
default 50.

We attempted to adapt Forward-Forward (FF) algorithm (Hinton, 2022) as an additional baseline
to NoProp’s architecture for Table 6. However, without publicly available code and with no spec-
ified adaptation procedure, the implementation requires numerous design decisions. Our attempts
achieved only 1% accuracy, highlighting the fundamental incompatibility: NoProp’s architecture is
specifically designed for their method (type (e) in their Figure 2), while FF requires contrastive pos-
itive/negative samples (type (d)). Successfully bridging these paradigms may require innovations
beyond straightforward adaptation. This highlights a key distinction between approaches. NoProp
does not provide guidance for adapting to other methods or architectures. DiffusionBlocks instead
offers a systematic procedure for converting existing Transformer-based networks into block-wise
trainable models. This recipe enabled successful application to modern architectures with minimal
modifications, demonstrating the generality of our framework.

E.6.2 DESIGN CHOICE ANALYSIS

All ablation studies follow the configurations described in Appendix E.2. We report FID scores on
the test splits. For partitioning experiments, we test both uniform partitioning (equal intervals in
log-space) and our equi-probability method. Layer distribution indicates the number of layers in
each block. For block count experiments, we vary B from 2 to 6 while keeping total layers fixed
at 12. We disabled the block overlap (γ = 0.0) in Section C to isolate the effectiveness of each
component.

F ADDITIONAL EXPERIMENTS

F.1 IMAGE CLASSIFICATION EXPERIMENT ON TINY IMAGENET

To further evaluate the effectiveness of DiffusionBlocks on classification tasks beyond CIFAR-100,
we conducted an additional experiment on the Tiny ImageNet dataset (Le & Yang, 2015). This
dataset consists of 200 classes, 100,000 training images with each image resized to 64×64 resolu-
tion. Tiny-ImageNet provides a more challenging and higher-resolution benchmark than CIFAR-
100.

We trained a 12-layer Vision Transformer (ViT) with patch size 4, hidden size 768, and 12 attention
heads. Both the baseline ViT and DiffusionBlocks models were trained for 100 epochs using a batch
size of 256 and the AdamW optimizer with a learning rate of 10−4. For DiffusionBlocks, we used
B = 2 blocks (each containing 6 layers).

Table 9 demonstrates that DiffusionBlocks maintains competitive performance relative to the base-
line ViT, consistent with our findings on CIFAR-100 as well as our large-scale classification ex-
periments in language modeling (LM1B and OpenWebText in Table 3, 4, 5). These results further
indicate that DiffusionBlocks remains effective as a classifier across different data modalities, reso-
lutions, and dataset scales.

F.2 EFFECT OF BLOCK COUNT ON CIFAR-10

To examine whether the design trends observed on ImageNet in Table 8 generalize to different
datasets, we additionally evaluate the effect of the number of blocks on CIFAR-10. This experiment
allows us to assess whether the behavior of DiffusionBlocks remains consistent across datasets of
different scales and complexities. We use the same DiT-S/2 architecture described in Section 5.2,

20

Published as a conference paper at ICLR 2026

Table 10: Effect of block count on CIFAR-10.
Moderate block counts (2–3) achieve the best FID,
showing consistent trends with ImageNet in Table 8.

Number of Blocks FID (↓) L/B (↓) Relative Speed

B = 1 39.83 12 1.0×
B = 2 35.47 6 2.0×
B = 3 38.03 4 3.0×
B = 4 45.43 3 4.0×
B = 6 53.32 2 6.0×

Table 11: Effect of block count on text gen-
eration (LM1B). Best performance is achieved
with B=4.

Number of Blocks MAUVE (↑) Layers per Block (↓) Relative Speed

B = 2 0.61 6 2.0×
B = 3 0.65 4 3.0×
B = 4 0.67 3 4.0×
B = 6 0.62 2 6.0×

training under the EDM framework while varying the number of blocks B ∈ {1, 2, 3, 4, 6} and
disabling block overlap (γ = 0.0) to isolate the effectivenss of the number of blocks B.

As shown in Table 10, smaller block counts tend to achieve better FID scores, and B = 2 or B = 3
provides strong performance. This trend matches the observations in Table 8. These results indicate
that the effectiveness of using a moderate number of blocks is consistent across datasets of varying
scale, supporting the validity of the design choices analyzed in Section 5.6.

F.3 EFFECT OF BLOCK COUNT ON TEXT GENERATION

Table 11 shows the effect of varying the number of blocks for autoregressive language modeling on
LM1B with overlap ratio γ = 0.0.

The optimal number of blocks differs between tasks: image generation achieves best FID with B=2
or B=3 (Table 8), while language modeling achieves best MAUVE with B=4. This motivated our
choice of B=4 for language modeling experiments in the main paper.

G COMPARISON WITH ACTIVATION CHECKPOINTING

DiffusionBlocks and activation checkpointing (also known as activation recomputation, gradient
checkpointing, or rematerialization) offer fundamentally different trade-offs and can be powerfully
combined.

The key distinction lies in what each method reduces. Activation checkpointing reduces only acti-
vation memory, leaving parameters, gradients, and optimizer states unchanged. In contrast, Diffu-
sionBlocks reduces all memory components by a factor of B. This distinction becomes increasingly
critical as modern models grow larger.

To illustrate this difference, consider an L-layer network where each layer has parameter size P and
activation size A. With Adam optimizer (requiring 2P for momentum and variance), each layer
needs 4P memory for parameters, gradients, and optimizer states. Standard training thus requires
(4P + A)L total memory. Activation checkpointing reduces this to 4PL + A by rematerializing
activations only when needed (though this is an optimistic estimate that ignores the memory cost
of the checkpoints). DiffusionBlocks, by training B independent blocks, requires (4P +A)(L/B).
Since L > B, combining DiffusionBlocks and activation checkpointing uses the least memory
among these four patterns.

Regarding computational costs, it is empirically known that activation checkpointing increases the
training time by a factor of approximately 4/3, and this holds true when combined with the proposed
method. This is justified as follows. With a forward pass computation cost of F , a backward pass
requires approximately 2F (computing Jacobians and weight gradients). Standard training uses
3F cost per iteration, while activation checkpointing increases this to 4F due to recomputation.
DiffusionBlocks maintains this ratio when combined with checkpointing.

Beyond memory reduction, DiffusionBlocks offers unique advantages regarding training time: each
block can be trained in an embarrassingly parallel manner. This means each block can be trained
in parallel with absolutely no communication overhead. This provides an additional advantage over
activation checkpointing, especially when computational resources are abundant.

21

Published as a conference paper at ICLR 2026

Table 12: Wall-time comparison on ViT. The aggregated DiffusionBlocks time is computed by
multiplying the measured per-block iteration time by B = 3.

Method Wall time (sec/iter)
ViT 0.0507
DiffusionBlocks: per-block time (4 layers) 0.0181
DiffusionBlocks: aggregated time (0.0181× 3) 0.0543

H TRAINING AND INFERENCE EFFICIENCY

This section provides a detailed analysis of the computational efficiency and wall-time characteris-
tics of DiffusionBlocks.

Training efficiency. Consider an L-layer network trained for K iterations. Standard end-to-end
backpropagation performs K × L layer evaluations. DiffusionBlocks trains only L/B layers at a
time; training all B blocks for K iterations each performs (L/B)×B×K = L×K layer evaluations.
Thus, DiffusionBlocks requires the same total amount of computation as standard training, while
reducing memory usage by a factor of B.

To validate this theoretical equivalence, we measured the per-iteration wall time using a 12-layer ViT
on a single H100 80GB GPU, averaging over 100 iterations. As summarized in Table 12, standard
training requires 0.0507 seconds per iteration for all 12 layers. Under DiffusionBlocks with B = 3,
each block (4 layers) takes 0.0181 seconds per iteration (measured). The total per-iteration wall time
for DiffusionBlocks is therefore obtained by summing the independently trained blocks, computed
as 0.0181× 3 = 0.0543 seconds. The resulting end-to-end wall time is thus comparable to standard
training, with the small difference attributable to the noise-level conditioning introduced during the
DiffusionBlocks conversion (Section 3.1).

Inference efficiency. For inference, we ensure that the total amount of computation matches that
of the baseline model. For a 12-layer network, the baseline performs a single forward pass through
all 12 layers. Under DiffusionBlocks with B = 3, we perform three denoising steps, each invoking
the corresponding 4-layer block once. The total compute therefore corresponds to the same 12 layer
evaluations as in standard inference.

For diffusion models used in image generation, the computational benefit is even more pronounced.
Standard diffusion models must apply the full network for every denoising step. With 50 denoising
steps, a 12-layer DiT requires 12 × 50 layer evaluations. In DiffusionBlocks, each denoising step
applies only the block responsible for that noise level, which contains 4 layers when B = 3. This
reduces the total compute to 4×50, achieving a B-fold reduction in inference cost. The 50 denoising
steps are assigned to blocks according to the equi-probability partitioning in Section 3.3, so that each
block is used approximately the same number of times during inference. Euler sampling is used
for simplicity, and, as shown in Section 2.2, it is computationally equivalent to a residual update,
requiring no additional overhead.

22

	Introduction
	Preliminaries
	Score-based diffusion models
	Residual connections as Euler steps of the reverse diffusion process

	Method
	Converting a neural network to DiffusionBlocks
	Block-independent training of the diffusion blocks
	Block partitioning strategy

	Related works
	Experimental results
	Vision transformers for image classification
	Diffusion models for image generation
	Masked diffusion models for text generation
	Autoregressive models for text generation
	Recurrent-depth models for text generation
	Analysis
	Comparison with NoProp
	Ablation Studies on Design Choices

	Conclusion
	Notations
	Extension to diverse architectures
	Implementation details in DiffusionBlocks
	Masked diffusion language models as DiffusionBlocks
	Continuous-time formulation
	Partitioning into DiffusionBlocks

	Experimental details
	Vision transformers for image classification
	Diffusion models for image generation
	Masked diffusion models for text generation
	Autoregressive models for text generation
	Recurrent-depth models
	Ablation studies
	Comparison with NoProp
	Design choice analysis

	Additional experiments
	Image Classification Experiment on Tiny ImageNet
	Effect of block count on CIFAR-10
	Effect of block count on text generation

	Comparison with Activation Checkpointing
	Training and inference efficiency

