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Abstract

Modern high-stakes systems, such as healthcare
or robotics, often generate vast streaming event
sequences. Our goal is to design an efficient, plug-
and-play tool to elicit logic tree-based explana-
tions from Large Language Models (LLMs) to
provide customized insights into each observed
event sequence. Built on the temporal point pro-
cess model for events, our method employs the
likelihood function as a score to evaluate gen-
erated logic trees. We propose an amortized
Expectation-Maximization (EM) learning frame-
work and treat the logic tree as latent variables. In
the E-step, we evaluate the posterior distribution
over the latent logic trees using an LLM prior and
the likelihood of the observed event sequences.
LLM provides a high-quality prior for the latent
logic trees, however, since the posterior is built
over a discrete combinatorial space, we cannot
get the closed-form solution. We propose to gen-
erate logic tree samples from the posterior using a
learnable GFlowNet, which is a diversity-seeking
generator for structured discrete variables. The
M-step employs the generated logic rules to ap-
proximate marginalization over the posterior, fa-
cilitating the learning of model parameters and
refining the tunable LLM prior parameters. In
the online setting, our locally built, lightweight
model will iteratively extract the most relevant
rules from LLMs for each sequence using only a
few iterations. Empirical demonstrations show-
case the promising performance and adaptability
of our framework.
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Figure 1. GPT can help last event type prediction. We found re-
placing the semantic meaningful event names by numerical event
ids in event history degrades the performance of event prediction.

1. Introduction
Modern systems, such as healthcare, finance, and social me-
dia, produce voluminous data that are represented as discrete
events with irregular timestamps. Generating concise and
human-readable knowledge to explain this intricate event
data is of great scientific and practical value. The distilled
knowledge can be generalized to other contexts (Ullman
et al., 2012; Campero et al., 2018).
For example, in healthcare, electronic health records (EHRs)
are often represented as discrete event sequences, contain-
ing fine-grained time and type information on doctors’ treat-
ments, patients’ measurements, and symptoms. It is desir-
able to generate concise medical knowledge such as the
disease phenotypes and therapies, to shed light on these
messy events. This will facilitate a deeper understanding of
each patient’s unique health journey and medical decisions,
ultimately leading to more effective and individualized care.
However, the heterogeneity observed in each patient’s data
poses a challenge – each event sequence may exhibit di-
verse natures of medical histories, treatments, and condi-
tions (Henrich & McElreath, 2003; Laland, 2004). Gener-
ating the most relevant and accurate knowledge to explain
such heterogeneous data requires sophisticated methods.
Recently, Large Language Models (LLMs) have demon-
strated promising human-like reasoning abilities as few-
shot learners (Brown et al., 2020). When prompted with
step-wise explanations of reasoning, these models excel
in logical reasoning (Pan et al., 2023), abstract pattern in-
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duction (Webb et al., 2023), and social learning (Leng &
Yuan, 2023). Despite their success in text-based reasoning
tasks, LLMs still face challenges in extending their reason-
ing capabilities to tabular data (Hegselmann et al., 2023)
and discrete event sequences (Shi et al., 2023).
In this paper, we propose to leverage LLMs, trained on
general-domain data, as a prior to generate human-readable
knowledge. Specifically, we will encourage LLMs to
generate logic trees, from their prior distribution p(R).
Given the observed discrete event data X, the belief on
the logic trees will be updated according to Bayes rule,
i.e., p(R|X) ∝ p(R)p(X|R) (Leng & Yuan, 2023; Ace-
moglu et al., 2011), where we will use a temporal logic
point process (TL-PP) (Li et al., 2020) to model p(X|R).
The inference procedure can be regarded as performing the
reweighting of each logic tree from LLMs. The goal of our
paper is to perform the logic tree inference using LLM prior
in a tractable and efficient manner.
Performing inference on logic trees is challenging since
the posterior distribution is intractable due to their discrete
combinatorial space. Traditional solutions, such as MCMC,
approximate intractable posteriors by sampling, yet is strug-
gling with multi-modal distributions (Miao et al., 2019;
Zhang et al., 2020; Lew et al., 2023). Reinforcement learn-
ing (RL) methods like proximal policy optimization (PPO)
(Schulman et al., 2017), treating the sampling process as a
policy, may also fail to capture the distribution’s full diver-
sity (Zhu et al., 2023). The problem becomes worse when
the target distribution is incorrectly specified, leading to an
overoptimized policy. In our paper, we will address the infer-
ence challenge using the GFlowNet (Bengio et al., 2023), a
recently proposed sound diversity-seeking generative model
for structured discrete variables. As a deep RL algorithm
adept at managing unnormalized rewards, GFlowNet has
shown effectiveness in fine-tuning Large Language Models
with intractable thought posteriors (Hu et al., 2023a). We
wish to extend its success to Tree-of-Thoughts (ToT) rea-
soning (Yao et al., 2023), such as generating logic trees to
explain event sequences.
Our overall learning follows an amortized EM algorithm,
where we treat the logic tree as latent variables. In the
E-step, we train a GFlowNet to generate logic tree sam-
ples from their posterior distribution. The GFlowNet model
parameters are shared across all training event sequences,
which is the reason why we term it amortized EM. In the
M-step, we use the generated logic tree samples to approxi-
mate marginalization over the posterior. This process pro-
vides an objective function for learning the TL-PP model
parameters and refining some tunable LLM parameters (as-
suming the LLM priors are also learnable). The algorithm
iterates between the E-step and M-step until convergence.
During the testing stage, given a new event sequence, we em-
ploy the trained GFlowNet to efficiently perform inference

for explanatory logic trees by sampling from the posterior
p(R|X) ∝ p(R)p(X|R), leveraging well-trained priors
and models from the training stage. This enables our method
to efficiently and adaptively explain previously unseen event
sequences. Our main contributions are:
(i) We introduce, LaTee, an amortized EM learning frame-
work that can learn to infer and generate Latent logic Trees
to explain observed event sequences, which leverages LLMs
as prior;
(ii) In the E-step, we use GFlowNets to fine-tune LLMs and
enable diverse logic tree generation, which better tackles
the heterogeneity issue exhibited for event sequences;
(iii) Our method generates a relative margin of 20% over
SOTA Attentioin-based temporal point process (TPP) mod-
els on future event prediction based on real-world behavior
datasets. This shows that our interpretable and knowledge-
driven TPP model is also flexible.

2. Related Works and Background
2.1. Knowledge Extraction from Event Sequences
Knowledge extraction refers to the process of refining, con-
densing, or summarizing large volumes of raw data to distill
the most relevant and essential information. For noisy event
sequences, we will represent our knowledge as a collection
of symbolic logic trees, which is a hierarchical and struc-
tured representation of logical relationships among different
elements or propositions (Campero et al., 2018). Our logic
tree extraction from events is related to symbolic rule induc-
tion and semantic cognition.
Symbolic Rule Induction. Symbolic rule induction refers
to the process of automatically discovering logical rules
from observed data. Classic symbolic inductive logic pro-
gramming (ILP) methods (Quinlan, 1990; Cropper & Tour-
ret, 2020) mostly adopt discrete search in the space of logic
programs and do very well at generalizing from just a few ex-
amples. Neuro-symbolic rule inductions (Evans & Grefen-
stette, 2018; Yang et al., 2017; Rocktäschel & Riedel, 2017;
Campero et al., 2018) are differentiable ILP methods and
are generally more robust to noisy input. In our approach,
we take inspiration from a differentiable backward chaining
algorithm (Rocktäschel & Riedel, 2017) and represent a
symbolic logic tree starting from the target predicates. For
instance, consider a Put-into task as our target predicate, in
which we need to replace element X from box Y1, room
Z1 into box Y2, room Z2. We can represent this actionable
strategy as a set of ordering logic rules as:

Put-into(X,Y )← Open(Y ) ∧ Pick-up(X), (1)
Pick-up(X)← Open(Y ) (2)

Open(Y )← Move-to(Z) (3)
which is a logic tree, with Put-into(X,Y ) being the root
and other predicates being its children. Many classic or dif-
ferentiable ILP methods can automatically learn such rules
from data, however, they require carefully hand-crafted rule
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templates for each ILP task in order to constrain and reduce
the search space effectively (Glanois et al., 2022).
Semantic Cognition. Semantic cognition refers to the de-
velopment of systems that can comprehend and manipu-
late meaning in a manner similar to human cognitive pro-
cesses. It explores how knowledge is organized, represented,
and utilized to derive semantic understanding from various
forms of data. Previous research has described it as a pro-
cess similar to reducing logical dimensions (Katz et al.,
2008; Ullman et al., 2012) through employing probabilistic
generative models. These models are capable of learning
both logical rules and fundamental relationships that explain
the data observed. Similar to ILP methods, they can perform
deductive reasoning using logical rules. However, unlike
traditional ILP methods, these models can also induce facts.
While these approaches showed potential, they faced signif-
icant issues with scalability. The recent advancements in
social learning in LLMs (Leng & Yuan, 2023) suggest that
it might be beneficial to reexamine these concepts.

2.2. Knowledge-Driven Probabilistic Models for Event
Sequences

Temporal point process (TPP) provides an elegant proba-
bilistic model for continuous-time event sequences, which
is characterized by an intensity function. The intensity
function represents the occurrence rate of events, which
is usually modeled as parametric, nonparametric, or deep
neural network forms. Traditional parametric TPP models
like the Hawkes process offer interpretability, but their sim-
plicity limits flexibility. On the other hand, neural-based
models, such as RMTPP (Du et al., 2016) and Transformer
Hawkes (Zuo et al., 2020), provide expressiveness but are
often criticized for their black-box nature and hinder their
applications in high-stakes scenarios. In this paper, we aim
to generate logic trees from a fine-tuned LLM to inform
the functional form of the intensity, which strikes a balance
between model flexibility and interpretability. The model-
ing idea takes inspiration from TL-PP (Li et al., 2020) , as
detailed below.
Rule-informed Event Sequences. We will build a rule-
informed conditional intensity function for the event se-
quences as:

λ(t;w,R,Xt) := exp
{∑

f∈R

wfϕf (Xt) + b(t)
}
, (4)

where f is a valid path from the symbolic logic tree R,
ϕf (Xt) is the logic-informed feature derived from the num-
ber of ordered event combinations in event history Xt sat-
isfying the path f (with more details can be found in (Li
et al., 2020)), and wf is the weight corresponding to rule f .
Given this probabilistic model, we can use the negative log-
likelihood of the temporal point process as a loss function to
jointly learn weights w and symbolic structureR. Given a
event sequence X = {(ti, ei)}Li=1 observed over an interval

[0, T ], the negative log-likelihood of X is expressed as:
Lw,R(X) = (5)

−
L∑

j=1

log λ(tj ;w,R,Xj) +

∫ T

0

λ(t;w,R,Xt)dt.

where each tj is the event trigger time and Xj refers to
the event sequences up to tj . Nevertheless, this learning
problem is challenging because it requires learning the pa-
rameters w in a continuous space as well as the symbolic
structureR in a discrete space.

2.3. Human-Like Reasoning in LLMs
Recent developments in LLMs, such as GPT-4 (Achiam
et al., 2023) and LlaMA 2 (Touvron et al., 2023), have
extended the capabilities of AI beyond conventional pre-
dictive analytics to simulate sophisticated human-like inter-
actions in various systems (Gao et al., 2023). In-context
learning (ICL) within LLMs is a notable feature where
the model performs tasks based on input-output examples
without adjusting any parameters. Importantly, ICL can
be understood through a Bayesian inference framework
(Xie et al., 2021), where the augmented prompt serves as
a semantic prior, guiding latent concepts acquired during
pre-training for chain of thought reasoning and subsequent
output (Wei et al., 2022; Kojima et al., 2022). Despite the
transformative nature of ICL in LLMs, which allows them
to adapt to new tasks without explicit retraining, challenges
remain in explaining extrapolation to unseen tasks and un-
derstanding the impact of model architecture and optimiza-
tion. Conversely, knowledge extraction from locally deploy-
able LLMs, achieved through careful fine-tuning (Schick
& Schütze, 2020) using Parameters Efficient Fine Tuning
(PEFT) techniques (Hu et al., 2021; Dettmers et al., 2023),
also provides valuable insights. We will adopt PEFT ideas
in this paper.

2.4. Intractable Bayesian Inference in LLMs
The challenge in inferring the latent logical reasoning path
from LLMs stems from the intractability of the posterior.
Given question-answer pair (X,Y ), the posterior of the la-
tent chain-of-thought pLM (Z|X,Y ) = pLM (X,Z,Y )∑

Z′ pLM (X,Z′,Y )

is intractable due to the discrete combinatorial space for
thoughts Z (Hu et al., 2023a). Existing approaches to ad-
dress this intractable inference problem in language models
often resort to tokenwise approximations using techniques
like tempered and contrastive sampling (Malkin et al., 2021;
Li et al., 2022), along with problem-specific strategies like
beam search and local search techniques (Lu et al., 2021;
Sha, 2020). In our paper, we will use GFlowNets to guide
posterior sampling of logic trees and fine-tune LLMs.
GFlowNets as Posterior Samplers in LLMs. GFlowNets
(Bengio et al., 2021; 2023) are originally introduced as a
diversity-seeking probabilistic reinforcement learning algo-
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Bayesian Logic Tree Learning in LLM: P(R|X,Y)

LLM Prior P(R) Rule-informed LLH P(X|R) LLM Inference P(Y|R,X)

Event Prompts for Reasoning

Event Likelihood P(X, Y)

Approximated Posterior Distribution R

Time

Train X Test Y

: move to : open : pick up : put into
Event

History

R2

I want you to do the reasoning over social events.

Given events: open, move to, pick up, put into

We observe Event   `Move to` at time 1.2

We observe Event   `Open` at time 1.5

We observe Event   `Pick up` at time 2.4 and 4.2

We observe Event   `Put into` at time 3.4

You need to reason all possible events from above

that can cause Event  `Put into` to be activated. R1 R3

GFN GFN
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Figure 2. The Architecture of Proposed Framework. The presented event history represents a typical human trajectory: beginning with
relocating to a new place, opening a box, picking up an object, and culminating in placing the retrieved item in a specific location. In the
training phase, we first convert this explicit event history into a textual format. Subsequently, we employ a LLM to execute conditional
sampling and perform backward reasoning, starting from the predetermined goal (E-Step). The resultant reasoning pathway is then
transformed into a symbolic logic tree, which aids in updating the event probabilities (M-Step). In this context, the campfire icon signifies
that the model is being updated, while the snowflake icon indicates that the model is in a ‘frozen’ state. We use the thickness of a path in
the symbolic logic tree to represent its posterior probability.

rithm for molecular discovery. A recent work (Hu et al.,
2023a) connects GFlowNets to Chain-of-Thoughts (CoT)
generation, by leveraging the amortized inference ability of
GFlowNets. In their work, given an unnormalized density
(reward) R : Z → R>0, GFlowNets learn policies to sam-
ple sequences in a token-level, i.e., Zt = z1z2 · · · ztT ∈ Z
(where zi is a language token and T denotes End of Sentence
token), as if they were sampling from a target distribution.
The goal of GFlowNets is to fine-tune a token-level language
generation qGFN (Zt|Zt−1; θ) initialized by LLM such that
marginal qGFN (Zt) ∝ r(Zt), i.e., driving the marginal like-
lihood of generating a complete sequence is proportional to
its reward. The learning objective for GFlowNets is defined
by the subtrajectory balance (SubTB) objective, equiva-
lent to the path consistency objective (Nachum et al., 2017;
Deleu et al., 2024; Tiapkin et al., 2024) in Max-Entropy RL
(Haarnoja et al., 2017).

3. Our Proposed LaTee using LLM prior
Instead of eliciting linear thoughts from LLMs, our focus
is to extract and reweight symbolic logic trees generated
from LLMs to explain the dynamics of the observed event
sequences. We hope the obtained logic trees will not only
offer personalized explanations for each event sequence but
also enable accurate future events prediction.

3.1. LLM-Symbolic Integration by Latent Variables
Given event sequences X and next event type Y , where
X records explicit event sequences with k events X =

{(ti, ei)}ki=1, where ti is the i-th event time, ei is the i-th
event type, and Y = ek+1 is the next event type after the
k-th event. We are interested in finding a collection of latent
symbolic logic trees R, which are composed of various
event types that trigger subsequent events and best explain
the likelihood of the observed event sequence:

p(X,Y ) =
∑
R

p(X,Y |R)p(R). (6)

For this mixture latent variable model (LVM), we treat R
as latent variables; p(R) is the prior distribution for the
latent logic tress; and the joint likelihood of the event se-
quences p(X,Y |R) can be derived from temporal point
process framework, as shown in Eq. (5).
We will employ LLMs as the prior p(R) for logic trees.
Additionally, if we aim to leverage the powerful reason-
ing and generation capabilities of LLMs to predict Y —
for instance, in the context of symptom-treatment pairs or
question-answer pairs for (X,Y ) — it becomes intriguing
to explore the recommendations of Y given X provided by
LLMs. Consequently, we further decompose the mixture
LVM (as shown in Eq. (6)) as:
p(X,Y ) =

∑
R

p(X,Y |R)pLM (R), (7)

= pLM (Y |X,R)
∑
R

pw(X|R)pLM (R;ϕ). (8)

We aim to jointly optimize the event likelihood parameter
w and the tunable parameters ϕ in the prior language model.
The challenge in learning arises from the latent variables
R. Fortunately, the EM algorithm provides an effective tool
for learning mixture models with latent variables. However,
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in the E-step, we need to analytically evaluate the current
posterior p(R|X,Y ) ∝ pLM (Y |X,R)pw(X|R)pLM (R),
which is intractable due to that the partition function requires
the summation over the discrete space ofR. To tackle this
intractability, variational-EM algorithm (Dempster et al.,
1977; Beal, 2003; Koller & Friedman, 2009) can be used
to approximate the posterior by optimization. We will ad-
dress this issue by introducing an amortized EM, where in
the E-step we learn GFlowNets to sample from p(R|X,Y )
without the need to calculate the partition function.

3.2. Amortized EM framework for Logic Tree Inference
The derivation of the Evidence Lower Bound (ELBO) for
Eq. (7) is presented in Appendix E. It explains the rationale
for analytically evaluating the posterior in the E-step to
achieve a tight ELBO.
Specifically, in the E-step, we will draw samples from
the posterior over the latent symbolic logic tree, de-
noted as pLM (R|X,Y ), which comes from an amor-
tized sampler of R with an LLM as its policy.
In the M-step, we maximize the log-likelihood of
the joint probability of the sampled latent variables
ER∼p(R|X,Y )[log pLM (Y |X,R)pw(X|R)pLM (R)] with
respect to the parameters of w. This combination of amor-
tized inference (learning to sample the symbolic logic tree
from the language model) and supervised learning (optimiz-
ing the likelihood model with the ‘supervision’ involvingR
sampled from the amortized posterior) is presented in Fig.
2. We illustrate them in detail in the sections below.
E-Step: Amortized Inference with GFlowNets. For in-
ference in the high-dimension discrete latent space, we
leverage the probabilistic framework of GFlowNets (Ben-
gio et al., 2021; 2023). Consider a symbolic logic tree
R, we start from the root R0 := {z0}, in which z0 is the
target predicate (can be composed by multiple language
tokens). We follow backward chaining (Rocktäschel &
Riedel, 2017) to form a symbolic proof tree in a top-down
fashion by prompting LLMs. We grow the logic tree one
level deeper at a time based on the previous paths. Con-
cretely, suppose Rt can be represented by m paths, i.e.,
Rt := {z(i)0 z

(i)
1 · · · z

(i)
j }mi=1, where z

(i)
j ∈ Z is the j-th

predicate presented in the i-th path from the predefined pred-
icate space Z . If the maximum number of nodes for each
path to expand is constrained to W , the generative process
from a symbolic logic treeRt toRt+1 can be represented
as:

log qGFN (Rt+1|Rt) :=

m∑
i=1

W+1∑
k=1

log qLM (z
(i),k
j+1 |z

(i)
0 · · · z

(i)
j ),

(9)
where qLM is the autoregressive sequence generation model
and z

(i),k
j+1 is the next level predicates chosen from ZW ∪

{T}, ZW ⊆ Z , |ZW | = W , and T denotes a stop symbol.
The nodes in the symbolic logic tree thus grow in O(Wn)

and will not stop expanding until all the paths reach the
termination state T, i.e.,

log qGFN (T|Rt) :=

m∑
i=1

log qLM (T|z(i)0 · · · z
(i)
j ). (10)

The marginal likelihood of sampling a terminal logic tree
Rt is given by

qGFN (Rt → T) =∫
τ=(R0⇝Rt)

Πt
i=1qGFN (Ri|Ri−1)qGFN (T|Rt)dτ

over trajectories τ starting at R0 and ends at Rt. No-
tably, the goal of GFlowNet training is to fit the para-
metric policy qGFN (·|·; θ) such that its terminating prob-
ability qGFN (Rt → T) is proportional to a predefined
reward r. In our case, GFlowNet’s reward r is de-
fined as the posterior of logic trees p(R|X,Y ), i.e.,
r(R|X,Y ) ∝ pLM (Y |X,R)pw(X|R)pLM (R). By con-
struction, GFlowNet’s marginal terminating distribution is
proportional to its reward function r(R|X,Y ), thus we
will have the final samples R given by the GFlowNet’s
policy qGFN (·|·, θ) following the distribution of unnormal-
ized true posterior of p(R|X,Y ). Here, the given reward
function r can be decomposed as a product of likelihood
terms that accumulated over steps of the sampling sequence.
In this case, a forward-looking SubTB loss (Madan et al.,
2023) for GFlowNet can help local credit assignment (Hu
et al., 2023a;b). The SubTB learning objective for trajectory
τ = (R0,R1, · · · ,Rt) is:
LSubTB(θ) = (11)∑
0≤i<j≤t

[
log

r(RT
i )Π

j
k=i+1qθ(Rk|Rk−1)qθ(T|Rj)

r(RT
j )qθ(T|Ri)

]2
,

where qθ is the conditional GFlowNet policy initialized
by a language model pLM conditioned on prefix X and
Y . The detailed derivation of the SubTB loss is given in
Appendix F. In practice, this loss can be minimized by
gradient descent on θ sampled either on-policy or off-policy,
just as in reinforcement learning. To predict the event type
Y for an unseen event sequence X , one can draw samples
ofR from qθ followed by sampling from pLM (Y |X,R).
M-Step: Model Parameter Updating. The marginal termi-
nal distribution of GFlowNet is used as a variational approx-
imation to the intractable posterior p(R|X,Y ) to perform
updates to the generative model’s parameters. Thus, for the
event demonstrations X and next event type Y , we can un-
cover its underlying symbolic logic treeR from the policy
of the conditional GFlowNet qGFN and perform in expecta-
tion gradient update on the parameters w of event likelihood
and tunable parameters ϕ for structure prior learning:
Lllh(w, ϕ) = ER∼qGFN (R→T)[log pw(X|R)

+ log pLM (Y |X,R) + log pϕ(R)]. (12)
It should be noted that the evolving nature of the gener-
ative models pw, pLM , and pϕ during joint optimization
leads to a dynamic reward system for the GFlowNets. The
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Figure 3. Empirical rule distributions sampled from the Language Model fine-tuned by three different approaches. We use 10,000 samples
to depict the frequency distribution of a complete logic rules search space with support |R| = 2500. The x-axis represents these logic
rules in a nominal 1-D format, where each point corresponds to a specific rule. The ordering of these points is not indicative of any
inherent sequence.

Algorithm 1 Bayesian Logic Tree Learning for Events
Input: data pool {X ,Y}, rule weights w, tunable pa-
rameters θ for LLM as the GFlowNet policy, tunable
parameters ϕ for LLM as the prior policy, optimization
and exploration hyperparameters, threshold α
repeat

sample batch data pair (X,Y ) ∼ {X ,Y}
sample τ ∼ qθ(τ |X,Y ); τ = (R0, · · · ,RT )
rt ← pw(X|Rt)p(Y |X,Rt)pϕ(Rt), t = 0, · · · , T
LSubTB ← SubTB loss in Eq. (11) along τ with re-
ward rt
E-step: GD on θ with∇θLSubTB

if L < α then
Sample τ ∼ qθ(τ |X,Y )
M-step: GD on w and ϕ with∇w,ϕLllh in Eq. (12)

end if
until some convergence criteria

training process involves alternating between E-steps and
M-steps, with the frequency of GFlowNet updates between
successive M-steps being a variable parameter that can be
either predetermined or adaptively chosen. Following the
approach outlined in (Hu et al., 2023b), adaptive E-steps are
implemented through loss thresholding. This method uses a
moving average of the GFlowNet’s training loss as a mea-
sure of the accuracy in approximating the true posterior. An
M-step gradient update is executed following a GFlowNet
update only if this moving average drops below a set loss
threshold. The overall algorithm is presented in Alg. 1.

3.3. Discussion
Comparison with ILP systems. In our approach, we har-
ness LLMs to generate latent logic trees, replacing tradi-
tional symbolic ILP systems. While traditional ILP systems
that are based on discrete space search excel in rule learning

from minimal examples, they are sensitive to noisy input,
and a single error can lead to malfunction. Neural-symbolic
rule induction systems, on the other hand, are more robust
to noise but will struggle with few-shot learning and may
face the risk of overfitting. Symbolic reasoning through
LLMs integrates pretrained knowledge, addressing the chal-
lenge of learning rules from limited data. Additionally, our
approach employs a step-by-step process reflecting human
cognitive functions (Wei et al., 2022), enhancing semantic
understanding from event sequences.
Comparison with GFlowNets-CoT. We share some similar-
ities with GFlowNets-CoT (Hu et al., 2023a) in the Bayesian
inference stage in which LLM is used as a probabilistic gen-
erative model that simultaneously generates logical rules
and a set of core relations underlying them. However, the
distinction between our approach and GFlowNets-CoT is
that we extend GFlowNets fine-tuning to a sentence-level
symbolic logic tree R, which is similar to sentence-level
Tree-of-Thoughts (Yao et al., 2023), through directly query-
ing sentence probabilities within a confined ‘sentence space’
for backward learning, as opposed to ToT’s forward-only
inference approach. GFlowNets-CoT’s likelihood model
relies only on pLM (X,Y,R) while ours is built upon a
modular likelihood model by decomposing p(X,Y |R) into
event likelihood Lw along with the language likelihood
pLM , i.e., pLM (R)pw(X|R)pLM (Y |X,R).

4. Experiments
4.1. Experimental Setup
Datasets and Evaluation Setup. Our study involves one
synthetic and three real-world event sequence datasets, con-
taining both semantic and non-semantic information. We
view events in these datasets as predicates that can form
a symbolic logic tree. For each sequence, we focus on
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Table 1. Last event prediction performance on three real-world behavior datasets using both attention-based TPP models and Language
Model Opt-1.5B as predictors. ER stands for Error Rate and MR stands for Mean Rank. The performance is averaged over three different
seeds and the standard deviation is stored in the parenthesis. The best performance is in bold and also highlighted in gray.

DATASET MIMIC-3 EPIC-100 STACKOVERFLOW

METHOD METRICS ER (%) ↓ MR ↓ ER (%) ↓ MR ↓ ER (%) ↓ MR ↓
ATTNHP (YANG ET AL., 2021) 36.66(13.76) 1.25(0.00) 67.53(0.00) 2.45(0.00) 33.33(0.00) 1.95(0.10)
PT-ATTNHP (XUE ET AL., 2023B) 77.50(0.00) 1.75(0.00) 68.33(1.44) 2.27(0.16) 71.11(32.71) 3.40(0.81)

k-SHOT COT
k = 0 100.00(0.00) 2.24(0.02) 78.75(1.76) 4.75(0.00) 100.00(0.00) 3.33(0.00)
k = 1 100.00(0.00) 2.23(0.00) 76.25(1.57) 4.66(0.02) 100.00(0.00) 3.33(0.00)
k = 3 100.00(0.00) 2.23(0.00) 76.25(0.02) 4.63(0.00) 100.00(0.00) 3.13(0.00)

TOT (DEPTH= 3, WIDTH= 3) 100.00(0.00) 2.23(0.00) 71.25(1.76) 4.69(0.12) 96.67(4.71) 3.07(0.09)
SFT FINE-TUNING 82.50(2.50) 2.14(0.03) 75.83(1.44) 4.38(0.11) 93.33(6.67) 4.44(0.30)
PPO FINE-TUNING 77.50(0.00) 2.55(0.00) 77.50(0.00) 3.99(0.03) 73.33(6.67) 3.29(0.32)
GFN FINE-TUNING 27.50(8.66) 1.14(0.05) 55.25(9.01) 2.15(0.48) 33.45(5.12) 2.23(0.23)

predicting the final event. For the synthetic dataset, we
create sequences of event predicates sampled from a pre-
specified TL-PP using the thinning algorithm (Ogata, 1981).
The functional form of the intensity is informed by the
predefined logic rules. Regarding the real-world datasets,
one is the MIMIC-III (Johnson et al., 2016), an electronic
health record dataset from intensive care unit patients. We
use various lab measurements and treatment approaches
as event predicates. The other is EPIC-KITCHENS-100
(EPIC-100) (Damen et al., 2021), which documents every-
day kitchen activities from a first-person perspective over
several days, with actions labeled. We analyze these labeled
actions in sequence to predict the human’s next action based
on their past activities. The final one is StackOverflow
(SO) (Leskovec & Krevl, 2014), which records a sequence
of reward history with badges from the question-answering
website StackOverflow to promote the engagement among
its users. Each event in the sequence signifies the receipt of
a particular metal. For all the datasets, We consider each
sequence as a record pertaining to a single individual and
partition each dataset into 80%, 10%, 10% train/dev/test
splits by the total population. More details about these
datasets can be found in the Appendix G.1.
Metrics. We follow the common next-event prediction
task in TPPs (Du et al., 2016; Mei & Eisner, 2017) and
emphasize the performance of last event type prediction
k from its history H output by the language model. We
evaluate the prediction k̂ by Error Rate (ER) and Mean
Rank (MR) that measures the average rank of the ground-
truth type in the list; a smaller MR means a higher rank, and
thus a better result.
Base models. In this study, we utilize three distinct sizes
of language models from the OPT family (Zhang et al.,
2022): Opt-125M (small), Opt-1.5B (medium), and Opt-
6.7B (large), as our foundational language model backbones
for latent logic tree extraction pLM (R|X) in the E-steps.
These models are fine-tuned for logic tree learning using the

LoRA adaptation layer and further optimized through quan-
tization (Dettmers et al., 2023) to minimize GPU memory
consumption during both forward and backward processing
stages. We use Zephyr-3B (Tunstall et al., 2023) and Mistral-
7B-Instruct (Jiang et al., 2023) as frozen inference models
for pLM (Y |X,R) in the M-steps. Detailed methodologies
and specifics regarding the fine-tuning of these Large Lan-
guage Models (LLMs) can be found in the Appendix G.4.
Competitors. In our study, we categorize competitors into
three distinct types. The first category includes prompt-
based approaches applied to language models, such as k-
shot Chain-of-Thought (CoT) (Wei et al., 2022) and Tree-
of-Thoughts (ToT) (Yao et al., 2023), which are utilized to
generate reasoning chains and make prediction of the last
event. The second category involves fine-tuning methods
for language models, notably supervised fine-tuning (SFT)
and Proximal Policy Optimization (PPO) (Schulman et al.,
2017) fine-tuning. The final category consists of advanced
neural Temporal Point Process (TPP) models specifically de-
signed for event prediction. Within this group, we focus on
AttNHP (Yang et al., 2021), an attention-based TPP whose
performance is either on par with or superior to the Neu-
ral Hawkes Process (NHP) (Mei & Eisner, 2017) and other
attention-based models (Xue et al., 2023a). Additionally, we
consider PromptTPP (Xue et al., 2023b), a prompting model
based on AttNHP (abbreviated as Pt-AttNHP), tailored for
processing streaming events with a retrieval memory mech-
anism.

4.2. Results and Analysis
The primary findings are summarized in Table 1. Notably,
only using the local LLM for event prediction pLM (Y |X)
(0-shot CoT) yields the least effective results across all three
datasets. Intriguingly, incorporating examples and adopting
a tree-like reasoning structure (ToT) in the prompt do help
enhance performance on the EPIC-100 and StackOverflow
datasets to some extend. Furthermore, Supervised Fine-
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Figure 4. (a) Illustration of Scalability on the number of event types on four synthetic datasets. (b) Illustration of the performance of using
semantic and not using semantic information on two real-world datasets.

Table 2. Scalability of the proposed model on two real-world be-
havior datasets. The tree traversal depth d and tree expansion
width w is fixed to 3 without further clarification in the Table. We
use Opt-1.3B for Epic-100 and Stackoverflow as base model in
E-step. Error Rate (%) is used as the evaluation metric for both
Epic-100 and StackOverflow. The performance is averaged over
three different seeds and the standard deviation is stored in the
parenthesis.

DATASET EPIC-100
W/ SC

SO
W/O SCMETHOD

LATEE
(Tree Depth)

d = 2 69.23(9.43) 73.31(23.29)
d = 3 69.40(9.21) 34.50(5.23)
d = 4 68.21(8.13) 34.41(5.08)

LATEE
(Tree Width)

w = 3 69.40(9.21) 34.50(5.23)
w = 5 61.31(9.24) 33.53(5.10)
w = 7 55.25(9.01) 34.37(5.42)

LATEE
(Model Size)

OPT-350M 69.40(9.21) 72.87(16.35)
OPT-1.3B 66.40(9.52) 34.50(5.23)
OPT-6.7B 61.40(8.36) 33.45(5.12)

Tuning (SFT) exhibits similarly weak performance, while
Proximal Policy Optimization (PPO) Fine-Tuning on the
LLM shows marginal improvement but still lags behind
attention-based Temporal Point Process (TPP) models. We
hypothesize this underperformance is due to SFT’s limited
generalization capabilities and the shifted distribution map-
ping inherent in PPO’s reward signals (refer to Analysis
2). It is noteworthy that Pt-AttNHP consistently falls short
of AttNHP’s performance across all datasets. This may be
attributed to Pt-AttNHP’s reliance on a prompt-like retrieval
memory for time-horizon generalization, which potentially
leads to overlooking individual-level characteristics in un-
seen event histories. Lastly, the proposed LaTee, fine-tuned
with GFN objectives, matches AttNHP’s accuracy on Stack-
Overflow by focusing solely on latent structure learning.
Remarkably, it surpasses AttNHP by a relative margin of
25% on MIMIC-3 and 18% on EPIC-100 containing seman-
tic content (as detailed in Analysis 1).
Analysis 1: The Role of LLM in Enhancing Event Logic
Discovery through Semantic Cognition. From the data
presented in Fig. 1, it is evident that GPT enhances next
events type prediction by substituting semantically mean-
ingless numerical event IDs with meaningful event names.
This study aims to explore whether the semantic content
embedded in event history can bolster structure learning

and, consequently, improve event prediction accuracy on a
local deployable LLM. As shown in Fig. 4(b), we observe
a noteworthy reduction in error rate (approximately 25%)
for both EPIC-100 and MIMIC-3 datasets when employing
semantic event names for reasoning and inference. This
decrease is significantly more pronounced compared to the
improvement seen when transitioning from attention-based
TPP models to LaTee models that do not apply semantic
information. Moreover, we illustrate two examples of se-
mantic tree structures learned by LaTee in Appendix A.
Analysis 2: The Necessity of GFN Fine-Tuning in LLMs
for Logic Tree Discovery and the Role of Prompts in
Rule Discovery. As indicated by the baselines in Table
1, approaches such as zero-shot Chain-of-Thought (CoT)
prompting, k-shot prompting, and Tree-of-Thoughts (ToT)
prompting demonstrate limited efficacy in yielding mean-
ingful results. Similarly, Supervised Fine-Tuning (SFT) and
Proximal Policy Optimization (PPO) fine-tuning on Large
Language Models (LLMs) for next events prediction are
outperformed by attention-based Temporal Point Process
(TPP) models. However, GFN fine-tuning, which focuses on
teaching models how to reason rather than predict, enables
LLMs to match and even exceed the prediction accuracy of
attention-based TPP models, particularly when integrating
semantic information. To understand this improvement, Fig.
3 offers a visualization of the diverse rule distributions gen-
erated by fine-tuned LLMs. We notice that rule distributions
in both SFT and PPO fine-tuning are predominantly concen-
trated in five regions, whereas GFN fine-tuning exhibits a
more diverse spread across the entire rule space.
Analysis 3: The Scalability of the Proposed Method and
the Impact of LLM and Symbolic Logic Tree Sizes on
Performance. This analysis explores the scalability of our
proposed method by examining the effect of an increased
number of event types across four synthetic datasets with-
out any semantic information. As shown in Fig. 4, LaTee
demonstrates comparable scaling abilities in Error Rates
and Mean Rank to those of attention-based TPP models.
Notably, LaTee consistently achieves a lower Mean Rank,
likely due to the additional confidence imparted by the
learned structure information in making predictions. Ad-
ditionally, we analyze the impact of varying tree sizes and
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Table 3. Performance Evaluation for Alternate EM-loops Frequencies on Synthetic@5 (Earlystop was made at the fifth epoch).
NLL ↓ ER (%) ↓ MR ↓

E-STEPS ONLY (WITH GROUNDTRUTH LIKELIHOOD) 1389.31 62.5 2.025
EM-LOOPS (ALTERNATE FREQ = 1) 117.58 70.0 2.075

EM-LOOPS (ALTERNATE FREQ = 20) 108.44 67.5 2.000
EM-LOOPS (ALTERNATE FREQ = 50) 106.35 70.0 1.900

Table 4. Performance Evaluation for using different LMs for Inference (E-steps) and Generation (M-steps) on Synthetic@5 (Earlystop
was made at the fifth epoch).

E-STEPS LM (FINE-TUNED) M-STEPS LM (FROZEN) NLL ↓ ER (%) ↓ MR ↓
OPT-1.3B OPT-1.3B 128.64 97.5 2.23
OPT-1.3B ZEPHYR-3B 149.25 87.5 2.50
OPT-1.3B MISTRAL-7B-INSTRUCT 117.62 70.0 2.08

ZEPHYR-3B MISTRAL-7B-INSTRUCT 116.21 70.0 1.95

LLM sizes. Assuming the predefined predicate space Z has
a cardinality |Z| = N , the maximum allowable depth and
width of the logic tree are restricted to d and w (w << N ),
respectively, then the entirety of the search space can be
approximated as O(Nwd

). In Table 2, we restrict depth
d and width w below 4 and 7 and the empirical findings
suggest that increasing the tree widths has a more beneficial
effect than increasing tree depth or model size on semantic
event sequences. This could be attributed to the fact that
ground-truth rules often consist of multiple short rules, and
a wider tree is better equipped to encompass more seman-
tically similar predicate events at the same level. It’s also
important to note that for non-semantic event sequences,
enlarging the model size tends to be more advantageous
than increasing tree sizes.
Analysis 4: Ablating E-M Update Steps in LaTee. Un-
like traditional EM algorithms where the E-step typically
has a closed-form solution, E-step in GFlowNet-EM pro-
gressively moves closer to the target distribution p. This
requires sufficient gradient steps in the ‘approximate E-step’
to closely align the approximate distribution with the target
while it also should regularly switch to M-steps for updating
likelihood functions using the new sampled latent variables
in E-steps. This non-stationary update thus gives us a chal-
lenge of scheduling E-M steps for a better convergence rate.
Consequently, we added experiments comparing the conver-
gence speed of both SubTB loss (E-steps) and NLL loss (M-
steps) under varying frequencies of alternation. We provide
the plot of convergence analysis for EM in the Appendix
G.3 Fig. 8 and 9 and report final performance in Table 3.
Interestingly, we observe that more frequent alternations of
E-M loops lead to a faster convergence of the SubTB loss
(E-steps) but a slower rate for M-step. Additionally, the
frequency of alternation appears to have minimal impact on
the overall evaluation performance.
Analysis 5: Ablating LLMs for E-M Steps. To investigate

whether the world knowledge in the LM is most useful in
the generation model (M-steps LM), the inference model
(E-steps LM), or both, we compared the effects of using
different sizes/versions of LMs for inference (E-steps) and
generation (M-steps). In our experiment, we used Opt-1.3B
as the base inference model (which has a minor language
understanding ability on LM benchmark task), and used
three different estimation (generation) models to make the
event prediction, i.e., Opt-1.3B, Zephyr-3B, Mistral-7B-
Instruct. The results are shown in Table 4.
Our evaluation strategy in Table 4 focused exclusively on
altering the model size to guarantee fairness in comparison.
We observe that employing larger language models (LMs)
for both inference (E-steps) and generation (M-steps) phases
can enhance event prediction performance. Notably, an in-
crease in the size of the LM used for generation (M-steps)
exhibited a more pronounced positive impact compared to
enlarging the LM for inference (E-steps). The results sug-
gest that the extensive world knowledge encoded in larger
LMs is more beneficial for generation tasks (M-steps). This
finding encourages future improvements in reasoning abili-
ties in the M-steps by calling API-based LLMs like GPT-4
and Claude-3 with an extracted logic tree from a fine-tuned
local lightweight LLMs as the prompt.

5. Conclusion
The incorporation of general knowledge from Large Lan-
guage Models (LLMs) is key to deciphering complex struc-
tures in noisy event sequences. To facilitate this, we present
LaTee, an amortized EM-style framework that leverages
LLMs’ prior knowledge for latent tree structure learning
for event sequence explanation. We simplify the complex
posterior with GFlowNets and perform inference based on
the learned structure without further gradient updates. Em-
pirical results show that this method notably enhances gen-
eralization in event histories with semantic information.
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A. Learned Logic Tree Examples

Rinse
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Figure 5. Illustration of learned symbolic logic tree structures from event histories on two real-world datasets containing semantic
information. Fig. (a)-(d) are learned from EPIC-100 and Fig. (e)-(f) are learned from MIMIC-3. We use the thickness of the edges to
represent posterior probability and the color to represent the weights corresponding to each rule (Black color stands for activation and Red
color stands for inhibition, i.e., low blood pressure will facilitate low urine while normal blood pressure suppresses low urine).

B. Broader Impact
Differentiable Extraction of Non-Linear Structures from LLMs: Our approach extends the application of in-context
learning in large language models (LLMs) beyond traditional posterior inference (Xie et al., 2021) and independent
demonstrations (Wang et al., 2024). We focus on non-linear prompt structures, enabling the extraction of complex entities
like symbolic proof trees and latent positions of political figures. This differentiable method enhances the versatility of
LLMs in handling diverse, non-linear structures.
Advancing Neuro-Symbolic Inference with Foundation Models: Foundational models, including Vision-and-Language
Models (VLMs) and LLMs, serve as informative belief priors for world modeling and latent concept understanding.
Our work augments posterior inference capabilities, moving past models like A-NESI (van Krieken et al., 2023) that
rely on uninformative Dirichlet priors. This progression is pivotal for tackling more intricate, multimodal, and scalable
neurosymbolic challenges.
Enhancing Data Privacy in Event Sequence Explanation and Prediction: By fine-tuning locally accessible, lightweight
LLMs (under 7B parameters) while maintaining data privacy, our model offers wide applications in sensitive areas like
healthcare and credit card fraud detection. The logic trees extracted from local LLMs can be integrated with public LLMs
for prediction tasks. This aspect also paves the way for exploring improvements in reasoning abilities for API-based LLMs
like GPT-4 and Claude-3 using these extracted logic trees.
These facets of our research not only contribute to the evolution of language model applications but also pave the way for
new advancements in privacy-sensitive areas and neurosymbolic computing.

C. More Related Works
Temporal Point Processes. In recent decades, a diverse range of Neural Temporal Point Processes (TPPs) have been
proposed to model event sequences with various properties. Many of these TPPs are based on a parametric intensity
function that evolves through a series of latent states (Du et al., 2016; Xiao et al., 2017; Boyd et al., 2020; Chen et al.,
2020). To effectively capture long-range dependencies within these sequences, the attention mechanism has been adapted
for TPPs (Zuo et al., 2020; Yang et al., 2021; Mei & Eisner, 2017). Moreover, intensity-free TPP models have also shown
promising results, particularly in the EasyTPP framework (Shchur et al., 2019; Xue et al., 2023a). However, the application
of Large Language Models (LLMs) in learning event sequences remains largely unexplored. Recent research, such as
LAMP (Shi et al., 2023), introduces a GPT-based abductive reasoning approach built upon attention-based TPP models for
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event prediction. This approach, however, necessitates additional textual data for event description and relies on costly API
services. Our focus, instead, is on harnessing the reasoning capabilities of local LLMs for event prediction.
Non-Linear Reasoning in LLMs. Recent research has focused on exploring complex, non-linear reasoning paths such
as tree structures within Large Language Models (LLMs) (Zhu et al., 2022; Xu, 2023; Yao et al., 2023; Hao et al., 2023;
Xie et al., 2023). Various methods, including beam search (Xie et al., 2023), depth-/breadth-first search (Yao et al., 2023),
Monte Carlo Tree Search (Hao et al., 2023), and MCTS with an enhanced value function (Feng et al., 2023), have been
implemented to navigate these tree structures effectively using LLMs’ self-assessment capabilities to identify more effective
reasoning pathways. Nonetheless, research on differentiable learning for non-linear reasoning within LLMs remains scarce.
Recent studies, such as by Hu et al. (2023a), suggest fine-tuning LLMs using GFlowNets objectives to augment the diversity
of reasoning chains. In our research, applying LLM-based tree search to discern the inherent structure in event sequences
presents challenges due to the limited event data available for fine-tuning LLMs for specific event prediction tasks. Therefore,
our focus shifts towards the development of differentiable logic trees to facilitate non-linear reasoning in LLMs, achieved by
iteratively expanding and refining the logic tree structure.

D. Limitations
Resource constraints limited our experiments to models with up to 6.7B parameters and event sequences of a maximum of
40 events. This limited the capacity of input events because of the constraints on the maximum number of input tokens for
a language model. However, we anticipate our findings to be applicable to larger models and longer sequences. Notably,
optimizing larger models with limited data presents challenges, and exploring more complex latent problems is an ongoing
challenge.

E. ELBO Derivation
Given data pair (X,Y ), we can represent write the joint likelihood log p(X,Y ) as

log p(X,Y ) = log
p(X,Y,R)
p(R|X,Y )

(13)

= log
p(X,Y,R)q(R|X,Y )

p(R|X,Y )q(R|X,Y )
(14)∑

R

q(R|X,Y ) log p(X,Y ) =
∑
R

q(R|X,Y ) log
p(X,Y,R)q(R|X,Y )

p(R|X,Y )q(R|X,Y )
(15)

log p(X,Y ) =
∑
R

q(R|X,Y ) log
q(R|X,Y )

p(R|X,Y )
+
∑
R

q(R|X,Y ) log
p(X,Y,R)
q(R|X,Y )

(16)

= DKL(q||p) + ER∼q(R|X,Y )[log
p(X,Y |R)p(R)

q(R|X,Y )
]︸ ︷︷ ︸

ELBO

(17)

≥ ER∼q(R|X,Y )[log
p(X,Y |R)p(R)

q(R|X,Y )
] (18)

Thus, the ELBO L for the joint likelihood of p(X,Y ) is ER∼q(R|X,Y )[log
p(X,Y |R)p(R)

q(R|X,Y ) ].

F. GFlowNets Learning Objective
We learn the amortized sampler of posterior distribution p(R|X,Y ) by a Sub-Trajectory Balance Objective (Madan et al.,
2023) of GFlowNet. The original Sub Trajectory objective is given by:

LSubTB(τm:n) =

(
log

F (sm; θ)Πn−1
i=mpF (si+1|si; θ)

F (sn; θ)Π
n−1
i=mpB(si|si+1;θ)

)2

(19)

L(τ) =
∑

0≤i<j≤n λ
j−iLSubTB(τi:j)∑

0≤i<j≤n λ
j−i

(20)

In our case, we enforce F (sn; θ) = R(sn) if sn is terminal, so we have R(sTn) = F (sn)pF (T|sn). Since we are generating
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a tree structure level by level, thus the backward probability is one, i.e., pB(s|s′) = 1, and λ = 1, we have

LSubTB(R0:n) =
∑

0≤i<j≤n

(
log

F (Ri; θ)Π
j
k=i+1pF (Rk|Rk−1)

F (Rj ; θ)Π
j
k=i+1pF (Rk−1|Rk)

)2

(21)

=
∑

0≤i<j≤n

(
log

R(RT
i )Π

j
k=i+1qθ(Rk|Rk−1)qθ(T|Rj)

R(RT
j )qθ(T|Ri)

)2

, (22)

We train the GFlowNet with stochastic gradient
ER0:n∼qθ [∇θLSubTB(R0:n)] (23)

G. Experimental Details
G.1. Dataset Details

# Target Predicates # Body Predicates Events Average Length

Synthetic@5 (w/o sc) 2 3 30.19
Synthetic@10 (w/o sc) 5 5 30.34
Synthetic@20 (w/o sc) 7 13 30.29
Synthetic@40 (w/o sc) 8 32 30.82

StackOverflow (w/o sc) 10 22 40.00
EPIC-KITCHEN-100 (w/ sc) 7 60 36.76
MIMIC3 (w/ sc) 3 62 20.01

Table 5. Event Dataset Statistics
We evaluate our methods on one synthetic dataset and three user behavior datasets. We consider each event type presented
in the event history as a unique predicate and emphasize on the model’s ability to predict only pertinent target predicates.
The overall data statistics is presented in Table 5. We provide details on the preparation and utilization of each below.
Synthetic Dataset. This dataset comprises four sets of synthetic event history data generated using the Temporal Logic
Point Process (Li et al., 2020). Specifically, we employ pre-defined logical rules along with their weights, as outlined in Eq.
(4), to construct the intensity function, and then apply thinning algorithms to generate new events. To evaluate the scalability
of the proposed model, we have created four distinct groups of synthetic data, with the number of event types varying from
five to forty, and an average sequence length of 30 events.
StackOverflow (Leskovec & Krevl, 2014). This dataset encompasses two years of user awards from a question-and-answer
website, documenting each user’s sequence of badges. There are 22 distinct types of badges in total. However, since each
event type is represented solely by a numerical ID, the dataset lacks semantically meaningful information. We focus on a
subset of 142 records, each with an average sequence length of 40 event tokens.
EPIC-KITCHEN-100 (Damen et al., 2021). This dataset originates from a large-scale, first-person (egocentric) vision
dataset, featuring multi-faceted, audio-visual, non-scripted recordings in natural settings, specifically the wearers’ homes.
It captures daily kitchen activities over multiple days. We have utilized the annotated action sequences, focusing only on
text, and extracted them to create a temporal event history of cooking verbs. This was achieved by omitting the entities
that the human subjects interacted with. The frequencies of each verb, derived from the Epic-100 dataset, are visualized
in Fig. 6. In this dataset, we specifically focus on eight verbs: put-in, rinse, put-on, pour, stir, peel, chop,
and slice, as our target predicates. The model is tasked with reasoning about the actions preceding each target verb and
learning the underlying structure that culminates in these targets. We concentrated on a subset of 400 event histories, each
with an average sequence length of 36.76 events, resulting in 60 distinct event types in total.
MIMIC-3 (Johnson et al., 2016). This dataset comprises electronic health records of patients admitted to the intensive
care unit (ICU). We specifically focus on patients diagnosed with sepsis, extracting medications, lab tests, outputs, and
diagnoses to form text-based temporal event histories. The frequencies of the various event types related to sepsis
are illustrated in 7. In this dataset, we concentrate on three key event types: survival, urine output low, and
normal blood pressure. Our analysis is based on a subset of 477 event histories, each with an average sequence
length of 20 event tokens, resulting in a total of 62 unique event types.
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G.2. Praising LLM Outputs
We detail two distinct methodologies for parsing outputs from large language models (LLMs) and querying corresponding
probabilities.

1. For LLMs that are locally accessible, such as OPT series, our approach aligns with that of (Hu et al., 2023a). Here, we
directly query the probability of subsequent tokens given a target sentence, avoiding the need for parsing. To illustrate,
consider an ’action space’ defined by {A,B,C,D}. To get the probability of action A, we tokenize it into k tokens
[wA

1 , w
A
2 , ..., w

A
k ]. Then p(A) is computed as:

p(A) = p(wA
k |wA

k−1, ..., w
A
1 )p(w

A
k−1|wA

k−2, ..., w
A
1 )...p(w

A
1 ).

2. For LLMs that are not locally accessible, like GPT, we employ a different technique. Regular Expressions are used to
isolate target sentences. Then, we leverage the ’logprobs’ parameter in the OpenAI Chat Completions API to ascertain
the probabilities of target tokens. For example, a common pattern in our analysis is ’#Event NAME#’, which allows us
to capture the output event by extracting the NAME component. In cases where the NAME fails to be parsed, we adopt
the approach from logic-LM (Pan et al., 2023), making a random guess across all possible event types.

G.3. Additional Experiments
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Figure 8. M-Steps converges rate under different EM-loops alternating frequencies
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G.4. Training Details
Implementation Details. All models are implemented using the PyTorch framework. All the experiments were conducted
on a server with 512G RAM, two 64 logical cores CPUS (AMD Ryzen Threadripper PRO 5995WX 64-Cores), and four
NVIDIA RTX A6000 GPUs with 50G memory.
Hyperparameters Selection. We present the selected hyperparameters on synthetic datasets and three real-world datasets
in Table 6 and Table 7 respectively.
Fine-tuning Quantized Large Language Model.
In our experiment, we implement QLoRA (Dettmers et al., 2023) to fine-tune the Language Model, effectively reducing
memory requirements during LLM finetuning without compromising on performance, as compared to the conventional
16-bit model finetuning process. Specifically, QLoRA employs 4-bit quantization to condense a pre-existing language
model. This model’s parameters are then set as unchangeable, and a limited set of modifiable parameters are incorporated
via Low-Rank Adapters. During the finetuning phase, QLoRA directs gradient updates through these unmodifiable 4-bit
quantized pre-trained language model parameters to the Low-Rank Adapters. Only the LoRA layers are adjusted during the
training process.
Prompt Details. We present the prompts utilized for reasoning, denoted as P (R|X,Y ), and inference, represented by
P (Y |X,R), in Tables 8 and 9, respectively. We iteratively grow the logic tree by applying the structure learning prompt to
the successive node within the current tree. Importantly, our prompts are crafted using a simple, predefined template. In
this template, events history represents an in-text version of the observed event sequence X , and target event
corresponds to the event id/name associated with Y . We also provide three inference examples in Table 9.

Table 6. Decriptions and values of hyperparameters used for models trained on the four synthetic datasets.

HYPERPARAMETERS VALUE USED

SYNTHETIC@5 SYNTHETIC@10 SYNTHETIC@20 SYNTHETIC@40

EPOCHS 10 10 10 10
ALTERNATE EVERY 1 1 1 1

BATCH SIZE 8 8 8 8
LLM LR 5e-4 5e-4 5e-4 5e-4

LLM SIZE (E-STEP) opt-1.3b opt-1.3b opt-1.3b opt-1.3b
LLM SIZE (M-STEP) zephyr-3b zephyr-3b zephyr-3b zephyr-3b

LOGIC MODEL UPDATE STEPS 1 1 1 1
LOGIC MODEL LR 0.001 0.001 0.001 0.001

LOGIC TREE DEPTH 3 3 3 3
LOGIC TREE WIDTH 5 8 5 3

TOP K 2 2 2 2
WRAMUP LEARNING RATE True True True True

LoRA RANK 512 512 512 512
LoRA SCALING FACTOR 512 512 512 512

LoRA DROPOUT 0. 0. 0. 0.
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Table 7. Decriptions and values of hyperparameters used for models trained on the three real-world datasets.

HYPERPARAMETERS VALUE USED

EPIC-100 STACKOVERFLOW MIMIC-3

EPOCHS 20 20 20
ALTERNATE EVERY 1 1 1

BATCH SIZE 2 2 2
LLM LR 5e-4 5e-4 5e-4

LLM SIZE (E-STEP) opt-1.3b opt-1.3b opt-1.3b
LLM SIZE (M-STEP) mistral-7b zephyr-3b zephyr-3b

LOGIC MODEL UPDATE STEPS 1 1 1
LOGIC MODEL LR 0.001 0.001 0.001

TREE DEPTH 3 3 3
TREE WIDTH 4 3 2

TOP K 2 3 2
WRAMUP LEARNING RATE True True True

LoRA RANK 512 512 512
LoRA SCALING FACTOR 512 512 512

LoRA DROPOUT 0. 0. 0.

Bayesion Structure Learning P (R|X,Y )

Template I want you to do the reasoning over social events. Given event list:
{total events}

We have the observations:
{events history}

If the activation time of one event happens before Event
{target event}, it means that event could have caused Event
{target event} to be activated.
If the activation time of one event do not happens before Event
{target event}, it means that event cannot cause the other event to
be activated.
Using this logic and based on the previous observation, You need
to reason all possible events from above that can cause Event
{target event} to be activated.
Start your answer from the most confident one and stop if you cannot
find any other events.
Answer: Event

Table 8. Prompts used for structure learning
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Table 9. Prompts Used for Next Event Inference. rationales store the text representation of the logic tree by going over all the paths.
The reasoning path is highlighted in red color.

Direct Inference P (Y |X) Reasoning based Inference P (Y |X,R)
Template I want you to perform inference over social events.

{examples}
Now you have event: {total events}
We have the observations: {events history}
then, the most likely event (chosen from event list :
{possible events}) to happen after {time}
is Event:

I want you to perform inference over social events.
{examples}
Now you have event: {total events}
and rules: {rationales}
We have the observations: {events history}
then, the most likely event (chosen from event list :
{possible events}) to happen after {time}
is Event:

Example 1 Given Events 0, 1
We have the observations:
1. Event 0 is activated at time 0.4

then, the most likely event (choose from event list:
0, 1) to happen after 0.4 is Event 1

Given Events 0, 1 and rules:
1. Event 1← (Event 0) and (Time of Event 1 after
Time of Event 0)

We have the observations:
1. Event 0 is activated at time 0.4

then, the most likely event (choose from event list:
0, 1) to happen after 0.4 is Event 1

Example 2 Given Events 0, 1, 2

We have the observations:
1. Event 1 is activated at time 0.2

then, the most likely event (chosen from event list :
0, 1, 2) to happen after 0.2 is Event 0

Given Events 0, 1, 2 and rules:

1. Event 0 ← (Event 1) and (Time of Event
0 after Time of Event 1),
2. Event 0← (Event 2) and (Time of Event 0 after
Time of Event 2)

We have the observations:
1. Event 1 is activated at time 0.2

then, the most likely event (chosen from event list :
0, 1, 2) to happen after 0.2 is Event 0

Example 3 Given Events 0, 1, 2

We have the following observation:
1. Event 0 is activated at time 0.2, 0.3, 0.5
2. Event 1 is activated at time 0.5, 0.6
3. Event 2 is activated at time 0.1, 0.4

then, the most likely event (chosen from event list :
0, 1, 2) to happen after 0.8 is Event 2

Given Events 0, 1, 2 and rules:

1. Event 2 ← (Event 1) and (Event 0) and
(Time of Event 2 after Time of Event 1) and (Time
of Event 1 after Event 0)

We have the following observation:
1. Event 0 is activated at time 0.2, 0.3, 0.5
2. Event 1 is activated at time 0.5, 0.6
3. Event 2 is activated at time 0.1, 0.4

then, the most likely event (chosen from event list :
0, 1, 2) to happen after 0.8 is Event 2
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