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Abstract Neural Architecture Search (NAS) is gaining popularity in automating designing deep neural

networks for various tasks. A typical NAS pipeline starts with a manually designed search

space, narrowed down to promising subspaces through NAS, allowing the discovery of

high-performance models. However, those models are still strictly included in the initial

manually-specified search space, whose quality may be a limiting factor for the final NAS

performance. A prohibitively ample search space may make NAS significantly more time-

consuming, while a smaller search space may fail to include top-performing models. This

paper develops new generative methods based on graph-normalizing flows that can generate

high-performing neural network architectures that do not belong to a given search space. We

leverage information about known high-performing reference models from prior knowledge,

for example, manually designed state-of-the-art models, to condition our generative model

to generate high-performing architectures with similar characteristics. We show that our

approach can discover better architectures beyond the scope of well-studied NAS search

spaces.

1 Introduction
Automated search space design methods can be seen as mappings from one search space to another,

𝑆 → 𝐴, where typically |𝐴| ≪ |𝑆 | and 𝐴 ⊂ 𝑆 . Compared to performing NAS directly on 𝑆 , they are

more efficient due to the relaxed objective in the first stage, effectively resulting in hybrid systems

combining coarse and fine-grained searching. However, existing approaches that focus on pruning

or evolving a large initial search space 𝑆 often rely on repeating a variation of NAS process multiple

times to provide feedback for updating 𝑆 . This is also subject to bias, e.g. when assessing the fitness

of different subspaces, and will almost certainly result in non-negligible additional cost Zhou et al.

(2021); Ci et al. (2021).

In contrast to the existing methods, our goal is to design a method of automatically creating

search spaces 𝐴, s.t. (possibly) 𝑆 ∩ 𝐴 = ∅, that all architectures in 𝐴 mainly satisfy our user

conditions. We can obtain those conditions from a seed search space that allows us to incorporate

any prior knowledge efficiently in the form of labelled architectures. The sampling mechanism is

realized and learned using a combination of a Graph Variational Autoencoder (G-VAE), a Conditional

Continuous Normalizing Flow (CCNF), and Zero-Cost (ZC) proxies Abdelfattah et al. (2021), which

all are adapted and/or extended to suit our needs. In summary, the contributions of our work are:

• We perform semi-supervised learning of a G-VAE to have a reversible encoding of graphs to a

latent space that preserves the clustering of the ZC space.

• We incorporate a CCNF model to learn to navigate the latent space of the G-VAE efficiently,

resulting in an efficient search space design mechanism supporting user-defined conditioning.
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Figure 1: Our approach performs semi-supervised learning of a G-VAE to have a reversible encoding

of graphs to a latent space using triplet loss on ZC scores. A CCNF model is then used

to navigate the learned latent space and generate novel architectures given reference and

user-defined conditions.

• We evaluate our method on popular NAS search spaces, including NAS-Bench-101 Ying et al.

(2019), NAS-Bench-201 Dong and Yang (2020) (acting as seed search spaces), and also explored

generalizability to diverse tasks by transferring to NAS-Bench-360 Tu et al. (2022). Our approach

presents successful extrapolation to generate novel architectures beyond original search spaces.

2 Related Work

NAS Search Space Design: The automated optimization of NAS search spaces has been a focus of

the NAS community Radosavovic et al. (2020); Zhou et al. (2021); Hu et al. (2021, 2020). RegNet Ra-

dosavovic et al. (2020) and NSE Ci et al. (2021), for example, refine NAS search spaces by constraining

the design space or evolving it, respectively. AutoSpace Zhou et al. (2021) employs evolutionary

algorithms to optimize from an open architecture space. Despite methodological differences, these

approaches primarily aim to prune the initial NAS search space to contain high-performing models.

Flow-based Generative Models: Normalizing flows Papamakarios et al. (2021) can map complex

to simple distributions and have seen successful application across various tasks, such as image

editing Abdal et al. (2021) and point cloud generation Yang et al. (2019). This work leverages the

efficiency and invertibility of Continuous Normalizing Flows (CNF)Grathwohl et al. (2018), based on

neural ODEs Chen et al. (2018), and conditional-CNF (CCNF) models, which can control the prop-

erties of the output by concatenating parameters to the embeddings. For example, StyleFlow Abdal

et al. (2021) and SRFlow Lugmayr et al. (2020) use CCNF for attribute-semantic image edits and

high-resolution image generation.

3 Method

Unlike the NAS search space design work mentioned above, our approach is fundamentally different:

instead of pruning or shrinking an initial search space, we generate optimized architectures given

a reference model and the desired conditions, e.g. zero-cost scores, while in practice, the generated

architectures may lie beyond the scope of the search space associated with the reference. Moreover,

our work resembles CCNF’s use to generate new deep-learning models given a reference and

different conditions. However, to our knowledge, we are the first to show that employing CCNF

generates optimized neural architectures. The overview of our method is presented in Figure 1,

and the following sections describe each part in detail.
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3.1 Semi-supervised latent-feature and graph pseudo attributes discriminative model

The Variational AutoEncoder (VAE) clusters samples in latent space based on observations, though

our graph representations currently fall short in reflecting network performance. To improve this,

we introduce auxiliary tasks in G-VAE training to better capture zero-cost score information.

Computing zero-cost scores for every graph in a vast design space is infeasible. Thus, we

focus on a subset with corresponding zero-cost scores. Represented as 𝑝𝑎 (𝐺, 𝑐) and 𝑝𝑢 (𝐺), these
labelled and unlabeled subsets, respectively, form empirical distributions. We aim to develop

semi-supervised learning models that leverage these distributions, thereby improving attribute

prediction performance.

During G-VAE training, we introduce a triplet margin loss as an auxiliary task. This loss function

is designed to regularize the latent space, thus facilitating the clustering of models with similar

distance relationships in the graph attribute space. The triplet margin loss function computes the

loss by iterating over selected triplets and measuring the difference between the anchor-positive and

anchor-negative distances. The overall loss is then calculated as the sum of the rectified differences

divided by the total number of triplets. This loss function strives to minimize the distance between

the anchor and positive samples while maximizing the distance between the anchor and negative

samples. The margin parameter,𝑚, enforces a minimum separation between these two distances,

thereby preserving the desired distance relationships throughout the learning process.

As the triplet margin loss guides the G-VAE to cluster graphs with similar zero-cost scores

together in latent space, we can simultaneously train a separate attribute predictor based on

latent space representation, 𝑧, in a semi-supervised manner. This model is designed to predict

an attribute, 𝑐 , facilitating a more cost-efficient attribute evaluation for all possible graphs. This

approach contrasts with traditional methods that demand extensive resources, such as creating

actual network instances and measuring attributes through numerous forward and backward

passes.
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Figure 2: Comparison onGraph-VAE latent spacewith(right) andwithout (left) reference triplet margin

loss. With triplet margin loss, latent space tends to cluster graphs with similar attributes well,

which allows the semi-supervised attributes discriminator to achieve accurate prediction

and helps CCNF better sample each subset of design space under different conditions. The

latent space is projected to 2-dimension by using t-SNE for visualization

3.2 Flow-based graph generation from zero-cost score

Leveraging the previously trained graph Variational AutoEncoder (VAE) and the graph attribute

discriminator, we can obtain the latent representation, 𝑧𝑖 , and the estimated attribute, 𝑐𝑖 , for any

graph, 𝐺𝑖 , within the design space. This allows our Conditional Continuous Normalizing Flows

3



0

2

4

6

93.8 94 94.2 94.4 94.6

Test Acc

Acc:%

Reference Test Acc

0

2

4

6

8

93.5 94 94.5

Test Acc
Val Acc

Acc:%

Reference Test Acc

Reference Val Acc

Figure 3: (left)Sampled models trained accuracy on CIFAR-10 in NB201-like Design Space. (right)
Sampled models trained accuracy on CIFAR-10 in NB101-like Design Space

(CCNF) to model the conditional distribution on the latent representation by sampling any graphs

from the design space. During this process, the CCNF model lets us sample random variables from

a standard normal distribution, N (0, 1), with the target attribute as the conditioning factor. This

enables the generation of graphs similar to the target attributes.

4 Evaluation
This section evaluates our method’s ability to generate novel architectures beyond the original seed

search space. Specifically, we focus on testing whether we can find more accurate and/or efficient

models than the best ones in any of the considered seed search spaces (subsections 4.3. We also

test how sampled search spaces behave when tested on the diverse tasks introduced in the recent

NAS-Bench-360 Tu et al. (2022).

4.1 Design Space
We use NAS-Bench-101 (NB101) and NAS-Bench-201 (NB201) as seed search spaces since they

provide us with performance information about all networks, allowing us to perform detailed com-

parisons between the seed and optimized search spaces. NB101 is a search space of approximately

420k architectures, while NB201 contains roughly 15k. For NB101 settings, we consider a similar

graph definition with five intermediate vertex nodes and remove the edge number constraint at 9,

resulting in 37748736 different graphs as NB101-like design space. For NB201, the extended search

space includes all possible adjacency matrices with six intermediate nodes resulting in 4831838208

possible graphs as NB201-like design space.

In both cases, optimized search spaces, sampled from the CCNF, are kept small – usually lower

than 20 samples per a single reference model to make search space concise.

4.2 Performance on pseudo attributes discriminator
We analyse our pseudo attributes discriminator to evaluate if our semi-supervised task performed

well on unseen graphs. Specifically, we used graphs from the original NB201 and NB101 as a test

set which are not explicitly trained with graph-truth attributes in our training process. Considering

NB101 is relatively large, we only sampled 4k graphs from it and obtained ground truth zero-cost

values. For NB201, we used all possible 15284 graphs to create runnable networks from benchmarks.

Additionally, we compared the zero-cost score with the percentage of the maximum zero-cost score

we obtained in the training set, which is also the value we used to normalize our elements during

the training process.

In NB201, the average predicted error in the zero-cost score is 0.91% of the maximum zero-cost

score in the train set, while the maximum error is 9.65% which is lower than 10%. For NB101, we

have a similar average error at 0.78%, while the maximum error is much lower at 5.26%.
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4.3 Pushing the upper-bound of the seed search space

Considering the most straightforward case for seed search space, that uses a single best model from

known search space. We take the best existing model from NB201 and NB101 as the seed search

space. To compare the reference and sampled models fairly and avoid installation bias introduced

by different implementations. We retrained the reference model and sampled models with the same

random seeds and strictly followed the training procedure from the original paper.

In Fig.3, we can observe that our approach sampled model performs relatively similar to the

reference model in NB201-like and NB101-like design space. Since we are exploring diverse graphs

with similar attributes, means we are exploring the success reference model in latent space and

finding better potential better models. Fig.3 shows that with only 20 sample sizes, we can push the

upper bound of the accuracy from seed search space.

Dataset Reference Mean Std Best Obj.

spherical 39.15 37.08 2.279 39.63 max

darcy-flow-5 0.033 0.027 0.006 0.017 min

psicov 3.20 3.32 0.272 3.05 min

cosmic 0.16 0.18 0.037 0.14 min

deepsea 39.74 39.58 0.375 39.94 max

ninapro 90.04 90.85 1.382 92.58 max

ecg 0.65 0.64 0.015 0.67 max

satellite 87.96 87.22 0.657 88.04 max

Table 1: Performance on NB360

Generalizability to diverse tasks. We

transferred our search model to diverse

tasks and compared them with the previ-

ous best model found in NB201. We can ob-

serve in Table.1 that by searching around

the best reference model with generated

search space at size 20, we consistently im-

proved all tasks performed in NB360 com-

pared to directly using the best network

reported in NB201

5 Conclusion

In this paper, we propose a novel method to generate optimized neural network architectures given

known reference models and user-defined conditions. Instead of pruning or evolving a pre-defined

initial NAS search space, our approach firstly extends the original search space to a large extended

search space and performs semi-supervised learning of a Graph VAE (G-VAE) to obtain a reversible

encoding of graphs from the extended search space to a latent space. During the training of the

G-VAE we incorporate a new Tiplet Margin Loss on the Zero-Cost proxies to regularize the latent

space, preserving the desired clustering properties that models with similar performance tend to

be close. We then employ a Conditional Continuous Normalizing Flow (CCNF) model to learn to

efficiently sample from the latent space given a known strong-performing reference model and

user-defined conditions and generate a set of novel architectures beyond the scope of the original

search space. We show that our approach can discover better models than the very best ones in

popular NAS search spaces and on diverse tasks, including NAS-Bench-101, NAS-Bench-201, and

NAS-Bench-360.

6 limitation

In this paper, our focus is to show that using G-VAE and CCNF is an efficient and effective way

to generate desired search space that satisfied user input conditions. We extended the NB201 and

NB101 design space by removing all hard constraints and allowing all possible graphs. It’s indeed

increasing the possible graphs that we can consider but it not covering some recent wildly accepted

structure units like bottleneck convolution, which limit our G-VAE to produce a more effective

network. In future work, we should design the design space more carefully which allows our G-VAE

to explore more possible architectures which cover more existing search space.
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7 Broader Impact Statement

After careful reflection, the authors have determined that this work presents no notable negative

impacts on society or the environment.
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conforms to them? https://automl.cc/ethics-accessibility/ [Yes]
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(a) Did you state the full set of assumptions of all theoretical results? [N/A]
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instructive README with installation, and execution commands (either in the supplemental

material or as a url)? [Yes]
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data? [Yes]

(c) Did you include scripts and commands that can be used to generate the figures and tables

in your paper based on the raw results of the code, data, and instructions given? [Yes]

(d) Did you ensure sufficient code quality such that your code can be safely executed and the
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