
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GSM-AGENT: UNDERSTANDING AGENTIC REASON-
ING USING CONTROLLABLE ENVIRONMENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

As LLMs are increasingly deployed as agents, agentic reasoning—the ability
to combine tool use, especially search, and reasoning—becomes a critical skill.
However, it is hard to disentangle agentic reasoning when evaluated in complex
environments and tasks. Current agent benchmarks often mix agentic reasoning
with challenging math reasoning, expert-level knowledge, and other advanced ca-
pabilities. To fill this gap, we build a novel benchmark, GSM-AGENT, where
an LLM agent is required to solve grade-school-level reasoning problems, but is
only presented with the question in the prompt without the premises that con-
tain the necessary information to solve the task, and needs to proactively collect
that information using tools. Although the original tasks are grade-school math
problems, we observe that even frontier models like GPT-5 only achieve 67% ac-
curacy. To understand and analyze the agentic reasoning patterns, we propose the
concept of agentic reasoning graph: cluster the environment’s document embed-
dings into nodes, and map each tool call to its nearest node to build a reasoning
path. Surprisingly, we identify that revisit, returning to a previously visited node
after leaving–widely taken as a crucial pattern in static reasoning, is a missing abil-
ity for agentic reasoning among many models. Based on the insight, we propose
a tool-augmented test-time scaling method to improve LLM’s agentic reasoning
performance by adding tools to encourage models to revisit. We expect our bench-
mark and the agentic reasoning framework to aid future studies of understanding
and pushing the boundaries of agentic reasoning.

1 INTRODUCTIONS

Large language models (LLMs) have demonstrated remarkable performance on challenging reason-
ing tasks (Wei et al., 2022; Srivastava et al., 2023), from arithmetic word problems (Cobbe et al.,
2021) to multi-hop question answering (Yang et al., 2018) and program synthesis (Chen et al., 2021).
Most previous work focuses on reasoning tasks (Cobbe et al., 2021; Hendrycks et al., 2021; Saxton
et al., 2019) that evaluate LLMs’ static reasoning capability, where the model receives all neces-
sary information from the prompt and conducts reasoning without external help. Yet, as LLMs are
increasingly deployed as agents – systems that plan, use external tools, and iteratively refine their
hypotheses – the form of reasoning that matters in practice gradually shifts from static reasoning to
agentic reasoning that couples logical inference with decisions about what to read, what to ask next,
when to verify, and how to recover from unproductive directions.

In this paper, we aim to understand to what extent strong static reasoning abilities of an LLM can be
adapted to the agentic setting, and identify the key skills that may enable this. To achieve this, we
aim to (1) compare a model’s reasoning ability on the same or similar tasks under static and agentic
settings; (2) identify the important skills that contribute to the performance gap between the two
settings; (3) improve the model’s skill in the agentic setting to enhance its agentic reasoning ability.
The above steps bring two major challenges, and in this paper, we propose solutions to each of them.

Challenge 1: Existing benchmarks fail to provide an apples-to-apples comparison of reasoning
abilities under the two settings.

Solution: To this end, we introduce GSM-AGENT, a novel benchmark that transforms GSM8K
problems into agentic tasks. Specifically, during dataset construction, each original problem is de-
composed into a question and several premises; each premise is then converted into a context-rich

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

document and inserted into a database (the environment). During evaluation, the agent sees only the
question and needs to use the provided tools (a Search tool and a NextPage tool) to discover
the relevant documents before solving the math problem. Importantly, we can control the difficulty
of the agentic task through careful construction of the database, e.g., by adding distracting docu-
ments. Across a broad suite of models, we observe substantial performance drops compared to the
static setting where the question and all necessary documents are provided in the prompt. For exam-
ple, a frontier model like GPT-5 loses roughly 33% absolute accuracy, whereas some models (e.g.,
DeepSeek-V3) lose up to 80%. The results demonstrate a clear and consistent gap between static
and agentic reasoning in a clean and controllable setting.

Challenge 2: We lack a framework to identify and quantify the core skills that contribute to
agentic reasoning capability.

Solution: To understand and analyze the core reasons of the performance gap between the two
settings and what drives such significant differences in performance across models under agentic
settings, inspired by Minegishi et al. (2025), we propose the concept of agentic reasoning graph:
cluster the environment’s document embeddings into nodes, and map each tool call (Search or
NextPage) to its nearest node, yielding a discrete reasoning path. This framework allows us to
label each reasoning step as exploration (first visit to a node), exploitation (staying within a node),
or revisit (returning to a previously visited node after leaving). Our analysis reveals that the revisit
ratio strongly correlates with the accuracy on GSM-AGENT, which indicates that revisit might be a
core skill for strong agentic reasoning. Based on the insight, we propose a tool-augmented method,
where we add a new tool that encourages the model to revisit, to improve LLMs’ performance.
Experimental results demonstrate that our tool-augmented method exhibits better performance than
interaction-round scaling, which enforces agents to interact with the environment for more rounds
without considering the quality of each interaction step.

We summarize our contributions as follows:

• We propose GSM-AGENT, a novel benchmark with a controllable environment for evaluating and
analyzing the agentic reasoning capability of LLMs and providing a clear comparison between
static and agentic reasoning.

• We introduce the concept of agentic reasoning graph, which induces a topology over the envi-
ronment via clustering of document embeddings and maps tool-use traces to discrete paths. This
yields interpretable, quantitative measures of exploration, exploitation, and revisit during the rea-
soning procedure at step resolution to facilitate analysis of agentic reasoning.

• Our analysis of reasoning patterns on agentic reasoning graphs reveals that revisit is an important
reasoning skill that strongly correlates with agentic reasoning capability. Based on the insight, we
propose a tool-augmented method to improve LLMs’ agentic reasoning capability by encouraging
revisit.

2 RELATED WORK

Reasoning with incomplete information. Multiple works have studied the ability of LLMs to
look for missing information. Most relevant to our work, Li et al. (2025) evaluate the ability to ask
the right question, including on a variant of GSM8K with missing information. However, their focus
is on evaluating whether the model asks specific questions, rather than overall reasoning abilities.
Zhou et al. (2025b) compare “passive” and “active” reasoning, similar to our “static” vs “agentic”
reasoning, although they use different tasks for the two setups, while our dataset can be used in both
scenarios, leading to a better apples-to-apples comparison.

Agentic reasoning benchmarks. Several benchmarks have recently been established for evaluat-
ing agentic reasoning capabilities of LLMs (Jimenez et al., 2023; Yao et al., 2024; Lu et al., 2024;
Trivedi et al., 2024; Patil et al., 2025). In contrast to these works, our benchmark aims to provide a
controllable environment that enables direct comparison of agentic reasoning with static reasoning.

Understanding of reasoning. Many recent works have focused on understanding the reasoning
abilities of LLMs, including the ability to self-correct (Huang et al., 2024), the reliability of rea-
soning on GSM8K beyond the original benchmark via synthetic extensions (Zhou et al., 2025a;

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 1: An overview of evaluation tasks in our GSM-AGENT benchmark. The LLM agent receives
a task that only contains a question. At each agentic reasoning step, the agent needs to decide what
information is needed, call the tool to search for information in the database, and reason about the
retrieved documents. The agent also needs to decide whether all the necessary information has been
collected and when to give the final answer to the task.

Mirzadeh et al., 2025), or the reasoning behaviors or long chain-of-thought models (Yeo et al.,
2025; Sun et al., 2025; Minegishi et al., 2025). Our graph-based analysis of explore, exploit, and
revisit patterns was partly inspired by these works, though we extend this to the agentic setting with
search tools by definiting the graph through document embeddings.

3 GSM-AGENT BENCHMARK

In this section, we introduce GSM-AGENT, a novel benchmark with controllable environments for
comprehensively evaluating the agentic reasoning capabilities of LLMs. In particular, our dataset
aims to test LLM agents’ abilities to combine reasoning and tool-use (mainly search) ability to
solve mathematical reasoning problems by proactively interacting with the environment using tools.
Below, we provide an overview of our benchmark tasks in Section 3.1, and introduce our dataset
construction process in Section 3.2.

3.1 OVERVIEW

Our dataset D = (T , E ,F) consists of a set of tasks T , an environment E , and a set of tools F that
LLM agents can use to interact with the environment.

Tasks. Each task T = (q, (p1, . . . , pk), a) ∈ T consists of a question q, k premises p1, . . . , pk (k
can vary for different task instances) and the ground-truth answer a. Figure 2 provides an example
of a task instance that consists of a question and three premises. For a grade-school-level math
problem, it is easy for an advanced LLM to solve the task if all premises p1, . . . , pk are provided in
the prompt along with the question q. In our benchmark, the LLM agent will only see the question
q without premises p1, p2, . . . pk in the prompt, and it needs to use tools in F to find all necessary
information in the environment E to solve the task (see Figure 1 for a pictorial illustration).

Environments. The environment E = {D1, D2, . . . , Dm} consists of a set of documents, where
each document corresponds to a premise of a task in T . Let gD(·) be a document generator, where
gD(T) = gD(q, (p1, . . . , pk)) = (D1, D2, . . . , Dk) and the generated document Di contains all
necessary information of the premise pi for all 1 ≤ i ≤ k. See the document generation part
of Figure 2 for a pictorial illustration. We will introduce the details of our implementation of the
document generator gD(·) in Section 3.2. Since our environment E is a set of documents, we also
call E a database in the rest of the paper.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: Data processing overview. We first decompose a GSM8k problem into a question and
several premises, and then generate a document for each premise to cover its essential information.

Tools. In our benchmark, we provide two tools F = {Search(·),NextPage(·)}. For the search
tool, an LLM agent can specify a query prompt x (which can be of any format, such as a sentence or
only several keywords) and call Search(x). The search engine will return the top 5 most relevant
documents in E to the query x. The agent can also use the NextPage(·) tool, which will return
the next five most relevant documents. The LLM agent is allowed to call Search(x) for multiple
different query prompts x that are decided by the agent itself. For each call of Search(x), the
agent is also allowed to call NextPage(·) at most 19 times for that search, resulting in retrieving
up to the top 100 most relevant documents in the database. See Figure 1 for a pictorial illustration
and Section 3.2 for more details about the search engine.

During evaluation, for each task T , an LLM agent will receive the corresponding question q (without
premises) in the prompt, then reason about what information is missing, call tools Search(x)
with appropriate search query x and NextPage(·) to collect information from the environment E ,
and solve the problem with information extracted from the retrieved document. In our dataset, the
ground-truth answer a is a numerical value for each task, so we directly compare the final answer
given by an LLM agent â to a, where the task is solved iff â = a.

3.2 DATASET CONSTRUCTION

In this section, we introduce our dataset construction procedure in detail. Our GSM-AGENT dataset
is built upon the well-known GSM8k problem set, where each task T in our dataset is constructed
based on a problem instance in GSM8k. A simplified dataset construction pipeline is illustrated
in Figure 2, while the whole pipeline consists of five stages: (1) data preprocessing; (2) problem
decomposition and sharding; (3) document generation; (4) data filtering; (5) database construction.
Note that some steps in our pipeline involve using LLMs to process data. Unless otherwise specified,
we use Claude-3.5-Sonnet as our default LLM to facilitate data processing.

3.2.1 DATA PREPROCESSING

As shown in Figure 2, for each GSM8k problem, we decompose it into a question and several
premises, and convert each premise into a document which will be added to our database. However,
naively processing each problem will cause issues.

First, different problems might share the same name of the protagonist(s). Although this is not an
issue in the original GSM8k problem since each problem is independent, it could cause conflict or
ambiguity in our database, as documents for different tasks will be added to the same database. For
example, Alice might spend 5 dollars on ice cream in document D1 for one task T1, and also pay 20

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

dollars for a book in document D2 for another task T2, which renders the question “How much did
Alice spend in total?” ambiguous.

Second, some problems only contain a generic entity without a specific name. For example, consider
a task such as “a bookshelf has 20 books at the top and 40 books at the bottom, and how many books
are there in the shelf in total”. While the original problem is self-contained, separating the question
from premises renders the question “how many books are there in the shelf in total” again confusing
and ambiguous since it is unclear which specific bookshelf the question refers to.

To address the above two issues, we carefully design the following three data preprocessing steps
to disambiguate the tasks. Step 1: Entity detection. In this step, we use LLM to detect the main
character of each problem. For problems with a generic main character without a specific name,
we flag it as generic. Step 2: Name assignment for generic entities. In this step, we assign
different names to generic entities. Step 3: Timestamps assignment to differentiate problems
sharing the same entity. At this step, we assign different timestamps to problems sharing the same
entity to ensure no conflict between documents from different problems. The details can be found
in Appendix B.

3.2.2 PROBLEM DECOMPOSITION AND SHARDING

After systematic data preprocessing to ensure no ambiguity in our tasks and no conflicting docu-
ments in our environment, our next step is to decompose each preprocessed problem into a question
q and several self-contained premises p1, p2, . . . , pk. See the “decompose” part of Figure 2 for an
example. The decomposition is executed by an LLM agent, where the agent receives a preprocessed
problem along with its timestamp as the input, then breaks down the problem narrative into a list of
individual self-contained and consistent premises, rephrases the core question, and carries over the
timestamp. In particular, if the problem shares an entity name with another problem, its timestamp
will be explicitly stated in the question q outputted by the agent to make sure the question itself is
unambiguous.

3.2.3 DOCUMENT GENERATION

The next stage is document generation. The main purpose of this stage is to convert each premise of
each problem into a context-rich document, which will be added to our database (i.e., the environ-
ment E) in the final stage. We conduct the following three steps to ensure a high-quality database
and a reasonable level of difficulty for our tasks. Step 1: Hierarchical document generation. At
this step, we generate a high-level coherent story for a problem. Step 2: Independence verification.
We prompt Claude-3.5-Sonnet, giving it each document-premise pair and the original question, and
asks it to judge whether the document contains extra information that is not covered by the premise.
By doing so, we make sure that documents are independent, with no overlapping information. Step
3: Document anonymization. To ensure the difficulty of our benchmark, we randomly anonymize
a subset of the document to avoid LLM agents from “cheating” by blindly querying the name of the
main character. The details of each step can be found in Appendix B.

3.2.4 DATA FILTERING

Since the previous stages involve using LLM agents to process data, and original premises are con-
verted into much longer documents, some of the generated tasks may turn out to be problematic or
unsolvable. To ensure the quality of our dataset after the above data processing stages, a rule of
thumb is to ensure that all generated tasks are solvable when provided with complete information
(i.e., all documents corresponding to their premises). Therefore, for each problem, we test whether
claude-3.5-sonnet can solve it given the question and its corresponding documents. We only
keep the problems that claude-3.5-sonnet can correctly solve to ensure a high-quality dataset.
After our data filtering stage, there are 7323 problems left in our dataset, with 32315 unique prob-
lems stored in the chroma database.

3.2.5 DATABASE CONSTRUCTION

The final stage is to build the environment E (i.e., the database) using generated documents. We
use Chroma to build our database, where the content (excluding document ID and metadata)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

of each document is embedded into a vector that will be used for document retrieval. We use
text-embedding-3-large as our default embedding model.

Moreover, we built three datasets that reflect different levels of difficulty of our benchmark:
GSM-AGENT-Full: contains all problems after data filtering; GSM-AGENT-Medium: contains
25% of problems after data filtering; GSM-AGENT-Small: contains 6.25% of problems after data
filtering.

For each dataset, its environment is a database that contains all the documents of problems in the
dataset. For the results reported in Section 4, we evaluate models on GSM-AGENT-Full unless
otherwise specified.

4 RESULTS & ANALYSIS

In this section, we first present the main evaluation results on a variety of mainstream LLMs on our
GSM-AGENT dataset (Section 4.1), then analyze the agentic reasoning pattern and identify the core
skill, which is revisit, that correlates to strong agentic reasoning capabilities (Section 4.2), and finally
propose a tool-augmented method to improve models’ agentic reasoning capability by encouraging
models to revisit (Section 4.3). We use LangChain ReAct agent for all evaluation settings, with
temperature set to 0.4 and max tokens 4096.

4.1 OVERALL PERFORMANCE

Table 1: Evaluation results under zero-shot prompting with ReAct agent across models.1 Acc and FF are shown
as percentages; other metrics use the units indicated. Acronyms: Acc=Accuracy; SR=Search Rounds, which is
the number of tool calls to solve a task; Dur(s)=Duration (seconds), which is the time the agent spent to solve
the task; SC=Search-Complete rate, which is the proportion of tasks that an gent find all relevant documents;
ER=Extra Rounds, which is the number of tool calls after all relevant documents are found; FF=Follow-Format
rate, which is the proportion of tasks that an agent follows the required format to solve; PremT=Premature-Total
rate, which is the proportion of tasks that an agent attempted to provide a premature answer before making the
final decision; TotTok=Total Generated Tokens; Tok/R=Mean Tokens per Round. All results are averaged over
three random seeds. For each metric, ↑ indicates higher is better and ↓ means lower is better.

Setting Acc ↑ SR Dur(s) SC ↑ ER ↓ FF ↑ PremT ↓ TotTok ↓ Tok/R ↓
Solvable by any model 88.00% Nan Nan Nan Nan Nan Nan Nan Nan
o3 68.46% 13.33 117.85 53% 4.89 95% 0% 5775.75 386.03
GPT-5 66.78% 9.98 116.00 52% 2.18 100% 1% 7184.10 615.99
Grok-4 53.00% 7.19 126.01 42% 2.86 100% 0% 3817.42 599.72
Claude-4-sonnet (fewshot)2 51.50% 9.27 47.90 40% 4.41 100% 10% 1028.52 118.65
Gemini-2.5-Pro 38.33% 2.93 51.59 25% 0.20 82% 3% Nan Nan3

Kimi-K2-Instruct 37.42% 5.41 31.00 24% 0.53 92% 0% 245.34 56.18
Gemini-2.5-Flash 25.33% 1.88 17.13 14% 0.12 99% 4% Nan Nan
GPT-4o 22.67% 1.92 21.27 22% 2.72 94% 1% 135.20 92.22
Llama-4-Maverick 20.00% 2.10 21.94 17% 0.26 97% 3% 504.93 211.30
DeepSeek-V3 19.42% 0.94 14.30 8% 0.00 82% 0% 38.95 41.33
Qwen3-235B 19.30% 1.13 25.76 19% 4.40 96% 0% 184.82 173.19
Claude-4-Sonnet 18.67% 2.46 21.27 14% 3.14 33% 1% 243.93 98.23
Llama-4-Scout 12.54% 2.07 14.93 9% 1.76 86% 4% 215.48 118.96

Table 1 highlights the large performance gaps between different models. While some strong agents
achieve relatively high accuracy, many open models remain surprisingly weak. This result is puz-

1We observe that zero-shot prompting renders the most stable result across most models, better than fewshot
prompt or multi-agent system. However, it cannot render meaningful results for DeepSeek-R1 and Claude-
Opus. DeepSeek expects a different tool-use format than other models. Claude frequently asks the user for
additional information and thus requires careful prompting to fix. To ensure a fair comparison across models,
we excluded the two models in the evaluation.

2We observed that Claude-4-sonnet requires special few-shot prompt strategies to achieve decent perfor-
mance. However, such a prompt can hurt the performance of many other models compared to the default
zero-shot prompting. To ensure fair comparison, we report both zero-shot and few-shot prompting results for
Claude-4-sonnet.

3Number missing due to LangChain output format mismatch for Gemini model series.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

1 2 4 8 16 3250
0.0

0.2

0.4

0.6

Ac
cu

ra
cy

Slope = 0.145
R² = 0.963

GPT-5

1 2 4 8 16 3250

Slope = 0.087
R² = 0.982

Kimi-K2

1 2 4 8 16 3250

Slope = 0.028
R² = 0.921

Llama-4-Maverick

1 2 4 8 16 3250

Slope = 0.046
R² = 0.961

Llama-4-Scout

Interactions

Figure 3: Interaction round scaling. The number of iteration rounds is defined as the number of
tool calls. For each model, we first collect the reasoning trajectory on each task under zero-shot
prompting. For a specified number of interaction rounds n, a trajectory is considered correct either
if it answers the task correctly within n rounds, or it successfully collects all necessary documents
within n rounds and gives a correct answer eventually. GPT-5 exhibits a much stronger interaction-
round scaling than the other three models. Note that x-axis is in logarithmic scale.

(a) Visualization of Nodes

80 60 40 20 0 20 40 60 80
X Coordinate

60

40

20

0

20

40

60

Y
Co

or
di

na
te

Other clusters
Cluster 29
Cluster 54
Cluster 100

(b) Representative Nodes from The Database Graph

Node Sample Document IDs
Grocery Receipts

(Node 29)
laura flour purchase receipt
chocolate purchase receipt

Fruit Counting
(Node 54)

xena total fruit count
chads apple inventory log

Youth Sports Stats
(Node 100)

wario kick direction analysis
james touchdown stats

Table 2: Left (a): A t-SNE visualization of the search database embeddings. It highlights three
clusters whose centroids define the embeddings for nodes 29, 54, and 100. Right (b): A summary of
documents for these nodes. The documents have semantic coherence within each cluster.

zling, since our GSM-AGENT environment—adapted from GSM8K—requires only grade-school
math and basic common sense reasoning. Nevertheless, even frontier models fall short of perfect
performance, with the best accuracy reaching just 68.46% (o3), while Llama-4-Scout only achieves
12.54%. These discrepancies raise an important question:

What drives such big differences in performance across models, given such a simple environment?

Simple interaction-time scaling does not improve agentic reasoning. Table 1 shows that mod-
els tend to achieve higher accuracy when they perform more search rounds. A natural hypothesis for
the observed performance gap is therefore differences in interaction-time scaling. To test this, we se-
lected three open models (Kimi-K2-Instuct, Llama-4-Maverick, and Llama-4-Scout) and prompted
them to continue searching whenever they attempted to stop. For comparison, we also measured
the test-time scaling behavior of GPT-5, a representative strong proprietary model. As shown in
Figure 3, the accuracy of the open models improves only marginally with additional search rounds,
exhibiting far weaker interaction-time scaling than the proprietary models (GPT-5). This finding
suggests that we must look beyond just interaction time and instead examine the quality of interac-
tion choices-this motivates the design of our agentic reasoning graph.

4.2 IDENTIFYING AND MEASURING CORE SKILLS CONTRIBUTING TO AGENTIC REASONING

In this section, we propose a new framework to understand and analyze models’ agentic reasoning
patterns and, thus, identify the core skills that contribute to a model’s reasoning ability in agentic
settings. Inspired by Minegishi et al. (2025), we define the agentic reasoning graph below.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) Exploration v.s. Accuracy

0.1 0.2 0.3 0.4 0.5
Exploration Proportion

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

R² = 0.010
Slope = 0.151

(b) Revisit v.s. Accuracy

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Revisit Proportion (V 3)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

R² = 0.914
Slope = 2.025

(c) Exploitation v.s. Accuracy

0.4 0.5 0.6 0.7 0.8 0.9
Exploitation Proportion

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

R² = 0.265

Slope = -0.617

Kimi-K2-Instruct
Llama-4-Maverick
Llama-4-Scout
Qwen3-235B
claude-opus
gemini-2.5-flash
gemini-2.5-pro
gpt-4o
gpt-5
grok-4
o3

Figure 4: Correlation between accuracy and exploration, exploitation, and revisit ratio. The three
ratios are defined as the proportion of exploration steps (visit a node that has never been reached),
exploitation steps (visit the same node as the last step), and revisit steps (revisit a previously reached
node after leaving) to the total reasoning steps. We plot their correlation to the models’ accuracy
on our GSM-AGENT benchmark. The plots show that the model accuracy has a weak correlation
to the exploration ratio, a strong correlation to the revisit ratio and a negative correalation to the
exploitation ratio.

Nodes of the agentic reasoning graph. Assume the environment E = {Di}Ni=1 contains N docu-
ments. Denote the embedding model to be eθ(·) and thus ei = eθ(Di) ∈ Rd is the embedding vector
of document Di. We run K-means (K = 250) on {ei}Ni=1 to get clusters {Ck}Kk=1 with centroid
{ck}Kk=1, and each centroids ck ∈ Rd correspond to a node vk in the graph. Therefore, the vertex set
of the agentic reasoning graph is V = {v1, . . . , vK}. See Table 2 for a visualization of the vertex
set of our database and examples for the semantic meaning of representative nodes.

Agentic reasoning path. Assume the agent makes T tool calls in total in the whole reasoning trace.
For the t-th tool call, if it calls Search(x), then the agentic reasoning node pt for the t-th tool call
is defined as pt = argminvk∈V ∥q(x) − ck∥2, where q(x) ∈ Rd is the embedding of the query
prompt x. If the agent calls NextPage(·) for the t-th tool call, then the agentic reasoning node is
defined as pt = pt−1. The agentic reasoning path is then defined as π = (p1, . . . , pT).

Exploration, exploitation and revisit. For each step pt in the reasoning path, we classify it into one
of the three categories. For the first step p1, it is always classified as an exploration step. For t > 1,
if pt /∈ {p1, . . . , pt−1}, i.e., pt has never been visited in previous steps, then pt is also an exploration
step. If pt ∈ {p1, . . . , pt−1}, it is considered as an exploitation step if pt = pt−1, and otherwise a
revisit step. The exploration ratio is defined as the proportion of exploration steps among the total
number of steps T . Similarly, we can define the exploitation and revisit ratio. These three ratios can
thus be used to quantify the reasoning pattern and facilitate deeper analysis.

Figure 4 shows that models’ accuracy has a strong correlation to the revisit ratio during the reasoning
trace, which implies that revisit is an important skill in agentic reasoning.

4.3 IMPROVING AGENTIC REASONING CAPABILITY VIA TOOL-AUGMENTED SCALING

Given the insight from the analysis in Section 4.2, instead of naively scaling up the interaction
rounds that is widely adopted for static reasoning, we propose to use tool-augmented scaling, which
might be a more efficient scaling paradigm for agentic reasoning.

Thinking tool, exploration tool, and revisit tool. We introduce three new tools for our experi-
ments. (1) Thinking(·) is a thinking tool, which will copy a model’s preceding tokens to enforce
thinking whenever called. (2) Explore(x) is an exploration tool which has the same effect as
Search(x) while the system prompt will instruct the model to use Explore(x) to explore differ-
ent search queries. (3) Revisit(x) is a revisit tool which has the same effect as Search(x) while
the system prompt will instruct the model to use Revisit(x) to revisit previously called queries.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) Accuracy comparison between different strategies

Llama-4-Maverick Qwen3-235B Llama-4-Scout Kimi-K20.0

0.1

0.2

0.3

0.4
Ac

cu
ra

cy

Zero-shot
CoT
Explore
Revisit
Explore+Revisit
Think Tool

(b) ∆(revist) v.s. ∆(accuracy)

0.050 0.025 0.000 0.025 0.050 0.075 0.100
 Revisit Proportion (V 3)

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

 A
cc

ur
ac

y

R² = 0.250
Slope = 0.869

Figure 5: Visualization of performance gain via encouraging the revisit reasoning pattern. In
Figure 5a, we compare five different strategies to zero-shot prompting on four different models.
CoT is a prompt-only strategy where the prompt will instruct the model to think more. The re-
maining four strategies are all tool-augmented methods by adding different combinations of the
three tools, Thinking(·),Explore(·),Revisit(·), to the tool set. For Llama-4-Maverick and
Qwen3-235B, tool-augmented methods consistently outperform the prompt-based CoT strategy. For
Llama-4-Scout and Kimi-K2, tool-augmented methods achieve comparable performance to the CoT
method. For most cases, both the tool-augmented method and prompt-based CoT improve over zero-
shot prompting. Figure 5b plots the correlation between the increase in revisit ratio and the increase
in the accuracy for any of the strategies. It shows a strong correlation between the enhancement of
revisit ability and performance improvement.

We tested four combinations of the above three tools: (1) adding Thinking(·) only to the tool
set F ; (2) adding Explore(·) only; (3) Revisit(·) only; (4) adding both Explore(·) and
Revisit(·).
Figure 5a shows that adding tools outperforms or achieves similar performance to the CoT prompt
strategy in most cases. Moreover, Figure 5b shows a strong correlation between the increase of accu-
racy and revisit ratio, which further indicates that revisit is an important skill for agentic reasoning.
The above results indicate that the tool-augmented method may serve as a more efficient test-time
scaling paradigm than interaction-time scaling for agentic reasoning.

5 CONCLUSIONS

In this paper, we study LLMs’ agentic reasoning capability, where an LLM agent needs to combine
tool-use and reasoning ability to solve tasks. We first propose a novel benchmark, GSM-AGENT,
where an LLM agent is required to solve grade-school math reasoning problems but must proactively
search for necessary information from the environment. Our comprehensive evaluation of various
models shows a significant gap in performance across different models in the seemingly simple envi-
ronment. We further analyze the reasoning patterns of different models using the agentic reasoning
graph and identify revisit as an important skill for agentic reasoning. Finally, we propose a tool-
augmented scaling method that adds new tools to encourage the model to revisit, which improves
agents’ performance on our benchmark for different models. We hope that our benchmark can serve
as a controllable and clean environment for future study of agentic reasoning, and our framework
of agentic reasoning graph can bring new insights into better understanding and improvement of
reasoning ability for LLM agents.

REFERENCES

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique P. de Oliveira Pinto, Jared Kaplan,
Harrison Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large language
models trained on code. In arXiv preprint arXiv:2107.03374, 2021.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. In Ad-
vances in Neural Information Processing Systems, 2021.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
and Denny Zhou. Large language models cannot self-correct reasoning yet. In International
Conference on Learning Representations (ICLR), 2024.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

Belinda Z Li, Been Kim, and Zi Wang. Questbench: Can llms ask the right question to acquire
information in reasoning tasks? arXiv preprint arXiv:2503.22674, 2025.

Jiarui Lu, Thomas Holleis, Yizhe Zhang, Bernhard Aumayer, Feng Nan, Felix Bai, Shuang Ma, Shen
Ma, Mengyu Li, Guoli Yin, et al. Toolsandbox: A stateful, conversational, interactive evaluation
benchmark for llm tool use capabilities. arXiv preprint arXiv:2408.04682, 2024.

Gouki Minegishi, Hiroki Furuta, Takeshi Kojima, Yusuke Iwasawa, and Yutaka Matsuo. Topology
of reasoning: Understanding large reasoning models through reasoning graph properties. arXiv
preprint arXiv:2506.05744, 2025.

Seyed Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and
Mehrdad Farajtabar. Gsm-symbolic: Understanding the limitations of mathematical reasoning in
large language models. In International Conference on Learning Representations (ICLR), 2025.

Shishir G Patil, Huanzhi Mao, Fanjia Yan, Charlie Cheng-Jie Ji, Vishnu Suresh, Ion Stoica, and
Joseph E Gonzalez. The berkeley function calling leaderboard (bfcl): From tool use to agentic
evaluation of large language models. In International Conference on Machine Learning (ICML),
2025.

David Saxton, Edward Grefenstette, Felix Hill, and Pushmeet Kohli. Analysing mathematical rea-
soning abilities of neural models. In International Conference on Learning Representations
(ICLR), 2019.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Ahmed Shoeb, Abubakar Abid, et al. Beyond
the imitation game: Quantifying and extrapolating the capabilities of language models. Transac-
tions on Machine Learning Research, 2023.

Yiyou Sun, Shawn Hu, Georgia Zhou, Ken Zheng, Hannaneh Hajishirzi, Nouha Dziri, and Dawn
Song. Omega: Can llms reason outside the box in math? evaluating exploratory, compositional,
and transformative generalization. arXiv preprint arXiv:2506.18880, 2025.

Harsh Trivedi, Tushar Khot, Mareike Hartmann, Ruskin Manku, Vinty Dong, Edward Li, Shashank
Gupta, Ashish Sabharwal, and Niranjan Balasubramanian. Appworld: A controllable world of
apps and people for benchmarking interactive coding agents. arXiv preprint arXiv:2407.18901,
2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Advances in Neural Information Processing Systems, 2022.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
and Christopher D. Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2018.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. τ -bench: A benchmark for
tool-agent-user interaction in real-world domains. arXiv preprint arXiv:2406.12045, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Edward Yeo, Yuxuan Tong, Morry Niu, Graham Neubig, and Xiang Yue. Demystifying long chain-
of-thought reasoning in llms. arXiv preprint arXiv:2502.03373, 2025.

Yang Zhou, Hongyi Liu, Zhuoming Chen, Yuandong Tian, and Beidi Chen. Gsm-infinite: How
do your llms behave over infinitely increasing context length and reasoning complexity? In
International Conference on Machine Learning (ICML), 2025a.

Zhanke Zhou, Xiao Feng, Zhaocheng Zhu, Jiangchao Yao, Sanmi Koyejo, and Bo Han. From
passive to active reasoning: Can large language models ask the right questions under incomplete
information? In International Conference on Machine Learning (ICML), 2025b.

11

	Introductions
	Related work
	GSM-Agent Benchmark
	Overview
	Dataset construction
	Data preprocessing
	Problem decomposition and sharding
	Document generation
	Data filtering
	Database construction

	Results & Analysis
	Overall performance
	Identifying and measuring core skills contributing to agentic reasoning
	Improving agentic reasoning capability via tool-augmented scaling

	Conclusions
	Database Details
	Statistics

	Additional Details for Dataset Construction
	Additional details for data preprocessing
	Additional details for document generation

	Ablation Experiments for Evaluations and Data Construction
	Full results of graph metrics across all settings
	Ablations on the embedding model and the database size.
	Additional plots

	Detailed Prompts for Dataset Construction
	Entity Extraction Prompt
	Entity Specialization Prompt
	Sharding Prompt
	Document Generation Prompt
	Independence Check Prompt
	Anonymization Prompt

	Detailed Prompts for Evaluation
	The Zero-shot prompt
	The CoT prompt
	The ``think tool'' prompt
	The ``Revisit tool'' prompt
	The ``Explore tool'' prompt

	The Use of Large Language Models (LLMs)

