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ABSTRACT

Transductive node prediction has been a popular learning setting in Graph Neural
Networks (GNNs). It has been widely observed that the shortage of information
flow between the distant nodes and out-of-batch nodes (for large-scale graphs)
often hurt the generalization of GNNs which overwhelmingly adopt message-
passing. Yet there is still no formal and direct theoretical results to quantitatively
capture the underlying mechanism, despite the recent advance in both theoretical
and empirical studies for GNN’s generalization ability. In this paper, the L-hop in-
terplay (i.e., message passing capability with training nodes) for an L-layer GNN
is successfully incorporated in our derived PAC-Bayesian bound for GNNs in the
semi-supervised transductive setting. In other words, we quantitatively show how
the interplay between training and testing sets influence the generalization ability
which also partly explains the effectiveness of some existing empirical methods
for enhancing generalization. Based on this result, we further design a plug-and-
play Graph Global Workspace module for GNNs (InterpGNN-GW) to enhance
the interplay, utilizing the key-value attention mechanism to summarize crucial
nodes’ embeddings into memory and broadcast the memory to all nodes, in con-
trast to the pairwise attention scheme in previous graph transformers. Extensive
experiments on both small-scale and large-scale graph datasets validate the effec-
tiveness of our theory and approaches.

1 INTRODUCTION

Graph Neural Networks (GNNs) have shown success in learning both node and graph representa-
tions, with applications in node/graph classification (Kipf & Welling, 2017; Veličković et al., 2018;
Xu et al., 2019), link prediction (Du et al., 2019b; Yang et al., 2022), etc. Current GNNs mainly
use the message-passing paradigm (Gilmer et al., 2017), updating nodes at each layer by aggregat-
ing their embeddings with neighboring nodes’. In particular, recent empirical studies show that the
effective interplay between train and test nodes either from the raw structure (Lukovnikov & Fis-
cher, 2021; Rusch et al., 2022) or by implicit connection e.g., graph transformers (Wu et al., 2022;
2023) can effectively boost the generalization performance of GNNs for transductive node predic-
tion which is the common setting in existing GNNs and is also the focus of this paper. Yet there
still lacks quantitative results on the impact of graph structure especially that between train and test
nodes on GNNs’ generalization ability, despite the abundant studies (Garg et al., 2020; Scarselli
et al., 2018; Garg et al., 2020; Liao et al., 2021; Du et al., 2019a) on theoretical GNN generaliza-
tion error using different tools e.g., Rademacher complexity, VC dimension, and PAC-Bayesian.
Table 1 shows that previous derived bounds are related to different graph-specific information for
the transductive setting, including graph diffusion (Esser et al., 2021), disparity in aggregated node
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Table 1: Massage-passing based GNNs’ generalization error bounds. Note that we are the first
to establish the generalization error via the structure interplay between training and test sets. In
fact, the interplay has been empirically verified as an effective way for improving generalization
in Lukovnikov & Fischer (2021); Rusch et al. (2022).

Works Analysis framework Setting i.i.d.1 Task Graph-specific information
Scarselli et al. (2018) VC dimension Inductive ✓ binary node cls. number of nodes

Verma & Zhang (2019) algorithmic stability Inductive ✓ multiclass node cls. eigenvalue of graph filter
Garg et al. (2020) Rademacher complexity Inductive ✓ binary graph cls. maximum node degree

Oono & Suzuki (2020) Rademacher complexity Transductive ✗ binary node cls. none
Esser et al. (2021) Rademacher complexity Transductive ✓ binary node cls. graph diffusion
Du et al. (2019a) Neural Tangent Kernel Inductive ✓ binary graph cls. none
Liao et al. (2021) PAC-Bayesian Inductive ✓ binary graph cls. maximum node degree
Ma et al. (2021) PAC-Bayesian Transductive ✗ multiclass node cls. disparity in aggregated features

Maskey et al. (2022) Convergence speed Inductive ✓ multiclass graph cls. average number of nodes
InterpGNN (Ours) PAC-Bayesian Transductive ✗ multiclass node cls. interplay

1 i.i.d. means examples are drawn from an identical and independent distribution.

feature (Ma et al., 2021), yet the results concerning graph structure is missing and cannot support
the empirical finding on its importance in Lukovnikov & Fischer (2021); Wu et al. (2022).

Theory perspective: we derive a generalization error bound for GNNs (Theorem 1 with details
in Section 2.2) using the tool of PAC-Bayesian (McAllester, 1998). Its novelty lies in the direct
connection to the interplay between the train and test nodes (as depicted by Eq. 8). Specifically, for
an L-layer GNN, we define l-hop (l ≤ L) interplay Il (formally in Definition 1) as the proportion
of test nodes that can interact with training nodes after l-times message passing, i.e., those test
nodes whose minimum path length to any training node is l. As summarized in Table 1, to our
best knowledge, our derived bound is the first to directly show that more information interaction
between neighboring test and training nodes can lead to smaller generalization error and interpret
the structural imbalance phenomenon for homophilic graphs.

Informed by the above theory, increasing the interaction between distant training and test nodes can
reduce generalization error. One direct way is deepening the GNN. This is because a GNN with L se-
quentially stacked layers can utilize up to L-hop neighbors for node feature updates. However, most
GNNs achieve peak performance with shallow depth, and their performance degrades with increas-
ing layers due to common issues like over-smoothing (Chen et al., 2020a) and over-squashing (Alon
& Yahav, 2021). Another way is implicit connections, such as graph transformers (Wu et al., 2023)
assign attention scores as the weights of implicit edges between any pair of nodes. The challenge is
further pronounced with the fact that current scalable GNNs (Chiang et al., 2019; Zeng et al., 2020)
mainly employ mini-batch training protocol, where nodes from different batches are isolated.

Technical perspective: we propose a plug-and-play module called Graph Global Workspace
(InterpGNN-GW) for GNNs. The so-called global workspace is composed of memory slots that can
store the aggregated embeddings of important nodes. The raw node features are first transformed
into embeddings using any GNN (Kipf & Welling, 2017; Hamilton et al., 2017), and random-walk-
based techniques like node2vec (Grover & Leskovec, 2016) serve as positional encoding for nodes.
Key-value attention is then used to select important node embeddings to write into the workspace ,
leveraging topological information in positional encoding for coordination across the entire graph.
Memory updates employ gated approach to achieve persistence. Finally, memory contents stored
in the global workspace are broadcast to all nodes. Compared to the graph transformers (Wu et al.,
2022; 2023) based on inner-batch pair-wise attention, the global workspace can provide global con-
sistency. The contributions are as follows:

1) New theory: We derive a PAC-Bayesian bound for message-passing GNN in the transductive
node classification, which is the dominant setting for graph learning. The bound associates the
generalization error with the topological interplay between training and test sets, i.e., whether test
nodes can obtain the features of training nodes through message passing. The bound theoretically
interpret the structure imbalance phenomenon observed in transductive node classification.

2) Plug-in method: Based on the derived bound, we propose the Graph Global Workspace
(InterpGNN-GW) to enhance the interplay between distant and out-of-batch nodes. Nodes with
positional encoding compete to write to and read from the global workspace via key-value attention.

3) Strong results: Experiments on small- and large-scale graph datasets show InterpGNN-GW’s
superior performance on node classification compared to scalable GNNs and graph transformers.
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2 GENERALIZATION ERROR BOUND VIA PAC-BAYESIAN ANALYSIS

2.1 PROBLEM SETUP AND PRELIMINARIES ON PAC-BAYESIAN

Transductive node classification. We consider semi-supervised transductive K-class node clas-
sification which is commonly studied in the graph learning community. Let G = (V,E) represent
an undirected graph, where V denote the node set with size N , and E denote the edge set. Let X
denote the node features, Y denote the node labels and A represent the adjacent matrix. Assume
that for each node i, its label is generated by a true but unknown distribution D conditioned on node
features and neighbors. Denote the set of training nodes as S and the set of test nodes as U . In the
transductive node classification task, a classifier f(A,X) is learned using the labels of training set
YS , the features of both training and test nodes X = [XS ,XU ], and the adjacency matrix A. The
objective is to classify the unlabeled nodes in U . The classification of the i-th node is:

ŷi = argmax
k∈{1,···K}

f(A,X)[i, k],

where f(A,X)[i, k] means the (i, k)-th element of the obtained matrix.

γ-margin ramp loss. We use the γ-margin ramp loss following Bartlett et al. (2017); Zhang et al.
(2019); Koltchinskii & Panchenko (2002). First define the margin operator of a hypothesis f for
a labeled node asMf (i, yi) = f(A,X)[i, yi] − maxk ̸=yi

f(A,X)[i, k]. Given the set of training
nodes S, the empirical error of f on S is defined as:

RS,γ(f) :=
1

|S|
∑
i∈S

Φγ(Mf (i, yi)), (1)

where the ramp loss Φγ(·) is defined as:

Φγ(a) :=

{
0 γ ≤ a,
1− a/γ 0 ≤ a ≤ γ,
1 a ≤ 0.

(2)

Additionally, we use Φ0(a) = 1[ŷi ̸= y] to denote the 0-1 classification loss and its correspond-
ing empirical error RS,0(f), since the marginal ramp loss transitions to classification loss as γ ap-
proaches zero. Similarly we can define the empirical error on the test set U as RU,γ . The excepted
error on training and test set are defined as:

rS,γ(f) := E
y∼D

[RS,γ(f)] rU,γ(f) := E
y∼D

[RU,γ(f)] , (3)

PAC-Bayesian background. PAC-Bayesian (McAllester, 1998; 1999) provides a tool to analyze the
generalization performance of randomized predictors. Consider a training set S, a true yet unknown
label-generating distribution D from which samples are drawn, a hypothesis class H of classifiers,
a prior distribution P overH, and a posterior distribution Q overH. The prior P encodes our prior
about the model before seeing any training data; the posterior is learned by learning on training
data. As opposed to common learning paradigm which learns a single deterministic predictor, PAC-
Bayesian studies the distribution of models, and the error measure on test set is extended as,

RU,γ(Q) = E
f∼Q

[RU,γ(f)], rU,γ(Q) = E
f∼Q

[rU,γ(f)]. (4)

The error measurement on the training set uses a similar definition for RS,γ(Q) and rS,γ(Q). The
aim of PAC-Bayesian is to bound the gap between RS,γ(Q) and rU,γ(Q) with high probability. The
PAC-Bayesian typically first associates the generalization bound with the discrepancy between any
possible prior P and posterior Q, measured with the KL divergenceDKL(Q||P ). Then the concrete
bounds are obtained by constructing specific priors and posteriors. Although PAC-Bayes is gener-
ally founded on stochastic models, McAllester (2003b); Neyshabur et al. (2017) provide standard
techniques for obtaining the generalization bounds of deterministic models. We refer readers to
tutorials (Guedj, 2019; Alquier, 2021) for more details on PAC-Bayesian.

2.2 THE DERIVED STRUCTURE-AWARE PAC-BAYESIAN BOUND OF GCN
PAC-Bayesian bound for Transductive Learning. The following lemma with proof in Ap-
pendix B.1 introduces PAC-Bayesian bound for general transductive learning.
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Lemma 1 (PAC-Bayesian bound for transductive learning) Given a full set V with N examples,
for any training set S of size m and test set U , for any prior distribution P on the hypothesis space
of classifierH (not necessarily a GNN), for any δ ∈ (0, 1], with probability at least 1− δ, we have,

rU,γ(Q) ≤ RS,γ(Q) +

√
DKL(Q||P ) + ln 2m

δ
+D(P )

2(m− 1)
(5)

where D(P ) = ln E
f∼P

[
e2(m−1)(rU,γ(f)−rS,γ(f))

2
]

quantifies the expected loss discrepancy between

the training and test set. Lemma 1 is a natural adaptation of PAC-Bayesian in Germain et al. (2009)
from inductive learning to transductive learning. Using lemma 1 as a tool for PAC-Bayesian, the
generalization bounds can be obtained by upper-bounding the term D(P ). For GNNs, given that
embedding can be propagated to neighbors, we need to consider the impact of structure on the
bound of D(P ) in comparison to general transductive learning.

PAC-Bayesian bound for GCN. We now incorporate the node correlation induced by the graph
structure into Lemma 1. We first denote that the l2-norm of node features are bounded by Bx, and
the l2-norm of weights for each layer, for any classifier is bounded by Bw. We analyze GCN (Kipf &
Welling, 2017). The derived bound can be easily generalized to any GNNs following the message-
passing and aggregation paradigm such as GraphSAGE (Hamilton et al., 2017), SGC (Wu et al.,
2019). The l-th layer of GCN is defined as :

Hl = σl(ÃHl−1Wl), (6)
where σl(·) is ReLU non-linear activation function, Wl is the trainable weight matrix, Hl are node
embeddings of the l-th layer with H0 = X, Ã = A + I, and I is the identity matrix. The max-
imum number of hidden units across all layers is denoted as h. A path between node i and node
j is denoted as a sequence of successively connected nodes: p(i, j) = (vi, · · · , vj), with the path
length ω(p(i, j)) defined as the count of edges along it. The shortest path length is denoted by
s(i, j) = min{ω(p(i, j))}. For the first time to our best knowledge, to explore the impact of
structural correlation between training and test sets on generalization error, we define the L-hop
interplay between training and test nodes.
Definition 1 (L-hop interplay) For a graph G = (V,E) with training set S ⊆ V and test set
U ⊆ V , the L-hop interplay IL between S and U is defined as:

IL =

∑L
r=1(L− r + 1) · |Pr|

|S| · |U |
, (7)

where Pr := {(i, j)|i ∈ S, j ∈ U, s(i, j) = r} represents training-test node pairs with the shortest
path length of r.

We now derive the following generalization bounds of L-layer GCN by associating the upper bound
of D(P ) with the L-hop interplay. The complete derivation is given in Appendix B.2. The proof is
in two steps: 1) bounding D(P ) based on the premise that embedding exchange among connected
nodes leads to closer output logits, 2) bounding DKL(Q||P ) as per Neyshabur et al. (2017); Ma
et al. (2021).
Theorem 1 (PAC-bayes bounds with L-hop interplay for transductive GCN) Let f ∈ H be an
L-layer GCN with parameters {Wi}Li=1, for any Bx, Bw > 0, L, h,K ≥ 1, and any δ, γ > 0, with
probability at least 1− δ over a training set S of size m we have,

rU,0(f) ≤ RS,γ(f) +O

√
B2

xL2h ln(4Lh)ΠΣ + ln Lm
δ

γ2m
+K2B2

x(1−
2IL

dmax
)2BL

w

 (8)

where Π =
∏L

l=1 ∥Wi∥2F and Σ =
∑L

l=1
∥Wl∥2

F

∥Wl∥2
2

are product and sum of spectral norm of weights,
dmax is the maximum node degree.
Theorem 1 interpret the structure imbalance phenomenon. Grouping test nodes based on their
distance with training nodes, the impact of topological structure on generalization is presented in
Fig. 1 with further elaboration in Appendix C. For test nodes exhibiting stronger interplay with
training nodes, the generalization error is smaller. Theorem 1 theoretically interprets this experi-
mental observation. Considering Tang et al. (2020); Liu et al. (2023) connect generalization ability
with node degree, we modify the grouping criterion to node degree, revealing a similar trend (Fig. 2).
We attribute this to nodes with smaller degrees engage in fewer interactions with training nodes. The
generalization of above theorem on heterophilic graphs please see in Appendix G.3

3 ENHANCING GENERALIZATION VIA THE GRAPH GLOBAL WORKSPACE
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Figure 1: Accuracy on different subset grouped by interplay. Lower index implies higher interplay.
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Figure 2: Accuracy on different subset grouped by nodes degree. Lower index implies higher degree.
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Figure 3: InterpGNN-GW consists of three steps: 1) ex-
tract initial feature embedding and positional encoding. 2)
Nodes compete for writing access to the global workspace.
3) Nodes retrieve information from the global workspace.
The right part shows step two, where attention selects nodes
and updates nm memory slots using the gate mechanism,
with Ht and M t as current node embeddings and memory.

Intuition. Building upon previous
investigations, exploring ways to en-
hance the interplay between dis-
tant nodes is worth researching.
We propose a plug-and-play module
for GNNs, inspired by the Global
Workspace Theory (Baars, 2005;
VanRullen & Kanai, 2021; Goyal
et al., 2022), to enhance long-range
node interplay and reduce complex-
ity. Nodes use the key-value attention
mechanism to competitively write
their embeddings into the workspace,
and subsequently retrieve informa-
tion from the workspace. Distant test
nodes can indirectly interplay with
training nodes through information
stored in the workspace. For large-
scale graphs trained in mini-batch, in-
terplay among out-of-batch nodes is
feasible. This section elucidates the
three steps of our method.

Initial feature embedding and positional encoding. We first employ a graph neural network to
encode raw node features into nf -dimensional feature embeddings. For a small-scale graph G =
(V,E,A) with node feature matrix X, we employ a single-layer GCN to initially encode the feature
matrix to a hidden embedding matrix H = σ(AXW0). For a large-scale graph, we adopt the mini-
batch training method. We use the graph clustering method such as METIS (Karypis & Kumar,
1998) to partition G into C subgraphs {Gc = [Vc, Ec]}Cc=1, where Vc is the node set of the c-th
subgraph, and Ec contains edges among nodes in Vc. The feature matrix X and labels Y can also
be partitioned into {Xc}Cc=1 and {Yc}Cc=1. In each epoch, we randomly select a subgraph Gc and
obtain the embeddings for nodes in Vc with Hc = σ(AcXcW0). The GCN encoder can be replaced
with other GNNs such as GAT (Veličković et al., 2018), GAS (Fey et al., 2021). Node2vec is trained
on the entire graph, producing np-dimensional embedding employed as positional encoding. The
node2vec embeddings capture the structural properties of the graph by assigning similar embeddings
to close nodes. The positional encoding and clusters are generated only with the adjacency matrix
which is accessible during training for transductive learning. For the rest of this section, we focus on
the approach for large-scale graphs since full-batch training on small-scale graph can be considered
as having a single partitioned subgraph (C = 1).

Nodes compete to write into the workspace. The workspace selects important nodes via attention
mechanisms and stores their embeddings. The global workspace is composed of nm memory slots,
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each of which is a vector of length lm, denoted as M = [m1, · · · ,mnm
]. Keys and Values are

obtained by multiplying node embeddings with two different linear layers, i.e., Kw = HcWw,k

and Vw = HcWw,v . Similarly, we can obtain the Query matrix with memory as Qw = MtWw,q .
The attention scores of the workspace w.r.t. the nodes are obtained by applying Softmax to the dot-
product of Query and Key. The product of the attentions scores and Value updates the workspace,

Mt+1 ← softmax
(
QwK

⊤
w√

dk

)
Vw = softmax

(
MtWw,q(HcWw,k)

⊤
√
dk

)
HcWw,v. (9)

The gated approach (Santoro et al., 2018) is used to update the workspace for dynamic persistence.

Nodes reload information from the workspace. Utilizing the attention mechanisms again, the
information within the workspace is broadcast to all nodes in Vc to update their embeddings. In this
step, node embeddings construct queries Qr = HcWr,q , and memory slots are utilized to build
keys and values, Kr = Mt+1Wr,k,Vr = Mt+1Wr,k. The attention score of nodes on each

memory slots is calculated by softmax(QrK
⊤
r√

dk
). Thus, the information received by each node from

all memory slots weighted by attention score is:

Ĥc = softmax
(
HcWr,q(M

t+1Wr,k)√
dk

)
Mt+1Wr,v. (10)

The embeddings from the workspace contain partial information from all subgraphs. After incor-
porating the information reloaded from the workspace into the node embeddings, we perform an
additional message-passing to obtain the final node embeddings:

Ho = σ(Ac(Ĥc ⊕Hc)Wo), (11)

where the ⊕ can be tensor addition or concatenation operations. In the next epoch, a new subgraph
is drawn and the process returns to the first step. This procedure iterates until the model converges
or reaches the maximum training epochs. The training algorithm is described in Appendix E.

4 EXPERIMENTS
4.1 PROTOCOL AND SETUPS
Task and datasets. We conduct experiments on semi-supervised transductive node classification
on both small-scale and large-scale graphs, adopting full-batch and mini-batch training, respectively.
The five small graph datasets include: CoraFull, Wiki-CS, AmazonPhoto, AmazonComputer, and
Flickr, and the three large-scale graphs are AMiner-CS, Reddit, Amazon2M. Details are in Ap-
pendix F.1. We use a 60%/20%/20% train/validation/test random split for all datasets.

Implementation details of our approach. Firstly, we utilize GCN to encode the initial node fea-
tures into embeddings with dimension nd, which is selected from {32, 64, 128, 256}. The dimension
of the positional encoding is selected from {32, 128}. For the global workspace module, the num-
ber of memory slots is selected from {8, 16, 32}, and their dimensions can be opted within range
of 32-1024. A multi-head dot product attention mechanism is utilized to govern the reading and
writing of node embeddings within the global workspace. The above implementation is denoted as
InterpGCN-GW. We additionally use the historical embeddings in GNNAutoScale (Fey et al., 2021)
and denote this implementation as InterpGAS-GW. We repeat the experiment for 10 times with dif-
ferent initialization and record the mean and standard deviation. All experiments are conducted on
a Titan 2080Ti with 11GB memory. More implementation details are in Appendix F.2.

Baselines. We compare three groups of GNNs: 1) Full-batch GNNs: GCN (Kipf & Welling,
2017), GAT (Veličković et al., 2018), APPNP (Klicpera et al., 2019). 2) Scalable GNNs: Clus-
terGCN (Chiang et al., 2019), GraphSAINT (Zeng et al., 2020), GRAND+ (Feng et al., 2022), and
GNNAutoScale (Fey et al., 2021). 3) (Scalable) graph transformers: SAN (Kreuzer et al., 2021),
GraphGPS (Rampášek et al., 2022), Graphormer (Ying et al., 2021), and the recent scalable ANS-
GT (Zhang et al., 2022b), NAGphormer (Chen et al., 2023) and NodeFormer (Wu et al., 2022). For
large graphs, we only compare with scalable GNNs/graph transformers. The reported numbers are
quoted from the papers given the same setting otherwise we run authors’ code to produce the results.

4.2 MAIN RESULTS
Results on small graphs (ranging from 2k to 100k nodes). For small graphs, we use full-batch
training, and the results are presented in Table 3. InterpGNN-GW outperforms all baselines, which
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Table 2: Comparison of scalable GNN and scalable graph transformers for large-scale node classi-
fication with mini-batch training. Our approach lowers the O(|Vc|2) memory complexity of graph
transformers’ pair-wise attention matrix to O(|Vc|nm).

Methods Mini-batch sample Time complexity1 Memory complexity1 Out-of-batch comm. Interplay enhancement Positional encoding

ClusterGCN (Chiang et al., 2019) METIS O(|Vc|+ |Ec|) O(|Vc|d+ d2) ✗ ✗ ✗
GraphSAINT (Zeng et al., 2020) Random walk O(|Vc|+ |Ec|) O(|Vc|d+ d2) ✗ ✗ ✗

Grand+ (Feng et al., 2022) Random O(|Vc| · k ·M) O(|Vc| · k ·Md+ d2) ✗ Random propagation ✗
GNNAutoScale (Fey et al., 2021) METIS O(|Vc|+ |No|+ |Ec|) O(|Vc|d+Nod+ d2) Historical embed ✗ ✗

ANS-GT (Zhang et al., 2022b) MAB-based O(|V |S(ns + ng + |Vc|2)) O((ns + ng + |Vc|)2 + |Vc|d+ d2) ✗ Pair-wise attention Proximity encoding
NodeFormer (Wu et al., 2022) Random O(|Vc|) O(|Vc|d2 + |Vc|d+ d2) ✗ Pair-wise attention Node connectivity

NAGphormer (Chen et al., 2023) Hop2token O(|Vc|(nh + 1)2) O(|Vc|(nh)
2 + |Vc|nhd+ d2) ✗ Pair-wise attention Laplacian Eigenvector

InterpGNN (Ours) METIS O(|Vc|nmlm) + |Ec| O(|Vc|nmlm + |Vc|d+ d2) Global workspace Store important nodes
with attention Node2vec

1 Time and memory for a mini-batch. Gc = (Vc, Ec) is the sampled subgraph for current batch. Assume that both the input and output
dimensions of the embeddings are d. nm in our method is the number of memory slots. nh in NAGphormer denotes the nh-hop neighbor-
hood. M in Grand+ is the number of augmented feature matrices. ns, ng and S in ANS-GT denote number of super-nodes, global nodes,
and augmentations. For memory complexity, |Vc|nmlm is on attention matrix, |Vc|d is on node embeddings, and d2 is on linear layers.

Table 3: Node classification on small-scale graphs (% + std). OOM: out of memory. Best in bold.
Datasets CoraFull Wiki-CS Computer Photo Flickr

Full-batch GNNs
GCN (Kipf & Welling, 2017) 68.94± 0.23 79.82± 1.02 89.34± 0.62 93.24± 0.27 49.65± 0.15
GAT (Veličković et al., 2018) 67.51± 0.19 80.56± 0.82 90.24± 0.25 93.59± 0.33 48.29± 0.21
APPNP (Klicpera et al., 2019) 67.01± 0.27 80.98± 0.86 90.81± 0.21 94.51± 0.23 50.12± 0.36

Scalable GNNs
ClusterGCN (Chiang et al., 2019) 69.21± 0.32 81.23± 0.51 90.51± 0.31 94.28± 0.45 48.23± 0.49
GraphSAINT (Zeng et al., 2020) 71.32± 0.13 81.65± 0.29 90.93± 0.55 94.94± 0.24 51.01± 0.19

Grand+ (Feng et al., 2022) 71.89± 0.40 82.11± 0.54 89.51± 0.22 94.81± 0.12 51.31± 0.31
GNNAutoScale (Fey et al., 2021) 71.08± 0.36 82.78± 0.39 88.92± 0.34 95.68± 0.42 49.31± 0.45

Scalable GTs
SAN (Kreuzer et al., 2021) 66.49± 0.55 78.23± 0.63 89.33± 0.26 93.12± 0.29 50.52± 0.38

GraphGPS (Rampášek et al., 2022) 65.62± 0.38 79.35± 0.16 OOM 94.87± 0.45 OOM
Graphomer (Ying et al., 2021) OOM OOM OOM 93.61± 0.32 OOM

NAGphomer (Chen et al., 2023) 71.51± 0.13 78.62± 0.23 91.22± 0.14 95.49± 0.11 51.71± 0.23
NodeFormer (Wu et al., 2022) 65.38± 0.91 80.69± 1.19 88.49± 1.07 93.40± 0.46 49.84± 0.78

InterpGCN-GW (ours) 71.72± 0.37 82.92± 0.18 92.10 ± 0.23 95.46± 0.15 52.41± 0.22
InterpGAS-GW (ours) 71.31± 0.31 83.31 ± 0.26 91.27± 0.37 96.13 + 0.20 53.55 ± 0.32

Table 4: Node classification on large graphs (% + std).
Datasets Reddit AMiner-CS Amazon2M

Scalable GNNs
ClusterGCN (Chiang et al., 2019) 92.69± 0.19 65.73± 0.28 86.32± 0.28
GraphSAINT (Zeng et al., 2020) 91.89± 0.17 65.64± 0.49 85.64± 0.14

Grand+ (Feng et al., 2022) 92.81± 0.27 66.49± 0.41 86.04± 0.32
GNNAutoScale (Fey et al., 2021) 93.11± 0.19 67.11± 0.31 86.32± 0.25

Scalable GTs
ANS-GT (Zhang et al., 2022b) 90.47± 0.37 65.42± 0.58 87.61± 0.31
NodeFormer (Wu et al., 2022) 89.42± 0.28 64.54± 0.35 88.01± 0.29

NAGphomer (Chen et al., 2023) 92.87± 0.36 66.92± 0.44 86.20± 0.39

InterpGCN-GW (ours) 93.35± 0.20 68.76± 0.31 89.11± 0.14
InterpGAS-GW (ours) 92.75± 0.23 69.01± 0.22 88.59± 0.19

Table 5: Non-rigorous inductive node
classifications (% + std).

CoraFull Wiki-CS
ClusterGCN 64.54± 0.29 75.74± 0.57
GRAND+ 67.15± 0.24 77.95± 0.49

NodeFormer 65.90± 0.36 76.49± 0.76
InterpGCN-GW 68.78± 0.34 81.49± 0.29

Amazon2M Aminer-CS Reddit
83.85± 0.27 61.59± 0.37 89.77± 0.35
84.12± 0.18 62.48± 0.36 92.05± 0.23
84.25± 0.41 62.12± 0.24 90.75± 0.25
88.13± 0.24 67.85± 0.19 92.79± 0.19

can be attributed to the global workspace preserving the important training node embeddings and
conveying them to remote test nodes during inference. For scalable graph transformers including
NAGphomer and NodeFormer, which utilize the node-pair attention mechanism, InterpGNN-GW
surpasses them notably. While the vanilla graph transformers such as GraphGPS, and Graphomer
are infeasible on some small graphs due to out-of-memory errors. The introduction of historical
embedding on small graphs does not guarantee performance improvement.

Results on large graphs (ranging from 200k to 2M nodes). Like ClusterGCN, our methods
also use METIS (Karypis & Kumar, 1998) to partition the graph into clusters. For the other two
compared baselines GraphSAINT and Grand+, we keep using their own partition method as sug-
gested by the authors. It is worth noting that, InterpGNN-GW outperforms other baselines more
notably than in small graph experiments, suggesting its effectiveness in mini-batch training where
the message-passing between disparate batches is hindered. While in InterpGNN-GW, nodes from
distinct batches can still exchange messages through the shared memory in the global workspace in a
persistent way. InterpGAS-GW outperforms InterpGCN-GW on some large graphs, indicating that
historical embeddings can enhance the expressiveness of global workspace for mini-batch training.
See Appendix G.1 for detailed memory comparison.

4.3 FURTHER STUDY AND DISCUSSION
Results on non-rigorous inductive learning. In order to further demonstrate the advantages of
InterpGNN-GW, we conducted experiments in a non-rigorous inductive setting, where the model
during training has access only to the feature of the training nodes, but not feature of the test nodes.
Our method is capable of broadcasting the workspace to test nodes, even when these nodes still
unseen during the training process. Thus, InterpGNN can efficiently convey information of training
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Figure 4: Study on the number of memory slots.
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Figure 5: Study on the length of memory slots.
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Table 6: Comparison between InterpGCN-GW and GNNAutoScale (GAS) Fey et al. (2021) in terms
of accuracy, GPU memory, and average training time per epoch .

Batch size

Reddit
(#nodes per cluster=39, #edges/#nodes=49.8)

AMiner-CS
(#nodes per clusters=990, #edges/#nodes=10.4)

InterpGCN-GW GNNAutoScale InterpGCN-GW GNNAutoScale
32 91.7%/1561M/5.4s 91.5%/2537M/6.2s 64.1/3023M/2.3s 63.5/2207M/1.4s
64 91.6%/1809M/6.1s 91.8%/3341M/7.6s 65.4/5391M/2.7s 64.9/2729M/1.8s

128 92.4%/2703M/7.4s 92.3%/4609M7.5s 66.4/8503M/3.8s 65.8/5145M/3.1s
256 93.0%/5171M/7.6s 92.8%/8917M/7.6s 68.0/9021M/4.5s 66.6/7543M/4.9s
512 93.4%/6989M/8.5s 93.1%/10485/7.4s 67.2/10619M/6.6s 66.5/9325M/7.8s
1024 93.5%/8067M/10.8 OOM 68.2/10221M/7.8s 67.1/10613M/8.1s

nodes to test nodes during the test phase. Unlike other methods that exhibit significant performance
degradation in inductive settings compared to transductive ones, InterpGCN-GW experiences only
a minor decrease in performance in this non-rigorous inductive setting, closely mirroring its trans-
ductive results. The experimental outcomes are detailed in Table 5.

Ablation on the ability of memory persistence across nodes. Table 10 shows an ablation study,
in which memory slots in the global workspace are initialized in each batch to store only the node
information within the current batch. It reveals that removing persistence negatively impacts perfor-
mance on both large and small graphs, especially for large graphs. We also conducted a comparison
on whether to use a gate mechanism when updating the memory, with results in Table 10.

Ablation on positional encoding. Table 6 compares the variants without positional encoding or
using alternatives e.g. Laplacian eigenvectors in Kreuzer et al. (2021); Chen et al. (2023), and
degree centrality in Ying et al. (2021). Removing node2vec positional encoding, which serves as
positioning in memory read/write processes, leads to a significant performance drop. The greater
gain on large graphs reveals the importance of relative topological information for non-interacting
nodes in separate batches. Deterministic positional embeddings calculated directly from the adja-
cency matrix, are less effective at coordinating nodes than adaptive node2vec embeddings trained on
graph structure, especially on large graphs. Additionally, the better performance of InterpGCN-GW
compared to GAS+PE indicates the superiority of global workspace over historical embedding.

Study on number and size of memory slots. Fig. 4 and Fig. 5 examine the impact of memory slot
number (nm) and length (lm) on large-scale datasets. Due to 2080Ti’s 11GB memory constraints,
we test up to 64 slots. With a relatively small number of memory slots (nm ≤ 16), the model’s
performance improves as nm increases. Beyond that, further increments in memory slots yield
modest performance enhancements. The trend in the length of the memory is similar to the number
of memory slots. However, an excessively large memory length decreases the accuracy for Aminer-
CS. Meanwhile, the best results for Amazon2M is obtained when the memory size is 512.

Comparison with GNN variants using historical embeddings. Our method shows greater im-
provements on large graphs, as the workspace stores summaries of previous batches. Likewise, GN-
NAutoScale (Fey et al., 2021) stores historical embeddings in the CPU and transfers out-of-batch
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1-hop neighbors’ embeddings to the GPU during batch training. We evaluated global workspace
and historical embedding efficiency on dense (Reddit) and sparse (AMiner-CS) datasets with vary-
ing batch sizes (Table 6). Both methods improve with increasing batch size, but historical embedding
occupies more memory on dense datasets and less on sparse ones. Global workspace has two ad-
vantages: 1) It requires fixed extra memory, while historical embeddings’ GPU memory depends
on graph structure, causing more out-of-batch neighbors to be swapped from the CPU in dense
datasets. 2) Historical embedding is confined to fetching 1-hop neighbors from the CPU, limiting
the enhancement of long-distance node interplay.

Comparison with GNN variants using dummy nodes. In Zhang et al. (2022a); Liu et al. (2022),
global dummy nodes are introduced and connected to all nodes for graph structure learning. Our
global workspace method has advantages over dummy node-based methods: 1) Dummy nodes are
compelled to receive information from all nodes, potentially causing over-squashing (Alon & Yahav,
2021). Global workspace, on the other hand, uses attention to selectively accept embeddings from
a few crucial nodes. 2) In mini-batch training, dummy nodes fail to facilitate message-passing
among out-of-batch nodes, whereas InterpGCN-GW effectively summarizes nodes from previous
batches using memory. The performance comparison between dummy nodes and global workspace
on CoraFull and AMiner-CS datasets is shown in Fig. 7.

Table 7: Improvement in structure fair-
ness. Smaller ∆SP , ∆EO indicate
higher fairness.

Method
Cora Wiki-CS

∆SP ∆EO ∆SP ∆EO

GCN 0.195 0.177 0.478 0.432
InterpGCN-GW 0.158 0.164 0.451 0.402

Improvement in fairness. Graph structure-induced un-
fairness is worth studying, e.g., in social recommenda-
tion systems where most training samples from one com-
munity may lead to weaker generalization in another iso-
lated communities. We explore structural unfairness by
comparing the mean difference between the distribution
of two node groups: those with direct connections to the
training set and those without paths to the training set. We use fairness metric demographic parity
∆DP and equal opportunity ∆EO following Liu et al. (2023) with results in Table 7,

∆DP = 1
K

∑
y∈Y |Pr (ŷi = y|i ∈ V0)− Pr (ŷi = y|i ∈ V1) |,

∆EO = 1
K

∑
y∈Y |Pr (ŷi = y|yi = y, i ∈ V0)− Pr (ŷi = y|yi = y, i ∈ V1) |.

Our results indicate that introducing a global workspace enables isolated/distant nodes to access
training node information, reducing structural unfairness compared to GCN. Experiments are con-
ducted on small graphs due to the computational impracticability of calculating the node-pair dis-
tance matrix on graphs with millions of nodes.

Results on heterophilic graph datasets. We have conducted experiments on heterophilic graph
datasets, using official GitHub implementations with default hyperparameters for the baselines. The
results are in Table 11. Observations on heterophilic graphs include: i) InterpGCN surpasses GCN
on all three datasets, showing that enhancing distant node interplay via global workspace improves
GCN’s performance on heterophilic graphs. ii) As a plug-and-play module, our method combines
well with other GNNs designed for heterophily, achieving improvements in these models. iii) Our
method’s performance is reliant on the base feature extractor. For instance, on the Squirrel dataset,
where GCN actually performs better than other heterophilic GNNs, our GCN-based implementa-
tion also outperforms implementations based on other models. Detailed discussions on heterophilic
graphs can be seen in Appendix G.3.

5 CONCLUSION AND FURTHER DISCUSSION
We derive a PAC-Bayes bound for message-passing GNNs in semi-supervised transductive learning.
The bound associates the generalization error with the interplay between test and training nodes. We
then propose the Graph Global Workspace method to enhance the interplay among distant nodes and
out-of-batch nodes. Experimental results show the superiority on both small and large graphs.

Limitations. Based on our theoretical results, there could be more alternative techniques to enhance
the generalization ability beyond our current technique. Also our work only covers the massage-
passing scheme and there could emerge other forms of GNNs. Broader Impact. The proposed
L-hop interplay can also be integrated into more frameworks for analyzing generalization bounds.
Our theory may inspire more works on novel design for GNNs for both accuracy and fairness.
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of graph neural network evaluation. arXiv preprint arXiv:1811.05868, 2018.

Xianfeng Tang, Huaxiu Yao, Yiwei Sun, Yiqi Wang, Jiliang Tang, Charu Aggarwal, Prasenjit Mitra,
and Suhang Wang. Investigating and mitigating degree-related biases in graph convoltuional
networks. In CIKM, 2020.

Joel A Tropp. User-friendly tail bounds for sums of random matrices. Foundations of computational
mathematics, 2012.

Leslie G Valiant. A theory of the learnable. Communications of the ACM, 1984.

Rufin VanRullen and Ryota Kanai. Deep learning and the global workspace theory. Trends in
Neurosciences, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. NeurIPS, 2017.
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