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Robust Graph Learning Against Adversarial Evasion Attacks via
Prior-Free Diffusion-Based Structure Purification

Anonymous submission
Abstract
Adversarial evasion attacks pose significant threats to graph learn-
ing, with lines of studies that have made progress in improving
the robustness of Graph Neural Networks (GNNs) for real-world
applications. However, existing works overly rely on priors of clean
graphs or attacking strategies, which are often heuristic and not
universally consistent. To achieve robust graph learning over differ-
ent types of evasion attacks and diverse datasets, we investigate this
non-trivial problem from a prior-free structure purification perspec-
tive. Specifically, we propose a novel Diffusion-based Structure
Purification framework named DiffSP 1, which creatively incorpo-
rates the graph diffusion model to learn intrinsic latent distributions
of clean graphs and purify the perturbed structures by removing
adversaries under the direction of the captured predictive patterns
without relying on any pre-defined priors. DiffSP is divided into the
forward diffusion process and the reverse denoising process, during
which structure purification is achieved. To avoid valuable infor-
mation loss during the forward process, we propose an LID-driven
non-isotropic diffusion mechanism to selectively inject controllable
noise anisotropically. To promote semantic alignment between the
clean graph and the purified graph generated during the reverse
process, we reduce the generation uncertainty by the proposed
graph transfer entropy guided denoising mechanism. Extensive ex-
periments on both graph and node classification tasks demonstrate
the superior robustness of DiffSP against evasion attacks.

Keywords
robust graph learning, adversarial evasion attack, graph structure
purification, graph diffuison

1 Introduction
Graphs are essential for modeling relationships in web domains like
social networks [69], recommendation systems [54], financial trans-
actions [7], etc. While Graph Neural Networks (GNNs) [28] have ad-
vanced this field by efficiently learning representations via message
passing, concerns about their robustness have arisen [26, 66, 70].
Studies show that GNNs are vulnerable to evasion adversarial at-
tacks for in-the-wild samples [46], particularly structural perturba-
tions [66, 71] where tiny changes to the graph topology can lead
to a sharp decrease in downstream task performance. Ensuring
robustness against evasion adversarial attacks is critical for the
reliable application of GNNs in real-world scenarios.

A wide range of works have been proposed to enhance graph
robustness, categorizing into: 1) Structure Learning Based meth-
ods [11, 22, 67] that focus on refining graph structures to mitigate
adversarial attacks; 2) Preprocessing Based methods [13, 52] that
focus on denoising graphs during preprocessing stage according to
predefined rules; 3) Robust Aggregation Based methods [6, 17, 48, 70]
that modify the aggregation process less sensitive to perturbations;
1Our code is available at https://anonymous.4open.science/r/DiffSP.
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Figure 1: Comparison of existing robust GNNs and DiffSP.
Existing robust GNNs rely on priors that limit adaptability,
while DiffSP is prior-free with universal robustness.

and 4) Adversarial Training Based methods [58] that improve ro-
bustness by training GNNs with adversarial samples. However,
most of the aforementioned approaches heavily depend on prede-
fined priors regarding clean graphs or attack strategies [22]. For
example, the homophily prior [23, 25, 64, 67] (which assumes that
nodes with high feature similarity should be connected) and the
low-rank prior [13, 26, 35, 57] (which assumes that the adjacency
matrix of a robust graph should exhibit low-rank properties) are
among the most commonly used assumptions. Unfortunately, when
node features are unavailable, measuring the feature similarity be-
comes infeasible [22]. Additionally, imposing low-rank constraints
on the graph structure risks discarding information encoded in
the small singular values [11]. These prior-dependent limitations
significantly hinder the ability of existing methods to achieve the
universal robustness in graph learning across diverse scenarios.

To achieve prior-free robustness against adversarial evasion at-
tacks, we aim to adaptively learn the intrinsic latent distribution
from clean graphs, which captures the underlying correlation and
predictive patterns to enhance the robustness of GNNs when facing
unseen samples during the testing phase. Driven by this goal, we
investigate this non-trivial problem from a structure purification
perspective. We model the clean graph as a probability distribution
over nodes and edges, encapsulating their inherent invariant and
predictable properties [33]. Adversarial evasion attacks are then
interpreted as disruptions to this underlying distribution, causing
it to shift away from the clean distribution [30] as we observed.

To learn the latent distribution of clean graphs, the generative
diffusion models [39, 49] are an ideal choice, as shown in Figure 1.
Instead of relying on priors, they model the implicit distributions by
fitting parameters in a data-centric manner, remaining agnostic to
both the dataset and attack strategies. Unlike other generative mod-
els, the two-stage “noising-denoising” process of graph diffusion
models is particularly well-suited to our goal. When encountering
an attacked graph, the trained graph diffusion model gradually
injects noise to obscure adversarial information during the forward
diffusion process. In the reverse denoising process, step-wise de-
noising enables removing both the adversarial information and
injected noise, achieving prior-free graph purification. Notably, the
robustness gained from this framework is universally applicable,
significantly enhancing its generalization on unseen test graphs.

1
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Nevertheless, it still faces two significant challenges:
1) How can we accurately identify and remove adversarial per-

turbations without disrupting the unaffected portions of the graph?
Adversarial evasion attacks on graphs typically involve subtle per-
turbations that impact only a small subset of nodes and their associ-
ated edges, making these alterations difficult to detect [46]. During
the forward diffusion process, isotropic noise is injected uniformly
across the entire graph, subjecting each node to the same noise
level regardless of its individual characteristics. This indiscrimi-
nate noise affects both normal and adversarial nodes, leading to
excessive perturbations that can overmodify the graph. As a result,
essential information may be lost, complicating the recovery of the
original clean structure during the reverse denoising phase.

2) How can we ensure that the purified graph preserves the same
semantics as the target clean graph? The generation process in diffu-
sion models involves repeated sampling from the distribution, with
the inherent randomness promoting the creation of diverse graph
samples. While this diversity can be beneficial in other domains of
research, it poses a significant challenge to our task of graph purifi-
cation. Our objective is not to produce varied graph structures, but
to accurately recover the original clean graph. Consequently, even
if adversarial perturbations are successfully removed, there remains
a risk that the purified graph may still diverge from the ground
truth, failing to semanticly align with the target clean graph.

To address these challenges, we propose a novelDiffusion-based
Structure Purification framework named DiffSP, which creatively
incorporates the diffusion model to learn the intrinsic latent dis-
tributions of clean graphs and purify the perturbed structures by
removing adversaries under the direction of the captured predic-
tive patterns without relying on any pre-defined priors. To remove
adversaries while preserving the unaffected parts (▷ Challenge 1),
we propose an LID-driven non-isotropic diffusion mechanism to
selectively inject controllable noise anisotropically. By utilizing this
non-isotropic noise, DiffSP effectively drowns out adversarial per-
turbations with minimal impact on normal nodes, thus preserving
the valuable parts of the graph. To promote semantic alignment
between the clean graph and the purified graph generated during
the reverse process (▷ Challenge 2), we reduce the generation un-
certainty by the proposed graph transfer entropy guided denoising
mechanism. Specifically, since adversarial evasion attacks typically
affect only a small portion of the graph, we maximize the transfer
entropy between successive time steps during the reverse denoising
process. This reduces uncertainty, stabilizes the graph generation,
and guides the process toward achieving accurate graph purifica-
tion. The main contributions of this paper are as follows:

• We propose DiffSP, a novel framework for adversarial graph
purification against adversarial evasion attacks. To the best of
our knowledge, this is the first prior-free robust graph learning
framework by incorporating the graph diffusion model.

• We design an LID-driven non-isotropic forward diffusion process
combined with a transfer entropy guided reverse denoising pro-
cess, enabling precise removal of adversarial information while
guiding the generation process toward target graph purification.

• Extensive experiments on both graph and node classification
tasks on nine real-world datasets demonstrate the superior ro-
bustness of DiffSP against nine types of evasion attacks.

2 Related Work
Robust Graph Learning. Various efforts have been made to im-
prove the robustness of graph learning against adversarial attacks,
which can be grouped into four categories. 1) Structure Learning
Based methods [11, 22, 26, 67] adjust the graph structure by re-
moving unreliable edges or nodes to improve robustness. Pro-
GNN [26] uses low-rank and smoothness regularization, GAR-
NET [11] employs probabilistic models to learn a reduced-rank
topology, GSR [67] leverages contrastive learning for structure
refinement, and SG-GSR [22] addresses structural loss and node im-
balance. 2) Preprocessing Based methods [13, 52] modify the graph
before training. SVDGCN [13] retains top-k singular values from
the adjacency matrix, while JaccardGCN [52] prunes adversarial
edges based on Jaccard similarity. 3) Robust Aggregation Based meth-
ods [6, 17, 48, 70] improve the aggregation process to reduce sensi-
tivity to adversarial perturbations. PA-GNN [48] and RGCN [70]
use attention mechanisms to downweight adversarial edges, while
Median [6] and Soft-Median [17] apply robust aggregation strate-
gies to mitigate the effect of noisy features. 4) Adversarial Training
Based methods [58] incorporate adversarial examples during train-
ing using min-max optimization to enhance resistance to attacks.

Graph Diffusion Models. Diffusion models have achieved sig-
nificant success in graph generation tasks. Early works [27, 39]
extended stochastic differential equations to graphs similarly to im-
ages, but faced challenges due to the discrete nature of graphs.
Graph structured diffusion [18, 49] addressed this by adapting
D3PM [3], improving both the quality and efficiency of graph gen-
eration. In addition, HypDiff [15] introduced a geometrically-based
framework that preserves non-isotropic graph properties. To en-
hance scalability, EDGE [8] promotes sparsity by setting the empty
graph as the target distribution. GraphMaker [31] further improved
graph quality by applying asynchronous denoising to adjacency
matrix and node features. However, directly applying existing graph
diffusion models fails to achieve our goal because the noise injec-
tion process doesn’t consider varying levels of node perturbation.
This indiscriminate noise risks damaging clean nodes. Additionally,
the diversity of the graph diffusion model may lead to generated
graphs that fit the clean distribution but have semantic information
that differs from the target clean graph.

3 Notations and Problem Formulation
In this work, we focus on enhancing robustness against adversarial
evasion attacks with more threatening structural perturbation [71],
where attackers perturb graph structures during the test phase, after
the GNNs have been fully trained on clean datasets [5]. We repre-
sent a graph as𝐺 = (X,A), whereX is the node features andA is the
adjacency. An attacked graph is denoted as𝐺adv = (X,Aadv), where
Aadv is the perturbed adjacency matrix. Let 𝑐𝜽 be the GNN classifier
trained on clean graph samples, andDtest = {(𝑠 𝑗 , 𝑦 𝑗 )}𝑀𝑗=1 represent
𝑀 attacked samples, where each 𝑠 𝑗 is a graph or a node, and𝑦 𝑗 is the
corresponding label. The attacker’s goal is to maximize the number
of misclassified samples, formulated as max

∑𝑀
𝑗=1 I(𝑐𝜽 (𝑠 𝑗 ) ≠ 𝑦 𝑗 ),

by perturbing up to 𝜖 edges, where 𝜖 is constrained by the attack
budget Δ. Our objective is to purify the attacked graph, reducing the
effects of adversarial perturbations, and reinforcing the robustness
of the GNNs to enhance the performance of downstream tasks.

2
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Figure 2: The overall architecture of DiffSP. DiffSP first employs a diffusion model to learn the predictive patterns of clean
graphs. Then for the adversarial graph under evasion attack: 1) DiffSP injects non-isotropic noise by adjusting the diffusion time
for each edge based on its adversarial degree, determined by LID. 2) During the generation process, DiffSP reduces uncertainty
and guides the generation toward the target clean graph by maximizing the transfer entropy between two successive time steps.

4 DiffSP
In this section, we introduce our proposed framework named DiffSP
which purifies the graph structure based on the learned predictive
patterns without relying on any priors about the dataset or attack
strategies. The overall architecture of DiffSP is shown in Figure 2.
We first present our graph diffusion purificationmodel which serves
as the backbone of DiffSP, followed by detailing the two core com-
ponents: the LID-Driven Non-Isotropic Diffusion Mechanism and
the Graph Transfer Entropy Guided Denoising Mechanism.

4.1 Graph Diffusion Purification Model
For the backbone of DiffSP, we incorporate the structured diffu-
sion model [3, 31, 49], which has shown to better preserve graph
sparsity while reducing computational complexity [18, 49]. Since
we focus on the more threatening structural perturbations [71], we
exclude node features from the diffusion process and keep them
fixed. Specifically, the noise in the forward process is represented by
a series of transition matrices, i.e.,

[
Q(1)A ,Q(2)A , · · · ,Q(𝑇 )A

]
, where

(Q(𝑡 )A )𝑖 𝑗 denotes the probability of transitioning from state 𝑖 to state
𝑗 for an edge at time step 𝑡 . The forward Markov diffusion process
is defined as 𝑞

(
A(𝑡 ) |A(0)

)
= A(0)Q(1)A · · ·Q(𝑡−1)

A = A(0) Q̄(𝑡−1)
A .

Here we utilize the marginal distributions of the edge state [49] as
the noise prior distribution, thus Q̄(𝑡 )A can be expressed as Q̄(𝑡 )A =

𝛼 (𝑡 ) I +
(
1 − 𝛼 (𝑡 )

)
1m⊤A, where mA is the marginal distribution of

edge states, 𝛼 (𝑡 ) = cos2 ( 𝑡/𝑇+𝑠
1+𝑠 ·

𝜋
2
)
follows the cosine schedule [38]

with a small constant 𝑠 , I is the identity matrix, and 1 is a vector of
ones. During the reverse denoising process, we use the transformer
convolution layer [42] as the denoising network 𝜙 (·)𝜽 , trained for
one-step denoising 𝑝𝜽

(
A(𝑡−1) |A(𝑡 ) , 𝑡

)
. We can train the denois-

ing network to predict A(0) instead of A(𝑡−1) since the posterior
𝑞
(
A(𝑡−1) |A(𝑡 ) ,A(0) , 𝑡

)
∝ A(𝑡 ) (Q(𝑡 )A )

⊤ ⊙ A(0) Q̄(𝑡−1)
A has a closed

form expression [31, 44, 45], where ⊙ is the Hadamard product.
Once trained, we can generate graphs by iteratively applying 𝜙 (·)𝜽 .

4.2 LID-Driven Non-Isotropic Diffusion
Mechanism

Adversarial attacks typically target only a small subset of nodes
or edges to fool the GNNs while remaining undetected. Injecting
isotropic noise uniformly across all nodes, which means applying
the same level of noise to each node regardless of its individual
characteristics [50], poses a significant challenge. While isotropic
noise can effectively drown out adversarial perturbations during the
forward diffusion process, it inevitably compromises the clean and
unaffected portions of the graph. As a result, both the adversarial
and the valuable information are erased, making purification during
the reverse denoising process more difficult.

To remove the adversarial perturbations without losing valuable
information, we design a novel LID-Driven Non-Isotropic Diffusion
Mechanism. The core idea is to inject more noise into adversar-
ial nodes identified by Local Intrinsic Dimensionality (LID) while
minimizing disruption to clean nodes. In practice, the noise level
associated with different edges is distinct and independent. As a
result, the noise associated with each edge during the forward dif-
fusion process is represented by an independent transition matrix.
The adjacency matrix A(𝑡 ) at time step 𝑡 is then updated as follows:

A(𝑡 )
𝑖 𝑗

= A𝑖 𝑗

(
Q̄(𝑡 )A

)
𝑖 𝑗 , (1)(

Q̄(𝑡 )A
)
𝑖 𝑗 = 𝛼 (𝑡 ) I +

(
ΛA

)
𝑖 𝑗

(
1 − 𝛼 (𝑡 )

)
1m⊤A, (2)

where ΛA ∈ R𝑁×𝑁 represents the adversarial degree of each edge.
Based on the above analysis, locating the adversarial information

and determining the value of ΛA is crucial for effective adversarial
purification. Local Intrinsic Dimensionality (LID) [21, 37] measures
the complexity of data distributions around a reference point 𝑜
by assessing how quickly the number of data points increases as
the distance from the reference point expands. Let 𝐹 (𝑟 ) denote
the cumulative distribution function of the distances between the
reference point 𝑜 and other data points at distance 𝑟 and 𝐹 (𝑟 ) is

3
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positive and differentiable at 𝑟 ≥ 0, the LID of point 𝑜 at distance 𝑟 is
defined as lim𝜖→0

ln 𝐹 ( (1+𝜖 )𝑟 )/𝐹 (𝑟 )
ln(1+𝜖 ) [21]. According to the manifold

hypothesis [14], each node 𝑛𝑖 in a graph lies on a low-dimensional
natural manifold 𝑆 . Adversarial nodes being perturbed will deviate
from this natural data manifold 𝑆 , leading to an increase in LID [37],
which can quantify the dimensionality of the local data manifold.
Therefore, we use LID tomeasure the adversarial degree,ΛA. Higher
LID values indicate that the local manifold around a node has
expanded beyond its natural low-dimensional manifold 𝑆 , signaling
the presence of adversarial perturbations. In this work, we use
the Maximum Likelihood Estimator (MLE) [2] to estimate the LID
value of graph nodes, providing a useful trade-off between statistical
efficiency and computational complexity [37]. Specifically, let Γ ∈
R𝑛 represent the vector of estimated LID values, where Γ𝑖 denotes
the LID value of node 𝑛𝑖 , which is estimated as follows:

Γ𝑖 = − ©­« 1
𝑘

𝑘∑︁
𝑗=1

log
𝑟 𝑗 (𝑛𝑖 )
𝑟𝑘 (𝑛𝑖 )

ª®¬
−1

. (3)

Here, 𝑟 𝑗 (𝑛𝑖 ) represents the distance between node 𝑛𝑖 and its 𝑗-th
nearest neighbor𝑛 𝑗

𝑖
. Based on the observation that the deeper layers

of a neural network reveal more linear and “unwrapped” manifolds
compared to the input space [16], we compute the 𝑟 𝑗 (𝑛𝑖 ) as the
Euclidean distance [12] between the hidden features of two nodes
in the last hidden layer of the trained GNN classifier 𝑐 (·)𝜽 . After
obtaining the LID values vector Γ, we can calculate ΛA = ΓΓ⊤.

However, in practice, using the non-isotropic transition matrix
in Eq. (1) requires the diffusion model to predict the previously
injected non-isotropic noise during the reverse process. This task
is more challenging because, unlike isotropic noise, non-isotropic
noise varies across different edges. As a result, the model must learn
to predict various noise distributions that are both spatially and
contextually dependent on the graph structure and node features.
This increases the difficulty of accurately estimating and remov-
ing the noise across graph regions, making the reverse denoising
process significantly more intricate. Moreover, training the model
to develop the ability to inject more noise into adversarial pertur-
bations and remove it during the reverse process relies on having
access to adversarial training data. However, in the evasion attack
settings, where the model lacks access to adversarial graphs during
training, its ability to achieve precise non-isotropic denoising is
limited. Inspired by [63], we introduce the following proposition:

Proposition 1. For each edge at time 𝑡 , the adjacency matrix is
updated as A(𝑡 )

𝑖 𝑗
= A𝑖 𝑗

(
Q̄′(𝑡 )A

)
𝑖 𝑗 , where the non-isotropic transition

matrix is
(
Q̄′(𝑡 )A

)
𝑖 𝑗 = 𝛼 (𝑡 ) I+(𝚲A)𝑖 𝑗 (1−𝛼)1m𝑇

A. There exists a unique

time 𝑡
(
A𝑖 𝑗

)
∈ [0,𝑇 ] such that

(
Q̄′ (𝑡 )A

)
𝑖 𝑗 ⇔

(
Q̄𝑡 (A𝑖 𝑗 )

A
)
𝑖 𝑗 , where:

𝑡
(
A𝑖 𝑗

)
=𝑇

(
2(1+𝑠)

𝜋
cos−1

(√︄
𝛼 (𝑡 )[

𝚲(A)𝑖 𝑗 (1 − 𝛼 (𝑡 ) ) + 𝛼 (𝑡 )
] )
−𝑠

)
. (4)

This proposition demonstrates that non-isotropic noise can be
mapped to isotropic noise by adjusting the diffusion times accord-
ingly. The detailed proof is provided in Appendix A.1. Building on
this proposition, we bypass the need to train a diffusion model that
can predict non-isotropic noise in the reverse denoising process.
Instead, we handle the need for non-isotropic noise injection by

applying isotropic noise uniformly to all edges, while varying the
total diffusion time for each edge. By controlling the diffusion time
for each edge, we can effectively manage the noise introduced to
each node, ensuring that the injected noise accounts for the ad-
versarial degree of each node. Let Â(𝑡 )′ represents the adjacency
matrix at time 𝑡 during the reverse denoising process, we have:

Â(𝑡 )′ = M(𝑡 ) ⊙ Â(𝑡 ) +
(
1 −M(𝑡 )

)
⊙ A(𝑡 ) , (5)

where Â(𝑡 ) is the adjacency matrix predicted by 𝜙 (·)𝜽 , A(𝑡 ) is the
noisy adjacency matrix obtained by A(𝑡 ) = AQ̄(𝑡 )A in the forward
diffusion process, and M(𝑡 ) is the binary mask matrix that indicates
which edges are being activated to undergo purification at time
step 𝑡 , achieving the non-isotropic diffusion. M(𝑡 )

𝑖 𝑗
is defined as:

M(𝑡 )
𝑖 𝑗

=

{
0, 𝑡 > 𝑡

(
A𝑖 𝑗

)
1, 𝑡 ≤ 𝑡

(
A𝑖 𝑗

) , (6)

where 𝑡
(
A𝑖 𝑗

)
is obtained according to Proposition 1. This implies

that clean nodes are not denoised until the specified time. In this
way, adversarial information receives sufficient denoising, while
valuable information is not subjected to excessive perturbations.

4.3 Graph Transfer Entropy Guided Denoising
Mechanism

In structured diffusion models [3], the reverse process involves
multiple rounds of sampling from the distribution, which introduces
inherent randomness. This randomness is useful for generating
diverse graph samples but creates challenges for our purification
goal. During the reverse denoising process, the diversity of diffusion
can result in purified graphs that, although free from adversarial
attacks and fit the clean distribution, deviate from the target graph
and have different ground truth labels. This presents a significant
challenge: we not only encourage the generated graph to be free
from adversarial information but also aim for it to retain the same
semantic information as the target clean graph.

To address this challenge, we introduce a Graph Transfer En-
tropy Guided Denoising Mechanism to minimize the generation
uncertainty in the reverse Markov chain ⟨𝐺 (𝑇−1) → 𝐺 (𝑇−2) →
· · · → 𝐺 (0) ⟩. Transfer entropy [40] is a non-parametric statistic
that quantifies the directed transfer of information between random
variables. The transfer entropy from 𝐺 (𝑡 ) to 𝐺 (𝑡−1) in the reverse
process by knowing the adversarial graph 𝐺adv, can be defined in
the form of conditional mutual information [56]:

𝐼
(
𝐺𝑡−1;𝐺adv |𝐺𝑡

)
= 𝐻

(
𝐺 (𝑡−1) |𝐺 (𝑡 )

)
− 𝐻

(
𝐺 (𝑡−1) |𝐺 (𝑡 ) ,𝐺adv

)
, (7)

where 𝐼 (·) represents mutual information and 𝐻 (·) is the Shannon
entropy. This measures the uncertainty reduced about future value
𝐺 (𝑡−1) conditioned on the value𝐺adv, given the knowledge of past
values 𝐺 (𝑡 ) . Given the unnoticeable characteristic of adversarial
attacks, which typically involve only small perturbations to critical
edges without altering the overall semantic information of most
nodes, the target clean graph has only minimal differences from
𝐺adv. Therefore, by increasing the 𝐼

(
𝐺𝑡−1;𝐺adv |𝐺𝑡

)
, we can miti-

gate the negative impacts of generative diversity on our goal and
guide the direction of the denoising process, ensuring that the gen-
eration towards the target clean graph. Specifically, the purified
graph will not only be free from adversarial attacks but will also
share the same semantic information as the target clean graph.
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However, calculating Eq. (7) requires estimating both the entropy
and joint entropy of graph data, which remains an open problem.

In this work, we propose a novel method for estimating graph
entropy and joint entropy. Let 𝑧𝑖 be the representations of node
𝑛𝑖 after message passing. By treating the set Z = {𝑧1, 𝑧2, . . . , 𝑧𝑛}
as a collection of variables that capture both feature and structure
information of the graph, we approximate it as containing the es-
sential information of the graph. From this perspective, the entropy
of the graph can be estimated using matrix-based Rényi 𝛼-order
entropy [62], which provides an insightful approach to calculating
the graph entropy. Specifically, let K denote the Gram matrix ob-
tained from evaluating a positive definite kernel 𝑘 on all pairs of 𝑧
with K𝑖 𝑗 = exp

(
− ∥𝑧𝑖−𝑧 𝑗 ∥

2

2𝜎2

)
, where 𝜎 is a hyperparameter selected

follows the Silverman’s rule [43], the graph entropy can then be
defined as the Rényi’s 𝛼-order entropy 𝑆𝛼 (·) [62]:

𝐻 (𝐺) = 𝑆𝛼
(
K̂
)
=

1
1 − 𝛼 log

[
𝑛∑︁
1

𝜆𝛼𝑖
(
K̂
) ]
, (8)

where K̂𝑖 𝑗 = 1
𝑛

K𝑖 𝑗√
K𝑖𝑖K𝑗 𝑗

, 𝜆𝑖
(
K̂
)
denotes the 𝑖-th eigenvalue of K̂,

and 𝛼 is a task-dependent parameter [62]. In the context of graph
learning, Eq. (8) captures the characteristics of the graph’s com-
munity structure: lower graph entropy signifies a more cohesive
and well-defined community structure, whereas higher graph en-
tropy indicates a more disordered and irregular arrangement. Fur-
ther details can be found in Appendix B. For a collection of 𝑚
graphs with their node representations after message passing

{
Z𝑖 =(

𝑧𝑖1, 𝑧
𝑖
2, · · · , 𝑧

𝑖
𝑛

)}𝑚
𝑖=1, the joint graph entropy is defined as [62]:

𝐻 (𝐺1,𝐺2, · · · ,𝐺𝑚) = 𝑆𝛼

(
K̂1 ⊙ K̂2 ⊙ · · · ⊙ K̂𝑚

tr
(
K̂1 ⊙ K̂2 ⊙ · · · ⊙ K̂𝑚

) ) , (9)

where K̂𝑖 is the normalized Gram matrix of 𝐺𝑖 , ⊙ represents the
Hadamard product, and tr(·) is the matrix trace. Further under-
standing of our calculation method can be found in Appendix B.

By combining Eq. (8) and Eq. (9), we can get the value of transfer
entropy 𝐼

(
𝐺 (𝑡−1) ;𝐺adv |𝐺 (𝑡 )

)
. The detailed derivation process is

provided in Appendix A.2. Intuitively, based on our entropy estima-
tion method, maximizing 𝐼

(
𝐺 (𝑡−1) ;𝐺adv |𝐺 (𝑡 )

)
will guide the node

entanglement of the generated𝐺 (𝑡−1) towards that of𝐺adv, prevent-
ing the reverse denoising process from deviating from the target
direction. To achieve this, we update the generation process using
the negative gradient of 𝐼

(
𝐺 (𝑡−1) ;𝐺adv |𝐺 (𝑡 )

)
concerning Â(𝑡−1) :

Â(𝑡−1) ← Â(𝑡−1) + 𝜆∇Â(𝑡−1) 𝐼
(
𝐺 (𝑡−1) ;𝐺adv |𝐺 (𝑡 )

)
, (10)

where 𝜆 is a hyperparameter controlling the guidance scale. Early
in the denoising process, maximizing the 𝐼

(
𝐺 (𝑡−1) ;𝐺adv |𝐺 (𝑡 )

)
will

steer the overall direction of the generation toward better purifica-
tion. However, as the graph becomes progressively cleaner, main-
taining the same level of guidance could cause the re-emergence
of adversarial information in the generated graph. Therefore, it is
essential to adjust the guidance scale dynamically over time. We
propose that the scale of guidance should depend on the ratio be-
tween the injected noise and the adversarial perturbation at each
time step. We update the guidance process in Eq. (10) as follows:

Â(𝑡−1) ← Â(𝑡−1) − 𝜆

1 − 𝛼 ∇Â(𝑡−1) 𝐼
(
𝐺 (𝑡−1) ;𝐺adv |𝐺 (𝑡 )

)
. (11)

4.4 Training Pipeline of DiffSP
Under evasion attacks, we train the proposed DiffSP and the classi-
fier with the overall objective L = Lcls + Ldiff, where:

Lcls = cross-entropy
(
𝑦,𝑦

)
, (12)

Ldiff = E
𝑞
(
A(0)

)E
𝑞
(
A𝑡 |A(0)

) [ − log𝑝𝜽
(
A(0) |A(𝑡 ) , 𝑡

) ]
. (13)

The classifier loss Lcls measures the difference between the pre-
dicted label𝑦 and the ground truth𝑦. The graph diffusionmodel loss
Ldiff accounts for the reverse denoising process [3]. Initially, we
train the classifier, followed by the independent training of the diffu-
sion model. Once both models are trained, they are used together to
purify adversarial graphs. The training pipeline of DiffSP is detailed
in Algorithm 1, and complexity analysis is in Appendix C.

Algorithm 1: Overall training pipeline of DiffSP.
Input: Evasion attacked graph 𝐺adv = (X,Aadv); Classifier

𝑐 (·)𝜽 ; Graph diffusion purification model 𝜙 (·)𝜽 ;
Hyperparameters 𝑇, 𝑘, 𝜆, 𝜎, 𝛼, 𝜂.

Output: Purified graph 𝐺 = (X, Â); Learned parameter 𝜽̂ .
1 Update by back-propagation 𝜽 ← 𝜽 − 𝜂∇𝜽L ;
// LID-Driven Non-Isotropic Diffusion

2 Assess node adversarial degree Γ based on LID← Eq. (3);
3 Calculate the edge adversarial degree 𝚲A = ΓΓ⊤;
4 Obtain the purification time of each edge 𝑡 (A𝑖 𝑗 ) ← Eq. (4);
5 for 𝑡 = 𝑇,𝑇 − 1, · · · , 1 do
6 Establish the purification mask M(𝑡−1) ← Eq. (6);
7 Execute one step denoising Â(𝑡−1) ← Eq. (5);

// Graph Transfer Entropy Guided Denoising

8 Calculate the graph transfer entropy← Eq. (7), (8), (9);
9 Guide the reverse denoising process← Eq. (11);

10 Obtain the Â(0) as the purified adjacency matrix Â.

5 Experiment
In this section, we conduct extensive experiments on graph and
node classification tasks to evaluate the robustness of DiffSP against
various adversarial evasion attacks. We first introduce the experi-
ment settings and then present the results.

5.1 Experiment Settings
Datasets.We assess the robustness of DiffSP in both graph classifi-
cation and node classification tasks. For graph classification, we use
MUTAG [24], IMDB-BINARY [24], IMDB-MULTI [24], REDDIT-
BINARY [24], and COLLAB [24] datasets. For node classification,
we test on Cora [59], CiteSeer [59], Polblogs [1], and Photo [41].
We apply an 8:1:1 random split for graph classification and a 1:1:8
random split for node classification. Details are in Appendix D.1.
Baselines. Due to the limited research on robust GNNs target-
ing graph classification under adversarial attacks, we compare
DiffSP with robust representation learning and structure learn-
ing methods designed for graph classification, including IDGL [9],
GraphCL [60], VIB-GSL [47], G-Mixup [20], SEP [53], MGRL [36],
SCGCN [68], HSP-SL [65], SubGattPool [4] DIR [55], and VGIB [61].
For node classification, we choose baselines from four categories:
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Table 1: Accuracy score (% ± standard deviation) of graph classification task on real-world datasets against adversarial attacks.
The best results are shown in bold type and the runner-ups are underlined. OOM indicates out-of-memory.

Dataset Attack GCN IDGL GraphCL VIB-GSL G-Mixup SEP MGRL SCGCN HSP-SL SubGattPool DIR VGIB DiffSP

MUTAG

GradArgmax 54.44±4.16 47.78±5.09 55.00±3.89 69.45±2.78 60.00±5.44 62.78±4.34 66.67±3.51 67.22±3.89 68.33±3.51 62.78±3.56 54.44±4.16 68.52±2.62 70.00±4.44
PR-BCD 51.66±5.00 65.00±6.11 59.44±6.11 62.77±4.34 71.11±3.33 55.00±9.44 56.67±4.16 63.89±2.78 65.56±2.22 65.56±5.98 52.77±6.21 57.78±3.68 72.77±6.31
CAMA 40.56±2.54 73.89±2.55 44.26±3.80 59.34±3.52 60.00±2.22 60.56±1.67 39.45±1.67 64.45±7.11 43.33±2.22 66.11±5.80 62.22±8.17 61.67±1.67 68.33±9.31
Average 48.89 62.22 52.90 64.04 63.70 59.45 54.26 65.19 59.07 64.82 56.48 62.66 70.18

IMDB-B

GradArgmax 62.79±1.08 59.20±1.08 65.19±0.87 68.90±1.45 50.89±0.20 72.00±1.55 64.00±0.77 68.60±1.50 62.50±0.80 61.00±1.10 68.10±1.04 63.80±0.87 76.00±1.15
PR-BCD 50.89±1.92 71.39±1.91 65.69±1.35 70.49±1.20 41.90±0.94 70.40±1.28 57.10±1.37 66.80±1.89 67.59±1.28 69.69±2.00 67.20±1.08 65.10±1.51 74.10±1.22
CAMA 52.19±1.33 68.40±0.66 59.19±0.75 64.50±1.20 57.40±0.48 69.20±0.98 54.30±1.35 67.60±1.50 55.99±1.41 67.60±2.11 61.10±1.45 56.70±1.62 75.90±0.99
Average 55.29 66.33 63.36 67.96 50.06 70.53 58.47 67.67 62.03 66.10 65.47 61.87 75.33

IMDB-M

GradArgmax 38.53±2.00 46.07±0.76 40.18±3.63 44.20±1.16 39.26±0.47 42.07±0.70 42.53±1.68 45.60±1.87 41.33±0.42 47.43±0.79 38.20±0.67 44.40±0.94 48.47±1.12
PR-BCD 35.00±1.31 46.00±1.46 43.53±1.12 45.60±1.69 36.11±0.63 35.27±0.70 38.07±2.24 42.47±1.66 37.13±0.43 38.97±1.64 37.33±0.79 43.11±1.75 47.00±1.44
CAMA 38.40±1.69 46.27±0.33 42.80±0.88 46.00±0.94 37.99±1.69 44.47±0.99 41.00±1.50 45.67±2.12 41.13±1.23 43.56±0.60 39.73±1.74 38.87±1.46 48.13±2.44
Average 37.31 46.11 42.17 45.27 37.79 40.60 40.53 44.58 39.86 43.32 38.42 42.13 47.87

REDDIT-B

GradArgmax 40.24±0.51
OOM

55.16±0.87 52.25±0.51 40.84±0.22 66.95±2.70 66.40±0.49 64.40±1.88 62.90±0.76 59.80±0.78 54.00±0.32 57.35±0.74 67.35±0.55
PR-BCD 51.82±1.09 51.96±0.57 57.06±1.55 55.05±1.55 54.85±1.94 51.65±0.32 52.05±1.78 64.20±1.94 66.00±3.29 56.15±1.29 54.05±0.35 67.63±0.42
CAMA 51.49±0.59 58.84±0.95 62.65±0.90 54.95±0.57 66.50±3.02 48.10±0.92 67.85±1.90 69.90±0.49 53.90±0.30 60.40±0.54 55.90±1.04 68.15±0.95
Average 47.85 OOM 55.32 57.32 50.28 62.77 55.38 61.43 65.67 59.90 56.85 55.77 67.71

COLLAB

GradArgmax 59.30±1.37 66.84±0.83 62.08±0.59 68.00±0.31 51.49±0.50 62.86±1.19 52.88±0.45 54.83±1.12 58.68±0.39 62.62±0.74 62.98±0.52 61.10±1.00 68.08±0.78
PR-BCD 46.74±0.70 67.00±1.13 57.40±1.67 66.52±0.88 56.08±1.19 53.38±1.90 44.34±1.46 49.46±1.17 53.00±0.60 61.02±0.97 64.30±0.48 57.04±0.67 67.56±0.69
CAMA 49.70±1.04 67.92±0.20 62.08±0.59 66.96±0.56 48.38±0.60 60.21±1.01 54.14±0.41 54.90±1.07 56.60±0.37 56.92±0.61 62.86±0.47 59.64±0.46 67.06±0.63
Average 51.91 67.25 60.52 67.16 51.98 58.82 50.45 53.06 56.09 60.19 63.38 59.26 67.57

1) Structure Learning Based methods, including GSR [67], GAR-
NET [11], and GUARD [29]; 2) Preprocessing Based methods, in-
cluding SVDGCN [13] and JaccardGCN [52]; 3) Robust Aggrega-
tion Based methods, including RGCN [70], Median-GCN [6], GN-
NGuard [64], SoftMedian [17], and ElasticGCN [34]; and 4) Adver-
sarial Training Based methods, represented by the GraphADV [58].
Details of these baselines can be found in Appendix D.2.
Adversarial Attack Settings. For graph classification, we evaluate
the performance against three strong evasion attacks: PR-BCD [17],
GradArgmax [10], and CAMA-subgraph [51]. For node classifi-
cation, we evaluate six evasion attacks: 1) Targeted Attacks: PR-
BCD [17], Nettack [71], and GR-BCD [17]; 2) Non-targeted Attacks:
MinMax [32], DICE [72], and Random [32]. Further details on the
attack methods and budget settings are provided in Appendix D.3.
Hyperparameter Settings. Details are provided in Appendix D.4.

5.2 Graph Classification Robustness
We evaluated the robustness of the graph classification task under
three adversarial attacks across five datasets. Since the choice of
classifier affects attack effectiveness, especially in graph classifica-
tion due to pooling operations, it is crucial to standardize the model
architecture. Simple changes like adding a linear layer or adjusting
pooling strategies can reduce the impact of attacks. To ensure a
fair comparison, we used a two-layer GCN with a linear layer and
mean pooling for both the baselines and our proposed DiffSP. Each
experiment was repeated 10 times, with results shown in Table 1.

Result. 1) DiffSP consistently outperforms all baselines under
the PR-BCD attack and achieves the highest average robustness
across all attacks on five datasets, with a notable 4.80% average
improvement on the IMDB-BINARY dataset. 2) It’s important to
note that while baselines may excel against specific attacks, they
often struggle with others. In contrast, DiffSP maintains consistent
robustness across both datasets and attacks, thanks to its ability
to learn clean distributions and purify adversarial graphs without
relying on specific priors about the dataset or attack strategies.

5.3 Node Classification Robustness
We evaluate the robustness of DiffSP on the node classification task
against three targeted and three non-targeted attacks across four
datasets, using the same other settings as in the graph classification
experiments. The results are presented in Table 2 and Table 3.

Result.We have two key observations: 1) DiffSP achieves the
best average performance across both targeted and non-targeted at-
tacks on all datasets, demonstrating its robust adaptability across di-
verse scenarios. 2) DiffSP performs particularly well under stronger
attacks but is less effective against weaker ones like Random and
DICE. This is because these attacks introduce numerous noisy edges,
many of which do not exhibit distinctly adversarial characteristics.
Instead, these edges are often plausible within the graph. Conse-
quently, these additional perturbations can mislead DiffSP, making
it harder to discern the correct information within the graph, lead-
ing the generated graph to deviate from the target clean graph.

5.4 Ablation Study
In this subsection, we analyze the effectiveness of DiffSP’s two core
components: 1) DiffSP (w/o LN), which excludes the LID-Driven
Non-Isotropic Diffusion Mechanism, applying uniform noise to all
nodes during the forward process; and 2) DiffSP (w/o TG), which
excludes the Graph Transfer Entropy Guided DenoisingMechanism,
thus removing guidance during the reverse process. We evaluate
these variants on the IMDB-BINARY and COLLAB datasets under
PR-BCD and GradArgmax attacks for graph classification and on
the Cora and CiteSeer dataset under PR-BCD and MinMax attacks
for node classification. The results are shown in Figure 3.

Result.DiffSP consistently outperforms the other variants.With-
out the LID-DrivenNon-Isotropic DiffusionMechanism, DiffSP (w/o
LN) over-perturbs the valuable parts of the graph leading to de-
graded performance. Similarly, DiffSP (w/o TG) without the Trans-
fer Entropy Guided DenoisingMechanism increases the uncertainty
of generation, causing deviations from the target clean graph. These
reduce the robustness against evasion attacks.
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Table 2: Accuracy score (% ± standard deviation) of node classification task on real-world datasets against targeted attack.

Dataset Attack GCN GSR GARNET GUARD SVD Jaccard RGCN MedianGCN GNNGuard SoftMedian ElasticGCN GraphAT DiffSP

Cora

PR-BCD 55.59±1.47 74.75±0.53 66.80±0.46 65.71±0.79 64.66±0.35 60.49±1.00 55.91±0.65 61.77±0.68 65.14±1.07 59.36±0.63 63.86±1.38 63.74±0.99 75.13±1.27
Nettack 49.25±5.28 67.25±5.20 62.95±4.75 52.50±4.08 70.25±0.79 56.75±2.65 47.50±1.67 76.25±5.17 76.00±5.03 67.50±4.25 65.25±3.22 73.50±9.14 77.75±3.62
GR-BCD 66.34±1.45 78.86±0.53 72.35±0.91 72.08±1.23 65.34±0.72 71.88±0.76 69.74±2.08 72.90±1.06 70.45±1.20 75.52±0.86 78.44±1.42 77.06±1.24 76.83±0.65
Average 57.06 73.62 67.37 63.43 66.75 63.04 57.72 70.31 70.53 67.46 69.18 71.43 76.57

CiteSeer

PR-BCD 45.06±1.83 63.33±0.60 55.75±1.71 54.48±0.96 59.61±0.51 48.72±1.20 41.08±1.55 49.72±0.71 49.78±2.33 49.20±0.89 48.79±1.41 61.54±1.01 64.35±0.89
Nettack 60.75±8.34 75.25±2.65 72.00±2.84 59.25±3.92 77.25±1.84 71.50±3.16 42.25±4.78 74.00±2.93 77.00±3.50 59.00±2.11 63.50±3.76 73.25±5.14 78.80±4.53
GR-BCD 50.56±2.17 65.50±0.57 57.04±2.57 54.74±1.82 60.40±0.59 59.83±1.17 44.82±1.60 55.17±1.31 58.88±3.38 55.65±0.93 60.37±2.91 62.25±1.25 65.63±1.30
Average 52.12 68.02 61.60 56.16 65.75 60.02 42.72 59.63 61.89 54.62 57.55 65.68 69.59

PolBlogs

PR-BCD 73.73±1.19 86.50±0.52 75.52±0.50 81.82±1.06 78.02±0.16 51.45±1.23 74.01±0.32 65.07±4.21 51.93±2.54 87.88±1.29 74.71±2.89 80.67±0.85 90.24±0.92
Nettack 74.75±4.92 75.75±1.69 83.75±3.77 76.75±3.13 80.75±1.69 47.75±6.06 76.50±1.75 46.00±2.11 50.24±6.52 83.50±3.37 86.00±4.12 83.95±2.72 84.55±5.90
GR-BCD 71.31±3.41 84.75±0.66 75.49±0.77 87.13±3.63 90.27±0.36 50.71±1.98 79.13±0.54 56.95±5.15 51.26±1.78 87.50±0.81 91.12±2.71 92.70±0.18 92.75±0.38
Average 73.26 82.33 78.25 81.90 83.01 49.97 76.55 56.01 51.14 86.29 83.94 85.77 89.18

Photo

PR-BCD 65.35±2.48 73.81±1.90 77.58±1.93 84.14±3.75 80.04±1.13 66.13±2.82 63.79±11.99 79.75±0.96 65.62±2.63 76.84±1.46 76.21±1.89 78.72±2.13 84.78±1.82
Nettack 83.70±5.16 83.75±4.12 88.00±3.07 84.25±2.65 82.75±5.45 84.00±5.43 75.50±3.07 86.50±3.16 87.50±5.77 88.75±1.32 83.00±3.29 87.25±12.30 87.75±4.32
GR-BCD 69.11±7.85 84.84±2.29 85.27±1.57 82.15±2.24 83.74±1.11 76.24±2.98 68.60±7.28 84.23±1.49 79.20±1.80 79.69±1.19 83.94±0.95 87.49±1.26 87.58±0.58
Average 72.72 80.80 83.62 83.51 82.18 75.46 69.30 83.49 77.44 81.76 81.05 84.48 86.70

Table 3: Accuracy score (% ± standard deviation) of node classification task on real-world datasets against non-targeted attack.

Dataset Attack GCN GSR GARNET GUARD SVD Jaccard RGCN MedianGCN GNNGuard SoftMedian ElasticGCN GraphAT DiffSP

Cora

MinMax 59.91±2.60 67.80±2.18 65.68±0.58 61.62±2.85 64.75±0.96 64.43±2.48 62.49±2.19 56.35±3.34 63.63±2.40 74.53±0.70 17.05±5.33 63.35±2.60 75.00±1.12
DICE 69.58±2.17 74.55±0.74 68.88±1.08 71.50±2.68 59.52±0.39 71.89±0.56 69.92±0.97 71.61±0.72 68.82±0.95 73.38±0.68 74.11±1.28 75.84±0.57 75.96±0.87

Random 70.43±2.22 77.37±0.88 75.63±0.93 74.96±0.51 62.54±0.65 73.74±0.60 72.74±1.00 74.31±0.95 68.33±1.72 77.52±0.65 74.06±3.87 77.39±0.91 77.63±0.80
Average 66.64 73.24 70.06 69.36 62.27 70.02 68.38 67.42 66.93 75.14 55.07 72.19 76.20

CiteSeer

MinMax 52.07±6.63 54.74±4.92 59.00±2.35 58.02±1.44 35.83±1.89 56.65±3.81 42.85±7.72 53.39±3.44 57.98±2.97 60.84±1.40 17.05±5.33 61.54±3.70 61.59±1.10
DICE 57.46±1.63 62.48±1.08 55.59±3.01 62.19±0.99 57.33±0.49 63.00±0.87 50.88±1.59 59.95±0.97 58.85±3.22 59.85±0.81 60.30±1.46 65.28±0.81 65.43±0.70

Random 56.19±3.08 64.01±1.08 56.34±3.70 62.47±0.88 54.54±0.62 64.20±0.46 50.13±1.95 60.60±0.81 61.51±3.32 58.66±1.49 58.00±3.61 64.94±1.12 66.78±0.54
Average 55.24 60.41 56.98 60.89 49.23 61.28 47.95 57.98 59.45 59.78 45.12 63.92 64.60

PolBlogs

MinMax 86.96±0.43 88.56±0.82 87.85±0.19 89.51±0.85 87.11±0.32 51.01±1.75 87.04±0.19 87.95±4.81 50.32±1.19 88.76±0.37 87.33±0.62 88.32±0.35 89.52±3.08
DICE 76.52±2.76 80.75±4.72 85.05±1.01 83.76±0.78 82.84±0.20 50.27±1.91 81.50±0.44 74.19±3.02 50.79±1.59 86.47±0.45 82.40±2.24 87.39±0.44 88.85±1.32

Random 83.24±5.81 87.81±1.03 83.42±1.59 87.48±1.51 85.59±0.31 51.02±1.75 85.46±0.40 83.57±2.71 50.28±1.13 90.35±0.56 49.50±2.20 90.50±0.56 92.61±0.93
Average 82.24 85.71 85.44 86.92 85.18 50.77 84.67 81.90 50.46 88.53 73.08 88.74 90.33

Photo

MinMax 73.12±3.17 76.36±3.09 81.75±1.91 75.89±3.28 69.92±5.50 74.20±3.94 87.04±0.19 67.43±4.31 71.44±6.66 85.23±2.12 8.56±3.24 81.70±2.48 88.51±0.61
DICE 84.60±1.17 82.52±1.66 85.43±0.92 82.92±1.27 76.42±1.39 83.20±1.44 81.57±0.44 82.83±2.45 83.87±1.19 84.72±0.90 81.86±3.61 87.22±1.13 83.52±1.19

Random 85.38±1.76 83.62±2.91 84.12±3.95 85.49±1.55 79.13±2.84 83.37±1.93 86.87±2.89 84.07±2.52 83.24±4.83 85.95±1.06 75.32±2.38 86.23±2.26 84.60±0.46
Average 81.03 80.83 83.77 81.43 75.16 80.26 85.16 78.11 79.52 85.30 55.25 85.05 85.54

5.5 Study on Cross-Dataset Generalization
In this section, we assess DiffSP’s ability to generalize across datasets.
The goal is to determine whether DiffSP effectively learns the pre-
dictive patterns of clean graphs. We train DiffSP on IMDB-BINARY
and use the trained model to purify graphs on IMDB-MULTI under
adversarial attacks, and vice versa. Results are shown in Table 4.

Result. As shown in Table 4, DiffSP trained on different datasets,
still demonstrates strong robustness compared to GCN trained and
tested on the same dataset. Furthermore, DiffSP exhibits only a
small performance gap compared to when it is trained and tested
on the same dataset directly. These results highlight DiffSP’s ability
to learn the underlying clean distribution of a category of data and
capture predictive patterns that generalize across diverse datasets.

5.6 Study on Purification Steps
We evaluate both classification accuracy and purification time as
the number of diffusion steps varies. For graph classification on the
IMDB-BINARY dataset, we adjust the diffusion steps from 1 to 9
and assess the performance under the GradArgMax, PR-BCD, and
CAMA-Subgraph attacks. Similarly, for node classification on the
Cora dataset, we vary the diffusion steps from 1 to 12, evaluating

Table 4: Accuracy (% ± standard deviation) across datasets.
(B→B) indicates the model is both trained and tested on
IMDB-BINARY, while (M→B) indicates the model is trained
on IMDB-MULTI but tested on IMDB-BINARY.

Attack GCN
(B→B)

DiffSP
(B→B)

DiffSP
(M→B)

GCN
(B→B)

DiffSP
(M→M)

DiffSP
(B→M)

PR-BCD 50.90±1.92 74.10±1.29 73.90±2.02 35.00±1.31 47.00±1.44 45.33±0.99
GradArgmax 62.80±1.08 76.00±1.15 75.00±1.70 38.53±2.00 48.47±1.12 47.60±1.41

CAMA 52.20±1.33 75.90±0.99 75.10±1.37 38.40±1.69 48.13±2.44 47.47±0.88

the results under the GR-BCD, PR-BCD, and MinMax attacks. The
results are shown in Figure 4.

Result.We observe that all-time step settings demonstrate the
ability to effectively purify adversarial graphs. At smaller time steps,
the overall trend shows increasing accuracy as the number of dif-
fusion steps increases. This is likely because fewer time steps do
not introduce enough noise to sufficiently suppress the adversarial
information in the graph. As the diffusion steps increase, we do not
see a significant decline in performance. This stability can be attrib-
uted to our LID-Driven Non-Isotropic Diffusion Mechanism, which
minimizes over-perturbation of the clean graph parts. Additionally,
we found that the time required for purifying increased linearly,
which aligns with our expectations.
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5.7 Study on Scale of Graph Transfer Entropy
To analyze the impact of the graph transfer entropy guidance scale
𝜆, we vary 𝜆 from 1e−1 to 1e5 and evaluate the performance. The
results are presented in Figure 5. For graph classification, exper-
iments are conducted on the IMDB-BINARY dataset under the
GradArgmax, PR-BCD, and CAMA-Subgraph attacks. For node
classification, experiments are performed on the Cora dataset un-
der the PR-BCD, GR-BCD, and MinMax attacks.

Result. The results show that smaller values of 𝜆 have minimal
effect on accuracy. However, they reduce the stability of the pu-
rification during the reverse denoising process, leading to a higher
standard deviation. This instability arises because the Graph Trans-
fer Entropy Guided Denoising Mechanism is less effective at reduc-
ing uncertainty and guiding the generation process when 𝜆 is too
small. On the other hand, very large 𝜆 values decrease accuracy
by overemphasizing guidance, causing the model to reintroduce
adversarial information into the generated graph structure.

5.8 Graph Purification Visualization
We visualize snapshots of different purification time steps on the
IMDB-BINARY dataset using NetworkX [19], as shown in Figure 6.

Result. The visualization process demonstrates that DiffSP has
mastered the ability to generate clean graphs. When faced with an
attacked graph, DiffSP first injects noise to obscure the adversarial
information, then applies its captured predictive patterns to remove
both the adversarial information and the noise during the reverse
denoising process, thereby achieving graph purification.

More experiments and analyses are provided in Appendix E.

6 Conclusion
Under adversarial evasion attacks, most existing methods rely on
heuristic priors about the dataset or attack strategies to enhance
robustness, which limits their effectiveness in real-world scenarios
where these priors not universally hold. To address this, we propose
a novel framework named DiffSP, which achieves prior-free struc-
ture purification to ensure robust graph learning across diverse
evasion attacks and datasets. DiffSP innovatively adopts the graph
diffusion model to learn the clean graph distribution during train-
ing and purify the attacked graph under the direction of captured
predictive patterns during the test phase. To precisely denoise the
attacked graph without disrupting the clean structure, we design an
LID-Driven Non-Isotropic Diffusion Mechanism to inject varying
levels of noise into each node based on their adversarial degree.
To align the semantic information between the generated graph
and the target clean graph, we design a Graph Transfer Entropy
Guided Denoising Mechanism to reduce generation uncertainty
and guide the generation direction. Extensive experimental results
demonstrate that DiffSP enhances the robustness of graph learn-
ing in various scenarios. In future work, we aim to incorporate
feature-based attack experiments and optimize the time complexity
of DiffSP. Additionally, we plan to improve our proposed graph
entropy tool and explore its application to address a wider range of
challenges in graph learning and other related tasks. Details about
the limitations and future directions can be found in Appendix F.
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A Proof and Derivation
A.1 Proof of Proposition 1
We first restate Propostition 1.

Proposition 1. For each edge at time 𝑡 , the adjacency matrix is
updated as A(𝑡 )

𝑖 𝑗
= A𝑖 𝑗

(
Q̄′(𝑡 )A

)
𝑖 𝑗 , where the non-isotropic transition

matrix is
(
Q̄′(𝑡 )A

)
𝑖 𝑗 = 𝛼 (𝑡 ) I+(𝚲A)𝑖 𝑗 (1−𝛼)1m𝑇

A. There exists a unique

time 𝑡
(
A𝑖 𝑗

)
∈ [0,𝑇 ] such that

(
Q̄′ (𝑡 )A

)
𝑖 𝑗 ⇔

(
Q̄𝑡 (A𝑖 𝑗 )

A
)
𝑖 𝑗 , where:

𝑡
(
A𝑖 𝑗

)
=𝑇

(
2(1+𝑠)

𝜋
cos−1

(√︄
𝛼 (𝑡 )[

𝚲(A)𝑖 𝑗 (1 − 𝛼 (𝑡 ) ) + 𝛼 (𝑡 )
] )
−𝑠

)
.

Proof. Q̄(𝑡 )A = 𝛼 (𝑡 ) I +
(
1 − 𝛼 (𝑡 )

)
1m⊤A indicates the degree of

noise added to the adjacency matrix A at time step 𝑡 . Let SNRQ̄A
(𝑡)

denotes the signal-to-noise of Q̄(𝑡 )A at time step 𝑡 , we have:

SNRQ̄A
(𝑡) = 1 − 𝛼 (𝑡 )

𝛼 (𝑡 )
. (A.1)

Such that: (
Q̄′(𝑡 )A

)
𝑖 𝑗 ⇔

(
Q̄𝑡 (A𝑖 𝑗 )

A
)
𝑖 𝑗 (A.2)

⇒SNRQ̄′A
(𝑡) = SNRQ̄A

(
𝑡 (A𝑖 𝑗 )

)
(A.3)

⇒
(ΛA)𝑖 𝑗

(
1 − 𝛼 (𝑡 )

)
𝛼 (𝑡 )

=
1 − 𝛼 (𝑡 ′ )

𝛼 (𝑡 ′ )
. (A.4)

We first prove that for each time step 𝑡 , there exists and only
exists one 𝑡 ′ that satisfies

(
Q̄′(𝑡 )A

)
𝑖 𝑗 ⇔

(
Q̄𝑡 (A𝑖 𝑗 )

A
)
𝑖 𝑗 . Left 𝑔(𝑡

′) =
(ΛA )𝑖 𝑗 (1−𝛼 (𝑡 ) )

𝛼 (𝑡 )
− 1−𝛼 (𝑡 ′ )

𝛼 (𝑡 ′ )
represents the function of 𝑡 ′ ∈ [0,𝑇 ].𝛼 (𝑡 ) =

cos2 ( 𝑡/𝑇+𝑠
1+𝑠 ·

𝜋
2
)
is the scheduler with a small constant 𝑠 . We have

𝛼 (0) = cos2 ( 0+𝑠
1+𝑠 ·

𝜋
2
)
≈ cos2 (0) = 0, and 𝛼 (𝑇 ) = cos2 ( 1+𝑠1+𝑠 ·

𝜋
2 ) =

cos2 ( 𝜋2 ) = 1. It is known that (1−𝛼) monotonically decreasing over
the domain, while 𝛼 monotonically increasing, with 1 − 𝛼 > 0 and
𝛼 > 0. Therefore, 𝑔(𝑡 ′) is a monotonic function over the domain.
So we achieve:

𝑔(0) =
(ΛA)𝑖 𝑗 (1 − 𝛼 (𝑡 ) )

𝛼 (𝑡 )
− 0 > 0. (A.5)

Having Λ(A)𝑖 𝑗 ∈ [0, 1] indicates the node adversarial score, we can
then derive the following:

𝑔(𝑇 ) =
(ΛA)𝑖 𝑗 (1 − 𝛼 (𝑡 ) )

𝛼 (𝑡 )
− 1 (A.6)

<
(1 − 𝛼 (𝑡 ) )

𝛼 (𝑡 )
− 1 (A.7)

< 0. (A.8)

Thus, we have 𝑔(0)𝑔(𝑇 ) < 0, and since 𝑔(𝑡 ′) is a monotonically
decreasing function, the intermediate value theorem guarantees
that there exists exactly one 𝑡 ′0 ∈ [0,𝑇 ] satisfies𝑔(𝑡

′
0) = 0. By setting

𝑔(𝑡 ′) = 0, we obtain:

Λ(A)𝑖 𝑗𝛼 (𝑡
′ ) (1 − 𝛼 (𝑡 ) ) = 𝛼 (𝑡 )

(
1 − 𝛼 (𝑡

′ ) ) (A.9)

⇒𝛼 (𝑡
′ ) [Λ(A)𝑖 𝑗 (1 − 𝛼 (𝑡 ) ) + 𝛼 (𝑡 ) ] = 𝛼 (𝑡 ) (A.10)

⇒𝛼 (𝑡
′ ) =

𝛼 (𝑡 )[
Λ(A)𝑖 𝑗 (1 − 𝛼 (𝑡 ) ) + 𝛼 (𝑡 )

] (A.11)

⇒𝑡 ′ = 𝑇

(
2(1 + 𝑠)

𝜋
cos−1

(√︄
𝛼 (𝑡 )[

Λ(A)𝑖 𝑗 (1 − 𝛼 (𝑡 ) ) + 𝛼 (𝑡 )
] )
− 𝑠

)
.

(A.12)
This concludes the proof of the proposition. □

A.2 Graph Transfer Entropy Derivation
We first restate Eq. (7).

𝐼
(
𝐺𝑡−1;𝐺adv |𝐺𝑡

)
= 𝐻

(
𝐺 (𝑡−1) |𝐺 (𝑡 )

)
− 𝐻

(
𝐺 (𝑡−1) |𝐺 (𝑡 ) ,𝐺adv

)
.

According to the definition of mutual information:

𝐼
(
𝐺𝑡−1;𝐺adv |𝐺𝑡

)
(A.13)

=𝐻
(
𝐺 (𝑡−1) |𝐺 (𝑡 )

)
− 𝐻

(
𝐺 (𝑡−1) |𝐺 (𝑡 ) ,𝐺adv

)
(A.14)

=
𝐻

(
𝐺 (𝑡−1) ,𝐺 (𝑡 )

)
𝐻

(
𝐺 (𝑡 )

) −
𝐻

(
𝐺 (𝑡−1) ,𝐺 (𝑡 ) ,𝐺adv

)
𝐻

(
𝐺 (𝑡 ) ,𝐺adv

) . (A.15)

Then combined with Eq. (9), we have:

𝐼
(
𝐺𝑡−1;𝐺adv |𝐺𝑡

)
(A.16)

=𝑆𝛼

(
K̂(𝑡−1) ⊙ K̂(𝑡 )

tr
(
K̂(𝑡−1) ⊙ K̂(𝑡 )

) ) /𝑆𝛼 (
K̂(𝑡 )

)
(A.17)

−𝑆𝛼

(
K̂(𝑡−1) ⊙ K̂(𝑡 ) ⊙ Kadv

tr
(
K̂(𝑡−1) ⊙ K̂(𝑡 ) ⊙ Kadv

) ) /𝑆𝛼 (
K̂(𝑡 ) ⊙ Kadv

tr
(
K̂(𝑡 ) ⊙ Kadv

) ) , (A.18)

where 𝑆𝛼 (·) is the graph entropy calculated according to Eq. (8)
and K̂(𝑡−1) , K̂(𝑡 ) ,Kadv is the Gram matrix of Â(𝑡−1) , Â(𝑡 ) ,Aadv.

B Detailed Understanding of the Proposed
Graph Transfer Entropy

In this subsection, we further elaborate on the understanding of our
graph entropy estimation method in Eq. (8). After message passing,
the set of node representations Z can be treated as variables that
capture both structural and node feature neighborhood information.
The normalized Gram matrix K̂, obtained by applying a positive
definite kernel on all pairs of 𝑧, measures the neighborhood simi-
larity between each pair of nodes, taking into account both node
features and neighboring structures. Let 𝜆𝑖 (K̂) be the eigenvalue of
K̂ with eigenvector x𝑖 . Then we have:

K̂2 = K̂
(
K̂x𝑖

)
= K̂

(
𝜆𝑖

(
K̂
)
x𝑖

)
= 𝜆𝑖

(
K̂
)
K̂x𝑖 = 𝜆2

𝑖

(
K̂
)
x𝑖 . (B.19)

Thus we achieve:
𝑛∑︁
𝑖=1

𝜆𝛼𝑖
(
K̂
)
=

𝑛∑︁
𝑖=1

𝜆𝑖
(
K̂𝛼 )

. (B.20)

Since the sum of all eigenvalues of a matrix is the trace of the matrix,
the graph entropy is determined by the trace of K̂𝛼 . By setting
𝛼 = 2, K̂2

𝑖𝑖
describes the similarity of node 𝑖 with all other nodes,

considering both node features and neighboring structures. When
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𝛼 = 2, the graph entropy can be expressed as: 𝐻 (𝐺) = − log tr
(
K̂2)

Therefore a lower graph entropy indicates a graph with a stronger
community structure, while a higher graph entropy suggests a
more chaotic graph structure with less regularity. So maximizing
the transfer entropy 𝐼

(
𝐺 (𝑡−1) ;𝐺adv |𝐺 (𝑡 )

)
actually encourage the

community structure of 𝐺 (𝑡−1) move towards 𝐺adv.

C Computational Complexity Analysis
The overall time complexity is O(𝑁 2), where𝑁 represents the num-
ber of nodes. Specifically, the graph diffusion purification model
has a complexity of O(𝑇𝑁 2). The LID-Driven Non-Isotropic Dif-
fusion Module has a complexity of O(𝑁 ), and the Transfer En-
tropy Guided Diffusion Module has a complexity of O(𝑁 2). There-
fore, the overall time complexity of the purification process is
O(𝑇𝑁 2) + O(𝑁 ) + O(𝑁 2) = O(𝑇𝑁 2). Since 𝑇 ≪ 𝑁 2 in our case,
the overall time complexity is O(𝑁 2). This is consistent with most
graph diffusion models [31, 39, 49] and robust GNNs [13, 26, 67].

D Experiment Details
D.1 Dataset Details
D.1.1 Graph Classification Datasets. We use the following five real-
world datasets to evaluate the robustness of DiffSPon the graph
classification task. All the dataset is obtained from PyG TUDataset2

• MUTAG [24] contains graphs of small molecules, with nodes as
atoms and edges representing chemical bonds. Labels indicate
molecular toxicity.

• IMDB-BINARY [24] consists of movie-related graphs, where
nodes are individuals, and edges represent relationships. Labels
classify the movie as Action or Romance.

• IMDB-MULTI [24] is similar, but edges connect nodes across
three genres: Comedy, Romance, and Sci-Fi, with corresponding
labels.

• REDDIT-BINARY [24] features user discussion graphs from
Reddit, with edges indicating responses. Graphs are labeled as
either question-answer or discussion-based.

• COLLAB [24] consists of collaboration networks, where nodes
are researchers, and edges represent collaborations. Labels iden-
tify the research field: High Energy Physics, Condensed Matter
Physics, or Astro Physics.

Statistics of the graph classification datasets are in Table D.1.

D.1.2 Node Classification Datasets. We use the following four real-
world datasets to evaluate the robustness of DiffSP on the node
classification task.
• Cora [59] is a citation network where nodes represent publi-

cations, with binary word vectors as features. Edges indicate
citation relationships.

• CiteSeer [59] is another citation network, similar to Cora, with
nodes representing research papers and edges denoting citation
links.

• PolBlogs [1] is a political blog network, where edges are hy-
perlinks between blogs. Nodes are labeled by political affiliation:
liberal or conservative.

2 https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.dat
asets.TUDataset.html

Table D.1: Statistics for graph classification datasets

Dataset #graph #avg. node #avg. edge #feature #class
MUTAG 188 17.9 39.6 7 2
IMDB-BINARY 100 19.8 193.1 / 2
IMDB-MULTI 1500 13.0 65.9 / 3
REDDIT-BINARY 2000 429.6 995.5 / 2
COLLAB 5000 74.5 4914.4 / 2

Table D.2: Statistics for node classification datasets

Dataset #node #edge #feature #class
Cora 2708 10556 1433 7
CiteSeer 3327 9104 3703 2
PolBlogs 1490 19025 / 2
Photo 7487 119043 745 8

• Photo [41] is a co-purchase network from Amazon, where nodes
are products, edges represent frequent co-purchases, and features
are bag-of-words from product reviews. Class labels indicate
product categories.

The statistics of the graph classification datasets are given in Ta-
ble D.2. Cora and CiteSeer is obtained from PyG Planetoid3. Pol-
Blogs is obtained from PyG PolBlogs4. Photo is obtained from PyG
Amazon5.

D.2 Description of Baselines
D.2.1 Graph Classification Baselines.

• IDGL [9] iteratively refines graph structures and embeddings
for robust learning in noisy graphs.

• GraphCL [60] maximizes agreement between augmented graph
views via contrastive loss.

• VIB-GSL [47] applies the Information Bottleneck to learn task-
relevant graph structures.

• G-Mixup [20] generates synthetic graphs by mixing graphons
to enhance generalization.

• SEP [53] minimizes structural entropy for optimized graph pool-
ing.

• MGRL [36] addresses semantic bias and confidence collapse
with instance-view consistency and class-view learning.
• SCGCN [68] ensures robustness with temporal and perturbation

stability.
• HGP-SL [65] combines pooling and structure learning to pre-

serve key substructures.
• SubGattPool [4] uses subgraph attention and hierarchical pool-

ing for robust classification.
• DIR [55] identifies stable causal structures via interventional

separation.
• VGIB [61] filters irrelevant nodes through noise injection for

improved subgraph recognition.
In our implementation, since the authors of MGRL and Sub-

GattPool have not provided open access to their code, we repro-
duced their methods based on the descriptions in their papers. The

3 https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.dat
asets.Planetoid.html#torch_geometric.datasets.Planetoid
4 https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.dat
asets.PolBlogs.html#torch_geometric.datasets.PolBlogs
5 https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.dat
asets.Amazon.html#torch_geometric.datasets.Amazon
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implementations of other baselines can be found at the following
URLs:

• IDGL: https://github.com/hugochan/IDGL
• GraphCL: https://github.com/Shen-Lab/GraphCL
• VIB-GSL: https://github.com/VIB-GSL/VIB-GSL
• G-Mixup: https://github.com/ahxt/g-mixup
• SEP: https://github.com/Wu-Junran/SEP
• SCGCN: https://github.com/DataLab-atom/temp
• HGP-SL: https://github.com/cszhangzhen/HGP-SL
• DIR: https://github.com/Wuyxin/DIR-GNN
• VGIB: https://github.com/Samyu0304/VGIB

D.2.2 Node Classification Baselines.

• GSR [67] refines graph structures via a pretrain-finetune pipeline
usingmulti-view contrastive learning to estimate and adjust edge
probabilities.

• GARNET [11] improves GNN robustness by using spectral em-
bedding and probabilistic models to filter adversarial edges.

• GUARD [29] creates a universal defensive patch to remove ad-
versarial edges, providing node-agnostic, scalable protection.

• SVDGCN [13] applies Truncated SVD preprocessing with a two-
layer GCN.

• JaccardGCN [52] drops dissimilar edges in the graph before
training a GCN.

• RGCN [70] models node features as Gaussian distributions, us-
ing variance-based attention for robustness.

• Median-GCN [6] improves robustness by using median aggre-
gation instead of the weighted mean.

• GNNGuard [64] defends GNNs by pruning suspicious edges
through neighbor importance estimation.

• SoftMedian [17] filters outliers by applying a weighted mean
based on distance from the median to defend against adversarial
noise.

• ElasticGNN [34] combines 1-based and 2-based smoothing, bal-
ancing global and local smoothness for better defense.

• GraphADV [58] boosts robustness through adversarial training
with gradient-based topology attacks.

The implementations of these node classification baselines can be
found at the following URLs:

• GSR: https://github.com/andyjzhao/WSDM23-GSR
• GARNET: https://github.com/cornell-zhang/GARNET
• GUARD: https://github.com/EdisonLeeeee/GUARD
• SVD: https://github.com/DSE-MSU/DeepRobust/blob/master/d

eeprobust/graph/defense/gcn_preprocess.py
• Jaccard: https://github.com/DSE-MSU/DeepRobust/blob/mast

er/deeprobust/graph/defense/gcn_preprocess.py
• RGCN: https://github.com/DSE-MSU/DeepRobust/blob/master

/deeprobust/graph/defense/r_gcn.py
• Median-GCN: https://github.com/DSE-MSU/DeepRobust/blob/

master/deeprobust/graph/defense/median_gcn.py
• GNNGuard: https://github.com/mims-harvard/GNNGuard
• SoftMedian: https://github.com/sigeisler/robustness_of_gnns_

at_scale
• ElasticGCN: https://github.com/lxiaorui/ElasticGNN
• GraphADT: https://github.com/KaidiXu/GCN_ADV_Train

D.3 Attack Setting Details
D.3.1 Graph Classification Attack Settings. For graph classification
attacks, we use the following three attack methods:
• GradArgmax [10] greedily selects edges for perturbation based

on the gradient of each node pair.
• PR-BCD [17] performs sparsity-aware first-order optimization

attacks using randomized block coordinate descent, enabling
efficient attacks on large-scale graphs.

• CAMA-Subgraph [51] enhances adversarial attacks in graph
classification by targeting critical subgraphs. It identifies top-
ranked nodes via a Class Activation Mapping (CAM) framework
and perturbs edges within these subgraphs to craft more precise
adversarial examples.

Note that, as the authors of CAMA-Subgraph have not provided
open access to their code, we reproduced their method based on
the descriptions in their papers. The reproduced code is available
in our repository. For the implementation of other baselines, we
used code from the following URLs:
• GradArgmax: https://github.com/xingchenwan/grabnel/blob/

main/src/attack/grad_arg_max.py
• PR-BCD: https://github.com/pyg-team/pytorch_geometric/blo

b/master/torch_geometric/contrib/nn/models/rbcd_attack.py
For all graphs in the dataset, we set 20% of the total number of

edges as the attack budget. We use a two-layer GCN followed by a
mean pooling layer and a linear layer as the surrogate model, which
shares the same architecture as the classifier for all baselines.

D.3.2 Node Classification Attack Settings. For targeted node classi-
fication attacks, we use the following three attack methods:
• PR-BCD [17] performs the same attack as in graph classification

but targets a different task.
• Nettack [71] incrementally modifies key edges or features to

maximize the difference in log probabilities between correct and
incorrect classes, while preserving the graph’s core properties,
such as the degree distribution.

• GR-BCD [17] is similar to PR-BCD but flips edges greedily based
on the gradient concerning the adjacency matrix.

The implements of these attacks can be found from the following
URLs:
• PR-BCD: https://github.com/pyg-team/pytorch_geometric/blo

b/master/torch_geometric/contrib/nn/models/rbcd_attack.py
• Nettack: https://github.com/DSE-MSU/DeepRobust/blob/mast

er/deeprobust/graph/targeted_attack/nettack.py
• GR-BCD: https://github.com/pyg-team/pytorch_geometric/blo

b/master/torch_geometric/contrib/nn/models/rbcd_attack.py
For all datasets, we set 10% of the total number of edges as the

attack budget for both PR-BCD and GR-BCD. For Nettack, following
the settings from deeprobust [32], we select 40 nodes from the test
set to attack with a budget of 5 edges and evaluate accuracy. These
40 nodes include 1) 10 nodes with the highest classification margin
(clearly correctly classified), 2) 10 nodes with the lowest margin
(still correctly classified), and 3) 20 randomly selected nodes.

For non-targeted node classification attacks, we use the following
three attack methods:
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Table D.3: Hyperparameter settings

Hyperparameter MT IB IM RB CL Cora CiteSeer PolBlogs Photo
𝒌 4 6 6 8 8 7 8 8 8
𝝀 1e1 1e2 1e3 1e3 1e3 1e3 1e3 1e3 1e3

purification steps 4 6 5 6 4 6 6 6 6

• MinMax [32] generates adversarial perturbations by solving a
min-max optimization. The outer step finds optimal edge pertur-
bations, while the inner step retrains the GNN to adapt.

• DICE [72] removes edges between same-class nodes and inserts
edges between nodes of different classes.

• Random [32] randomly adds edges to the input graph.
The implements of theses attacks can be found in the following
URLs:
• MinMax: https://github.com/DSE-MSU/DeepRobust/blob/mast

er/deeprobust/graph/global_attack/topology_attack.py
• DICE: https://github.com/DSE-MSU/DeepRobust/blob/master

/deeprobust/graph/global_attack/dice.py
• Random: https://github.com/DSE-MSU/DeepRobust/blob/mast

er/deeprobust/graph/global_attack/random_attack.py
For MinMax, DICE, and Random attacks, we set the attack budget
to 10%, 20%, and 30% of the total number of edges, respectively, for
all datasets.

D.4 Implement Details
For graph classification, we randomly split the dataset into 8:1:1 for
training, validation, and testing. For datasets without node features,
we use normalized node degrees as features, following the approach
in [47]. The testing set is subjected to adversarial attacks. Our clas-
sifier consists of a two-layer Graph Convolutional Network (GCN)
followed by a mean pooling layer and a linear layer. Both the diffu-
sion model of DiffSP and the classifier are trained on the training
graphs, with their performance evaluated on the attacked testing
set. For node classification, we use the transductive setting with a
1:1:8 random split for training, validation, and testing. The classi-
fier comprises a two-layer GCN followed by a linear layer. During
training, we sample batches of subgraphs, consistent with [31], and
apply adversarial attacks at test time. A learning rate of 0.0003 is
used for all datasets. We perform 10 random runs for each method
and report the average results. DiffSP is implemented in PyTorch
with 𝜎 = 2 and 𝛼 = 2. Additional important parameter values
are provided in Table D.3. More implement detailed information is
available at https://anonymous.4open.science/r/DiffSP.

All the experiments were conducted on an Ubuntu 20.04 LTS op-
erating system, utilizing an Intel Xeon Platinum 8358 CPU (2.60GHz)
with 1TB DDR4 RAM. For GPU computations, an NVIDIA Tesla
A100 SMX4 with 40GB of memory was used.

E Additional Results And Analysis
E.1 Further Analysis of Non-Isotropic Diffusion
We further analyze the core LID-Driven Non-Isotropic Diffusion
Mechanism of DiffSP. In Figure E.1, we compare the sum of edge
weights for clean edges during the reverse denoising process of
both non-isotropic and isotropic diffusion in the IMDB-BINARY

dataset under PR-BCD, GradArgmax, and CAMA-Subgraph attacks.
For clean edges, the weights are positive, whereas for adversarial
edges, the weights are negative. As shown in Figure E.1, the non-
isotropic diffusion process introduces more noise to adversarial
edges while minimizing the perturbations on the unaffected clean
structure. This results in a faster and more effective recovery of the
clean structure compared to isotropic diffusion.
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Figure E.1: Non-Isotropic Diffusion Study

E.2 Further Analysis of 𝑘 Selection
We further analyze the impact of selecting different values of 𝑘 in
the LID-Driven Non-Isotropic Diffusion module. We adjust 𝑘 within
3, 4, 5, 6, 7, 8 on the IMDB-BINARY dataset under PR-BCD attacks.
Figure E.2 shows the classification accuracy and the LID value ratio
between adversarial and clean nodes. The red line (LID ratio = 1)
indicates equal LID values for adversarial and clean nodes. All 𝑘
values demonstrate the ability to detect adversarial nodes. Addi-
tionally, better adversarial node detection leads to improved graph
classification accuracy, as clean nodes experience less perturbation
while adversarial nodes undergo more purification.
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Figure E.2: 𝑘 Selection Study

F Limitations and Future Discussions
Although DiffSP enhances the robustness of graph learning against
evasion attacks through prior-free structure purification, it still
has certain limitations, which we aim to address in future work.
Specifically: 1) In addition to structural disturbances, feature pertur-
bations are common in real-world scenarios. In future steps, we plan
to incorporate experiments on feature-based attacks and evaluate
robustness in link prediction tasks under evasion attacks. 2) Estimat-
ing the adversarial degree of nodes is crucial for non-isotropic noise
injection. We aim to develop a more accurate estimation method to
further enhance the robustness of graph learning. 3) We also plan
to optimize the time complexity of DiffSP to make it more efficient.

Furthermore, the graph entropy estimation approach proposed in
this work is a promising tool. We will explore ways to enhance the
properties encapsulated by graph entropy, such as designing better
Z to capture the more local structure and feature characteristics of
nodes. Additionally, we plan to utilize this graph entropy method
to further investigate graph properties across diverse scenarios,
facilitating more extensive research in this area.
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