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Abstract

Molecular dynamics simulations are fundamental tools for quantitative molecular
sciences. However, these simulations are computationally demanding and often
struggle to sample rare events crucial for understanding spontaneous organization
and reconfiguration in complex systems. To improve general speed and the ability
to sample rare events in a directed fashion, we propose a method called Dynamics-
Diffusion based on denoising diffusion probabilistic models (DDPM) to generate
molecular dynamics trajectories from noise. The generative model can then serve
as a surrogate to sample rare events. We leverage the properties of DDPMs, such
as conditional generation, the ability to generate variations of trajectories, and
those with certain conditions, such as crossing from one state to another, using the
’inpainting’ property of DDPMs, which became only applicable when generating
whole trajectories and not just individual conformations. To our knowledge, this is
the first deep generative modeling for generating molecular dynamics trajectories.
We hope this work will motivate a new generation of generative modeling for the
study of molecular dynamics.

1 Introduction

Diffusion models Sohl-Dickstein et al.Ho et al. [a]Song et al. [a] have recently emerged as a powerful
approach to generative modeling, allowing for significant advances in the field of image synthesis
Ramesh et al.Rombach et al.. These models can produce high-quality samples that capture the
complex distributions of natural images. Early attempts to apply these models to dynamics are being
undertaken for video Ho et al. [b] and action modeling Janner et al.Chi et al., with promising results. In
the context of the molecular sciences, diffusion models have so far been used to generate ensembles of
molecular conformations conditioned to thermodynamic parameters Wang et al.Arts et al.. However,
their potential in the study of the dynamics of molecular systems is still unexplored. Deep learning
has made outstanding contributions in the structural modeling of molecular systems Jumper et al.,
However, an accurate description of the dynamics is essential to understand the biological function
of proteins and other molecules. Here, we make a first attempt to extend diffusion models from the
generation of conformations to the whole trajectories encoding the molecule’s dynamics. We show
how we can take advantage of a variety of guided generation methods that allow for the targeted
sampling of the dynamics of otherwise rare but important events.
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Figure 1: DynamicsDiffusion is trained on molecular dynamics trajectories generated via the numeri-
cal integration of Newton’s laws of motion for a molecular system. The trained diffusion model is
then a surrogate of the simulator but with added properties of speed and steerability. This steerability
allows for the sampling of rare events, like state transitions, that are crucial to the understanding of
molecular systems but are often not or rarely observed in conventional simulations.

Molecular dynamics (MD) simulations are physics-based simulations where the system propagates
in time according to Newton’s second law of dynamics on a specified energy function Dror et al..
These simulations are one of the standard methods to obtain quantitative insight into the dynamic
organization of complex molecular systems. To guarantee physical accuracy and numerical stability,
the integration of the dynamics must proceed in very small iterations. For instance, standard classical
atomistic MD must use an integration time step of 2 fs. The disparity between the integration
time step and the time scales on which interesting biomolecular events occur severely limits the
potential of classical MD simulations. This limitation is particularly severe for "rare events"—many
conformational reorganizations, like large conformational motions, folding, and assembly, but also
binding and more general collective rearrangements— which occur on time scales that are many
orders of magnitude larger than the typical integration time steps.

Machine learning, particularly deep learning, has emerged as a promising approach to speed up and
guide the sampling in simulations. Two common strategies are to either approximate the physical
forces and enable larger integration timesteps by using Graph Neural Networks (GNN) Park et al.Li
et al. [a], or to learn a coarse-grained representation of the system and its dynamics to speed up the
simulation, with GNN’s Husic et al.Li et al. [b], or by using diffusion models Arts et al..

The guided sampling of rare events is particularly useful for systems with hindered ergodicity,
i.e., where large energy barriers separate alternative metastable states. For some systems, these
events occur so rarely that speeding up simulations is not sufficient. Therefore, new methodological
approaches are essential to focus computational resources on sampling trajectories where the system
overcomes the energy barriers. Umbrella sampling Torrie and Valleau and metadynamics Laio
and Parrinello are popular techniques to compute the thermodynamic properties of a system by
introducing external biases to force the system to sample low-probability regions of its configuration
space. A popular method, transition path sampling (TPS) Bolhuis et al. is used to study the kinetics
of rare events by generating a set of unbiased reactive trajectories using a trajectory sampling scheme.
TPS and related methods Jung et al. focus the sampling on transition paths—the short segments of
trajectories that overcome barriers and connect different states.

The sampling of molecular conformations using deep generative models has been explored using
normalizing flow methods like Boltzmann generators Noé et al. and recently diffusion models Wang
et al.Arts et al.. The latter has come to the forefront of research due to their less strict requirements
for the architecture and the ease of training even on high dimensional data Song and Ermon. Recently
these models have been employed to sample conformations conditional on properties like temperature
Wang et al. or reaction coordinates Falkner et al. in order to sample conformations of interest,
including in low-probability regions of the molecular configuration space.
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Here, we present an approach that builds on diffusion models to generate whole dynamic trajectories
of molecular systems. Diffusion models have been successfully applied to learn time series data,
in the form of action planning Janner et al.Chi et al., and molecular conformations Arts et al.Wang
et al.. In essence, we train a surrogate of the physical integrator using a diffusion-based generative
model that can perform enhanced sampling and generate trajectories of interest. This combines
two promising research directions, both learning the integrator and sampling rare events using deep
learning. Our approach presents two very attractive features. First, it enables us to speed up the
sampling of the system’s dynamics. Second, diffusion models offer ways of controlling the sampling
absent from classical physical simulators.

We can take advantage of these properties to generate trajectories conditionally. Once our surrogate
diffusion model is trained, we can: 1. Generate trajectories that are conditioned to a global parameter,
like temperature; 2. Generate trajectories crossing the barrier between states by leveraging the
’inpainting’ ability of diffusion modelsSong et al. [a]Song et al. [b]Chung et al.Lugmayr et al.. By
fixing the start and end points of the trajectory in distinct states and allowing the model to fill in the
transition, rare-event enhanced sampling becomes possible. 3. Generate an ensemble of (reactive)
trajectories by partially noising and denoising them.

1.1 Contributions

• We demonstrate the ability of diffusion models to learn to generate molecular dynamics
trajectories and propose an architecture suitable to the properties of this specific task.

• We show how this approach enables rare event enhanced sampling, the generation of varia-
tions in trajectories, the ability to generate transition paths between states, and conditional
generation.

• We test the model by training it on a molecular system and show that it is able to reconstruct
free energy and dynamics accurately.

2 Diffusion Generative Modelling for Trajectories

2.1 Molecular Dynamic Trajectories as a Datatype

In this section, we introduce the notation for the training data. Let D = {xi}Ki=1 represent the dataset
of trajectory snippets sampling an unknown (non-normalized) probability density p(x), where xi
denotes the i-th training sample. Each sample is a trajectory of τ time steps, where τ is sampled
uniformly from the range [τmin, τmax] to aid multi-length generation at inference. This is equivalent
to the ordered set, xi = {R(i)

µ }τµ=1, where Rµ is a configuration of the system at time step µ. For
a molecular system consisting of N atoms, we can define a configuration as the set of Cartesian
coordinates for each atom in the molecule,Rµ ∈ RN×3, with each entry corresponding to a coordinate
of an atom.

To represent the training data as a batch array, with batch size b, with shape (b, τ , N × 3), we
first organize the trajectory snippets into batches. Let B = {Dk}b

k=1 denote a batch, where Dk =

{x(k)
i }Ki=1 represents the k-th set of trajectory snippets.

Each trajectory snippet x(k)
i consists of τ time steps with N atoms and their respective three-

dimensional coordinates, however, the model can also be trained for multiple snippet lengths, to allow
for the generation of trajectories of multiple lengths. The complete data array for a batch B can then
be represented as A ∈ Rb×τ×N×3. Each array entry corresponds to a specific trajectory snippet, time
step, and Cartesian atomic coordinate. The final data can be treated equivalently to an image in image
diffusion models where the time dimension corresponds to the image width, albeit of a very wide
shape due to the long time dimension.

2.2 Diffusion Model Theory Design Choices

Diffusion-based generative models have been independently formulated multiple times under different
theoretical frameworks Sohl-Dickstein et al., Song et al. [a] and Ho et al. [a]. To illustrate the
relationship of the trained diffusion model with the forces of a physical system, we will introduce
the score-matching interpretation since it makes this relationship apparent and highlights how it can
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Figure 2: The model’s architecture extends the conventional UNet to one with a physics-informed
inductive bias.

be used to introduce an inductive bias into the diffusion model’s architecture. In this formulation,
the model learns to approximate the score ∇x log(p(x)) instead of learning the distribution of
the data p(x) directly, avoiding the calculation of the normalization constant of p(x), which is
usually intractable. The score can be seen as a vector pointing toward the dense regions of the data
distributions. Given the score, we can sample data points using an iterative sampling scheme based
on Langevin dynamics Song et al. [a]:

xi+1 ← xi + ϵ∇x log(p(x)) +
√
2ϵzi, i = 0, 1, ...,K (1)

Here zi is noise sampled from N (0, I) and if K → ∞ and ϵ → 0 we sample one xk from p(x).
However, the estimation of this score is inaccurate in regions of low density in the data and even
if approximation was possible the sampling would be inhibited by local minima, making sampling
impossible. To counteract this limitation the model is trained to estimate the score of the data
distribution at different levels of added noise, and conditioning the model on the noise level Song and
Ermon. Adding noise to the data makes the data density more uniform, allowing for a more accurate
score estimation. When sampling with this conditioned model the Langevin dynamics become
annealed, decreasing in noise level at each step, till a sample from the non-noised data distribution is
obtained. After the introduction of the noise levels, this framework becomes functionally equivalent
to the DDPM approach described in the appendix section ‘The noising and de-noising process‘.

Design Choices When understanding the diffusion model under this framework Arts et al. show
that a model trained on conformations of physical systems, R(i)

µ and their equivalents along the
noising process R(i)

µ,t, approximates the force-field of that system at that noise level. At noise level
t = 0 this corresponds to the forces of the non-noised conformations, i.e. the original physical system
generating the training data.

Model(R
(i)
µ,t=0, t = 0) ∼ ∇

R
(i)
µ,t=0

log(p0(R
(i)
µ,t=0)) =

−∇V (R
(i)
µ,t=0)

kBT
=
F
R

(i)
µ,t=0

kBT
(2)

This follows since the distribution of a physical system’s states is given by the Boltzmann distribution:

p(R(i)
µ ) ∝ e−

V (R
(i)
µ )

kBT (3)

Based on this interpretation the diffusion model corresponds to the forcefield of the system. Conser-
vative forces in physical systems are such that the work done by a particle moving between two points
is the same irrespective of the path taken. This property is not satisfied by a basic UNet architecture
Ronneberger et al. which is commonly used for images. However, it can be built in as an inductive
bias by computing the forces as the gradient of an energy function, −∇V (R

(i)
µ ) = F

R
(i)
µ

Arts et al.
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per construction. Including this bias led to more accurate reconstructions of trajectories in our work
(see ablations).

In this work, we extend the inductive bias from individual conformationsR(i)
µ Arts et al. to trajectories

xi. We implemented this by outputting one channel per time step meaning the UNet part of the
model transforms one batch B of shape Rb×τ×N×3 → Rb×τ which can be interpreted as outputting
a singular energy value per conformation V

R
(i)
µ

. These energies then get summed to a singular
trajectory-level energy Vxi,t

. From this energy, we can then recover the forces of the same shape
as the input by computing the Jacobian with respect to the model’s input −∇Vxi,t

2. Based on the
success of UNet models with 1D-convolutions for time-series generation in the context of action
planning Janner et al., we chose a similar architecture for our study, which additionally included
self-attention layers Vaswani et al.. For the embedding of additional conditioning, such as temperature,
we used a small multilayer perceptron, MLP, adding the embedding in each of the ResNet blocks.

2.3 Enhanced Sampling Methodology

There are two different approaches to enhanced sampling via Dynamics diffusion, one based on
inpainting and the other one based on variation generation. The inpainting variant works by imposing
a few selected frames that the diffusion model must include during the generation of a trajectory.
The variation approach works by taking an existing trajectory (or pseudo-trajectory, like a linear
interpolation), partially noising it, and then denoising it with the diffusion model, in this way creating
variations of the original trajectory. How close to the original trajectory the variation should be can
be determined by the amount of noise that is added before denoising it.

Where αt is the parameter that defines the noise schedule, i.e. the weighted mean between the data
and noise at the noise level t, ϵ(xt, t) is the noise level conditioned noise prediction network or
alternatively the learned gradient of the data when considered from the score matching perspective,
and σt is the standard deviation of the noise at noise level t.

Algorithm 1 Inpainting Generation
1: xT ∼ N (0, I) ▷ Sample a noise vector
2: select xfix, indexfix ▷ Select the frames that are imposed and their index/location
3: for t = T, ..., 1 do ▷ Iterate through all noise levels t
4: z ∼ N (0, I) if t > 1, else z = 0 ▷ Sample a noise vector for the denoising operation and the

noising of the inpainting condition
5: xt[indexfix] =

√
αtxfix +

√
1− αtz ▷ Noise the imposed frames and insert them

6: xt−1 = 1√
αt
(xt − 1−αt√

1−αt
)ϵ(xt, t) + σtz ▷ Perform one denoising step

7: end for
8: Return x0

Algorithm 2 Variation Generation
1: xT ∼ N (0, I) ▷ Sample a noise vector
2: select xvariation ▷ Select a sample to generate variations of
3: select tstart ▷ Select a noise level to noise the variation sample to
4: xtstart =

√
αtstartxvariation +

√
1− αtstartxT ▷ Noise xvariation to noise level tstart

5: for t = tstart, ..., 1 do ▷ Iterate through all noise levels after tstart
6: z ∼ N (0, I) if t > 1, else z = 0 ▷ Sample a noise vector for the denoising operation
7: xt−1 = 1√

αt
(xt − 1−αt√

1−αt
)ϵ(xt, t) + σtz ▷ Perform one denoising step

8: end for
9: Return x0
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3 Experiments

Figure 3: Free energy and dynamics comparison.

We first illustrate our method on a benchmark
system, defined by Brownian dynamics of a par-
ticle in a 2-dimensional energy function. We
prepared a training set by generating trajectory
snippets with a physical simulator and trained
a surrogate Diffusion Model to reproduce the
original physical dynamics.

We then demonstrated the enhanced sampling
capabilities of the model, as compared to the
physical simulator, in the form of conditional
generation, generation using constraints on the
trajectory, and the generation of variations of tra-
jectories. We then showcased our approach on
a benchmark molecular system, namely Alanine
Dipeptide.

Lastly, we performed an ablation study to high-
light the importance of the energy formulation, and the self-attention layers, and to study the quality
and quantity of the training set produced by the physical simulators necessary to produce accurate
results. The appendix section ’Experimental Settings’ contains the experimental settings, including
data generation and processing, model size, training hyperparameters, and an experiment pertaining
to the physical validity of the enhanced sampling trajectories.

3.1 Brownian Motion in a Benchmark Potential

To assess the reconstruction accuracy of DynamicsDiffusion and its ability to perform rare event
sampling via inpainting, variation generation, and conditional generation, we generated trajectories
by simulating the dynamics of a particle in a double well under Brownian motion. This simple system
recapitulates a molecular rare transition between two metastable states. We sampled trajectories
integrating Brownian motion with the Euler–Maruyama integrator on the energy V (x, y) = −9x2 +
x3 + 4.5x4 + 3y2, setting the system’s temperature at kBT = 1 for the unconditioned experiments,
and in a range from 0.5 to 1.5 for the temperature-conditioned experiments.

After training the diffusion model, we systematically benchmarked it by comparing the thermo-
dynamics and dynamics of the reconstructed trajectories with the ones obtained by the physical
integrator. Trajectories sampled by the diffusion model qualitatively behave like physical trajectories.
They mostly populate the bottoms of the energy wells, and only rarely cross the barrier in between
4. Additionally, trajectories sampled by conditioning at higher temperatures explore higher energy
values, as one would expect given the physics of this system. We also quantitatively assessed the
accuracy of the reconstruction by comparing the stationary probability distribution explored by the
trajectories sampled from the diffusion model. In our case this distribution is proportional to the

Boltzmann factor, ∝ e−
V (R

(i)
µ )

kBT , which determines the thermodynamics of the system. Both original
and reconstructed distributions match quantitatively across different temperatures.

The reconstructed dynamics were also accurate, as can be assessed by comparing the auto-correlation
of training data trajectories and those generated by the model (figure 3).

We also illustrated the possibility of performing enhanced sampling of rare events by sampling a
transition path crossing over the barrier performing inpainting, and variations of an existing transition
path 4.
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Figure 4: (Properties of the trajectory diffusion model) (a) Sampling the Boltzmann Distribution:
The diffusion model is able to generate samples according to the Boltzmann distribution of the
training data, including transitions. At inference, the sampling steps to generate a trajectory can be
lowered from 1000 to 30 using numerical integration. (b) Conditional generation: The model can
be trained in a conditional manner to generate samples that fulfill a condition, like a temperature or
other physical properties. (b1) Comparison of the free energy of the model samples and the data
at 0.5 kbT . (b2) Comparison of the free energy of the model samples and the data at 1.5 kbT .(c)
Inpainting/Spatial conditioned generation: Another way to condition the generation of the model
to perform enhanced sampling is to fix certain parts of the generated trajectories and let the model fill
in the rest. This can, for instance, be used to sample state transitions by fixing the start and the end
of the generated trajectory to the two states respectively, and letting the model generate the states
between them. (d) Trajectory variation generation: The diffusion model can be used to generate
similar trajectories or ’variations’ of existing trajectories or even hand-crafted faux-trajectories by
partially noising the trajectory and then letting the diffusion model denoise them again. The degree of
noise added to the original trajectory determines the degree of similarity to the generated variations.

3.2 Molecular System

We tested our approach on the alanine dipeptide system, a well-known benchmark in molecular
simulations. Even though the system’s dynamics operate over its full configuration space, significant
conformational transitions are centered around the dihedral angle ψ and phi. By showing these angles
in a Ramachandran plot for both the sampled and simulated trajectories, we can validate the results
for this 30-dimensional system.

We simulated the molecular trajectories for the training data saving every 0.02 picoseconds. The
resulting Cartesian atomic coordinates were filtered for hydrogen atoms and aligned to a reference
frame to remove rotation and translation symmetries from the data.

We computed the free energy of the training data and the DDPM samples for the dihedral angles 5.
We evaluated the accuracy of the reconstructed dynamics by comparing the autocorrelation of the
trajectories mapped onto these two angles. The results, seen in 5, show that the model can capture the
dynamics and the free energy of the system.
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Figure 5: (Properties of the trajectory diffusion model) (a) Dynamics Comparison: The dynamics of
the DDPM samples and the simulated samples were compared via an autocorrelation, ± its standard
deviation, along a time lag. (b) Free Energy Profile: The free energy of both the model, top, and the
simulated samples, bottom. (c) Spatial conditioned generation: Example trajectory between two
states of Alanine Dipeptide generated via inpainting.

3.3 Ablation Studies

Table 1: Energy vs force and self-attention vs attention-free model comparison

Formulation Free Energy Error kbT Free Energy Error Transition-Region kbT

Energy 0.36±0.19 0.63±0.36
Force 0.55±0.32 0.86±0.67
Self-Attention & Energy 0.17±0.19 0.33±0.19
No-Attention & Energy 0.34±0.34 0.30±0.33

We performed ablations to see the effect of the design choices we made and to identify crucial
components. To evaluate the performance of the models, we trained on the double-well potential and
evaluated the free energy mismatch between samples and the ground truth along the x-axis, which
was chosen as it is the reaction coordinate of the system. This mismatch was computed for 100 bins
of the x-coordinate and averaged. Ablations were also performed on the size and trajectory length
needed to train a good DynamicsDiffusion model, which can be found in the appendix.

We train N=10 UNets with and without the energy inductive bias. The results in Table 9 show that
the energy formulation outperforms the force formulation of the UNet. The same experimental setup
was used to study the effect of self-attention layers in the model.

4 Conclusions

We proposed the first deep generative model to generate accurate trajectories of a molecular system
which can serve as a useful surrogate model of the physics-based simulator, due to its enhanced
sampling capabilities. One limitation of the current model it can only accurately generate trajectories
for time horizons in the ranges it has seen during training. Another avenue of improvement is to
generalize the method to work for any molecular system, by changing the underlying diffusion
model to a GNN, thereby due to the parameter-sharing nature of the system making it system
agnostic. Furthermore using new GNN architectures that are equivariant to translations, rotations,
and permutations like those proposed by Satorras et al. would account for the system’s inherent
symmetries making learning easier. Further research can go into scaling this method to larger systems.
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A Appendix

The Noising & De-Nosing Process

In this section, we describe the noising process of the denoising diffusion probabilistic model (DDPM),
which is utilized to generate noisy observations from the original trajectory snippets in the training
data D. The noising process, also called the forward diffusion process, consists of a series of steps
that introduce noise to the samples till the samples are fully noised. The model is then trained to
invert this process to generate samples xi from noise.

A DDPM Sohl-Dickstein et al. comprises two Markov chains: a forward chain that perturbs data, and
in our case trajectory snippets, to noise and a reverse chain that restores the noise to samples from the
same distribution as the training data. In our case, the final trained model can then sample trajectories.
The forward process transforms the complex data distribution into a simple prior distribution in the
form of a standard normal distribution. The reverse chain, parameterized by deep neural networks,
learns to reverse the process. New trajectory snippets xi can then be generated by sampling a random
vector from the prior distribution and employing ancestral sampling through the reverse Markov
chain.

The forward process can be described both using an iterative noise addition or a one-step addition
that jumps straight to a noise level t. They can be described as follows: For a distribution x0 ∼ q(x0),
equivalent to the data distribution x ∼ q(x) with no added noise, the forward process generates a
sequence of random variables x1, x2, . . . , xT given by a transition kernel q(xt|xt−1). The transition
kernel is designed to turn a complex data distribution into a simple prior distribution, usually the
Gaussian distribution, via a Gaussian perturbation:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) (4)

here βt ∈ (0, 1) also known as the beta schedule is chosen to determine how much noise is added
at each step of the forward process. Different schedules, like linear, scaled linear, or cosine Karras
et al., and their strength should be picked based on the training data to ensure an even loss of data
information along the forward process noising trajectory.

The formula for going directly to noise level t from level 0 without the intermediate steps can be
attained by using the Markovian properties of the process, see Sohl-Dickstein et al.

q(xt|x0) = N (xt;
√
αtx0, (1− αt)I). (5)

Where αt = 1− βt. With this relationship, we can go from a sample to level t by sampling a noise
vector ξ ∼ N (0, I) of the same shape as the data vector, in our case A ∈ Rb×τ×N×3, and is then
mixed with the sample scaled by αt:

xt =
√
αtx0 +

√
1− αtξ. (6)

Conceptually, the forward process incrementally adds noise to the trajectory snippets until all
structural information is lost.

To generate new trajectory snippets, DDPMs first generate an unstructured noise vector from the prior
distribution (which is generally simple to obtain) and then progressively remove the noise by applying
a learnable Markov chain in the reverse time direction. Specifically, the reverse Markov chain is
parameterized by a prior distribution p(xT ) = N (xT ; 0, I), identical to the one the forward process
ends up with, and a learnable transition kernel pθ(xt−1|xt) parameterized by a neural network with
weights θ and take the form of:

pθ(xt−1 | xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (7)
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Where the mean µθ(xt, t) and variance Σθ(xt, t) are extracted from the outputs of the network,
although in certain DDPM formulations, the variance is not learned. The parameters of the model are
optimized using the following loss function:

Loss = Et∼U [1,T ],x0∼q(x0),ϵ∼N (0,I)∥ϵ− ϵθ(xt, t)∥2 (8)

Here the noise vector ϵθ that the model predicts is compared to the ground truth ϵ. The model makes
this prediction based on the input of a sample x0 noised to xt using the forward noising process and
a noise level t sampled uniformly U(1, T ).

Molecular Dynamic Trajectories as a Datatype

The training data is denoted as D = xii = 1K , representing trajectory snippets from a probability
density p(x). Each xi is a trajectory of τ time steps, with τ uniformly sampled from [τmin, τmax].
A trajectory snippet, xi, is an ordered set of system configurations over time, xi = R(i)µµ = 1τ .
For a system of N atoms, a configuration Rµ is the set of Cartesian coordinates for each atom,
Rµ ∈ RN×3.

Training data is batched into arrays of shape (b, τ , N × 3), where b is the batch size. A batch, B, is
denoted as B = Dkk = 1b. Each trajectory snippet in a batch, x(k)

i , has τ time steps, each with N
atoms and their 3D coordinates. The full data array for a batch is A ∈ Rb×τ×N×3. This data can be
likened to an image in diffusion models, with the time dimension analogous to image width. Refer to
the accompanying figure for a visual representation of the data shape.

Figure 6: Illustration of one batch entry, a trajectory snippet, with its time and atomic coordinate
dimension.

Experimental Settings

Double Well Experiments

Brownian Motion in a Double Well

In this section, we provide a detailed description of the numerical integration of Brownian motion in
a double well for generating training data for basic experiments and conditional generation. The key
components of our simulation setup are summarized in Table 2.
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Table 2: Summary of Brownian motion in a double well

Parameter Value
Dynamics Brownian
Integration Method Euler–Maruyama method
Time Step 0.001
Total Simulation Time 2.3 ∗ 109
Potential −9x2 + x3 + 4.5x4 + 3y2

Mass 1
kBT 1

Conditional Generation Specifics
kBT Range [0.5, 1.5]

Data Processing The raw data obtained from the simulations were processed before being used as
input for the deep learning model. The data was re-scaled to the range of [-1, 1] for both dimensions.
For the training of the temperature-conditioned model, the kBT values used for conditioning were
also rescaled to the range of [-1, 1].

Architecture and Training Hyperparameters

In this section, we provide a detailed description of the experimental settings used during the training
run of our deep learning model on the double well data. The key components of our experimental
setup are summarized in Table 6.

Table 3: Summary of experimental settings

Parameter Value
Optimizer Adam
Batch Size 512
Learning Rate 1e-4
Learning Rate Finetune 1e-6
Batch Count 3000
Batch Count Finetune 1000
Snippet length τ 64

Number of Parameters 646337
UNet Block Multiplier [1, 2]
Input Embedding Channels 64
Activation Function Mish

EMA Decay 0.9975
EMA Update Frequency 10

Optimizer and Hyperparameters

We employed the Adam optimizer with a learning rate of 1e-4 for the first 3000 batches and then
1e-6 for the last 1000 batches. Batches were sampled by taking random snippets from the training
trajectory of length τ = 64. The batch size was set to 512. A moving average of the training model
weights were used to evaluate the model during training and post-training inference, this EMA model
was updated every 10 batches with a decay of 0.9975.

Model Architecture

Our UNet consists of 646337 parameters. The UNet comprises multiple blocks with a channel
count multiplier of [1, 2]. Each block in the encoder part of the UNet consists of two temporal
ResNet blocks, consisting of 1D convolutions, a residual connection across the entire block, and a
down-sampling operation, also in the form of a 1D convolution. The Encoder is followed by a middle
block consisting of two temporal ResNet blocks and a residual connection. The Decoder part of
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the UNet is symmetric to the Encoder except for the swap of the down-sampling operation to an
up-sampling one, consisting of a transposed convolution.

Encoder-Only Architecture Exploration

Due to the nature of the Energy formulation, a decoder is technically not necessary since even
with only an encoder that outputs a singular value per trajectory, i.e. a ’trajectory energy’ the
Jacobian computation recovers a tensor equivalent in shape to the model input. To test such a
model’s performance, we ablated the decoder of the UNet, and therefore the encoder-decoder residual
connections too, and employed the same energy head as in the UNet approach. The encoder-only
model has fewer parameters than the full UNet, hence we performed a second benchmark with a
slightly larger encoder to compensate for the lower parameter count.

Results

Table 4: Full U-Net vs. encoder only model comparison

Formulation Parameter Count Free Energy Error kbT Free Energy Error
Transition-Region kbT

Attention & Energy 843k 0.17±0.19 0.33±0.19
Encoder only & Attention & Energy 513k 0.29±0.16 0.77±0.20
Encoder only & Attention & Energy 900k 0.19±0.15 0.60±0.12

The results show that the encoder-only model performs worse than the full UNet, even when
accounting for the difference in parameter count, however, the performance gap is not extensive,
making it worth pursuing in future research.

Alanine Dipeptide Experiments

OpenMM Simulation Parameters

In this section, we provide a detailed description of the OpenMM simulation parameters used
for generating the training trajectories for the Alanine Dipeptide system in a Vacuum. The key
components of our simulation setup are summarized in Table 5.

Table 5: Summary of OpenMM simulation parameters

Parameter Value
Force Field amber99sb
Integration Method Langevin
Time Step 0.002 ps
Temperature 320 K
Friction Coefficient 1 1/ps

Simulation Time 20 ns
Saving Interval 0.02 ps

nonbondedCutoff 1 nm
constraints HBonds
nonbondedMethod NoCutoff

Data Processing The raw data obtained from the OpenMM simulations underwent several process-
ing steps before being used as input for the deep learning model:

1. Hydrogen Removal: All Hydrogen atoms were removed from the trajectory.
2. Trajectory Alignment: All frames were aligned along the conformation of a reference

frame.
3. Data Scaling: The atomic coordinates were re-scaled to a range of [-1, 1].
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Architecture and Training Hyperparameters

In this section, we provide a detailed description of the experimental settings used during the
training run of our deep learning model on the Alanine Dipeptide data. The key components of our
experimental setup are summarized in Table 6. The UNet was trained for three different sizes to find
the smallest model that was still able to reconstruct the free energy landscape for the benchmark,
however, the main results are based on the largest model. The different model configurations are
comma-separated in Table 6.

Table 6: Summary of experimental settings

Parameter Value
Optimizer Adam
Batch Size 256
Learning Rate 4e-5
Learning Rate Finetune 1e-6
Batch Count 30000
Batch Count Finetune 10000
Snippet length τ 64

Number of Parameters 10201729, 2583937, 1458721
UNet Block Multiplier [1, 2, 4], [1, 2], [1, 2]
Input Embedding Channels 128, 128, 96
Activation Function Mish

EMA Decay 0.9975
EMA Update Frequency 10

Optimizer and Hyperparameters

We employed the Adam optimizer with a learning rate of 4e-5 for the first 30,000 batches and then
1e-6 for the last 10,000 batches. Batches were sampled by taking random snippets from the training
trajectory of length τ = 64. The batch size was set to 256. A moving average of the training model
weights was used to evaluate the model during training and post-training inference, this EMA model
was updated every 10 batches with a decay of 0.9975.

Model Architecture

Our UNet consists of 646337 parameters. The UNet comprises multiple blocks with a channel
count multiplier of [1, 2, 4]. Each block in the encoder part of the UNet consists of two temporal
ResNet blocks, consisting of 1D convolutions, a residual connection across the entire block, and a
down-sampling operation, also in the form of a 1D convolution. The Encoder is followed by a middle
block consisting of two temporal ResNet blocks and a residual connection. The Decoder part of
the UNet is symmetric to the Encoder except for the swap of the down-sampling operation to an
up-sampling one, consisting of a transposed convolution.

Data Ablation Experiments

In this section, we provide a brief description of the data ablation experiment. The experiment
evaluates the model’s performance when trained on datasets of different sizes and trajectory lengths.
The data size is decreased by a factor of 10 four times, and we measure the model’s performance
on both full transition (long trajectory) and no full transition (short trajectory) datasets. The long
trajectory dataset consists of 6900 trajectories where each trajectory is 8000 steps long while the
short trajectory dataset consists of 883200 trajectories where each trajectory is 64 steps long. The
overall training data size, when measured in steps, is nearly identical. The aim of the experiment is to
ascertain the size and shape of data that the method needs. The choice of the two different dataset
shapes, a few long vs many short trajectories, are there to see if the model is able to learn from
trajectories that are small and individually do not show relevant events, like a full transition. Given
that small dataset, subsamples do not accurately follow the distribution of the system in equilibrium
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Figure 7: Pairwise distances between atoms in the generated Alanine Dipeptide trajectories and the
ground truth trajectories.

the mismatch between the data subset and the equilibrium free energy is also computed as a reference.
The performance is evaluated in the same manner as in section 3.1 where the free energy is computed
along the x-direction of both samples taken from the model and the data distribution of the full data.

Results

The following table shows the results of the data ablation experiment. The first column represents
the dataset size, the second shows the model’s performance on the short trajectory dataset, the third
column displays the model’s performance on the long trajectory dataset, and the last two columns
show the mismatch between the true underlying data distribution and the training samples for the
short and long trajectory data subsamples respectively.

Table 7: Model performance after training on datasets of different sizes and trajectory lengths.

Data Size Error Short Traj. Error Long Traj. Data Error Short Data Error Long

1/1 0.25± 0.13 0.32± 0.12 0.0± 0.0 0.1± 0.0

1/10 0.28± 0.29 0.27± 0.14 0.01± 0.0 0.03± 0.01

1/100 0.24± 0.11 0.39± 0.28 0.01± 0.01 0.06± 0.04

1/1000 0.22± 0.17 0.17± 0.14 0.02± 0.02 0.30± 0.23

1/10000 0.32± 0.22 0.64± 0.49 0.09± 0.07 1.16± 0.91

Based on the results presented in Table 7, we observe that training on either many short or a few
long trajectories does not make a difference up until the data is very sparse, where the training data
consisting of short trajectories pulls ahead. However, in this case, it is likely due to the fact that
the short trajectories are more representative of the distribution of the underlying system as the
trajectory starts are picked from equilibrium trajectories, as compared to the singular long trajectory
remaining when only 1/10000 data is considered and thus the likelihood of this trajectory not being
representative is very high, as seen by the much higher mismatch between the 1/10000 subsample
and the full data in the long trajectory scenario. Another takeaway from the data ablations is, that
for the low data regime, the mismatch between the model and the underlying system is smaller
than the mismatch between the data subsample and the underlying system, which hints at a strong
inductive bias in the model, helping it to learn to generate trajectories more accurately than the
non-representative training data.

Alanine Dipeptide Bond Length Distribution Evaluation

We calculated bond length distributions for trajectories generated by the model on Alanine Dipeptide
to further validate its accuracy in capturing system dynamics by comparing a few selected bond
lengths to the ground truth.
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Figure 8: Alanine Dipeptide trajectories projected onto their dihedral angles. In order are the DDPM
samples, the training data for the data ablation experiment, and the full simulated data.

Results

Alanine Dipeptide Data Ablation

Due to the difficulty of obtaining molecular dynamics trajectories, we performed a triangulation of the
minimal data needed to train a DynamicsDiffusion model to accurately generate Alanine Dipeptide
trajectories. We find that for Alanine Dipeptide 200 picoseconds of training data are sufficient as
long as they cover all relevant states even for generalization toward the state borders.

Results

Generation Step Count Experiments

Discrete Diffusion Models are trained with a fixed count of steps along the denoising trajectory,
usually 1000, however, this means, that naively to generate samples the UNet of the Diffusion model
needs to be called 1000 times, which leads to extremely slow sampling. However since the denoising
process, like the noising process, is a differential equation it can be numerically integrated. To that
end, people have used a variety of numerical integrators to generate samples from the trained diffusion
model Karras et al.. With this, the step count can be brought down to a fraction of the original training
steps. However, as with conventional numerical integration a trade-off between accuracy and speed
exists. To ascertain how this trade-off affects our model we computed the free energies of the double
well model at the full 1000 steps and then compared the free energy to samples generated using a
discrete Euler sampler at lower step counts.

Results

The results seen in ?? seem to indicate, that at around 50 steps the error seems to increase but that the
mismatch between the free energy profiles only increases sharply below 30 steps, implying a range
from 30 to 50 steps is suitable depending on one’s accuracy needs.
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Figure 9: The sampling steps of the discrete Euler scheduler vs. the error of the samples as compared
to those generated with 1000 in mean absolute free energy along the x-axis.

Figure 10: MSD of the enhanced sampling data across the transition region as compared with ground
truth distribution.

Validating the physical correctness of Inpainting

To validate the physical plausibility of the enhanced sampled transition trajectories the mean of the
mean squared displacement, MSD, and its standard deviation were computed across the transition
region for the sampled trajectories (Inpainting and Variation) and those generated with the numerical
simulator as the ground truth. For this trajectories were generated via inpainting from one state to
another by inpainting frames at x = -0.89, 1.02, then all trajectories crossing from one x-Coordinate
value to another, defined by boundaries at -0.63 and 0.65 respectively, were filtered and the MSD
was computed across that region. One failure case of inpainting is the creation of non-continuous
trajectories which can occur. The frequency of this depends on the choice of inpainting hyperparame-
ters, namely the inpainted trajectory time relative to the distance the trajectory has to cover and the
number of frames imposed. To filter our noncontinuous trajectories we filtered out all trajectories that
have too few time steps present in the transition region. Enhanced sampling trajectories via variation
generation were generated by taking a simulated transition trajectory and then generating variations
of this trajectory by nosing to t = 0.55 and then denoising them, afterward the same transition region
selection was applied as in the ground truth data and the inpainting enhanced sampling.

Multi-Length Generation Experiments

We wanted to assess how well the model could produce trajectories of varying lengths, based on its
training data. To do this, we trained the DynamicsDiffusion model using trajectory lengths ranging
from 32 to 326 time steps. It’s important to note that these lengths correspond to 320 to 3260 time
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Figure 11: DynamicsDiffusion trajectory distribution for the Double Well systems sampled at different
trajectory lengths.

Table 8: Benchmarks of differently (1.4 million to 10.2 million parameters) sized DDPMs for Alanine
Dipeptide (AD) trajectory generation

Simulator Gromacs AD 10.2M AD 2.6M AD 1.4M

Speed [ns/day] 6711.15 9276 14921 15639

steps in the simulator, as the model operates at a time resolution 10 times lower. After training, we
sampled the model at both the shortest and longest lengths from this range. We then compared the
distribution of states in these samples to the actual states from the simulator.

Results

Benchmarks

The speed of DynamicsDiffusion was compared to Gromacs Abraham et al., a commonly used
molecular dynamics simulation software, see Table 8, for the generation of Alanine Dipeptide. The
setup of the simulation and the model inference can be found in the appendix, along with a section
where the optimal number of denoising steps is determined for the numerical integration of the
denoising process Karras et al.. Furthermore, it is worth noting that this benchmark does not include
model training and only inference and was only performed in one hardware configuration.

A.1 Jacobian Computation Model Slowdown Alanine Dipeptide Model

To assess the incurred slowdown of the introduction of the Jacobian computation necessary for the
energy formulation we benchmarked the model with and without the energy head and compared their
relative forward pass speeds.

Table 9: Jacobian Computation Slowdown

Formulation Parameter Count Relative Slowdown Factor to Baseline

No Energy Formulation (Baseline) 6.438M 1
Energy Formulation 6.438M 2.46

Software and Hardware

• Programming Language: Python 3.9
• Deep Learning Library: PyTorch 1.9
• GPU: NVIDIA A6000
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