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ABSTRACT

Fine-tuning large language models (LLMs) to adapt them for specialized down-
stream tasks is a common practice, yet existing methods overlook a critical issue:
label preference discrepancies among different annotators. Such inconsistencies
in labeling can significantly impair the model’s robustness and generalization. In
this work, we propose Dynamic Cross-Layer Preference Correction (DCPC), a
novel self-supervised learning framework designed to mitigate these inconsisten-
cies. DCPC incorporates a preference-sensitive similarity mechanism, cross-layer
prefix alignment, and a Preference Correction Module (PCM) to dynamically ad-
just embeddings across transformer layers. By leveraging self-supervision, DCPC
effectively aligns semantic representations and ensures consistency in label pre-
dictions, even in the presence of preference shifts. We evaluate DCPC across
multiple tasks using prominent base models and introduce modified datasets that
simulate real-world preference shifts. Our results show that DCPC consistently
outperforms state-of-the-art Parameter-Efficient Fine-Tuning (PEFT) methods in

handling label preference discrepancies.

1 INTRODUCTION

The rapid advancement of large language models (LLMs)
has not only revolutionized the field of natural language
processing (NLP) but has also significantly impacted a
wide range of other domains, including healthcare, fi-
nance, and education. Models such as GPT-4(Achiam|
have demonstrated remarkable capabilities
in tasks ranging from text generation(Li et al.| 2024) and
comprehension(Cheng et al. to complex reason-
ing(Wu et all 2024). These advancements are primar-

ily driven by large-scale pre-training on vast datasets,
which allow LLMs to generalize across diverse tasks
and domains. More and more downstream applications
cannot afford the high costs of pre-training large mod-
els or full parameter fine-tuning(Han et al] 2021). As
a result, an increasing number of Parameter-efficient
Fine-tuning (PEFT) techniques have been proposed, such
as LoRA(Devalal & Karthikeyan| [2018)) and P-Tuning

v2(Liu et al.| [2021).

Despite the success of PEFT techniques, a critical issue
remains largely unaddressed: the impact of inconsis-
tent labeling preferences across fine-tuning datasets.
Fine-tuning data often comes from various sources, with
differing annotation styles and formats, which results in
significant variations in the structure and consistency of
the data(Mieleszczenko-Kowszewicz et all [2023). Tra-
ditional methods like Prefix-Tuning(Li & Liang| [2021)
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are not designed to adapt to these structural changes, making them ill-suited for handling datasets
with heterogeneous annotation practices(As is shown in Figure[I). For instance, in crowdsourced
datasets, where data is labeled by workers with varying backgrounds and preferences, the inconsis-
tency in labeling can lead to poor label agreement(Checco et al.,|2017). This problem is particularly
common in cases where datasets are annotated by multiple groups, such as when training data is
collected from annotators with different educational levels or expertise. Such variations introduce
discrepancies in the labels, making it challenging for models to generalize well.

To address the challenge of label preference inconsistencies, we propose Dynamic Cross-Layer
Preference Correction (DCPC), a novel self-supervised framework specifically designed to mitigate
the impact of inconsistent annotations across fine-tuning datasets. Unlike traditional fine-tuning
methods(Devalal & Karthikeyan, 2018; |Liu et al., [2021)) that treat label discrepancies as a static
problem, DCPC can dynamically adapts to these variations. At its core, DCPC builds on the idea that
semantically related inputs should yield similar label predictions, even in the presence of annotation
biases. In this paper, we make the following key contributions:

* Propose a self-supervised framework (DCPC) for addressing label preference incon-
sistencies: DCPC dynamically adjusts prefix embeddings during fine-tuning to align se-
mantically similar inputs, providing robustness against annotation biases.

* Develop a preference-sensitive similarity mechanism, cross-layer prefix alignment,
and a Preference Correction Module (PCM): These components detect and correct label
discrepancies, ensuring consistent predictions across varying annotations.

¢ Show superior performance over existing PEFT methods: DCPC achieved state of the
art(SOTA) results on multiple tasks and datasets, especially in handling subjective or biased
annotations.

2 RELATED WORKS

Parameter-Efficient Fine-Tuning As LLMs grow, fine-tuning becomes increasingly resource-
intensive(Xin et al., 2024). Parameter-Efficient Fine-Tuning (PEFT) methods, like LoRA (Hu et al.,
2021} |Gao et al) 2024) and P-Tuning v2 (Liu et al.| 2021)), address this by updating only a small
subset of parameters, while freezing the rest. Adapter-based methods (Houlsby et al., |2019; |Chen
et al.}2024) further reduce the parameter footprint by introducing bottleneck layers. While effective
across benchmarks, these techniques do not address label preference inconsistencies across datasets.

Prompt-Tuning Methods Prompt-tuning methods have emerged as a popular approach for adapt-
ing LLMs to various tasks without full model fine-tuning. These methods introduce learnable soft
prompts that act as task-specific instructions, guiding the model during inference. Prefix-Tuning
(L1 & Liang| 2021} [Liu et al., 2021} [Vu et al., 2021} |Ouyang et al.l 2023) prepend trainable pre-
fix embeddings to input sequences and internal layers, significantly improving model performance
while reducing computational costs. Other variations modify internal components like attention
mechanisms or bias terms (Tan et al., [ 2024). However, these techniques do not account for labeling
inconsistencies across datasets. Our DCPC framework addresses this gap by dynamically adjust-
ing prefix embeddings based on preference-sensitive similarity and cross-layer alignment, offering
a more robust solution for handling heterogeneous datasets with varying annotation styles.

Learning with inconsistent labels To the best of our knowledge, no existing work in the fine-
tuning of LLMs has addressed the issue of inconsistent labels. In the context of traditional small- and
medium-scale deep learning models, inconsistent labels have already posed a significant challenge
for real-world applications (Rodrigues & Pereira, 2018}; |(Chen et al., [2020). Several methods have
been proposed, such as inferring the unknown true label of each instance from multiple noisy labels
(Zhang et al.| [2014). Majority Voting (MV) (Raykar & Yul, 2012) is a commonly used technique,
which assumes that the labeling quality is balanced across the dataset—an assumption that is often
unrealistic. Other approaches, such as RSVMI (Yang et al., |2023), LAWMYV (Chen et al.| [2022),
and AALI (Zheng et al.| 2021]), utilize instance-specific features. However, these methods struggle
when applied to LLM fine-tuning, where subjective or domain-specific annotations introduce more
complex label inconsistencies, reflecting inherent biases or ambiguities rather than simple noise.
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3 METHODS

3.1 PRELIMINARY

P-Tuning v2 is a parameter-efficient tuning technique designed for large pre-trained language mod-
els. Instead of fine-tuning the entire set of model parameters, P-Tuning v2 optimizes a small set
of continuous task-specific prefix embeddings that are inserted into each layer of the transformer
model. These prefix embeddings act as learnable prompts that guide the model in adapting to new
downstream tasks while keeping the majority of the model parameters frozen.

For a given input sequence « = {z1, Z2,. .., Z, }, the model first computes its embedding represen-
tation at each layer. Let e}, € R denote the embedding representation of x at transformer layer /,
where d is the embedding dimension. In P-Tuning v2, a prefix embedding P, € R™*4 is learned,
where m represents the length of the prefix. These prefix embeddings are prepended to the input
sequence embeddings before being fed into the transformer layers.

The modified input for layer /, combining both the prefix and the original token embeddings, is
represented as:

& =[Pl;el] (1)

where [P e’ ] denotes the concatenation of the prefix embedding P, and the input embedding e!,
along the sequence dimension.

The transformer layer processes this augmented input using the self-attention mechanism and feed-
forward network, updating the hidden representations at each layer. The output of the transformer
layer [, denoted as hlz, is computed as:

h!, = TransformerLayer' ([P.; el ]) 2

During training, the prefix embeddings P!, are learned for each layer [, while the pre-trained trans-
former model parameters are frozen.

Although P-Tuning v2 is highly efficient in task adapta-
tion by optimizing the prefix embeddings, it does not ex-
plicitly address issues related to inconsistent label pref-
erences across fine-tuning datasets. We conducted a toy
experiment on the IMDB sentiment classification dataset,
which contains movie reviews labeled with sentiments.

The detailed design of this experiment can be found in : ‘ e * N
A2
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Figure 3: The overall pipeline of the proposed framework, Dynamic Cross-Layer Preference Cor-
rection (DCPC). The model first computes embeddings for two input sequences at each transformer
layer. A preference-sensitive similarity mechanism compares these embeddings and triggers fur-
ther steps if ambiguities arise. When label preference inconsistencies are detected, the cross-layer
prefix alignment ensures that the embeddings are aligned across layers. Meanwhile, the Preference
Correction Module (PCM) is activated to generate new prefix embeddings and correct for label pref-
erence discrepancies. The model learns to adapt its predictions dynamically by incorporating these
corrections across layers.

realigns the model’s predicted preferences with its embeddings, ensuring that the outputs remain
consistent and less influenced by these learned biases.

3.2 OVERALL

The proposed framework, referred to as Dynamic Cross-Layer Preference Correction (DCPC) and
illustrated in Figure [3] addresses label preference inconsistencies through a structured sequence
of steps. For two input sequences x4 and =g, the model computes their respective embeddings
e!y € R? and el; € R? at transformer layer [, where d is the embedding dimension.

The DCPC framework first evaluates the similarity between embeddings ef4 and eig using a
preference-sensitive similarity mechanism. If cos(f) between ef4 and e% is high but L4 # Lp,
it indicates a preference inconsistency, triggering corrective mechanisms.

Next, when significant discrepancies between labels L4 and L arise, the cross-layer prefix align-
ment mechanism is activated. This ensures alignment between both the prefix embeddings P,
Pl;, and token embeddings T',, T!; across all layers I. The goal is to maintain consistency be-
tween representations by minimizing differences in P!, and P’ through each transformer layer. In
parallel, the Preference Correction Module (PCM) dynamically adjusts prefix embeddings Py by
leveraging a meta-matrix M € R™*?, where m is the prefix length. New prefixes are computed
based on auxiliary classifier outputs and preference distributions p(e 4 ), p(eg). The PCM minimizes
discrepancies via adjustments to Py, ensuring alignment in the preference space.

This integration of cross-layer prefix alignment and preference correction dynamically corrects in-
consistencies, making DCPC an efficient framework designed to optimize both inter-layer consis-
tency and preference-driven discrepancies.

3.3 PREFERENCE-SENSITIVE SIMILARITY MECHANISM

To address the issue of inconsistent labeling preferences, we introduce a preference-sensitive similar-
ity mechanism. This mechanism measures the representational similarity between input embeddings
and compares it with the predicted labels to detect any discrepancies.

Given two input sequences, 4 and 7, their respective embeddings at layer [ are denoted as ', €
R? and e}y € R To assess the similarity between these embeddings, we compute their cosine
similarity:
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el -el
cos(f) = —A——P— (3)
lesllllesl

If the embeddings ef4 and eﬁg are similar (i.e., cos(f) > 7. for a predefined threshold 7..s), but
their respective predicted labels L 4 and L differ significantly, we use the label distributions (e.g.,
the softmax output probabilities) to measure the discrepancy between L 4 and L. Specifically, we
compute the cross-entropy between the label distributions:

Divet(La, L) = — Z L (i) log Lp(i) S

The ambiguity loss is defined as:

Lambiguity = H[COb(G) Z 7—cos] : COS(Q) : Dlabel(LA7 LB) (5)

Here, the indicator function I[cos(6) > 7..] ensures that the ambiguity loss is only computed when
the cosine similarity exceeds the threshold 7..s. The term cos(f) acts as a weighting factor, ampli-
fying the impact of label discrepancies when the embeddings are highly similar. This mechanism
encourages the model to minimize label differences for semantically similar inputs during training.

3.4 CROSS-LAYER PREFIX ALIGNMENT

When the ambiguity 10ss Lambiguity €xceeds a threshold ymbiguity, indicating a substantial label pref-
erence misalignment, we activate the cross-layer prefix alignment mechanism. This step ensures that
embeddings are aligned across transformer layers for inputs that exhibit high semantic similarity but
have conflicting label predictions.

Let P!, and Tlgl represent the prefix embedding of input A at layer [ and the token embedding of
input B at layer | + 1, respectively. To align the representations, we concatenate the prefix of one
input with the token embeddings of the other, forming new representations C; and Cl;:

c,=P,aT{", ChL=PheT]! (6)

To ensure alignment between these cross-layer representations, we define the alignment 1oss Lajign
using the squared Euclidean distance:

Lalign = |‘Ci4 - CS’B’H (7)

Here, ||CY; — Ck;||3 represents the squared Euclidean distance between the two concatenated repre-
sentations. Minimizing this loss encourages the cross-layer embeddings Cf4 and ClB to be as close
as possible in the embedding space, promoting consistency between semantically similar inputs.

Theorem 1 (Asymptotic Consistency of Cross-Layer Prefix Alignment). Assume two input se-
quences x4 and xp have high semantic similarity at transformer layer |, i.e., their embeddings
satisfy

cos(B(ely, €5)) = Teos, ®)
where BZA and elB are the embeddings at layer . By applying the cross-layer prefix alignment mecha-
nism, the prefix embeddings Pil and P}B will progressively converge in deeper layers (I1+1,14+2, .. .),
ensuring consistent predictions across the model’s layers.

The proof of Theorem [I]can be found in[A.3]

3.5 PREFERENCE CORRECTION MODULE (PCM)

Simultaneously, when Lampiguity €Xceeds Tambiguity, the Preference Correction Module (PCM) is acti-
vated to adjust the prefix embeddings and resolve label preference discrepancies. The PCM consists
of two key components: auxiliary classifiers and a meta-matrix M. The auxiliary classifiers are
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responsible for predicting preference distributions for the input embeddings. The meta-matrix M
stores learned patterns related to preference correction and is used to generate new prefix embed-
dings for each layer.

Auxiliary Classifier Predictions For each input embedding e 4 and e with dimension R?, the
auxiliary classifier predicts two parameters, 1 € R? (mean) and o € R (variance), which represent
the distribution of preferences for each embedding. The shared parameters ensure consistency across
transformer layers. These parameters are predicted as:

(ta,04) = AuxClassifier(es), (up,op) = AuxClassifier(ep) 9)

Here, 14 € R? and 04 € R? are the predicted mean and variance for input A, while 1z € R and
op € R? are for input B.

Once we have the predicted parameters, we sample a random noise vector ¢ € R? from a standard
normal distribution. Using these elements, we construct a preference distribution based on the pre-
dicted mean and variance. To ensure the stability and smoothness of this distribution, we apply a
softmax operation:

Ppret (11, €) = softmax(pu + o - €) € R? (10)

Here, - ¢ € R? introduces variability into the distribution by perturbing the predicted mean p € R,

Generation of New Prefix Embeddings The normalized preference distribution ppyrer(p, €) € R¢
is then combined with the meta-matrix M € R™*?, where m represents the length of the new prefix
embedding, and d is the dimension of the embeddings. The new prefix embeddings P, € R™ are
generated via matrix multiplication:

Pnew =M- ppref(,ufa 6) (11)

Here, M € R™*? is multiplied by pprer(t,€) € R? resulting in a new prefix embedding Ppey €
R™. This operation adjusts the prefix embeddings based on the learned preference patterns encoded
in M and the input embeddings’ distributions.

KL-Divergence Loss for Preference Alignment To ensure that the newly generated prefix
embeddings align with the original embeddings’ preference distributions, we introduce a KL-
divergence loss. This loss penalizes the divergence between the predicted preference distributions
fore4 and ep:

Ly = DxL(pa(pa,0a)llps(ps, o)) 12

The KL-divergence ensures that the distributions for the two inputs become closer, leading to more
aligned prefix embeddings across layers.

Finally, The overall loss function is defined as:

Liotar = >\1Lambiguity + )\2Lalign + )\SLKL (13)

where A1, A2, and A3 are hyperparameters controlling the relative importance of each loss term. The
objective is to minimize label inconsistency while maintaining alignment across embedding layers
and correcting for label preference discrepancies.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets We evaluate the performance of DCPC framework using a variety of datasets that in-
volve subjective labeling or human preference discrepancies:(a) three tasks from SuperGLUE bench-
mark(BoolQ,COPA, and ReCoRD)(Wang et al.,[2019)). (b)two tasks from GLUE benchmark(SST-2
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and RTE)(Wang, [2018). (c) Alpaca Dataset(Taori et al.,2023)). For a detailed description of these
datasets, see

Additionally, we extend these datasets with modified versions to introduce shifts in label
preferences and biases, such as BoolQ-PreferenceShift(BoolQ-PS), COPA-BiasShift(COPA-
BS),ReCoRD-Rephrase(ReCoRD-R), SST-2-PolarityShift( SST-2-P), RTE-EntailmentShift(RTE-
E), and Alpaca-InstructionShift(Alpaca-IS). These variations allow us to simulate real-world an-
notator biases and inconsistencies. Detailed descriptions of the datasets and modifications can be

found in the appendix (see[A.1.T).

Evaluation Metrics For SST-2, RTE, BoolQ, and COPA, we measure performance based on
the accuracy of the model’s predictions (denoted as acc), which reflects the proportion of correct
answers compared to ground truth labels. For ReCoRD, we calculate both the F1 score and the
exact match (EM) score. The final evaluation metric for ReCoRD is the average of these two scores
(denoted as fl-em). For the Alpaca dataset and its modified versions, we leverage GPT-40 as an
evaluator to assign a quantitative score to each response, based on coherence, completeness, and
adherence to the task instructions. The average score provided by GPT-40 on a scale from 1 to 10
(denoted as gpt-score) is used as the primary performance metric for instruction-tuning tasks.

Baselines We compare our Dynamic Cross-Layer Preference Correction (DCPC) with full-
parameter fine-tuning (Full-FT) and several state-of-the-art PEFT methods. Representation modifi-
cation methods include BitFit (Zaken et al., 2021), which adds trainable bias terms, and (IA)? (Liu
et al.| 2022a)), which scales hidden representations using trainable vectors. Adapter-based methods,
such as Houlsby-Adapter (Houlsby et al.l 2019) and Learned-Adapter (Zhang et al., [2023b)), add
bottleneck layers for efficient tuning. Prompt-based tuning methods include P-Tuning v2 (Liu et al.,
2021), LPT (Liu et al.| [2022b)), and PEDRO (Xie et al., 2024). We also evaluate LoRA (Hu et al.,
2021) and its variant AdaLoRA (Zhang et al.} 2023a), which use low-rank adaptation matrices with
dynamic pruning. For a detailed overview of the baseline, please refer to

Implementation Details All experiments are conducted using NVIDIA A100. For our main ex-
periments, we fine-tune the LIaMA-2 models(Touvron et al.| [2023)), specifically the LlaMA-2 7B
and LlaMA-2 13B models, as the backbone for the DCPC framework. We also conducted ablation
experiments on Mistral-7B(Jiang et al., [2023). The predictions are generated using the standard
language modeling (LM) head provided by the LlaMA-2 models. During inference, we apply beam
search with a beam size of 3 to enhance the diversity and quality of generated outputs. The hyper-
parameters of the DCPC framework are set as follows: (a) the length of the prefix embeddings m is
fixed at 16, (b) the meta-matrix M in the Preference Correction Module (PCM) is configured with
dimensions m X d, where d = 4096 for LlaMA-2 7B and d = 5120 for LlaMA-2 13B, correspond-
ing to the hidden dimension of each model. (c) The cross-layer alignment similarity threshold 7
is set to 0.85, and the ambiguity loss threshold Tumbiguicy 18 set to 0.3.

We fine-tune the LlaMA-2 7B and 13B models using the HuggingFace Transformers library. The
maximum sequence length is set to 2048 tokens for both models, and training runs for up to 10
epochs. The batch size is 16 for smaller datasets (e.g., SST-2 and RTE) and 64 for larger datasets
(e.g., ReCoRD and BoolQ). We employ the AdamW optimizer with an initial learning rate of 1 x
104, utilizing a linear learning rate decay and a warm-up phase covering 6% of the training steps.
Evaluation is performed on the development set every 200 steps, and early stopping is applied if no
improvement is observed after 10 evaluations. The best checkpoint based on the development set is
used for final testing.

4.2 MAIN RESULTS

The experimental results on both the original and modified datasets are shown in Table|l{and Table
[2] respectively.

Performance on Original Datasets As shown in Table|I} our DCPC method consistently outper-
forms all baseline methods on the original datasets. Specifically, DCPC achieves the highest ac-
curacy on BoolQ (88.9%), COPA (93.5%), ReCoRD (92.2%), SST-2 (95.0%), and RTE (84.7%),
demonstrating the effectiveness of our method in handling preference discrepancies in these tasks.
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Table 1: Performance comparison of DCPC and baseline methods on original datasets. Results are
median performance across five random seeds. The backbone is LlaMA-2 7B. Bold and underlined
values represent the best and second-best results, respectively.

Method Tunable Params | BoolQ COPA ReCoRD SST-2 RTE Alpaca
(acc) (acc) (fl-em) (acc) (acc) (gpt-score)
Full-FT 7B 88.6 915 92.1 94.1 84.8 9.2
P-Tuning v2 9.4M 854  89.8 89.2 92.5 80.9 8.9
LPT 8.4M 86.2  90.1 89.5 92.7 815 9.0
Houlsby-Adapter 9.5M 86.5 90.3 89.7 929 81.8 9.1
Learned-Adapter 9.5M 86.9  90.5 90.0 934 843 9.3
LoRA 10.0M 86.7 90.8 90.2 935 823 9.2
AdaLoRA 10.0M 87.1 91.0 91.8 93.6 82.7 9.2
(TA)3 9.8M 86.6  90.6 90.1 93.2 820 9.4
PEDRO 8.9M 88.1 923 91.7 947 842 9.3
DCPC (ours) 9.6M 889 935 92.2 95.0 84.7 9.5

DCPC also achieves the best gpt-score of 9.5 on the Alpaca dataset, showing its superiority in
instruction-following tasks. Among the baselines, the closest competitor is the PEDRO method,
which also performs well but is consistently outperformed by DCPC across all datasets.

Table 2: Performance comparison of DCPC and baseline methods on modified datasets. Results are
median performance across five random seeds. The backbone is LlaMA-2 7B. Bold and underlined
values represent the best and second-best results, respectively.

Method Tunable Params | BoolQ-PS COPA-BS ReCoRD-R SST-2-P RTE-E Alpaca-IS
(acc) (acc) (f1-em) (acc) (acc) (gpt-score)
Full-FT 7B 82.4 88.5 88.4 90.1 80.7 8.7
P-Tuning v2 9.4M 78.0 86.1 85.9 87.5 77.9 8.4
LPT 8.4M 78.5 86.4 86.2 87.8 78.3 8.5
Houlsby-Adapter 9.5M 78.9 86.9 86.5 86.4 78.6 8.6
Learned-Adapter 9.5M 79.2 86.8 87.1 88.3 78.9 8.7
LoRA 10.0M 79.1 86.9 86.9 88.5 79.1 8.6
AdalL.oRA 10.0M 79.4 87.1 87.0 88.7 79.2 8.6
(TA)? 9.8M 79.0 87.0 86.8 88.6 79.0 8.5
PEDRO 8.9IM 79.1 87.5 87.5 88.1 79.7 8.6
DCPC (ours) 9.6M 86.1 91.7 91.9 92.8 83.7 9.4

Performance on Modified Datasets Table[2]shows the performance of DCPC and baseline meth-
ods on the modified datasets, where preference shifts or biases have been introduced. DCPC again
demonstrates its robustness, outperforming all baselines on the modified datasets as well. In partic-
ular, DCPC achieves the best performance on BoolQ-PS (86.1%), COPA-BS (91.7%), ReCoRD-R
(91.9%), SST-2-P (92.8%), RTE-E (83.7%), and Alpaca-IS (9.4). The performance degradation of
baseline methods on the modified datasets is more pronounced compared to DCPC, which shows
a relatively smaller drop in performance. For example, Full-FT drops significantly from 88.6% to
82.4% on BoolQ-PS, whereas DCPC only drops from 88.9% to 86.1%. Similarly, on COPA-BS,
Full-FT sees a large performance drop from 91.5% to 88.5%, while DCPC remains strong with a
smaller drop to 91.7%. This highlights DCPC’s ability to mitigate the impact of label preference
shifts and biases effectively.

4.3 ABLATION STUDY

To assess the contribution of each component in the Dynamic Cross-Layer Preference Correction
(DCPC) framework, we conduct an ablation study. We disable key components one at a time and
evaluate the performance on both original and modified datasets. The following four ablated variants
of DCPC are tested:
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* DCPC w/o CLPA: The Cross-Layer Prefix Alignment (CLPA) is removed. This variant
tests the model’s ability to manage preference discrepancies without explicit cross-layer
alignment.

* DCPC w/o PCM: The Preference Correction Module (PCM) is disabled. This assesses
the impact of removing the module that corrects label preference discrepancies via prefix
adjustments.

* DCPC w/o Ambiguity Loss: The ambiguity loss component is excluded, which mea-
sures how performance is impacted when the model does not explicitly minimize semantic
similarity-based label discrepancies.

* DCPC w/o CLPA & PCM: Both CLPA and PCM are removed, leaving only the ambiguity
loss mechanism in place. This acts as a minimal variant of DCPC, similar to a standard
fine-tuning approach with ambiguity-aware adjustments.

We evaluate the ablation variants on modified datasets to determine the importance of each compo-
nent in handling preference shifts. Table 3| presents the results.

Table 3: Ablation Study: Performance comparison of DCPC with different components disabled.
Results are median performance across five random seeds. The backbone is LlaMA-2 7B. Bold and
underlined values represent the best and second-best results, respectively. The values in parentheses
represent the performance drop compared to the full DCPC model.

Method BoolQ-PS COPA-BS ReCoRD-R SST-2-P  RTE-E  Alpaca-IS
(acc) (acc) (f1-em) (acc) (acc) (gpt-score)
DCPC (Full) 86.1 91.7 91.9 92.8 83.7 9.4
DCPC w/o CLPA 82.7(-3.4) 89.0(-2.7) 88.5(-3.4) 90.0(-2.8) 80.8(-2.9) 8.9(-0.5)
DCPC w/o PCM 81.2(-4.9) 88.5(-3.2) 87.0(-4.9) 89.5(-3.3) 79.1(-4.6) 8.9(-0.5)
DCPC w/o Ambiguity Loss | 80.0 (-6.1) 87.1 (-4.6) 88.0(-3.9) 89.2(-3.6) 80.0(-3.7) 8.8(-0.6)
DCPC w/o CLPA & PCM |78.5 (-7.6) 86.5(-5.2) 87.3(-4.6) 88.7(-4.1) 79.5(-42) 8.7(-0.7)

Ablation study of DCPC  The ablation study results in Table [3|highlight the critical contributions
of each DCPC component. Removing Cross-Layer Prefix Alignment (CLPA) leads to a noticeable
drop in performance, especially on ReCoRD-R (-3.4 fl1-em) and BoolQ-PS (-3.4 acc), showing
CLPA’s importance in maintaining consistency across layers. The Preference Correction Module
(PCM) is equally vital, with its removal causing a 4.9-point accuracy drop on BoolQ-PS and 4.6
points on RTE-E, underscoring its role in correcting preference discrepancies. Disabling ambiguity
loss results in a sharper decline (e.g., -6.1 acc on BoolQ-PS), indicating its key role in reducing
label inconsistencies. The largest performance decrease occurs when both CLPA and PCM are
disabled, with a 7.6-point drop on BoolQ-PS and 5.2 points on COPA-BS, confirming the combined
effectiveness of CLPA, PCM, and ambiguity loss.

Ablation on the pre-
trained backbones We

investigate the impact of Table 4: Backbone model ablation study.

different backbone models  Backbone Model Params | BoolQ-PS COPA-BS ReCoRD-R
on the performance of the (acc) (acc) (f1-em)
proposed DCPC frame-  DCPC (LlaMA-2 7B) 7B 86.1 91.7 91.9
work. As shown in Table DCPC (LlaMA-2 13B) | 13B 86.4 92.0 91.7

the performance of DCPC  DCPC (Mistral-7B) 7B 85.7 91.8 91.8

remains robust across all
backbone models, with
LlaMA-2 13B achieving the highest overall accuracy in the BoolQ-PS and COPA-BS datasets.

4.4 ROBUSTNESS ANALYSIS

In this section, we analyze the robustness of the proposed DCPC framework by studying the impact
of key hyperparameters on model performance. We focus on three primary hyperparameters: (1) the
length of prefix embeddings (m), (2) the ambiguity loss threshold (Tambiguity)> and (3) the cross-layer
prefix alignment similarity threshold (7).
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Prefix Length (m): The prefix length m controls the dimensionality of the prefix embeddings
inserted into each transformer layer. To study its effect, we vary m from 8 to 24 and observe the
changes in model performance across datasets. Figured]shows that as m increases, the performance
improves until saturation is reached at m = 16. Beyond this value, performance either stagnates or
slightly declines, suggesting that overlong prefix embeddings may introduce noise and reduce the
model’s ability to capture meaningful preference shifts efficiently.

Ambiguity Loss Threshold (Tampiguity): The ambiguity loss threshold Tumpiguity determines when
the Preference Correction Module (PCM) is triggered to correct label discrepancies. We experi-
ment wWith Tumpiguity Values ranging from 0.1 to 0.5. As shown in Figure [Z_f], a moderate value of
Tambiguity = 0.3 yields the best performance. Lower thresholds (e.g., Tambiguiy = 0.1) result in fre-
quent activations of the PCM, potentially over-correcting minor discrepancies, while higher thresh-
olds (e.g., Tambiguity = 0.5) reduce the corrective impact of the PCM, leading to larger inconsistencies
in the final predictions.

Cosine Similarity Threshold (7¢,s): The cosine similarity threshold 7. is critical for determining
when embeddings are considered semantically similar enough to trigger the ambiguity loss. We vary
Teos from 0.7 to 0.95 to assess its impact on performance. Figure E] shows that setting 7cos = 0.85
achieves optimal results. Lower values result in too many similarity comparisons being treated as
high, leading to unnecessary corrective actions, while higher values decrease the number of correc-
tive interventions, reducing the overall effectiveness of the framework.

Impact of Prefix Length (m) Impact of Ambiguity LoSS (Tambiguty) Impact of Cosine Similarity (Tcos)

— BoolQ-PS
& COPABS CcopABS
—— ReCORD-R —— ReCORD-R
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RTE-E RTE-E
) ) /\‘
84
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— ReCoRD-R 17 2 | e —r
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Prefix Length (m) Ambiguity Loss (Tamoiguiy) Cosine Similarity (Tcos)

Figure 4: Impact of different hyperparameters on the performance of DCPC across multiple datasets.
Subfigures show the effect of (a) prefix length (m), (b) ambiguity loss threshold (Tampiguity), and (c)
cosine similarity threshold (7.,s) on five datasets.

5 CoNCLUSION AND FUTURE WORK

In this work, we proposed Dynamic Cross-Layer Preference Correction (DCPC) to address label
preference inconsistencies in fine-tuning large language models. DCPC effectively reduces the im-
pact of subjective labeling, outperforming state-of-the-art Parameter-Efficient Fine-Tuning (PEFT)
methods across multiple datasets. It improves the alignment of semantically similar inputs, ensuring
consistent label predictions, while highlighting the challenge of handling human preference shifts
often overlooked in traditional fine-tuning techniques.

Our findings suggest future directions, including enhancing robustness against systematic biases
in human annotations and exploring more efficient methods for aligning label preferences, such
as innovations in prefix-tuning or preference correction mechanisms. Additionally, the ethical and
practical implications of addressing label biases, particularly in sensitive domains, warrant further
exploration.

Future work should extend DCPC’s applicability to more diverse real-world datasets and refine cor-
rective techniques, while also considering the societal and ethical challenges of mitigating subjective
label biases in Al systems.
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A APPENDIX

A.1 DETAILED EXPERIMENTAL SETUP

A.1.1 DESCRIPTION OF THE DATASETS

Original Datasets:

* BoolQ (SuperGLUE): A yes/no question-answering task where answers are based on
Wikipedia passages. Annotators may have subjective preferences when determining
whether the passage supports a ’yes” or “no” answer.

* COPA (SuperGLUE): This task asks models to select the cause or effect of a given
premise. Human judgment about cause-effect relationships is often subjective.

* ReCoRD (SuperGLUE): A reading comprehension task that involves identifying co-
references in complex passages. Different annotators may interpret the text in unique ways,
leading to inconsistent labels.

» SST-2 (GLUE): A sentiment analysis task where sentences are labeled as positive or nega-
tive. Since sentiment labels are influenced by personal judgment, SST-2 is an ideal bench-
mark for testing how well DCPC manages subjective labeling.

* RTE (GLUE): The Recognizing Textual Entailment (RTE) task asks whether one sentence
entails another.

* Alpaca Dataset: This general-purpose instruction tuning dataset involves open-ended tasks
where responses vary based on annotator preferences.

We extend the benchmark datasets with additional experimental setups to test the robustness of
DCPC framework. In these additional setups, we introduce variations in label preferences by
rephrasing or biasing the original annotations. The modified datasets allow us to simulate real-world
conditions where annotator preferences and biases may influence labeling.

BoolQ-PreferenceShift(BoolQ-PS) For the BoolQ dataset, we use the GPT-3.5 API to rephrase
the original yes/no labels into various styles, such as casual, formal, or expressive. The semantic
meaning remains the same, but the phrasing of the answer is altered. The prompt used to generate
the rephrased labels is as follows:

You are given a question and a yes/no answer. Please
rewrite the answer in three different styles: 1)
Casual, 2) Formal, 3) Expressive. Keep the meaning
of the answer the same.

Example:

Question: "Is the sky blue?"

Answer: "Yes."

Rephrased Answers:

1) Casual: "Yeah, for sure."

2) Formal: "Indeed, it is."

3) Expressive: "Absolutely, without a doubt!"

COPA-BiasShift(COPA-BS) In the COPA dataset, we introduce an artificial bias in the selection
of cause or effect by systematically shifting the chosen labels to favor human-related causes over
natural causes. For each premise in the COPA dataset, the model must choose between two options:

13
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one is the cause/effect related to human activity (e.g., “The person went to the store because...”), and
the other is related to a natural event (e.g., "The rain caused flooding because...”). We introduce a
bias [ that increases the likelihood of selecting human-related causes or effects.

Let the original probability of selecting cause/effect o; for a given premise be denoted as P(o;),

where ¢ = 1 represents the human-related option and ¢ = 2 represents the natural-related option.

The bias is introduced as a weighted probability shift, which is mathematically defined as follows:

P(01) + a - I[o; is human-related]
P(o1) + P(02) + «

Phiased(01) = (14)

P(02)
P(o1) + P(02) + «

Pbiased(OQ) = (15)

where P(01) and P(o03) represent the original, unbiased probabilities for the human-related and
natural-related options, respectively. « is a bias factor that we introduce to shift preference toward
human-related options. I[-] is an indicator function that equals 1 when the condition inside it is true
(i.e., when 07 is a human-related option) and 0 otherwise. Phisea(01) and Phiasea(02) represent the
biased probabilities after applying the preference shift.

ReCoRD-Rephrase(ReCoRD-R) For the ReCoRD dataset, we introduce variability in the ex-
pression of correct answers by using the GPT-3.5 API to generate alternative phrasings. While the
core information and correctness of the answers remain unchanged, the phrasing and style are varied
to simulate scenarios where different annotators might express the same answer in different ways.
This tests how well the DCPC framework can reconcile these textual inconsistencies across layers.
We use GPT-3.5 to rephrase the answers to the original questions in the ReCoRD dataset. Below is
the prompt template used to generate the rephrased answers:

You are given a passage and a correct answer. Please
rewrite the answer in three different ways while
keeping the meaning the same. Try to express the
same information using different words and sentence
structures.

Example:

Passage: "John went to the store to buy milk, but he
forgot to bring his wallet."

Answer: "John forgot his wallet when he went to buy
milk."

Rephrased Answers:

1) "John went to the store for milk but didn’t have
his wallet with him."

2) "When John went to purchase some milk, he realized
he had left his wallet behind."

3) "John didn’t remember his wallet when he went to
buy milk."

The same prompt is applied to all answers in the dataset.

SST-2-PolarityShift(SST-2-P) For sentiment analysis in the SST-2 dataset, we modify the sen-
timent labels by introducing slight shifts in their polarity. We adjust the labels of some positive
reviews toward neutral sentiment, and negative reviews are softened to be less extreme. We define
the sentiment labels for the SST-2 dataset as binary: y; € {0, 1}, where y; = 1 represents a positive
sentiment and y; = 0 represents a negative sentiment. To introduce variability in the sentiment po-
larity, we apply a weighted shift to the original sentiment label y;, producing a modified sentiment
label /.

For each sample, we introduce a shift parameter 6 € [0, 1] that represents the degree to which the
sentiment label is altered. The modified sentiment label y. is computed as:

Yyi=1—=08)-yi+0-9 (16)
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where y; is the original sentiment label (either O or 1). y; is the opposite sentiment label of y; (i.e.,
9; = 1 — y;). d is a shift factor that controls the degree of sentiment modification. For example,
0 = 0.2 indicates a 20% shift toward the opposite sentiment.

To simulate a range of annotator subjectivity, we apply the polarity shift selectively to a portion of
the dataset:

Positive reviews (y; = 1): We shift some positive reviews toward neutral by decreasing the prob-
ability of a positive label using a lower ¢ value. For example, if § = 0.3, a positive review will be
30% closer to neutral, resulting in a softened sentiment of y, = 0.7.

y; = 0.7 (Shifted from fully positive to moderately positive) a7

Negative reviews (y; = 0): We soften some negative reviews by increasing the probability of a
neutral sentiment. If 6 = 0.4, a negative review will be 40% softened, resulting in a less extreme
sentiment label y, = 0.4.

y; = 0.4 (Shifted from fully negative to less negative) (18)

RTE-EntailmentShift(RTE-E) In the RTE dataset, we introduce biases into the entailment labels
by systematically shifting the label distribution to prefer contradictions over entailments. The RTE
dataset consists of premise-hypothesis pairs, where each pair is labeled as either Entailment (y = 1)
or Contradiction/Neutral (y = 0). To introduce bias into the dataset, we adjust the labels of a subset
of the pairs to favor contradictions. Specifically, we alter the probability distribution over the label
space for each pair.

Let the original probability of the correct label for a given premise-hypothesis pair be denoted as
P(y;), where y; = 1 represents entailment and y; = 0 represents contradiction or neutral. The
biased probability Phiasea(y;) is defined as:

P(y; =0) + B - Iy; = 1]
Ply; =0)+ P(y; =1) + 8

Pbiased(yi = O) = (19)

P(y; =1)

Pblased(yl 1) P(yz — 0) i P(yz _ 1) + ﬁ (20)
where P(y; = 0) and P(y; = 1) are the original probabilities for the contradiction/neutral and
entailment labels, respectively. [ is the bias factor that we introduce to increase the likelihood
of selecting contradictions over entailments. I[-] is an indicator function that equals 1 when the
original label is entailment (y; = 1) and O otherwise. Pyjased(y; = 0) and Priysea(y; = 1) are the
biased probabilities after applying the label preference shift.

This biasing process systematically shifts the probability distribution in favor of contradictions. For
a subset of the dataset, we modify the labels based on the biased probabilities. For each premise-
hypothesis pair, we select the final label y; based on the biased distribution Ppiasea (¥ ):

r_ 0, if Pbiased(yz’ = 0) > Pbiased(yi = 1) 1)
‘ 1, otherwise

Alpaca-InstructionShift(Alpaca-IS): For the Alpaca dataset, we introduce variability in the in-
structional outputs by using the GPT-3.5 API to generate responses in different styles, such as terse,
elaborate, or conversational. While the core task remains unchanged, the stylistic variations in the
instructions and responses introduce preference-driven differences.

To modify the instructional outputs and responses, we use GPT-3.5 to rephrase the original response
in multiple styles. The following prompt template is designed to preserve the core task and meaning
of the response while varying the style:

You are given an instruction and a response. Please
rewrite the response in three different styles: 1)

Terse, 2) Elaborate, and 3) Conversational. Keep the
meaning and the task the same, but vary the tone and
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style of the response.

Example:

Instruction: "Write a summary of the novel 1984’ by
George Orwell."

Response: "1984 is a dystopian novel about
totalitarianism."

Rephrased Responses:

1) Terse: "1984 is a dystopian story on totalitarian
rule."

2) Elaborate: "George Orwell’s novel ’'1984’ explores

a dystopian world under totalitarian rule, focusing on
themes of surveillance, freedom, and oppression."

3) Conversational: "So, 1984 is basically a story
where a totalitarian government controls everything,
and it’s really all about how this impacts people’s
lives."

A.1.2 BASELINES

We compare our proposed Dynamic Cross-Layer Preference Correction (DCPC) framework with
full-parameter fine-tuning (Full-FT) and several state-of-the-art Parameter-Efficient Fine-Tuning
(PEFT) methods.

Representation Modification Methods: We include two common representation modification
methods: (1) BitFit (Zaken et al.l 2021)), which introduces learnable parameters directly into the
hidden representations by adding trainable bias terms; (2) (IA)? (Liu et al., 2022a), which modifies
the hidden representations by scaling them using trainable vectors. Both methods keep the trainable
vectors fixed across different samples. To adjust the number of tunable parameters, we initialize the
vectors in a reduced dimension 7’ < dyoqe1 and project them back to diyoger Using a learnable matrix.
For BitFit, 7’ = 8, and for (IA)?, r’ = 16.

Adapter-Based Tuning: We include two adapter-based methods as baselines: (1) Houlsby-
Adapter (Houlsby et al., [2019), which is configured with a bottleneck dimension of 18, and (2)
Learned-Adapter(Zhang et al., 2023b)), which is configured with a bottleneck dimension of 36.

Prompt-Based Tuning: For prompt-based fine-tuning, we compare against: (1) P-Tuning v2(Liu
et al.l 2021), where the number of soft prompt tokens per layer is set to 64, (2) LPT (Liu et al.,
2022b)), which uses a bottleneck dimension of 1024 and a soft prompt length of 64 tokens, and (3)
PEDRO(Xie et al., |2024)) involves integrating a lightweight vector generator into each Transformer
layer.

LoRA and Its Variants: We also consider LoRA (Hu et al) [2021) and its variant
AdalLoRA(Zhang et al., [2023a) as baselines. For LoRA, the rank of the low-rank adaptation matri-
ces is set to 4. For AdaLLoRA, the initial rank is set to 8 per module, and half of the rank budget is
dynamically pruned during fine-tuning.

A.2 Toy EXPERIMENT: EXPLORING LABEL PREFERENCE INCONSISTENCIES IN SIMILAR
INPUT EMBEDDINGS

The goal of this toy experiment is to investigate how semantically similar input sequences can lead
to different label preference distributions under the P-Tuning v2 framework. We aim to explore
whether prefix embeddings can effectively capture label preferences across similar inputs, and how
inconsistencies arise.

A.2.1 DATASET PREPARATION

Dataset Selection We use the IMDB sentiment classification dataset(Maas et al.l 2011}, where
the sentiment labels (positive, neutral, negative) are often influenced by annotator preferences. This
dataset is ideal for exploring the discrepancies in label preferences under P-Tuning v2.
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Sample Selection Two semantically similar review pairs are chosen:

* Review A: “The movie was enjoyable but not amazing.” (Positive sentiment)

* Review B: “The film was okay, but nothing special.” (Neutral sentiment)

These reviews have similar semantic meaning but are assigned different sentiment labels.

Label Distributions We assume that for each input, the model generates a soft sentiment label
distribution (e.g., probabilities of positive, neutral, and negative sentiment) instead of a hard label.
These distributions represent the model’s predicted preferences for each input sequence, which is
influenced by the optimized prefix embeddings learned under P-Tuning v2.

A.2.2 EXPERIMENT SETUP

Layer-wise Embedding Calculation For each review, x 4 and = g, we extract layer-wise embed-
dings ¢!y € R? and e}y € R? from a pre-trained transformer model (e.g., BERT), where d = 768
represents the embedding dimension. In P-Tuning v2, task-specific prefix embeddings are inserted
into each transformer layer, and the embeddings e, and e!; include the influence of these prefix
embeddings.

Label Preference Distribution At each layer /, the model with P-Tuning v2 computes the label
preference distributions for both inputs using the softmax function over the model’s output logits:

p(elA) = Softmax(f(ei‘)), p(elB) = Softmax(f(elB)) (22)

where f(e!4) and f(el;) represent the logits for sentiment prediction at layer . The resulting soft-
max outputs represent the predicted probability distributions over sentiment categories, which reflect
how well the task-specific prefix embeddings capture label preferences.

KL-Divergence Calculation We measure the divergence between the predicted label distributions
for the two inputs at each layer using KL-Divergence:

Lx(pa,pB) = DxL(p(ely)|p(es)) (23)

This quantifies how much the predicted label distributions for the two inputs deviate, even though
their embeddings remain similar. The goal is to assess how much P-Tuning v2’s prefix embeddings
contribute to such discrepancies in label preferences.

A.2.3 QUANTITATIVE ANALYSIS: LAYER-WISE EMBEDDING AND PREFERENCE
DISTRIBUTION CHANGES

We analyze the layer-wise cosine similarity of the embeddings, the edit distance, and the KL-
Divergence of the label preference distributions. The results are summarized in Table [5] demon-
strating how prefix embeddings under P-Tuning v2 influence the emergence of preference inconsis-
tencies.

A.3 PROOF OF THEOREMII]

Proof. We aim to prove that, under the cross-layer prefix alignment mechanism, the difference be-

tween the prefix embeddings P}jk and Pf_;rk decreases as we move to deeper layers [ + &, where
k > 1. Specifically, we will show that:

IPE = Pyl < o 1Py — Pyllo, (24)
for some constant p € [0, 1), indicating exponential decay of the difference, leading to convergence.

Let ¢!y, ely € R? be the embeddings of inputs =4 and z at layer I. Let P}, PL € R™*4 be their
respective prefix embeddings at layer [, where m is the prefix length.

The cross-layer prefix alignment mechanism defines the concatenated embeddings:

cY=P,oTit, L =P,oTi, (25)
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Table 5: Layer-wise Cosine Similarity, Edit Distance, KL-Divergence, and Label Prediction Differ-
ences

Layer [ | Cosine Similarity | Edit Distance | KL-Divergence | Label Difference (Prediction)
1 0.98 10 0.05 0
2 0.96 15 0.07 0
3 0.94 25 0.12 0
4 0.90 35 0.15 0
5 0.87 50 0.22 0
6 0.82 70 0.30 1
7 0.76 85 0.38 1
8 0.65 110 0.45 1
9 0.52 140 0.55 1
10 0.40 170 0.62 1
11 0.28 190 0.70 1
12 0.15 210 0.78 1

where @ denotes concatenation, and T4, TS are the token embeddings at layer [ + 1.

The alignment loss at layer [ is:
Liign = [1C4 = Cl3- (26)

align

The training objective includes minimizing Lélign to encourage C; and C'; to become closer.

This minimization updates P, and P} such that:

OL!

align

9P,

aLf}dign (27)
aPL

R PL« P,

where 7 is the learning rate.

The transformer layer updates the embeddings using a function f, which includes attention and

feed-forward networks:
Pitt = f(Ph), Pyt = f(Ph). (28)

Our goal is to analyze || P4 — PL™ ..
Assume the function f is Lipschitz continuous with Lipschitz constant L¢ > 0:

1f(u) = f()]l2 < Lyllu— vl|2, Vu,v € R™*% (29)

Using the Lipschitz property:
IPA = Pl = 1£(P4) = F(Pp)ll2 < Ly|[ Py — Pylle. (30)

Applying the same reasoning recursively for layers I + 1,1+ 2,...,l + k:
1P5* = Pyl < L1 P4 — Ppll2: 3D
Since Ly > 0, the difference decreases exponentially if Ly < 1.

The high semantic similarity of 24 and xp at layer [ implies ||}y — €l ]|2 is small. Therefore, the
initial difference || P}, — P%||2 is small due to the alignment loss minimization.

If Ly < 1,thenas k — oo:

IPA = P52 — 0. (32)
This indicates that Pfjk and Pf;’k converge. O

As the prefix embeddings converge, the model’s outputs (predictions) based on these embeddings
also become consistent. The transformation function f propagates the alignment through the net-
work, reducing discrepancies.
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