
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Robust Graph Learning Against Adversarial Evasion Attacks via
Prior-Free Diffusion-Based Structure Purification

Anonymous submission
Abstract
Adversarial evasion attacks pose significant threats to graph learn-
ing, with lines of studies that have made progress in improving
the robustness of Graph Neural Networks (GNNs) for real-world
applications. However, existing works overly rely on priors of clean
graphs or attacking strategies, which are often heuristic and not
universally consistent. To achieve robust graph learning over differ-
ent types of evasion attacks and diverse datasets, we investigate this
non-trivial problem from a prior-free structure purification perspec-
tive. Specifically, we propose a novel Diffusion-based Structure
Purification framework named DiffSP 1, which creatively incorpo-
rates the graph diffusion model to learn intrinsic latent distributions
of clean graphs and purify the perturbed structures by removing
adversaries under the direction of the captured predictive patterns
without relying on any pre-defined priors. DiffSP is divided into the
forward diffusion process and the reverse denoising process, during
which structure purification is achieved. To avoid valuable infor-
mation loss during the forward process, we propose an LID-driven
non-isotropic diffusion mechanism to selectively inject controllable
noise anisotropically. To promote semantic alignment between the
clean graph and the purified graph generated during the reverse
process, we reduce the generation uncertainty by the proposed
graph transfer entropy guided denoising mechanism. Extensive ex-
periments on both graph and node classification tasks demonstrate
the superior robustness of DiffSP against evasion attacks.

Keywords
robust graph learning, adversarial evasion attack, graph structure
purification, graph diffuison

1 Introduction
Graphs are essential for modeling relationships in web domains like
social networks [69], recommendation systems [54], financial trans-
actions [7], etc. While Graph Neural Networks (GNNs) [28] have ad-
vanced this field by efficiently learning representations via message
passing, concerns about their robustness have arisen [26, 66, 70].
Studies show that GNNs are vulnerable to evasion adversarial at-
tacks for in-the-wild samples [46], particularly structural perturba-
tions [66, 71] where tiny changes to the graph topology can lead
to a sharp decrease in downstream task performance. Ensuring
robustness against evasion adversarial attacks is critical for the
reliable application of GNNs in real-world scenarios.

A wide range of works have been proposed to enhance graph
robustness, categorizing into: 1) Structure Learning Based meth-
ods [11, 22, 67] that focus on refining graph structures to mitigate
adversarial attacks; 2) Preprocessing Based methods [13, 52] that
focus on denoising graphs during preprocessing stage according to
predefined rules; 3) Robust Aggregation Based methods [6, 17, 48, 70]
that modify the aggregation process less sensitive to perturbations;
1Our code is available at https://anonymous.4open.science/r/DiffSP.

Existing Methods

Dataset or Attack Priors

...

Prior-Dependent
Limited Robustness

Our Proposed DiffSP

Prior-Free
Universal Robustness

Graph
Diffusion

Model

No Priors Required

clean
distribution homophily low-rank

= ×sim = 0.99
attacked

distribution

Figure 1: Comparison of existing robust GNNs and DiffSP.
Existing robust GNNs rely on priors that limit adaptability,
while DiffSP is prior-free with universal robustness.

and 4) Adversarial Training Based methods [58] that improve ro-
bustness by training GNNs with adversarial samples. However,
most of the aforementioned approaches heavily depend on prede-
fined priors regarding clean graphs or attack strategies [22]. For
example, the homophily prior [23, 25, 64, 67] (which assumes that
nodes with high feature similarity should be connected) and the
low-rank prior [13, 26, 35, 57] (which assumes that the adjacency
matrix of a robust graph should exhibit low-rank properties) are
among the most commonly used assumptions. Unfortunately, when
node features are unavailable, measuring the feature similarity be-
comes infeasible [22]. Additionally, imposing low-rank constraints
on the graph structure risks discarding information encoded in
the small singular values [11]. These prior-dependent limitations
significantly hinder the ability of existing methods to achieve the
universal robustness in graph learning across diverse scenarios.

To achieve prior-free robustness against adversarial evasion at-
tacks, we aim to adaptively learn the intrinsic latent distribution
from clean graphs, which captures the underlying correlation and
predictive patterns to enhance the robustness of GNNs when facing
unseen samples during the testing phase. Driven by this goal, we
investigate this non-trivial problem from a structure purification
perspective. We model the clean graph as a probability distribution
over nodes and edges, encapsulating their inherent invariant and
predictable properties [33]. Adversarial evasion attacks are then
interpreted as disruptions to this underlying distribution, causing
it to shift away from the clean distribution [30] as we observed.

To learn the latent distribution of clean graphs, the generative
diffusion models [39, 49] are an ideal choice, as shown in Figure 1.
Instead of relying on priors, they model the implicit distributions by
fitting parameters in a data-centric manner, remaining agnostic to
both the dataset and attack strategies. Unlike other generative mod-
els, the two-stage “noising-denoising” process of graph diffusion
models is particularly well-suited to our goal. When encountering
an attacked graph, the trained graph diffusion model gradually
injects noise to obscure adversarial information during the forward
diffusion process. In the reverse denoising process, step-wise de-
noising enables removing both the adversarial information and
injected noise, achieving prior-free graph purification. Notably, the
robustness gained from this framework is universally applicable,
significantly enhancing its generalization on unseen test graphs.

1

https://anonymous.4open.science/r/DiffSP

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anonymous et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Nevertheless, it still faces two significant challenges:
1) How can we accurately identify and remove adversarial per-

turbations without disrupting the unaffected portions of the graph?
Adversarial evasion attacks on graphs typically involve subtle per-
turbations that impact only a small subset of nodes and their associ-
ated edges, making these alterations difficult to detect [46]. During
the forward diffusion process, isotropic noise is injected uniformly
across the entire graph, subjecting each node to the same noise
level regardless of its individual characteristics. This indiscrimi-
nate noise affects both normal and adversarial nodes, leading to
excessive perturbations that can overmodify the graph. As a result,
essential information may be lost, complicating the recovery of the
original clean structure during the reverse denoising phase.

2) How can we ensure that the purified graph preserves the same
semantics as the target clean graph? The generation process in diffu-
sion models involves repeated sampling from the distribution, with
the inherent randomness promoting the creation of diverse graph
samples. While this diversity can be beneficial in other domains of
research, it poses a significant challenge to our task of graph purifi-
cation. Our objective is not to produce varied graph structures, but
to accurately recover the original clean graph. Consequently, even
if adversarial perturbations are successfully removed, there remains
a risk that the purified graph may still diverge from the ground
truth, failing to semanticly align with the target clean graph.

To address these challenges, we propose a novelDiffusion-based
Structure Purification framework named DiffSP, which creatively
incorporates the diffusion model to learn the intrinsic latent dis-
tributions of clean graphs and purify the perturbed structures by
removing adversaries under the direction of the captured predic-
tive patterns without relying on any pre-defined priors. To remove
adversaries while preserving the unaffected parts (▷ Challenge 1),
we propose an LID-driven non-isotropic diffusion mechanism to
selectively inject controllable noise anisotropically. By utilizing this
non-isotropic noise, DiffSP effectively drowns out adversarial per-
turbations with minimal impact on normal nodes, thus preserving
the valuable parts of the graph. To promote semantic alignment
between the clean graph and the purified graph generated during
the reverse process (▷ Challenge 2), we reduce the generation un-
certainty by the proposed graph transfer entropy guided denoising
mechanism. Specifically, since adversarial evasion attacks typically
affect only a small portion of the graph, we maximize the transfer
entropy between successive time steps during the reverse denoising
process. This reduces uncertainty, stabilizes the graph generation,
and guides the process toward achieving accurate graph purifica-
tion. The main contributions of this paper are as follows:

• We propose DiffSP, a novel framework for adversarial graph
purification against adversarial evasion attacks. To the best of
our knowledge, this is the first prior-free robust graph learning
framework by incorporating the graph diffusion model.

• We design an LID-driven non-isotropic forward diffusion process
combined with a transfer entropy guided reverse denoising pro-
cess, enabling precise removal of adversarial information while
guiding the generation process toward target graph purification.

• Extensive experiments on both graph and node classification
tasks on nine real-world datasets demonstrate the superior ro-
bustness of DiffSP against nine types of evasion attacks.

2 Related Work
Robust Graph Learning. Various efforts have been made to im-
prove the robustness of graph learning against adversarial attacks,
which can be grouped into four categories. 1) Structure Learning
Based methods [11, 22, 26, 67] adjust the graph structure by re-
moving unreliable edges or nodes to improve robustness. Pro-
GNN [26] uses low-rank and smoothness regularization, GAR-
NET [11] employs probabilistic models to learn a reduced-rank
topology, GSR [67] leverages contrastive learning for structure
refinement, and SG-GSR [22] addresses structural loss and node im-
balance. 2) Preprocessing Based methods [13, 52] modify the graph
before training. SVDGCN [13] retains top-k singular values from
the adjacency matrix, while JaccardGCN [52] prunes adversarial
edges based on Jaccard similarity. 3) Robust Aggregation Based meth-
ods [6, 17, 48, 70] improve the aggregation process to reduce sensi-
tivity to adversarial perturbations. PA-GNN [48] and RGCN [70]
use attention mechanisms to downweight adversarial edges, while
Median [6] and Soft-Median [17] apply robust aggregation strate-
gies to mitigate the effect of noisy features. 4) Adversarial Training
Based methods [58] incorporate adversarial examples during train-
ing using min-max optimization to enhance resistance to attacks.

Graph Diffusion Models. Diffusion models have achieved sig-
nificant success in graph generation tasks. Early works [27, 39]
extended stochastic differential equations to graphs similarly to im-
ages, but faced challenges due to the discrete nature of graphs.
Graph structured diffusion [18, 49] addressed this by adapting
D3PM [3], improving both the quality and efficiency of graph gen-
eration. In addition, HypDiff [15] introduced a geometrically-based
framework that preserves non-isotropic graph properties. To en-
hance scalability, EDGE [8] promotes sparsity by setting the empty
graph as the target distribution. GraphMaker [31] further improved
graph quality by applying asynchronous denoising to adjacency
matrix and node features. However, directly applying existing graph
diffusion models fails to achieve our goal because the noise injec-
tion process doesn’t consider varying levels of node perturbation.
This indiscriminate noise risks damaging clean nodes. Additionally,
the diversity of the graph diffusion model may lead to generated
graphs that fit the clean distribution but have semantic information
that differs from the target clean graph.

3 Notations and Problem Formulation
In this work, we focus on enhancing robustness against adversarial
evasion attacks with more threatening structural perturbation [71],
where attackers perturb graph structures during the test phase, after
the GNNs have been fully trained on clean datasets [5]. We repre-
sent a graph as𝐺 = (X,A), whereX is the node features andA is the
adjacency. An attacked graph is denoted as𝐺adv = (X,Aadv), where
Aadv is the perturbed adjacency matrix. Let 𝑐𝜽 be the GNN classifier
trained on clean graph samples, andDtest = {(𝑠 𝑗 , 𝑦 𝑗)}𝑀𝑗=1 represent
𝑀 attacked samples, where each 𝑠 𝑗 is a graph or a node, and𝑦 𝑗 is the
corresponding label. The attacker’s goal is to maximize the number
of misclassified samples, formulated as max

∑𝑀
𝑗=1 I(𝑐𝜽 (𝑠 𝑗) ≠ 𝑦 𝑗),

by perturbing up to 𝜖 edges, where 𝜖 is constrained by the attack
budget Δ. Our objective is to purify the attacked graph, reducing the
effects of adversarial perturbations, and reinforcing the robustness
of the GNNs to enhance the performance of downstream tasks.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Robust Graph Learning Against Adversarial Evasion Attacks via Prior-Free Diffusion-Based Structure Purification Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Reverse Denoising Process

 Forward Diffusion Process

Graph Transfer Entropy Guided Denoising

LID-Driven Non-Isotropic Diffusion

�� ��−1

�adv

�� ��−1

Activate �2

…

Activate �1, �3, . . .

Embeddings LID Estimate Adversarial Score Purification Time

�1: 3 time steps
�2: 5 time steps

�3: …

Add Noise

noisy
distribution

Evasion Attack

attacked
distribution

clean
distribution

Purified Graph

C
la
ss
ifi
er

En
co
de
r

Time � − 2 Time � − 1Time 0

Time �

�

Purify

Graphs

? ? ?

Attacked Graph

Graph / Node
Classification

Figure 2: The overall architecture of DiffSP. DiffSP first employs a diffusion model to learn the predictive patterns of clean
graphs. Then for the adversarial graph under evasion attack: 1) DiffSP injects non-isotropic noise by adjusting the diffusion time
for each edge based on its adversarial degree, determined by LID. 2) During the generation process, DiffSP reduces uncertainty
and guides the generation toward the target clean graph by maximizing the transfer entropy between two successive time steps.

4 DiffSP
In this section, we introduce our proposed framework named DiffSP
which purifies the graph structure based on the learned predictive
patterns without relying on any priors about the dataset or attack
strategies. The overall architecture of DiffSP is shown in Figure 2.
We first present our graph diffusion purificationmodel which serves
as the backbone of DiffSP, followed by detailing the two core com-
ponents: the LID-Driven Non-Isotropic Diffusion Mechanism and
the Graph Transfer Entropy Guided Denoising Mechanism.

4.1 Graph Diffusion Purification Model
For the backbone of DiffSP, we incorporate the structured diffu-
sion model [3, 31, 49], which has shown to better preserve graph
sparsity while reducing computational complexity [18, 49]. Since
we focus on the more threatening structural perturbations [71], we
exclude node features from the diffusion process and keep them
fixed. Specifically, the noise in the forward process is represented by
a series of transition matrices, i.e.,

[
Q(1)A ,Q(2)A , · · · ,Q(𝑇)A

]
, where

(Q(𝑡)A)𝑖 𝑗 denotes the probability of transitioning from state 𝑖 to state
𝑗 for an edge at time step 𝑡 . The forward Markov diffusion process
is defined as 𝑞

(
A(𝑡) |A(0)

)
= A(0)Q(1)A · · ·Q(𝑡−1)

A = A(0) Q̄(𝑡−1)
A .

Here we utilize the marginal distributions of the edge state [49] as
the noise prior distribution, thus Q̄(𝑡)A can be expressed as Q̄(𝑡)A =

𝛼 (𝑡) I +
(
1 − 𝛼 (𝑡)

)
1m⊤A, where mA is the marginal distribution of

edge states, 𝛼 (𝑡) = cos2 (𝑡/𝑇+𝑠
1+𝑠 ·

𝜋
2
)
follows the cosine schedule [38]

with a small constant 𝑠 , I is the identity matrix, and 1 is a vector of
ones. During the reverse denoising process, we use the transformer
convolution layer [42] as the denoising network 𝜙 (·)𝜽 , trained for
one-step denoising 𝑝𝜽

(
A(𝑡−1) |A(𝑡) , 𝑡

)
. We can train the denois-

ing network to predict A(0) instead of A(𝑡−1) since the posterior
𝑞
(
A(𝑡−1) |A(𝑡) ,A(0) , 𝑡

)
∝ A(𝑡) (Q(𝑡)A)

⊤ ⊙ A(0) Q̄(𝑡−1)
A has a closed

form expression [31, 44, 45], where ⊙ is the Hadamard product.
Once trained, we can generate graphs by iteratively applying 𝜙 (·)𝜽 .

4.2 LID-Driven Non-Isotropic Diffusion
Mechanism

Adversarial attacks typically target only a small subset of nodes
or edges to fool the GNNs while remaining undetected. Injecting
isotropic noise uniformly across all nodes, which means applying
the same level of noise to each node regardless of its individual
characteristics [50], poses a significant challenge. While isotropic
noise can effectively drown out adversarial perturbations during the
forward diffusion process, it inevitably compromises the clean and
unaffected portions of the graph. As a result, both the adversarial
and the valuable information are erased, making purification during
the reverse denoising process more difficult.

To remove the adversarial perturbations without losing valuable
information, we design a novel LID-Driven Non-Isotropic Diffusion
Mechanism. The core idea is to inject more noise into adversar-
ial nodes identified by Local Intrinsic Dimensionality (LID) while
minimizing disruption to clean nodes. In practice, the noise level
associated with different edges is distinct and independent. As a
result, the noise associated with each edge during the forward dif-
fusion process is represented by an independent transition matrix.
The adjacency matrix A(𝑡) at time step 𝑡 is then updated as follows:

A(𝑡)
𝑖 𝑗

= A𝑖 𝑗

(
Q̄(𝑡)A

)
𝑖 𝑗 , (1)(

Q̄(𝑡)A
)
𝑖 𝑗 = 𝛼 (𝑡) I +

(
ΛA

)
𝑖 𝑗

(
1 − 𝛼 (𝑡)

)
1m⊤A, (2)

where ΛA ∈ R𝑁×𝑁 represents the adversarial degree of each edge.
Based on the above analysis, locating the adversarial information

and determining the value of ΛA is crucial for effective adversarial
purification. Local Intrinsic Dimensionality (LID) [21, 37] measures
the complexity of data distributions around a reference point 𝑜
by assessing how quickly the number of data points increases as
the distance from the reference point expands. Let 𝐹 (𝑟) denote
the cumulative distribution function of the distances between the
reference point 𝑜 and other data points at distance 𝑟 and 𝐹 (𝑟) is

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anonymous et al.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

positive and differentiable at 𝑟 ≥ 0, the LID of point 𝑜 at distance 𝑟 is
defined as lim𝜖→0

ln 𝐹 ((1+𝜖)𝑟)/𝐹 (𝑟)
ln(1+𝜖) [21]. According to the manifold

hypothesis [14], each node 𝑛𝑖 in a graph lies on a low-dimensional
natural manifold 𝑆 . Adversarial nodes being perturbed will deviate
from this natural data manifold 𝑆 , leading to an increase in LID [37],
which can quantify the dimensionality of the local data manifold.
Therefore, we use LID tomeasure the adversarial degree,ΛA. Higher
LID values indicate that the local manifold around a node has
expanded beyond its natural low-dimensional manifold 𝑆 , signaling
the presence of adversarial perturbations. In this work, we use
the Maximum Likelihood Estimator (MLE) [2] to estimate the LID
value of graph nodes, providing a useful trade-off between statistical
efficiency and computational complexity [37]. Specifically, let Γ ∈
R𝑛 represent the vector of estimated LID values, where Γ𝑖 denotes
the LID value of node 𝑛𝑖 , which is estimated as follows:

Γ𝑖 = − ©­« 1
𝑘

𝑘∑︁
𝑗=1

log
𝑟 𝑗 (𝑛𝑖)
𝑟𝑘 (𝑛𝑖)

ª®¬
−1

. (3)

Here, 𝑟 𝑗 (𝑛𝑖) represents the distance between node 𝑛𝑖 and its 𝑗-th
nearest neighbor𝑛 𝑗

𝑖
. Based on the observation that the deeper layers

of a neural network reveal more linear and “unwrapped” manifolds
compared to the input space [16], we compute the 𝑟 𝑗 (𝑛𝑖) as the
Euclidean distance [12] between the hidden features of two nodes
in the last hidden layer of the trained GNN classifier 𝑐 (·)𝜽 . After
obtaining the LID values vector Γ, we can calculate ΛA = ΓΓ⊤.

However, in practice, using the non-isotropic transition matrix
in Eq. (1) requires the diffusion model to predict the previously
injected non-isotropic noise during the reverse process. This task
is more challenging because, unlike isotropic noise, non-isotropic
noise varies across different edges. As a result, the model must learn
to predict various noise distributions that are both spatially and
contextually dependent on the graph structure and node features.
This increases the difficulty of accurately estimating and remov-
ing the noise across graph regions, making the reverse denoising
process significantly more intricate. Moreover, training the model
to develop the ability to inject more noise into adversarial pertur-
bations and remove it during the reverse process relies on having
access to adversarial training data. However, in the evasion attack
settings, where the model lacks access to adversarial graphs during
training, its ability to achieve precise non-isotropic denoising is
limited. Inspired by [63], we introduce the following proposition:

Proposition 1. For each edge at time 𝑡 , the adjacency matrix is
updated as A(𝑡)

𝑖 𝑗
= A𝑖 𝑗

(
Q̄′(𝑡)A

)
𝑖 𝑗 , where the non-isotropic transition

matrix is
(
Q̄′(𝑡)A

)
𝑖 𝑗 = 𝛼 (𝑡) I+(𝚲A)𝑖 𝑗 (1−𝛼)1m𝑇

A. There exists a unique

time 𝑡
(
A𝑖 𝑗

)
∈ [0,𝑇] such that

(
Q̄′ (𝑡)A

)
𝑖 𝑗 ⇔

(
Q̄𝑡 (A𝑖 𝑗)

A
)
𝑖 𝑗 , where:

𝑡
(
A𝑖 𝑗

)
=𝑇

(
2(1+𝑠)

𝜋
cos−1

(√︄
𝛼 (𝑡)[

𝚲(A)𝑖 𝑗 (1 − 𝛼 (𝑡)) + 𝛼 (𝑡)
])
−𝑠

)
. (4)

This proposition demonstrates that non-isotropic noise can be
mapped to isotropic noise by adjusting the diffusion times accord-
ingly. The detailed proof is provided in Appendix A.1. Building on
this proposition, we bypass the need to train a diffusion model that
can predict non-isotropic noise in the reverse denoising process.
Instead, we handle the need for non-isotropic noise injection by

applying isotropic noise uniformly to all edges, while varying the
total diffusion time for each edge. By controlling the diffusion time
for each edge, we can effectively manage the noise introduced to
each node, ensuring that the injected noise accounts for the ad-
versarial degree of each node. Let Â(𝑡)′ represents the adjacency
matrix at time 𝑡 during the reverse denoising process, we have:

Â(𝑡)′ = M(𝑡) ⊙ Â(𝑡) +
(
1 −M(𝑡)

)
⊙ A(𝑡) , (5)

where Â(𝑡) is the adjacency matrix predicted by 𝜙 (·)𝜽 , A(𝑡) is the
noisy adjacency matrix obtained by A(𝑡) = AQ̄(𝑡)A in the forward
diffusion process, and M(𝑡) is the binary mask matrix that indicates
which edges are being activated to undergo purification at time
step 𝑡 , achieving the non-isotropic diffusion. M(𝑡)

𝑖 𝑗
is defined as:

M(𝑡)
𝑖 𝑗

=

{
0, 𝑡 > 𝑡

(
A𝑖 𝑗

)
1, 𝑡 ≤ 𝑡

(
A𝑖 𝑗

) , (6)

where 𝑡
(
A𝑖 𝑗

)
is obtained according to Proposition 1. This implies

that clean nodes are not denoised until the specified time. In this
way, adversarial information receives sufficient denoising, while
valuable information is not subjected to excessive perturbations.

4.3 Graph Transfer Entropy Guided Denoising
Mechanism

In structured diffusion models [3], the reverse process involves
multiple rounds of sampling from the distribution, which introduces
inherent randomness. This randomness is useful for generating
diverse graph samples but creates challenges for our purification
goal. During the reverse denoising process, the diversity of diffusion
can result in purified graphs that, although free from adversarial
attacks and fit the clean distribution, deviate from the target graph
and have different ground truth labels. This presents a significant
challenge: we not only encourage the generated graph to be free
from adversarial information but also aim for it to retain the same
semantic information as the target clean graph.

To address this challenge, we introduce a Graph Transfer En-
tropy Guided Denoising Mechanism to minimize the generation
uncertainty in the reverse Markov chain ⟨𝐺 (𝑇−1) → 𝐺 (𝑇−2) →
· · · → 𝐺 (0) ⟩. Transfer entropy [40] is a non-parametric statistic
that quantifies the directed transfer of information between random
variables. The transfer entropy from 𝐺 (𝑡) to 𝐺 (𝑡−1) in the reverse
process by knowing the adversarial graph 𝐺adv, can be defined in
the form of conditional mutual information [56]:

𝐼
(
𝐺𝑡−1;𝐺adv |𝐺𝑡

)
= 𝐻

(
𝐺 (𝑡−1) |𝐺 (𝑡)

)
− 𝐻

(
𝐺 (𝑡−1) |𝐺 (𝑡) ,𝐺adv

)
, (7)

where 𝐼 (·) represents mutual information and 𝐻 (·) is the Shannon
entropy. This measures the uncertainty reduced about future value
𝐺 (𝑡−1) conditioned on the value𝐺adv, given the knowledge of past
values 𝐺 (𝑡) . Given the unnoticeable characteristic of adversarial
attacks, which typically involve only small perturbations to critical
edges without altering the overall semantic information of most
nodes, the target clean graph has only minimal differences from
𝐺adv. Therefore, by increasing the 𝐼

(
𝐺𝑡−1;𝐺adv |𝐺𝑡

)
, we can miti-

gate the negative impacts of generative diversity on our goal and
guide the direction of the denoising process, ensuring that the gen-
eration towards the target clean graph. Specifically, the purified
graph will not only be free from adversarial attacks but will also
share the same semantic information as the target clean graph.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Robust Graph Learning Against Adversarial Evasion Attacks via Prior-Free Diffusion-Based Structure Purification Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

However, calculating Eq. (7) requires estimating both the entropy
and joint entropy of graph data, which remains an open problem.

In this work, we propose a novel method for estimating graph
entropy and joint entropy. Let 𝑧𝑖 be the representations of node
𝑛𝑖 after message passing. By treating the set Z = {𝑧1, 𝑧2, . . . , 𝑧𝑛}
as a collection of variables that capture both feature and structure
information of the graph, we approximate it as containing the es-
sential information of the graph. From this perspective, the entropy
of the graph can be estimated using matrix-based Rényi 𝛼-order
entropy [62], which provides an insightful approach to calculating
the graph entropy. Specifically, let K denote the Gram matrix ob-
tained from evaluating a positive definite kernel 𝑘 on all pairs of 𝑧
with K𝑖 𝑗 = exp

(
− ∥𝑧𝑖−𝑧 𝑗 ∥

2

2𝜎2

)
, where 𝜎 is a hyperparameter selected

follows the Silverman’s rule [43], the graph entropy can then be
defined as the Rényi’s 𝛼-order entropy 𝑆𝛼 (·) [62]:

𝐻 (𝐺) = 𝑆𝛼
(
K̂
)
=

1
1 − 𝛼 log

[
𝑛∑︁
1

𝜆𝛼𝑖
(
K̂
)]
, (8)

where K̂𝑖 𝑗 = 1
𝑛

K𝑖 𝑗√
K𝑖𝑖K𝑗 𝑗

, 𝜆𝑖
(
K̂
)
denotes the 𝑖-th eigenvalue of K̂,

and 𝛼 is a task-dependent parameter [62]. In the context of graph
learning, Eq. (8) captures the characteristics of the graph’s com-
munity structure: lower graph entropy signifies a more cohesive
and well-defined community structure, whereas higher graph en-
tropy indicates a more disordered and irregular arrangement. Fur-
ther details can be found in Appendix B. For a collection of 𝑚
graphs with their node representations after message passing

{
Z𝑖 =(

𝑧𝑖1, 𝑧
𝑖
2, · · · , 𝑧

𝑖
𝑛

)}𝑚
𝑖=1, the joint graph entropy is defined as [62]:

𝐻 (𝐺1,𝐺2, · · · ,𝐺𝑚) = 𝑆𝛼

(
K̂1 ⊙ K̂2 ⊙ · · · ⊙ K̂𝑚

tr
(
K̂1 ⊙ K̂2 ⊙ · · · ⊙ K̂𝑚

)) , (9)

where K̂𝑖 is the normalized Gram matrix of 𝐺𝑖 , ⊙ represents the
Hadamard product, and tr(·) is the matrix trace. Further under-
standing of our calculation method can be found in Appendix B.

By combining Eq. (8) and Eq. (9), we can get the value of transfer
entropy 𝐼

(
𝐺 (𝑡−1) ;𝐺adv |𝐺 (𝑡)

)
. The detailed derivation process is

provided in Appendix A.2. Intuitively, based on our entropy estima-
tion method, maximizing 𝐼

(
𝐺 (𝑡−1) ;𝐺adv |𝐺 (𝑡)

)
will guide the node

entanglement of the generated𝐺 (𝑡−1) towards that of𝐺adv, prevent-
ing the reverse denoising process from deviating from the target
direction. To achieve this, we update the generation process using
the negative gradient of 𝐼

(
𝐺 (𝑡−1) ;𝐺adv |𝐺 (𝑡)

)
concerning Â(𝑡−1) :

Â(𝑡−1) ← Â(𝑡−1) + 𝜆∇Â(𝑡−1) 𝐼
(
𝐺 (𝑡−1) ;𝐺adv |𝐺 (𝑡)

)
, (10)

where 𝜆 is a hyperparameter controlling the guidance scale. Early
in the denoising process, maximizing the 𝐼

(
𝐺 (𝑡−1) ;𝐺adv |𝐺 (𝑡)

)
will

steer the overall direction of the generation toward better purifica-
tion. However, as the graph becomes progressively cleaner, main-
taining the same level of guidance could cause the re-emergence
of adversarial information in the generated graph. Therefore, it is
essential to adjust the guidance scale dynamically over time. We
propose that the scale of guidance should depend on the ratio be-
tween the injected noise and the adversarial perturbation at each
time step. We update the guidance process in Eq. (10) as follows:

Â(𝑡−1) ← Â(𝑡−1) − 𝜆

1 − 𝛼 ∇Â(𝑡−1) 𝐼
(
𝐺 (𝑡−1) ;𝐺adv |𝐺 (𝑡)

)
. (11)

4.4 Training Pipeline of DiffSP
Under evasion attacks, we train the proposed DiffSP and the classi-
fier with the overall objective L = Lcls + Ldiff, where:

Lcls = cross-entropy
(
𝑦,𝑦

)
, (12)

Ldiff = E
𝑞
(
A(0)

)E
𝑞
(
A𝑡 |A(0)

) [− log𝑝𝜽
(
A(0) |A(𝑡) , 𝑡

)]
. (13)

The classifier loss Lcls measures the difference between the pre-
dicted label𝑦 and the ground truth𝑦. The graph diffusionmodel loss
Ldiff accounts for the reverse denoising process [3]. Initially, we
train the classifier, followed by the independent training of the diffu-
sion model. Once both models are trained, they are used together to
purify adversarial graphs. The training pipeline of DiffSP is detailed
in Algorithm 1, and complexity analysis is in Appendix C.

Algorithm 1: Overall training pipeline of DiffSP.
Input: Evasion attacked graph 𝐺adv = (X,Aadv); Classifier

𝑐 (·)𝜽 ; Graph diffusion purification model 𝜙 (·)𝜽 ;
Hyperparameters 𝑇, 𝑘, 𝜆, 𝜎, 𝛼, 𝜂.

Output: Purified graph 𝐺 = (X, Â); Learned parameter 𝜽̂ .
1 Update by back-propagation 𝜽 ← 𝜽 − 𝜂∇𝜽L ;
// LID-Driven Non-Isotropic Diffusion

2 Assess node adversarial degree Γ based on LID← Eq. (3);
3 Calculate the edge adversarial degree 𝚲A = ΓΓ⊤;
4 Obtain the purification time of each edge 𝑡 (A𝑖 𝑗) ← Eq. (4);
5 for 𝑡 = 𝑇,𝑇 − 1, · · · , 1 do
6 Establish the purification mask M(𝑡−1) ← Eq. (6);
7 Execute one step denoising Â(𝑡−1) ← Eq. (5);

// Graph Transfer Entropy Guided Denoising

8 Calculate the graph transfer entropy← Eq. (7), (8), (9);
9 Guide the reverse denoising process← Eq. (11);

10 Obtain the Â(0) as the purified adjacency matrix Â.

5 Experiment
In this section, we conduct extensive experiments on graph and
node classification tasks to evaluate the robustness of DiffSP against
various adversarial evasion attacks. We first introduce the experi-
ment settings and then present the results.

5.1 Experiment Settings
Datasets.We assess the robustness of DiffSP in both graph classifi-
cation and node classification tasks. For graph classification, we use
MUTAG [24], IMDB-BINARY [24], IMDB-MULTI [24], REDDIT-
BINARY [24], and COLLAB [24] datasets. For node classification,
we test on Cora [59], CiteSeer [59], Polblogs [1], and Photo [41].
We apply an 8:1:1 random split for graph classification and a 1:1:8
random split for node classification. Details are in Appendix D.1.
Baselines. Due to the limited research on robust GNNs target-
ing graph classification under adversarial attacks, we compare
DiffSP with robust representation learning and structure learn-
ing methods designed for graph classification, including IDGL [9],
GraphCL [60], VIB-GSL [47], G-Mixup [20], SEP [53], MGRL [36],
SCGCN [68], HSP-SL [65], SubGattPool [4] DIR [55], and VGIB [61].
For node classification, we choose baselines from four categories:

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anonymous et al.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 1: Accuracy score (% ± standard deviation) of graph classification task on real-world datasets against adversarial attacks.
The best results are shown in bold type and the runner-ups are underlined. OOM indicates out-of-memory.

Dataset Attack GCN IDGL GraphCL VIB-GSL G-Mixup SEP MGRL SCGCN HSP-SL SubGattPool DIR VGIB DiffSP

MUTAG

GradArgmax 54.44±4.16 47.78±5.09 55.00±3.89 69.45±2.78 60.00±5.44 62.78±4.34 66.67±3.51 67.22±3.89 68.33±3.51 62.78±3.56 54.44±4.16 68.52±2.62 70.00±4.44
PR-BCD 51.66±5.00 65.00±6.11 59.44±6.11 62.77±4.34 71.11±3.33 55.00±9.44 56.67±4.16 63.89±2.78 65.56±2.22 65.56±5.98 52.77±6.21 57.78±3.68 72.77±6.31
CAMA 40.56±2.54 73.89±2.55 44.26±3.80 59.34±3.52 60.00±2.22 60.56±1.67 39.45±1.67 64.45±7.11 43.33±2.22 66.11±5.80 62.22±8.17 61.67±1.67 68.33±9.31
Average 48.89 62.22 52.90 64.04 63.70 59.45 54.26 65.19 59.07 64.82 56.48 62.66 70.18

IMDB-B

GradArgmax 62.79±1.08 59.20±1.08 65.19±0.87 68.90±1.45 50.89±0.20 72.00±1.55 64.00±0.77 68.60±1.50 62.50±0.80 61.00±1.10 68.10±1.04 63.80±0.87 76.00±1.15
PR-BCD 50.89±1.92 71.39±1.91 65.69±1.35 70.49±1.20 41.90±0.94 70.40±1.28 57.10±1.37 66.80±1.89 67.59±1.28 69.69±2.00 67.20±1.08 65.10±1.51 74.10±1.22
CAMA 52.19±1.33 68.40±0.66 59.19±0.75 64.50±1.20 57.40±0.48 69.20±0.98 54.30±1.35 67.60±1.50 55.99±1.41 67.60±2.11 61.10±1.45 56.70±1.62 75.90±0.99
Average 55.29 66.33 63.36 67.96 50.06 70.53 58.47 67.67 62.03 66.10 65.47 61.87 75.33

IMDB-M

GradArgmax 38.53±2.00 46.07±0.76 40.18±3.63 44.20±1.16 39.26±0.47 42.07±0.70 42.53±1.68 45.60±1.87 41.33±0.42 47.43±0.79 38.20±0.67 44.40±0.94 48.47±1.12
PR-BCD 35.00±1.31 46.00±1.46 43.53±1.12 45.60±1.69 36.11±0.63 35.27±0.70 38.07±2.24 42.47±1.66 37.13±0.43 38.97±1.64 37.33±0.79 43.11±1.75 47.00±1.44
CAMA 38.40±1.69 46.27±0.33 42.80±0.88 46.00±0.94 37.99±1.69 44.47±0.99 41.00±1.50 45.67±2.12 41.13±1.23 43.56±0.60 39.73±1.74 38.87±1.46 48.13±2.44
Average 37.31 46.11 42.17 45.27 37.79 40.60 40.53 44.58 39.86 43.32 38.42 42.13 47.87

REDDIT-B

GradArgmax 40.24±0.51
OOM

55.16±0.87 52.25±0.51 40.84±0.22 66.95±2.70 66.40±0.49 64.40±1.88 62.90±0.76 59.80±0.78 54.00±0.32 57.35±0.74 67.35±0.55
PR-BCD 51.82±1.09 51.96±0.57 57.06±1.55 55.05±1.55 54.85±1.94 51.65±0.32 52.05±1.78 64.20±1.94 66.00±3.29 56.15±1.29 54.05±0.35 67.63±0.42
CAMA 51.49±0.59 58.84±0.95 62.65±0.90 54.95±0.57 66.50±3.02 48.10±0.92 67.85±1.90 69.90±0.49 53.90±0.30 60.40±0.54 55.90±1.04 68.15±0.95
Average 47.85 OOM 55.32 57.32 50.28 62.77 55.38 61.43 65.67 59.90 56.85 55.77 67.71

COLLAB

GradArgmax 59.30±1.37 66.84±0.83 62.08±0.59 68.00±0.31 51.49±0.50 62.86±1.19 52.88±0.45 54.83±1.12 58.68±0.39 62.62±0.74 62.98±0.52 61.10±1.00 68.08±0.78
PR-BCD 46.74±0.70 67.00±1.13 57.40±1.67 66.52±0.88 56.08±1.19 53.38±1.90 44.34±1.46 49.46±1.17 53.00±0.60 61.02±0.97 64.30±0.48 57.04±0.67 67.56±0.69
CAMA 49.70±1.04 67.92±0.20 62.08±0.59 66.96±0.56 48.38±0.60 60.21±1.01 54.14±0.41 54.90±1.07 56.60±0.37 56.92±0.61 62.86±0.47 59.64±0.46 67.06±0.63
Average 51.91 67.25 60.52 67.16 51.98 58.82 50.45 53.06 56.09 60.19 63.38 59.26 67.57

1) Structure Learning Based methods, including GSR [67], GAR-
NET [11], and GUARD [29]; 2) Preprocessing Based methods, in-
cluding SVDGCN [13] and JaccardGCN [52]; 3) Robust Aggrega-
tion Based methods, including RGCN [70], Median-GCN [6], GN-
NGuard [64], SoftMedian [17], and ElasticGCN [34]; and 4) Adver-
sarial Training Based methods, represented by the GraphADV [58].
Details of these baselines can be found in Appendix D.2.
Adversarial Attack Settings. For graph classification, we evaluate
the performance against three strong evasion attacks: PR-BCD [17],
GradArgmax [10], and CAMA-subgraph [51]. For node classifi-
cation, we evaluate six evasion attacks: 1) Targeted Attacks: PR-
BCD [17], Nettack [71], and GR-BCD [17]; 2) Non-targeted Attacks:
MinMax [32], DICE [72], and Random [32]. Further details on the
attack methods and budget settings are provided in Appendix D.3.
Hyperparameter Settings. Details are provided in Appendix D.4.

5.2 Graph Classification Robustness
We evaluated the robustness of the graph classification task under
three adversarial attacks across five datasets. Since the choice of
classifier affects attack effectiveness, especially in graph classifica-
tion due to pooling operations, it is crucial to standardize the model
architecture. Simple changes like adding a linear layer or adjusting
pooling strategies can reduce the impact of attacks. To ensure a
fair comparison, we used a two-layer GCN with a linear layer and
mean pooling for both the baselines and our proposed DiffSP. Each
experiment was repeated 10 times, with results shown in Table 1.

Result. 1) DiffSP consistently outperforms all baselines under
the PR-BCD attack and achieves the highest average robustness
across all attacks on five datasets, with a notable 4.80% average
improvement on the IMDB-BINARY dataset. 2) It’s important to
note that while baselines may excel against specific attacks, they
often struggle with others. In contrast, DiffSP maintains consistent
robustness across both datasets and attacks, thanks to its ability
to learn clean distributions and purify adversarial graphs without
relying on specific priors about the dataset or attack strategies.

5.3 Node Classification Robustness
We evaluate the robustness of DiffSP on the node classification task
against three targeted and three non-targeted attacks across four
datasets, using the same other settings as in the graph classification
experiments. The results are presented in Table 2 and Table 3.

Result.We have two key observations: 1) DiffSP achieves the
best average performance across both targeted and non-targeted at-
tacks on all datasets, demonstrating its robust adaptability across di-
verse scenarios. 2) DiffSP performs particularly well under stronger
attacks but is less effective against weaker ones like Random and
DICE. This is because these attacks introduce numerous noisy edges,
many of which do not exhibit distinctly adversarial characteristics.
Instead, these edges are often plausible within the graph. Conse-
quently, these additional perturbations can mislead DiffSP, making
it harder to discern the correct information within the graph, lead-
ing the generated graph to deviate from the target clean graph.

5.4 Ablation Study
In this subsection, we analyze the effectiveness of DiffSP’s two core
components: 1) DiffSP (w/o LN), which excludes the LID-Driven
Non-Isotropic Diffusion Mechanism, applying uniform noise to all
nodes during the forward process; and 2) DiffSP (w/o TG), which
excludes the Graph Transfer Entropy Guided DenoisingMechanism,
thus removing guidance during the reverse process. We evaluate
these variants on the IMDB-BINARY and COLLAB datasets under
PR-BCD and GradArgmax attacks for graph classification and on
the Cora and CiteSeer dataset under PR-BCD and MinMax attacks
for node classification. The results are shown in Figure 3.

Result.DiffSP consistently outperforms the other variants.With-
out the LID-DrivenNon-Isotropic DiffusionMechanism, DiffSP (w/o
LN) over-perturbs the valuable parts of the graph leading to de-
graded performance. Similarly, DiffSP (w/o TG) without the Trans-
fer Entropy Guided DenoisingMechanism increases the uncertainty
of generation, causing deviations from the target clean graph. These
reduce the robustness against evasion attacks.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Robust Graph Learning Against Adversarial Evasion Attacks via Prior-Free Diffusion-Based Structure Purification Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 2: Accuracy score (% ± standard deviation) of node classification task on real-world datasets against targeted attack.

Dataset Attack GCN GSR GARNET GUARD SVD Jaccard RGCN MedianGCN GNNGuard SoftMedian ElasticGCN GraphAT DiffSP

Cora

PR-BCD 55.59±1.47 74.75±0.53 66.80±0.46 65.71±0.79 64.66±0.35 60.49±1.00 55.91±0.65 61.77±0.68 65.14±1.07 59.36±0.63 63.86±1.38 63.74±0.99 75.13±1.27
Nettack 49.25±5.28 67.25±5.20 62.95±4.75 52.50±4.08 70.25±0.79 56.75±2.65 47.50±1.67 76.25±5.17 76.00±5.03 67.50±4.25 65.25±3.22 73.50±9.14 77.75±3.62
GR-BCD 66.34±1.45 78.86±0.53 72.35±0.91 72.08±1.23 65.34±0.72 71.88±0.76 69.74±2.08 72.90±1.06 70.45±1.20 75.52±0.86 78.44±1.42 77.06±1.24 76.83±0.65
Average 57.06 73.62 67.37 63.43 66.75 63.04 57.72 70.31 70.53 67.46 69.18 71.43 76.57

CiteSeer

PR-BCD 45.06±1.83 63.33±0.60 55.75±1.71 54.48±0.96 59.61±0.51 48.72±1.20 41.08±1.55 49.72±0.71 49.78±2.33 49.20±0.89 48.79±1.41 61.54±1.01 64.35±0.89
Nettack 60.75±8.34 75.25±2.65 72.00±2.84 59.25±3.92 77.25±1.84 71.50±3.16 42.25±4.78 74.00±2.93 77.00±3.50 59.00±2.11 63.50±3.76 73.25±5.14 78.80±4.53
GR-BCD 50.56±2.17 65.50±0.57 57.04±2.57 54.74±1.82 60.40±0.59 59.83±1.17 44.82±1.60 55.17±1.31 58.88±3.38 55.65±0.93 60.37±2.91 62.25±1.25 65.63±1.30
Average 52.12 68.02 61.60 56.16 65.75 60.02 42.72 59.63 61.89 54.62 57.55 65.68 69.59

PolBlogs

PR-BCD 73.73±1.19 86.50±0.52 75.52±0.50 81.82±1.06 78.02±0.16 51.45±1.23 74.01±0.32 65.07±4.21 51.93±2.54 87.88±1.29 74.71±2.89 80.67±0.85 90.24±0.92
Nettack 74.75±4.92 75.75±1.69 83.75±3.77 76.75±3.13 80.75±1.69 47.75±6.06 76.50±1.75 46.00±2.11 50.24±6.52 83.50±3.37 86.00±4.12 83.95±2.72 84.55±5.90
GR-BCD 71.31±3.41 84.75±0.66 75.49±0.77 87.13±3.63 90.27±0.36 50.71±1.98 79.13±0.54 56.95±5.15 51.26±1.78 87.50±0.81 91.12±2.71 92.70±0.18 92.75±0.38
Average 73.26 82.33 78.25 81.90 83.01 49.97 76.55 56.01 51.14 86.29 83.94 85.77 89.18

Photo

PR-BCD 65.35±2.48 73.81±1.90 77.58±1.93 84.14±3.75 80.04±1.13 66.13±2.82 63.79±11.99 79.75±0.96 65.62±2.63 76.84±1.46 76.21±1.89 78.72±2.13 84.78±1.82
Nettack 83.70±5.16 83.75±4.12 88.00±3.07 84.25±2.65 82.75±5.45 84.00±5.43 75.50±3.07 86.50±3.16 87.50±5.77 88.75±1.32 83.00±3.29 87.25±12.30 87.75±4.32
GR-BCD 69.11±7.85 84.84±2.29 85.27±1.57 82.15±2.24 83.74±1.11 76.24±2.98 68.60±7.28 84.23±1.49 79.20±1.80 79.69±1.19 83.94±0.95 87.49±1.26 87.58±0.58
Average 72.72 80.80 83.62 83.51 82.18 75.46 69.30 83.49 77.44 81.76 81.05 84.48 86.70

Table 3: Accuracy score (% ± standard deviation) of node classification task on real-world datasets against non-targeted attack.

Dataset Attack GCN GSR GARNET GUARD SVD Jaccard RGCN MedianGCN GNNGuard SoftMedian ElasticGCN GraphAT DiffSP

Cora

MinMax 59.91±2.60 67.80±2.18 65.68±0.58 61.62±2.85 64.75±0.96 64.43±2.48 62.49±2.19 56.35±3.34 63.63±2.40 74.53±0.70 17.05±5.33 63.35±2.60 75.00±1.12
DICE 69.58±2.17 74.55±0.74 68.88±1.08 71.50±2.68 59.52±0.39 71.89±0.56 69.92±0.97 71.61±0.72 68.82±0.95 73.38±0.68 74.11±1.28 75.84±0.57 75.96±0.87

Random 70.43±2.22 77.37±0.88 75.63±0.93 74.96±0.51 62.54±0.65 73.74±0.60 72.74±1.00 74.31±0.95 68.33±1.72 77.52±0.65 74.06±3.87 77.39±0.91 77.63±0.80
Average 66.64 73.24 70.06 69.36 62.27 70.02 68.38 67.42 66.93 75.14 55.07 72.19 76.20

CiteSeer

MinMax 52.07±6.63 54.74±4.92 59.00±2.35 58.02±1.44 35.83±1.89 56.65±3.81 42.85±7.72 53.39±3.44 57.98±2.97 60.84±1.40 17.05±5.33 61.54±3.70 61.59±1.10
DICE 57.46±1.63 62.48±1.08 55.59±3.01 62.19±0.99 57.33±0.49 63.00±0.87 50.88±1.59 59.95±0.97 58.85±3.22 59.85±0.81 60.30±1.46 65.28±0.81 65.43±0.70

Random 56.19±3.08 64.01±1.08 56.34±3.70 62.47±0.88 54.54±0.62 64.20±0.46 50.13±1.95 60.60±0.81 61.51±3.32 58.66±1.49 58.00±3.61 64.94±1.12 66.78±0.54
Average 55.24 60.41 56.98 60.89 49.23 61.28 47.95 57.98 59.45 59.78 45.12 63.92 64.60

PolBlogs

MinMax 86.96±0.43 88.56±0.82 87.85±0.19 89.51±0.85 87.11±0.32 51.01±1.75 87.04±0.19 87.95±4.81 50.32±1.19 88.76±0.37 87.33±0.62 88.32±0.35 89.52±3.08
DICE 76.52±2.76 80.75±4.72 85.05±1.01 83.76±0.78 82.84±0.20 50.27±1.91 81.50±0.44 74.19±3.02 50.79±1.59 86.47±0.45 82.40±2.24 87.39±0.44 88.85±1.32

Random 83.24±5.81 87.81±1.03 83.42±1.59 87.48±1.51 85.59±0.31 51.02±1.75 85.46±0.40 83.57±2.71 50.28±1.13 90.35±0.56 49.50±2.20 90.50±0.56 92.61±0.93
Average 82.24 85.71 85.44 86.92 85.18 50.77 84.67 81.90 50.46 88.53 73.08 88.74 90.33

Photo

MinMax 73.12±3.17 76.36±3.09 81.75±1.91 75.89±3.28 69.92±5.50 74.20±3.94 87.04±0.19 67.43±4.31 71.44±6.66 85.23±2.12 8.56±3.24 81.70±2.48 88.51±0.61
DICE 84.60±1.17 82.52±1.66 85.43±0.92 82.92±1.27 76.42±1.39 83.20±1.44 81.57±0.44 82.83±2.45 83.87±1.19 84.72±0.90 81.86±3.61 87.22±1.13 83.52±1.19

Random 85.38±1.76 83.62±2.91 84.12±3.95 85.49±1.55 79.13±2.84 83.37±1.93 86.87±2.89 84.07±2.52 83.24±4.83 85.95±1.06 75.32±2.38 86.23±2.26 84.60±0.46
Average 81.03 80.83 83.77 81.43 75.16 80.26 85.16 78.11 79.52 85.30 55.25 85.05 85.54

5.5 Study on Cross-Dataset Generalization
In this section, we assess DiffSP’s ability to generalize across datasets.
The goal is to determine whether DiffSP effectively learns the pre-
dictive patterns of clean graphs. We train DiffSP on IMDB-BINARY
and use the trained model to purify graphs on IMDB-MULTI under
adversarial attacks, and vice versa. Results are shown in Table 4.

Result. As shown in Table 4, DiffSP trained on different datasets,
still demonstrates strong robustness compared to GCN trained and
tested on the same dataset. Furthermore, DiffSP exhibits only a
small performance gap compared to when it is trained and tested
on the same dataset directly. These results highlight DiffSP’s ability
to learn the underlying clean distribution of a category of data and
capture predictive patterns that generalize across diverse datasets.

5.6 Study on Purification Steps
We evaluate both classification accuracy and purification time as
the number of diffusion steps varies. For graph classification on the
IMDB-BINARY dataset, we adjust the diffusion steps from 1 to 9
and assess the performance under the GradArgMax, PR-BCD, and
CAMA-Subgraph attacks. Similarly, for node classification on the
Cora dataset, we vary the diffusion steps from 1 to 12, evaluating

Table 4: Accuracy (% ± standard deviation) across datasets.
(B→B) indicates the model is both trained and tested on
IMDB-BINARY, while (M→B) indicates the model is trained
on IMDB-MULTI but tested on IMDB-BINARY.

Attack GCN
(B→B)

DiffSP
(B→B)

DiffSP
(M→B)

GCN
(B→B)

DiffSP
(M→M)

DiffSP
(B→M)

PR-BCD 50.90±1.92 74.10±1.29 73.90±2.02 35.00±1.31 47.00±1.44 45.33±0.99
GradArgmax 62.80±1.08 76.00±1.15 75.00±1.70 38.53±2.00 48.47±1.12 47.60±1.41

CAMA 52.20±1.33 75.90±0.99 75.10±1.37 38.40±1.69 48.13±2.44 47.47±0.88

the results under the GR-BCD, PR-BCD, and MinMax attacks. The
results are shown in Figure 4.

Result.We observe that all-time step settings demonstrate the
ability to effectively purify adversarial graphs. At smaller time steps,
the overall trend shows increasing accuracy as the number of dif-
fusion steps increases. This is likely because fewer time steps do
not introduce enough noise to sufficiently suppress the adversarial
information in the graph. As the diffusion steps increase, we do not
see a significant decline in performance. This stability can be attrib-
uted to our LID-Driven Non-Isotropic Diffusion Mechanism, which
minimizes over-perturbation of the clean graph parts. Additionally,
we found that the time required for purifying increased linearly,
which aligns with our expectations.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anonymous et al.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

PR-BCD GradArgmax CAMA
70

72

74

76

78

A
cc

ur
ac

y
(%

)

DiffSP
DiffSP (w/o TG)

DiffSP (w/o LN)

PR-BCD GR-BCD Minmax
70

72

74

76

78

A
cc

ur
ac

y
(%

)

DiffSP
DiffSP (w/o TG)

DiffSP (w/o LN)

Graph Classification (IMDB-B)

Node Classification (Cora)

Figure 3: Ablation Study

1 2 3 4 5 6 7 8 9
Time Steps

0
2
4
6
8

10
12
14
16
18
20

Pu
rif

ic
at

io
n

Ti
m

e
(s

) Purification Time

1 2 3 4 5 6 7 8 9 10 11 12
Time Steps

0

1

2

3

4

5

Pu
rif

ic
at

io
n

Ti
m

e
(s

) Purification Time

66
68
70
72
74
76
78
80

A
cc

ur
ac

y
(%

)

GradArgmax
PR-BCD

CAMA-Subgraph

66
68
70
72
74
76
78
80

A
cc

ur
ac

y
(%

)

GR-BCD
PR-BCD

MinMax

Graph Classification (IMDB-B)

Node Classification (Cora)

Figure 4: Purification Steps Study

1e-1 1e0 1e1 1e2 1e3 1e4 1e5

74

76

78

GradArgmax

1e-1 1e0 1e1 1e2 1e3 1e4 1e5

72

74

76

PR-BCD

1e-1 1e0 1e1 1e2 1e3 1e4 1e5
72

74

76

78

CAMA

1e-1 1e0 1e1 1e2 1e3 1e4 1e5
72

74

76

PR-BCD

1e-1 1e0 1e1 1e2 1e3 1e4 1e5

72

74

76

GR-BCD

1e-1 1e0 1e1 1e2 1e3 1e4 1e5

72

74

76

MinMax

IMDB-BINARY Cora

A
cc

ur
ac

y
(%

)

Figure 5: Guide Scale Study

Clean Graph Attacked Graph Reverse Step 6 Reverse Step 5 Reverse Step 4 Reverse Step 3 Reverse Step 2 Reverse Step 1 Reverse Step 0

Purification

Figure 6: Visualization Study

5.7 Study on Scale of Graph Transfer Entropy
To analyze the impact of the graph transfer entropy guidance scale
𝜆, we vary 𝜆 from 1e−1 to 1e5 and evaluate the performance. The
results are presented in Figure 5. For graph classification, exper-
iments are conducted on the IMDB-BINARY dataset under the
GradArgmax, PR-BCD, and CAMA-Subgraph attacks. For node
classification, experiments are performed on the Cora dataset un-
der the PR-BCD, GR-BCD, and MinMax attacks.

Result. The results show that smaller values of 𝜆 have minimal
effect on accuracy. However, they reduce the stability of the pu-
rification during the reverse denoising process, leading to a higher
standard deviation. This instability arises because the Graph Trans-
fer Entropy Guided Denoising Mechanism is less effective at reduc-
ing uncertainty and guiding the generation process when 𝜆 is too
small. On the other hand, very large 𝜆 values decrease accuracy
by overemphasizing guidance, causing the model to reintroduce
adversarial information into the generated graph structure.

5.8 Graph Purification Visualization
We visualize snapshots of different purification time steps on the
IMDB-BINARY dataset using NetworkX [19], as shown in Figure 6.

Result. The visualization process demonstrates that DiffSP has
mastered the ability to generate clean graphs. When faced with an
attacked graph, DiffSP first injects noise to obscure the adversarial
information, then applies its captured predictive patterns to remove
both the adversarial information and the noise during the reverse
denoising process, thereby achieving graph purification.

More experiments and analyses are provided in Appendix E.

6 Conclusion
Under adversarial evasion attacks, most existing methods rely on
heuristic priors about the dataset or attack strategies to enhance
robustness, which limits their effectiveness in real-world scenarios
where these priors not universally hold. To address this, we propose
a novel framework named DiffSP, which achieves prior-free struc-
ture purification to ensure robust graph learning across diverse
evasion attacks and datasets. DiffSP innovatively adopts the graph
diffusion model to learn the clean graph distribution during train-
ing and purify the attacked graph under the direction of captured
predictive patterns during the test phase. To precisely denoise the
attacked graph without disrupting the clean structure, we design an
LID-Driven Non-Isotropic Diffusion Mechanism to inject varying
levels of noise into each node based on their adversarial degree.
To align the semantic information between the generated graph
and the target clean graph, we design a Graph Transfer Entropy
Guided Denoising Mechanism to reduce generation uncertainty
and guide the generation direction. Extensive experimental results
demonstrate that DiffSP enhances the robustness of graph learn-
ing in various scenarios. In future work, we aim to incorporate
feature-based attack experiments and optimize the time complexity
of DiffSP. Additionally, we plan to improve our proposed graph
entropy tool and explore its application to address a wider range of
challenges in graph learning and other related tasks. Details about
the limitations and future directions can be found in Appendix F.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Robust Graph Learning Against Adversarial Evasion Attacks via Prior-Free Diffusion-Based Structure Purification Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References
[1] Lada A Adamic and Natalie Glance. 2005. The political blogosphere and the 2004

US election: divided they blog. In LinkKDD. 36–43.
[2] Laurent Amsaleg, Oussama Chelly, Teddy Furon, Stéphane Girard, Michael E

Houle, Ken-ichi Kawarabayashi, andMichael Nett. 2015. Estimating local intrinsic
dimensionality. In KDD. 29–38.

[3] Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van
Den Berg. 2021. Structured denoising diffusion models in discrete state-spaces.
NeurIPS 34 (2021), 17981–17993.

[4] Sambaran Bandyopadhyay, Manasvi Aggarwal, and M Narasimha Murty. 2020.
Hierarchically Attentive Graph Pooling with Subgraph Attention. In ICML.

[5] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić,
Pavel Laskov, Giorgio Giacinto, and Fabio Roli. 2013. Evasion attacks against
machine learning at test time. In ECML. Springer, 387–402.

[6] Liang Chen, Jintang Li, Qibiao Peng, Yang Liu, Zibin Zheng, and Carl Yang.
2021. Understanding structural vulnerability in graph convolutional networks.
In IJCAI.

[7] Tianyi Chen and Charalampos Tsourakakis. 2022. Antibenford subgraphs: Unsu-
pervised anomaly detection in financial networks. In KDD. 2762–2770.

[8] Xiaohui Chen, Jiaxing He, Xu Han, and Li-Ping Liu. 2023. Efficient and degree-
guided graph generation via discrete diffusion modeling. In ICML. 4585–4610.

[9] Yu Chen, Lingfei Wu, and Mohammed Zaki. 2020. Iterative deep graph learning
for graph neural networks: Better and robust node embeddings. NeurIPS 33
(2020), 19314–19326.

[10] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song.
2018. Adversarial attack on graph structured data. In ICML. PMLR, 1115–1124.

[11] Chenhui Deng, Xiuyu Li, Zhuo Feng, and Zhiru Zhang. 2022. Garnet: Reduced-
rank topology learning for robust and scalable graph neural networks. In LoG.
PMLR, 3–1.

[12] Ivan Dokmanic, Reza Parhizkar, Juri Ranieri, and Martin Vetterli. 2015. Euclidean
distance matrices: essential theory, algorithms, and applications. IEEE Signal
Processing Magazine 32, 6 (2015), 12–30.

[13] Negin Entezari, Saba A Al-Sayouri, Amirali Darvishzadeh, and Evangelos E
Papalexakis. 2020. All you need is low (rank) defending against adversarial
attacks on graphs. InWSDM. 169–177.

[14] Reuben Feinman, Ryan R Curtin, Saurabh Shintre, and Andrew B Gardner. 2017.
Detecting adversarial samples from artifacts. arXiv preprint arXiv:1703.00410
(2017).

[15] Xingcheng Fu, Yisen Gao, Yuecen Wei, Qingyun Sun, Hao Peng, Jianxin Li, and
Xianxian Li. 2024. Hyperbolic Geometric Latent Diffusion Model for Graph
Generation. In ICML.

[16] Yarin Gal and Zoubin Ghahramani. 2016. Dropout as a bayesian approximation:
Representing model uncertainty in deep learning. In ICML. PMLR, 1050–1059.

[17] Simon Geisler, Tobias Schmidt, Hakan Şirin, Daniel Zügner, Aleksandar Bo-
jchevski, and Stephan Günnemann. 2021. Robustness of graph neural networks
at scale. NeurIPS 34 (2021), 7637–7649.

[18] Kilian Konstantin Haefeli, Karolis Martinkus, Nathanaël Perraudin, and Roger
Wattenhofer. 2022. Diffusion models for graphs benefit from discrete state spaces.
In NeurIPS.

[19] Aric Hagberg, Pieter Swart, and Daniel S Chult. 2008. Exploring network structure,
dynamics, and function using NetworkX. Technical Report. Los Alamos National
Lab.(LANL), Los Alamos, NM (United States).

[20] Xiaotian Han, Zhimeng Jiang, Ninghao Liu, and Xia Hu. 2022. G-mixup: Graph
data augmentation for graph classification. In ICML. PMLR, 8230–8248.

[21] Michael E Houle. 2017. Local intrinsic dimensionality I: an extreme-value-
theoretic foundation for similarity applications. In SISAP. Springer, 64–79.

[22] Yeonjun In, Kanghoon Yoon, Kibum Kim, Kijung Shin, and Chanyoung Park.
2024. Self-Guided Robust Graph Structure Refinement. In WWW. 697–708.

[23] Yeonjun In, Kanghoon Yoon, and Chanyoung Park. 2023. Similarity preserving
adversarial graph contrastive learning. In KDD. 867–878.

[24] Sergei Ivanov, Sergei Sviridov, and Evgeny Burnaev. 2019. Understanding iso-
morphism bias in graph data sets. arXiv preprint arXiv:1910.12091 (2019).

[25] Wei Jin, Tyler Derr, Yiqi Wang, Yao Ma, Zitao Liu, and Jiliang Tang. 2021. Node
similarity preserving graph convolutional networks. InWWW. 148–156.

[26] Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang.
2020. Graph structure learning for robust graph neural networks. In KDD. 66–74.

[27] Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. 2022. Score-based generative
modeling of graphs via the system of stochastic differential equations. In ICML.
PMLR, 10362–10383.

[28] Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with
graph convolutional networks. In ICLR.

[29] Jintang Li, Jie Liao, Ruofan Wu, Liang Chen, Zibin Zheng, Jiawang Dan,
Changhua Meng, and Weiqiang Wang. 2023. GUARD: Graph universal ad-
versarial defense. In CIKM. 1198–1207.

[30] Kuan Li, Yang Liu, Xiang Ao, and Qing He. 2023. Revisiting graph adversarial
attack and defense from a data distribution perspective. In ICLR.

[31] Mufei Li, Eleonora Kreačić, Vamsi K Potluru, and Pan Li. 2023. Graphmaker: Can
diffusion models generate large attributed graphs? arXiv (2023).

[32] Yaxin Li, Wei Jin, Han Xu, and Jiliang Tang. 2020. Deeprobust: A pytorch library
for adversarial attacks and defenses. arXiv (2020).

[33] Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. 2018.
Learning deep generative models of graphs. ICLR (2018).

[34] Xiaorui Liu, Wei Jin, Yao Ma, Yaxin Li, Hua Liu, Yiqi Wang, Ming Yan, and Jiliang
Tang. 2021. Elastic graph neural networks. In ICML. PMLR, 6837–6849.

[35] Gui-Fu Lu, Yong Wang, and Ganyi Tang. 2022. Robust low-rank representation
with adaptive graph regularization from clean data. Applied Intelligence 52, 5
(2022), 5830–5840.

[36] GuanghuiMa, ChunmingHu, Ling Ge, andHong Zhang. 2023. Multi-View Robust
Graph Representation Learning for Graph Classification.. In IJCAI. 4037–4045.

[37] Xingjun Ma, Bo Li, Yisen Wang, Sarah M Erfani, Sudanthi Wijewickrema, Grant
Schoenebeck, Dawn Song, Michael E Houle, and James Bailey. 2018. Character-
izing adversarial subspaces using local intrinsic dimensionality. In ICLR.

[38] Alexander Quinn Nichol and Prafulla Dhariwal. 2021. Improved denoising
diffusion probabilistic models. In ICML. PMLR, 8162–8171.

[39] Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, and
Stefano Ermon. 2020. Permutation invariant graph generation via score-based
generative modeling. In AISTATS. PMLR, 4474–4484.

[40] Thomas Schreiber. 2000. Measuring information transfer. Physical review letters
85, 2 (2000), 461.

[41] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan
Günnemann. 2018. Pitfalls of graph neural network evaluation. arXiv (2018).

[42] Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjin Wang, and
Yu Sun. 2020. Masked label prediction: Unified message passing model for
semi-supervised classification. In IJCAI.

[43] Bernard W Silverman. 2018. Density estimation for statistics and data analysis.
Routledge.

[44] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli.
2015. Deep unsupervised learning using nonequilibrium thermodynamics. In
ICML. PMLR, 2256–2265.

[45] Yang Song and Stefano Ermon. 2019. Generative modeling by estimating gradi-
ents of the data distribution. NeurIPS 32 (2019).

[46] Lichao Sun, Yingtong Dou, Carl Yang, Kai Zhang, Ji Wang, S Yu Philip, Lifang
He, and Bo Li. 2022. Adversarial attack and defense on graph data: A survey.
TKDE 35, 8 (2022), 7693–7711.

[47] Qingyun Sun, Jianxin Li, Hao Peng, Jia Wu, Xingcheng Fu, Cheng Ji, and S Yu
Philip. 2022. Graph structure learning with variational information bottleneck.
In AAAI, Vol. 36. 4165–4174.

[48] Xianfeng Tang, Yandong Li, Yiwei Sun, Huaxiu Yao, Prasenjit Mitra, and Suhang
Wang. 2020. Transferring robustness for graph neural network against poisoning
attacks. InWWW. 600–608.

[49] Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher,
and Pascal Frossard. 2022. Digress: Discrete denoising diffusion for graph gener-
ation. In ICLR.

[50] Vikram Voleti, Christopher Pal, and Adam Oberman. 2022. Score-based de-
noising diffusion with non-isotropic gaussian noise models. arXiv preprint
arXiv:2210.12254 (2022).

[51] Xin Wang, Heng Chang, Beini Xie, Tian Bian, Shiji Zhou, Daixin Wang, Zhiqiang
Zhang, and Wenwu Zhu. 2023. Revisiting adversarial attacks on graph neural
networks for graph classification. TKDE (2023).

[52] HuijunWu, ChenWang, Yuriy Tyshetskiy, Andrew Docherty, Kai Lu, and Liming
Zhu. 2019. Adversarial examples on graph data: Deep insights into attack and
defense. In IJCAI.

[53] Junran Wu, Xueyuan Chen, Ke Xu, and Shangzhe Li. 2022. Structural entropy
guided graph hierarchical pooling. In ICML. PMLR, 24017–24030.

[54] Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. 2022. Graph neural
networks in recommender systems: a survey. Comput. Surveys 55, 5 (2022), 1–37.

[55] Ying-Xin Wu, Xiang Wang, An Zhang, Xiangnan He, and Tat-Seng Chua. 2022.
Discovering invariant rationales for graph neural networks. In ICLR.

[56] Aaron D Wyner. 1978. A definition of conditional mutual information for arbi-
trary ensembles. Information and Control 38, 1 (1978), 51–59.

[57] Hui Xu, Liyao Xiang, Jiahao Yu, Anqi Cao, and Xinbing Wang. 2021. Speedup
robust graph structure learning with low-rank information. In CIKM. 2241–2250.

[58] Kaidi Xu, Hongge Chen, Sijia Liu, Pin-Yu Chen, Tsui Wei Weng, Mingyi Hong,
and Xue Lin. 2019. Topology attack and defense for graph neural networks: An
optimization perspective. In IJCAI.

[59] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. 2016. Revisiting semi-
supervised learning with graph embeddings. In ICML. PMLR, 40–48.

[60] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and
Yang Shen. 2020. Graph contrastive learning with augmentations. NeurIPS 33
(2020), 5812–5823.

[61] Junchi Yu, Jie Cao, and Ran He. 2022. Improving subgraph recognition with
variational graph information bottleneck. In CVPR. 19396–19405.

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anonymous et al.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[62] Shujian Yu, Luis Gonzalo Sanchez Giraldo, Robert Jenssen, and Jose C Principe.
2019. Multivariate Extension of Matrix-Based Rényi’s 𝛼-Order Entropy Func-
tional. TPAMI 42, 11 (2019), 2960–2966.

[63] Xi Yu, Xiang Gu, Haozhi Liu, and Jian Sun. 2024. Constructing non-isotropic
Gaussian diffusion model using isotropic Gaussian diffusion model for image
editing. NeurIPS 36 (2024).

[64] Xiang Zhang and Marinka Zitnik. 2020. Gnnguard: Defending graph neural
networks against adversarial attacks. NeurIPS 33 (2020), 9263–9275.

[65] Zhen Zhang, Jiajun Bu, Martin Ester, Jianfeng Zhang, Chengwei Yao, Zhi Yu,
and Can Wang. 2019. Hierarchical graph pooling with structure learning. arXiv
(2019).

[66] Zhongjian Zhang, Xiao Wang, Huichi Zhou, Yue Yu, Mengmei Zhang, Cheng
Yang, and Chuan Shi. 2024. Can Large Language Models Improve the Adversarial
Robustness of Graph Neural Networks? arXiv (2024).

[67] Jianan Zhao, Qianlong Wen, Mingxuan Ju, Chuxu Zhang, and Yanfang Ye. 2023.
Self-supervised graph structure refinement for graph neural networks. InWSDM.
159–167.

[68] Zhe Zhao, Pengkun Wang, Haibin Wen, Yudong Zhang, Binwu Wang, and Yang
Wang. 2024. Graph Networks Stand Strong: Enhancing Robustness via Stability
Constraints. In ICASSP. IEEE, 7315–7319.

[69] Zhilun Zhou, Yu Liu, Jingtao Ding, Depeng Jin, and Yong Li. 2023. Hierarchi-
cal knowledge graph learning enabled socioeconomic indicator prediction in
location-based social network. In WWW. 122–132.

[70] Dingyuan Zhu, Ziwei Zhang, Peng Cui, and Wenwu Zhu. 2019. Robust graph
convolutional networks against adversarial attacks. In KDD. 1399–1407.

[71] Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. 2018. Adversarial
attacks on neural networks for graph data. In KDD. 2847–2856.

[72] Daniel Zügner and Stephan Günnemann. 2019. Adversarial Attacks on Graph
Neural Networks via Meta Learning. In ICLR.

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Robust Graph Learning Against Adversarial Evasion Attacks via Prior-Free Diffusion-Based Structure Purification Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

A Proof and Derivation
A.1 Proof of Proposition 1
We first restate Propostition 1.

Proposition 1. For each edge at time 𝑡 , the adjacency matrix is
updated as A(𝑡)

𝑖 𝑗
= A𝑖 𝑗

(
Q̄′(𝑡)A

)
𝑖 𝑗 , where the non-isotropic transition

matrix is
(
Q̄′(𝑡)A

)
𝑖 𝑗 = 𝛼 (𝑡) I+(𝚲A)𝑖 𝑗 (1−𝛼)1m𝑇

A. There exists a unique

time 𝑡
(
A𝑖 𝑗

)
∈ [0,𝑇] such that

(
Q̄′ (𝑡)A

)
𝑖 𝑗 ⇔

(
Q̄𝑡 (A𝑖 𝑗)

A
)
𝑖 𝑗 , where:

𝑡
(
A𝑖 𝑗

)
=𝑇

(
2(1+𝑠)

𝜋
cos−1

(√︄
𝛼 (𝑡)[

𝚲(A)𝑖 𝑗 (1 − 𝛼 (𝑡)) + 𝛼 (𝑡)
])
−𝑠

)
.

Proof. Q̄(𝑡)A = 𝛼 (𝑡) I +
(
1 − 𝛼 (𝑡)

)
1m⊤A indicates the degree of

noise added to the adjacency matrix A at time step 𝑡 . Let SNRQ̄A
(𝑡)

denotes the signal-to-noise of Q̄(𝑡)A at time step 𝑡 , we have:

SNRQ̄A
(𝑡) = 1 − 𝛼 (𝑡)

𝛼 (𝑡)
. (A.1)

Such that: (
Q̄′(𝑡)A

)
𝑖 𝑗 ⇔

(
Q̄𝑡 (A𝑖 𝑗)

A
)
𝑖 𝑗 (A.2)

⇒SNRQ̄′A
(𝑡) = SNRQ̄A

(
𝑡 (A𝑖 𝑗)

)
(A.3)

⇒
(ΛA)𝑖 𝑗

(
1 − 𝛼 (𝑡)

)
𝛼 (𝑡)

=
1 − 𝛼 (𝑡 ′)

𝛼 (𝑡 ′)
. (A.4)

We first prove that for each time step 𝑡 , there exists and only
exists one 𝑡 ′ that satisfies

(
Q̄′(𝑡)A

)
𝑖 𝑗 ⇔

(
Q̄𝑡 (A𝑖 𝑗)

A
)
𝑖 𝑗 . Left 𝑔(𝑡

′) =
(ΛA)𝑖 𝑗 (1−𝛼 (𝑡))

𝛼 (𝑡)
− 1−𝛼 (𝑡 ′)

𝛼 (𝑡 ′)
represents the function of 𝑡 ′ ∈ [0,𝑇].𝛼 (𝑡) =

cos2 (𝑡/𝑇+𝑠
1+𝑠 ·

𝜋
2
)
is the scheduler with a small constant 𝑠 . We have

𝛼 (0) = cos2 (0+𝑠
1+𝑠 ·

𝜋
2
)
≈ cos2 (0) = 0, and 𝛼 (𝑇) = cos2 (1+𝑠1+𝑠 ·

𝜋
2) =

cos2 (𝜋2) = 1. It is known that (1−𝛼) monotonically decreasing over
the domain, while 𝛼 monotonically increasing, with 1 − 𝛼 > 0 and
𝛼 > 0. Therefore, 𝑔(𝑡 ′) is a monotonic function over the domain.
So we achieve:

𝑔(0) =
(ΛA)𝑖 𝑗 (1 − 𝛼 (𝑡))

𝛼 (𝑡)
− 0 > 0. (A.5)

Having Λ(A)𝑖 𝑗 ∈ [0, 1] indicates the node adversarial score, we can
then derive the following:

𝑔(𝑇) =
(ΛA)𝑖 𝑗 (1 − 𝛼 (𝑡))

𝛼 (𝑡)
− 1 (A.6)

<
(1 − 𝛼 (𝑡))

𝛼 (𝑡)
− 1 (A.7)

< 0. (A.8)

Thus, we have 𝑔(0)𝑔(𝑇) < 0, and since 𝑔(𝑡 ′) is a monotonically
decreasing function, the intermediate value theorem guarantees
that there exists exactly one 𝑡 ′0 ∈ [0,𝑇] satisfies𝑔(𝑡

′
0) = 0. By setting

𝑔(𝑡 ′) = 0, we obtain:

Λ(A)𝑖 𝑗𝛼 (𝑡
′) (1 − 𝛼 (𝑡)) = 𝛼 (𝑡)

(
1 − 𝛼 (𝑡

′)) (A.9)

⇒𝛼 (𝑡
′) [Λ(A)𝑖 𝑗 (1 − 𝛼 (𝑡)) + 𝛼 (𝑡)] = 𝛼 (𝑡) (A.10)

⇒𝛼 (𝑡
′) =

𝛼 (𝑡)[
Λ(A)𝑖 𝑗 (1 − 𝛼 (𝑡)) + 𝛼 (𝑡)

] (A.11)

⇒𝑡 ′ = 𝑇

(
2(1 + 𝑠)

𝜋
cos−1

(√︄
𝛼 (𝑡)[

Λ(A)𝑖 𝑗 (1 − 𝛼 (𝑡)) + 𝛼 (𝑡)
])
− 𝑠

)
.

(A.12)
This concludes the proof of the proposition. □

A.2 Graph Transfer Entropy Derivation
We first restate Eq. (7).

𝐼
(
𝐺𝑡−1;𝐺adv |𝐺𝑡

)
= 𝐻

(
𝐺 (𝑡−1) |𝐺 (𝑡)

)
− 𝐻

(
𝐺 (𝑡−1) |𝐺 (𝑡) ,𝐺adv

)
.

According to the definition of mutual information:

𝐼
(
𝐺𝑡−1;𝐺adv |𝐺𝑡

)
(A.13)

=𝐻
(
𝐺 (𝑡−1) |𝐺 (𝑡)

)
− 𝐻

(
𝐺 (𝑡−1) |𝐺 (𝑡) ,𝐺adv

)
(A.14)

=
𝐻

(
𝐺 (𝑡−1) ,𝐺 (𝑡)

)
𝐻

(
𝐺 (𝑡)

) −
𝐻

(
𝐺 (𝑡−1) ,𝐺 (𝑡) ,𝐺adv

)
𝐻

(
𝐺 (𝑡) ,𝐺adv

) . (A.15)

Then combined with Eq. (9), we have:

𝐼
(
𝐺𝑡−1;𝐺adv |𝐺𝑡

)
(A.16)

=𝑆𝛼

(
K̂(𝑡−1) ⊙ K̂(𝑡)

tr
(
K̂(𝑡−1) ⊙ K̂(𝑡)

)) /𝑆𝛼 (
K̂(𝑡)

)
(A.17)

−𝑆𝛼

(
K̂(𝑡−1) ⊙ K̂(𝑡) ⊙ Kadv

tr
(
K̂(𝑡−1) ⊙ K̂(𝑡) ⊙ Kadv

)) /𝑆𝛼 (
K̂(𝑡) ⊙ Kadv

tr
(
K̂(𝑡) ⊙ Kadv

)) , (A.18)

where 𝑆𝛼 (·) is the graph entropy calculated according to Eq. (8)
and K̂(𝑡−1) , K̂(𝑡) ,Kadv is the Gram matrix of Â(𝑡−1) , Â(𝑡) ,Aadv.

B Detailed Understanding of the Proposed
Graph Transfer Entropy

In this subsection, we further elaborate on the understanding of our
graph entropy estimation method in Eq. (8). After message passing,
the set of node representations Z can be treated as variables that
capture both structural and node feature neighborhood information.
The normalized Gram matrix K̂, obtained by applying a positive
definite kernel on all pairs of 𝑧, measures the neighborhood simi-
larity between each pair of nodes, taking into account both node
features and neighboring structures. Let 𝜆𝑖 (K̂) be the eigenvalue of
K̂ with eigenvector x𝑖 . Then we have:

K̂2 = K̂
(
K̂x𝑖

)
= K̂

(
𝜆𝑖

(
K̂
)
x𝑖

)
= 𝜆𝑖

(
K̂
)
K̂x𝑖 = 𝜆2

𝑖

(
K̂
)
x𝑖 . (B.19)

Thus we achieve:
𝑛∑︁
𝑖=1

𝜆𝛼𝑖
(
K̂
)
=

𝑛∑︁
𝑖=1

𝜆𝑖
(
K̂𝛼)

. (B.20)

Since the sum of all eigenvalues of a matrix is the trace of the matrix,
the graph entropy is determined by the trace of K̂𝛼 . By setting
𝛼 = 2, K̂2

𝑖𝑖
describes the similarity of node 𝑖 with all other nodes,

considering both node features and neighboring structures. When
11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anonymous et al.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

𝛼 = 2, the graph entropy can be expressed as: 𝐻 (𝐺) = − log tr
(
K̂2)

Therefore a lower graph entropy indicates a graph with a stronger
community structure, while a higher graph entropy suggests a
more chaotic graph structure with less regularity. So maximizing
the transfer entropy 𝐼

(
𝐺 (𝑡−1) ;𝐺adv |𝐺 (𝑡)

)
actually encourage the

community structure of 𝐺 (𝑡−1) move towards 𝐺adv.

C Computational Complexity Analysis
The overall time complexity is O(𝑁 2), where𝑁 represents the num-
ber of nodes. Specifically, the graph diffusion purification model
has a complexity of O(𝑇𝑁 2). The LID-Driven Non-Isotropic Dif-
fusion Module has a complexity of O(𝑁), and the Transfer En-
tropy Guided Diffusion Module has a complexity of O(𝑁 2). There-
fore, the overall time complexity of the purification process is
O(𝑇𝑁 2) + O(𝑁) + O(𝑁 2) = O(𝑇𝑁 2). Since 𝑇 ≪ 𝑁 2 in our case,
the overall time complexity is O(𝑁 2). This is consistent with most
graph diffusion models [31, 39, 49] and robust GNNs [13, 26, 67].

D Experiment Details
D.1 Dataset Details
D.1.1 Graph Classification Datasets. We use the following five real-
world datasets to evaluate the robustness of DiffSPon the graph
classification task. All the dataset is obtained from PyG TUDataset2

• MUTAG [24] contains graphs of small molecules, with nodes as
atoms and edges representing chemical bonds. Labels indicate
molecular toxicity.

• IMDB-BINARY [24] consists of movie-related graphs, where
nodes are individuals, and edges represent relationships. Labels
classify the movie as Action or Romance.

• IMDB-MULTI [24] is similar, but edges connect nodes across
three genres: Comedy, Romance, and Sci-Fi, with corresponding
labels.

• REDDIT-BINARY [24] features user discussion graphs from
Reddit, with edges indicating responses. Graphs are labeled as
either question-answer or discussion-based.

• COLLAB [24] consists of collaboration networks, where nodes
are researchers, and edges represent collaborations. Labels iden-
tify the research field: High Energy Physics, Condensed Matter
Physics, or Astro Physics.

Statistics of the graph classification datasets are in Table D.1.

D.1.2 Node Classification Datasets. We use the following four real-
world datasets to evaluate the robustness of DiffSP on the node
classification task.
• Cora [59] is a citation network where nodes represent publi-

cations, with binary word vectors as features. Edges indicate
citation relationships.

• CiteSeer [59] is another citation network, similar to Cora, with
nodes representing research papers and edges denoting citation
links.

• PolBlogs [1] is a political blog network, where edges are hy-
perlinks between blogs. Nodes are labeled by political affiliation:
liberal or conservative.

2 https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.dat
asets.TUDataset.html

Table D.1: Statistics for graph classification datasets

Dataset #graph #avg. node #avg. edge #feature #class
MUTAG 188 17.9 39.6 7 2
IMDB-BINARY 100 19.8 193.1 / 2
IMDB-MULTI 1500 13.0 65.9 / 3
REDDIT-BINARY 2000 429.6 995.5 / 2
COLLAB 5000 74.5 4914.4 / 2

Table D.2: Statistics for node classification datasets

Dataset #node #edge #feature #class
Cora 2708 10556 1433 7
CiteSeer 3327 9104 3703 2
PolBlogs 1490 19025 / 2
Photo 7487 119043 745 8

• Photo [41] is a co-purchase network from Amazon, where nodes
are products, edges represent frequent co-purchases, and features
are bag-of-words from product reviews. Class labels indicate
product categories.

The statistics of the graph classification datasets are given in Ta-
ble D.2. Cora and CiteSeer is obtained from PyG Planetoid3. Pol-
Blogs is obtained from PyG PolBlogs4. Photo is obtained from PyG
Amazon5.

D.2 Description of Baselines
D.2.1 Graph Classification Baselines.

• IDGL [9] iteratively refines graph structures and embeddings
for robust learning in noisy graphs.

• GraphCL [60] maximizes agreement between augmented graph
views via contrastive loss.

• VIB-GSL [47] applies the Information Bottleneck to learn task-
relevant graph structures.

• G-Mixup [20] generates synthetic graphs by mixing graphons
to enhance generalization.

• SEP [53] minimizes structural entropy for optimized graph pool-
ing.

• MGRL [36] addresses semantic bias and confidence collapse
with instance-view consistency and class-view learning.
• SCGCN [68] ensures robustness with temporal and perturbation

stability.
• HGP-SL [65] combines pooling and structure learning to pre-

serve key substructures.
• SubGattPool [4] uses subgraph attention and hierarchical pool-

ing for robust classification.
• DIR [55] identifies stable causal structures via interventional

separation.
• VGIB [61] filters irrelevant nodes through noise injection for

improved subgraph recognition.
In our implementation, since the authors of MGRL and Sub-

GattPool have not provided open access to their code, we repro-
duced their methods based on the descriptions in their papers. The

3 https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.dat
asets.Planetoid.html#torch_geometric.datasets.Planetoid
4 https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.dat
asets.PolBlogs.html#torch_geometric.datasets.PolBlogs
5 https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.dat
asets.Amazon.html#torch_geometric.datasets.Amazon

12

https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.TUDataset.html
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.TUDataset.html
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.Planetoid.html#torch_geometric.datasets.Planetoid
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.Planetoid.html#torch_geometric.datasets.Planetoid
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.PolBlogs.html#torch_geometric.datasets.PolBlogs
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.PolBlogs.html#torch_geometric.datasets.PolBlogs
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.Amazon.html#torch_geometric.datasets.Amazon
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.Amazon.html#torch_geometric.datasets.Amazon

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Robust Graph Learning Against Adversarial Evasion Attacks via Prior-Free Diffusion-Based Structure Purification Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

implementations of other baselines can be found at the following
URLs:

• IDGL: https://github.com/hugochan/IDGL
• GraphCL: https://github.com/Shen-Lab/GraphCL
• VIB-GSL: https://github.com/VIB-GSL/VIB-GSL
• G-Mixup: https://github.com/ahxt/g-mixup
• SEP: https://github.com/Wu-Junran/SEP
• SCGCN: https://github.com/DataLab-atom/temp
• HGP-SL: https://github.com/cszhangzhen/HGP-SL
• DIR: https://github.com/Wuyxin/DIR-GNN
• VGIB: https://github.com/Samyu0304/VGIB

D.2.2 Node Classification Baselines.

• GSR [67] refines graph structures via a pretrain-finetune pipeline
usingmulti-view contrastive learning to estimate and adjust edge
probabilities.

• GARNET [11] improves GNN robustness by using spectral em-
bedding and probabilistic models to filter adversarial edges.

• GUARD [29] creates a universal defensive patch to remove ad-
versarial edges, providing node-agnostic, scalable protection.

• SVDGCN [13] applies Truncated SVD preprocessing with a two-
layer GCN.

• JaccardGCN [52] drops dissimilar edges in the graph before
training a GCN.

• RGCN [70] models node features as Gaussian distributions, us-
ing variance-based attention for robustness.

• Median-GCN [6] improves robustness by using median aggre-
gation instead of the weighted mean.

• GNNGuard [64] defends GNNs by pruning suspicious edges
through neighbor importance estimation.

• SoftMedian [17] filters outliers by applying a weighted mean
based on distance from the median to defend against adversarial
noise.

• ElasticGNN [34] combines 1-based and 2-based smoothing, bal-
ancing global and local smoothness for better defense.

• GraphADV [58] boosts robustness through adversarial training
with gradient-based topology attacks.

The implementations of these node classification baselines can be
found at the following URLs:

• GSR: https://github.com/andyjzhao/WSDM23-GSR
• GARNET: https://github.com/cornell-zhang/GARNET
• GUARD: https://github.com/EdisonLeeeee/GUARD
• SVD: https://github.com/DSE-MSU/DeepRobust/blob/master/d

eeprobust/graph/defense/gcn_preprocess.py
• Jaccard: https://github.com/DSE-MSU/DeepRobust/blob/mast

er/deeprobust/graph/defense/gcn_preprocess.py
• RGCN: https://github.com/DSE-MSU/DeepRobust/blob/master

/deeprobust/graph/defense/r_gcn.py
• Median-GCN: https://github.com/DSE-MSU/DeepRobust/blob/

master/deeprobust/graph/defense/median_gcn.py
• GNNGuard: https://github.com/mims-harvard/GNNGuard
• SoftMedian: https://github.com/sigeisler/robustness_of_gnns_

at_scale
• ElasticGCN: https://github.com/lxiaorui/ElasticGNN
• GraphADT: https://github.com/KaidiXu/GCN_ADV_Train

D.3 Attack Setting Details
D.3.1 Graph Classification Attack Settings. For graph classification
attacks, we use the following three attack methods:
• GradArgmax [10] greedily selects edges for perturbation based

on the gradient of each node pair.
• PR-BCD [17] performs sparsity-aware first-order optimization

attacks using randomized block coordinate descent, enabling
efficient attacks on large-scale graphs.

• CAMA-Subgraph [51] enhances adversarial attacks in graph
classification by targeting critical subgraphs. It identifies top-
ranked nodes via a Class Activation Mapping (CAM) framework
and perturbs edges within these subgraphs to craft more precise
adversarial examples.

Note that, as the authors of CAMA-Subgraph have not provided
open access to their code, we reproduced their method based on
the descriptions in their papers. The reproduced code is available
in our repository. For the implementation of other baselines, we
used code from the following URLs:
• GradArgmax: https://github.com/xingchenwan/grabnel/blob/

main/src/attack/grad_arg_max.py
• PR-BCD: https://github.com/pyg-team/pytorch_geometric/blo

b/master/torch_geometric/contrib/nn/models/rbcd_attack.py
For all graphs in the dataset, we set 20% of the total number of

edges as the attack budget. We use a two-layer GCN followed by a
mean pooling layer and a linear layer as the surrogate model, which
shares the same architecture as the classifier for all baselines.

D.3.2 Node Classification Attack Settings. For targeted node classi-
fication attacks, we use the following three attack methods:
• PR-BCD [17] performs the same attack as in graph classification

but targets a different task.
• Nettack [71] incrementally modifies key edges or features to

maximize the difference in log probabilities between correct and
incorrect classes, while preserving the graph’s core properties,
such as the degree distribution.

• GR-BCD [17] is similar to PR-BCD but flips edges greedily based
on the gradient concerning the adjacency matrix.

The implements of these attacks can be found from the following
URLs:
• PR-BCD: https://github.com/pyg-team/pytorch_geometric/blo

b/master/torch_geometric/contrib/nn/models/rbcd_attack.py
• Nettack: https://github.com/DSE-MSU/DeepRobust/blob/mast

er/deeprobust/graph/targeted_attack/nettack.py
• GR-BCD: https://github.com/pyg-team/pytorch_geometric/blo

b/master/torch_geometric/contrib/nn/models/rbcd_attack.py
For all datasets, we set 10% of the total number of edges as the

attack budget for both PR-BCD and GR-BCD. For Nettack, following
the settings from deeprobust [32], we select 40 nodes from the test
set to attack with a budget of 5 edges and evaluate accuracy. These
40 nodes include 1) 10 nodes with the highest classification margin
(clearly correctly classified), 2) 10 nodes with the lowest margin
(still correctly classified), and 3) 20 randomly selected nodes.

For non-targeted node classification attacks, we use the following
three attack methods:

13

https://github.com/hugochan/IDGL
https://github.com/Shen-Lab/GraphCL
https://github.com/VIB-GSL/VIB-GSL
https://github.com/ahxt/g-mixup
https://github.com/Wu-Junran/SEP
https://github.com/DataLab-atom/temp
https://github.com/cszhangzhen/HGP-SL
https://github.com/Wuyxin/DIR-GNN
https://github.com/Samyu0304/VGIB
https://github.com/andyjzhao/WSDM23-GSR
https://github.com/cornell-zhang/GARNET
https://github.com/EdisonLeeeee/GUARD
https://github.com/DSE-MSU/DeepRobust/blob/master/deeprobust/graph/defense/gcn_preprocess.py
https://github.com/DSE-MSU/DeepRobust/blob/master/deeprobust/graph/defense/gcn_preprocess.py
https://github.com/DSE-MSU/DeepRobust/blob/master/deeprobust/graph/defense/gcn_preprocess.py
https://github.com/DSE-MSU/DeepRobust/blob/master/deeprobust/graph/defense/gcn_preprocess.py
https://github.com/DSE-MSU/DeepRobust/blob/master/deeprobust/graph/defense/r_gcn.py
https://github.com/DSE-MSU/DeepRobust/blob/master/deeprobust/graph/defense/r_gcn.py
https://github.com/DSE-MSU/DeepRobust/blob/master/deeprobust/graph/defense/median_gcn.py
https://github.com/DSE-MSU/DeepRobust/blob/master/deeprobust/graph/defense/median_gcn.py
https://github.com/mims-harvard/GNNGuard
https://github.com/sigeisler/robustness_of_gnns_at_scale
https://github.com/sigeisler/robustness_of_gnns_at_scale
https://github.com/lxiaorui/ElasticGNN
https://github.com/KaidiXu/GCN_ADV_Train
https://github.com/xingchenwan/grabnel/blob/main/src/attack/grad_arg_max.py
https://github.com/xingchenwan/grabnel/blob/main/src/attack/grad_arg_max.py
https://github.com/pyg-team/pytorch_geometric/blob/master/torch_geometric/contrib/nn/models/rbcd_attack.py
https://github.com/pyg-team/pytorch_geometric/blob/master/torch_geometric/contrib/nn/models/rbcd_attack.py
https://github.com/pyg-team/pytorch_geometric/blob/master/torch_geometric/contrib/nn/models/rbcd_attack.py
https://github.com/pyg-team/pytorch_geometric/blob/master/torch_geometric/contrib/nn/models/rbcd_attack.py
https://github.com/DSE-MSU/DeepRobust/blob/master/deeprobust/graph/targeted_attack/nettack.py
https://github.com/DSE-MSU/DeepRobust/blob/master/deeprobust/graph/targeted_attack/nettack.py
https://github.com/pyg-team/pytorch_geometric/blob/master/torch_geometric/contrib/nn/models/rbcd_attack.py
https://github.com/pyg-team/pytorch_geometric/blob/master/torch_geometric/contrib/nn/models/rbcd_attack.py

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anonymous et al.

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

Table D.3: Hyperparameter settings

Hyperparameter MT IB IM RB CL Cora CiteSeer PolBlogs Photo
𝒌 4 6 6 8 8 7 8 8 8
𝝀 1e1 1e2 1e3 1e3 1e3 1e3 1e3 1e3 1e3

purification steps 4 6 5 6 4 6 6 6 6

• MinMax [32] generates adversarial perturbations by solving a
min-max optimization. The outer step finds optimal edge pertur-
bations, while the inner step retrains the GNN to adapt.

• DICE [72] removes edges between same-class nodes and inserts
edges between nodes of different classes.

• Random [32] randomly adds edges to the input graph.
The implements of theses attacks can be found in the following
URLs:
• MinMax: https://github.com/DSE-MSU/DeepRobust/blob/mast

er/deeprobust/graph/global_attack/topology_attack.py
• DICE: https://github.com/DSE-MSU/DeepRobust/blob/master

/deeprobust/graph/global_attack/dice.py
• Random: https://github.com/DSE-MSU/DeepRobust/blob/mast

er/deeprobust/graph/global_attack/random_attack.py
For MinMax, DICE, and Random attacks, we set the attack budget
to 10%, 20%, and 30% of the total number of edges, respectively, for
all datasets.

D.4 Implement Details
For graph classification, we randomly split the dataset into 8:1:1 for
training, validation, and testing. For datasets without node features,
we use normalized node degrees as features, following the approach
in [47]. The testing set is subjected to adversarial attacks. Our clas-
sifier consists of a two-layer Graph Convolutional Network (GCN)
followed by a mean pooling layer and a linear layer. Both the diffu-
sion model of DiffSP and the classifier are trained on the training
graphs, with their performance evaluated on the attacked testing
set. For node classification, we use the transductive setting with a
1:1:8 random split for training, validation, and testing. The classi-
fier comprises a two-layer GCN followed by a linear layer. During
training, we sample batches of subgraphs, consistent with [31], and
apply adversarial attacks at test time. A learning rate of 0.0003 is
used for all datasets. We perform 10 random runs for each method
and report the average results. DiffSP is implemented in PyTorch
with 𝜎 = 2 and 𝛼 = 2. Additional important parameter values
are provided in Table D.3. More implement detailed information is
available at https://anonymous.4open.science/r/DiffSP.

All the experiments were conducted on an Ubuntu 20.04 LTS op-
erating system, utilizing an Intel Xeon Platinum 8358 CPU (2.60GHz)
with 1TB DDR4 RAM. For GPU computations, an NVIDIA Tesla
A100 SMX4 with 40GB of memory was used.

E Additional Results And Analysis
E.1 Further Analysis of Non-Isotropic Diffusion
We further analyze the core LID-Driven Non-Isotropic Diffusion
Mechanism of DiffSP. In Figure E.1, we compare the sum of edge
weights for clean edges during the reverse denoising process of
both non-isotropic and isotropic diffusion in the IMDB-BINARY

dataset under PR-BCD, GradArgmax, and CAMA-Subgraph attacks.
For clean edges, the weights are positive, whereas for adversarial
edges, the weights are negative. As shown in Figure E.1, the non-
isotropic diffusion process introduces more noise to adversarial
edges while minimizing the perturbations on the unaffected clean
structure. This results in a faster and more effective recovery of the
clean structure compared to isotropic diffusion.

6 5 4 3 2 1 0

0

20

40

60

C
le

an
 E

dg
e

W
ei

gh
te

d
Su

m

PR-BCD
Non-Isotropic
Isotropic

6 5 4 3 2 1 0

0

10

20

30

40

50

C
le

an
 E

dg
e

W
ei

gh
te

d
Su

m

GradArgmax
Non-Isotropic
Isotropic

6 5 4 3 2 1 0

0

20

40

60

C
le

an
 E

dg
e

W
ei

gh
te

d
Su

m

CAMA-Subgraph
Non-Isotropic
Isotropic

Figure E.1: Non-Isotropic Diffusion Study

E.2 Further Analysis of 𝑘 Selection
We further analyze the impact of selecting different values of 𝑘 in
the LID-Driven Non-Isotropic Diffusion module. We adjust 𝑘 within
3, 4, 5, 6, 7, 8 on the IMDB-BINARY dataset under PR-BCD attacks.
Figure E.2 shows the classification accuracy and the LID value ratio
between adversarial and clean nodes. The red line (LID ratio = 1)
indicates equal LID values for adversarial and clean nodes. All 𝑘
values demonstrate the ability to detect adversarial nodes. Addi-
tionally, better adversarial node detection leads to improved graph
classification accuracy, as clean nodes experience less perturbation
while adversarial nodes undergo more purification.

3 4 5 6 7 8
K Values

72

73

74

75

A
cc

ur
ac

y
(%

)

Accuracy

0

1

2

3

4

5

LI
D

 R
at

io

LID ratio = 1

LID Ratio

Figure E.2: 𝑘 Selection Study

F Limitations and Future Discussions
Although DiffSP enhances the robustness of graph learning against
evasion attacks through prior-free structure purification, it still
has certain limitations, which we aim to address in future work.
Specifically: 1) In addition to structural disturbances, feature pertur-
bations are common in real-world scenarios. In future steps, we plan
to incorporate experiments on feature-based attacks and evaluate
robustness in link prediction tasks under evasion attacks. 2) Estimat-
ing the adversarial degree of nodes is crucial for non-isotropic noise
injection. We aim to develop a more accurate estimation method to
further enhance the robustness of graph learning. 3) We also plan
to optimize the time complexity of DiffSP to make it more efficient.

Furthermore, the graph entropy estimation approach proposed in
this work is a promising tool. We will explore ways to enhance the
properties encapsulated by graph entropy, such as designing better
Z to capture the more local structure and feature characteristics of
nodes. Additionally, we plan to utilize this graph entropy method
to further investigate graph properties across diverse scenarios,
facilitating more extensive research in this area.

14

https://github.com/DSE-MSU/DeepRobust/blob/master/deeprobust/graph/global_attack/topology_attack.py
https://github.com/DSE-MSU/DeepRobust/blob/master/deeprobust/graph/global_attack/topology_attack.py
https://github.com/DSE-MSU/DeepRobust/blob/master/deeprobust/graph/global_attack/dice.py
https://github.com/DSE-MSU/DeepRobust/blob/master/deeprobust/graph/global_attack/dice.py
https://github.com/DSE-MSU/DeepRobust/blob/master/deeprobust/graph/global_attack/random_attack.py
https://github.com/DSE-MSU/DeepRobust/blob/master/deeprobust/graph/global_attack/random_attack.py
https://anonymous.4open.science/r/DiffSP

	Abstract
	1 Introduction
	2 Related Work
	3 Notations and Problem Formulation
	4 DiffSP
	4.1 Graph Diffusion Purification Model
	4.2 LID-Driven Non-Isotropic Diffusion Mechanism
	4.3 Graph Transfer Entropy Guided Denoising Mechanism
	4.4 Training Pipeline of DiffSP

	5 Experiment
	5.1 Experiment Settings
	5.2 Graph Classification Robustness
	5.3 Node Classification Robustness
	5.4 Ablation Study
	5.5 Study on Cross-Dataset Generalization
	5.6 Study on Purification Steps
	5.7 Study on Scale of Graph Transfer Entropy
	5.8 Graph Purification Visualization

	6 Conclusion
	References
	A Proof and Derivation
	A.1 Proof of Proposition 1
	A.2 Graph Transfer Entropy Derivation

	B Detailed Understanding of the Proposed Graph Transfer Entropy
	C Computational Complexity Analysis
	D Experiment Details
	D.1 Dataset Details
	D.2 Description of Baselines
	D.3 Attack Setting Details
	D.4 Implement Details

	E Additional Results And Analysis
	E.1 Further Analysis of Non-Isotropic Diffusion
	E.2 Further Analysis of k Selection

	F Limitations and Future Discussions

