
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DYNAMIC CROSS-LAYER PREFIX ALIGNMENT FOR
RESOLVING LABEL PREFERENCE DISCREPANCIES IN
LLMS FINE-TUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Fine-tuning large language models (LLMs) to adapt them for specialized down-
stream tasks is a common practice, yet existing methods overlook a critical issue:
label preference discrepancies among different annotators. Such inconsistencies
in labeling can significantly impair the model’s robustness and generalization. In
this work, we propose Dynamic Cross-Layer Preference Correction (DCPC), a
novel self-supervised learning framework designed to mitigate these inconsisten-
cies. DCPC incorporates a preference-sensitive similarity mechanism, cross-layer
prefix alignment, and a Preference Correction Module (PCM) to dynamically ad-
just embeddings across transformer layers. By leveraging self-supervision, DCPC
effectively aligns semantic representations and ensures consistency in label pre-
dictions, even in the presence of preference shifts. We evaluate DCPC across
multiple tasks using prominent base models and introduce modified datasets that
simulate real-world preference shifts. Our results show that DCPC consistently
outperforms state-of-the-art Parameter-Efficient Fine-Tuning (PEFT) methods in
handling label preference discrepancies.

1 INTRODUCTION

Figure 1: The performance of Full-FT,
baseline PEFT Methods, and our DCPC
across different datasets. The perfor-
mance drop on the modified datasets,
where label preference inconsistencies
were introduced. DCPC exhibits signif-
icantly smaller performance drops com-
pared to other methods.

The rapid advancement of large language models (LLMs)
has not only revolutionized the field of natural language
processing (NLP) but has also significantly impacted a
wide range of other domains, including healthcare, fi-
nance, and education. Models such as GPT-4(Achiam
et al., 2023) have demonstrated remarkable capabilities
in tasks ranging from text generation(Li et al., 2024) and
comprehension(Cheng et al., 2023) to complex reason-
ing(Wu et al., 2024). These advancements are primar-
ily driven by large-scale pre-training on vast datasets,
which allow LLMs to generalize across diverse tasks
and domains. More and more downstream applications
cannot afford the high costs of pre-training large mod-
els or full parameter fine-tuning(Han et al., 2021). As
a result, an increasing number of Parameter-efficient
Fine-tuning (PEFT) techniques have been proposed, such
as LoRA(Devalal & Karthikeyan, 2018) and P-Tuning
v2(Liu et al., 2021).

Despite the success of PEFT techniques, a critical issue
remains largely unaddressed: the impact of inconsis-
tent labeling preferences across fine-tuning datasets.
Fine-tuning data often comes from various sources, with
differing annotation styles and formats, which results in
significant variations in the structure and consistency of
the data(Mieleszczenko-Kowszewicz et al., 2023). Tra-
ditional methods like Prefix-Tuning(Li & Liang, 2021)

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

are not designed to adapt to these structural changes, making them ill-suited for handling datasets
with heterogeneous annotation practices(As is shown in Figure 1). For instance, in crowdsourced
datasets, where data is labeled by workers with varying backgrounds and preferences, the inconsis-
tency in labeling can lead to poor label agreement(Checco et al., 2017). This problem is particularly
common in cases where datasets are annotated by multiple groups, such as when training data is
collected from annotators with different educational levels or expertise. Such variations introduce
discrepancies in the labels, making it challenging for models to generalize well.

To address the challenge of label preference inconsistencies, we propose Dynamic Cross-Layer
Preference Correction (DCPC), a novel self-supervised framework specifically designed to mitigate
the impact of inconsistent annotations across fine-tuning datasets. Unlike traditional fine-tuning
methods(Devalal & Karthikeyan, 2018; Liu et al., 2021) that treat label discrepancies as a static
problem, DCPC can dynamically adapts to these variations. At its core, DCPC builds on the idea that
semantically related inputs should yield similar label predictions, even in the presence of annotation
biases. In this paper, we make the following key contributions:

• Propose a self-supervised framework (DCPC) for addressing label preference incon-
sistencies: DCPC dynamically adjusts prefix embeddings during fine-tuning to align se-
mantically similar inputs, providing robustness against annotation biases.

• Develop a preference-sensitive similarity mechanism, cross-layer prefix alignment,
and a Preference Correction Module (PCM): These components detect and correct label
discrepancies, ensuring consistent predictions across varying annotations.

• Show superior performance over existing PEFT methods: DCPC achieved state of the
art(SOTA) results on multiple tasks and datasets, especially in handling subjective or biased
annotations.

2 RELATED WORKS

Parameter-Efficient Fine-Tuning As LLMs grow, fine-tuning becomes increasingly resource-
intensive(Xin et al., 2024). Parameter-Efficient Fine-Tuning (PEFT) methods, like LoRA (Hu et al.,
2021; Gao et al., 2024) and P-Tuning v2 (Liu et al., 2021), address this by updating only a small
subset of parameters, while freezing the rest. Adapter-based methods (Houlsby et al., 2019; Chen
et al., 2024) further reduce the parameter footprint by introducing bottleneck layers. While effective
across benchmarks, these techniques do not address label preference inconsistencies across datasets.

Prompt-Tuning Methods Prompt-tuning methods have emerged as a popular approach for adapt-
ing LLMs to various tasks without full model fine-tuning. These methods introduce learnable soft
prompts that act as task-specific instructions, guiding the model during inference. Prefix-Tuning
(Li & Liang, 2021; Liu et al., 2021; Vu et al., 2021; Ouyang et al., 2023) prepend trainable pre-
fix embeddings to input sequences and internal layers, significantly improving model performance
while reducing computational costs. Other variations modify internal components like attention
mechanisms or bias terms (Tan et al., 2024). However, these techniques do not account for labeling
inconsistencies across datasets. Our DCPC framework addresses this gap by dynamically adjust-
ing prefix embeddings based on preference-sensitive similarity and cross-layer alignment, offering
a more robust solution for handling heterogeneous datasets with varying annotation styles.

Learning with inconsistent labels To the best of our knowledge, no existing work in the fine-
tuning of LLMs has addressed the issue of inconsistent labels. In the context of traditional small- and
medium-scale deep learning models, inconsistent labels have already posed a significant challenge
for real-world applications (Rodrigues & Pereira, 2018; Chen et al., 2020). Several methods have
been proposed, such as inferring the unknown true label of each instance from multiple noisy labels
(Zhang et al., 2014). Majority Voting (MV) (Raykar & Yu, 2012) is a commonly used technique,
which assumes that the labeling quality is balanced across the dataset—an assumption that is often
unrealistic. Other approaches, such as RSVMI (Yang et al., 2023), LAWMV (Chen et al., 2022),
and AALI (Zheng et al., 2021), utilize instance-specific features. However, these methods struggle
when applied to LLM fine-tuning, where subjective or domain-specific annotations introduce more
complex label inconsistencies, reflecting inherent biases or ambiguities rather than simple noise.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

3 METHODS

3.1 PRELIMINARY

P-Tuning v2 is a parameter-efficient tuning technique designed for large pre-trained language mod-
els. Instead of fine-tuning the entire set of model parameters, P-Tuning v2 optimizes a small set
of continuous task-specific prefix embeddings that are inserted into each layer of the transformer
model. These prefix embeddings act as learnable prompts that guide the model in adapting to new
downstream tasks while keeping the majority of the model parameters frozen.

For a given input sequence x = {x1, x2, . . . , xn}, the model first computes its embedding represen-
tation at each layer. Let elx ∈ Rd denote the embedding representation of x at transformer layer l,
where d is the embedding dimension. In P-Tuning v2, a prefix embedding Pl

x ∈ Rm×d is learned,
where m represents the length of the prefix. These prefix embeddings are prepended to the input
sequence embeddings before being fed into the transformer layers.

The modified input for layer l, combining both the prefix and the original token embeddings, is
represented as:

ẽlx = [Pl
x; e

l
x] (1)

where [Pl
x; e

l
x] denotes the concatenation of the prefix embedding Pl

x and the input embedding elx
along the sequence dimension.

The transformer layer processes this augmented input using the self-attention mechanism and feed-
forward network, updating the hidden representations at each layer. The output of the transformer
layer l, denoted as hl

x, is computed as:

hl
x = TransformerLayerl([Pl

x; e
l
x]) (2)

During training, the prefix embeddings Pl
x are learned for each layer l, while the pre-trained trans-

former model parameters are frozen.

Figure 2: Toy experiment results an-
alyzing the effects of label preference
inconsistencies on semantically similar
inputs.

Although P-Tuning v2 is highly efficient in task adapta-
tion by optimizing the prefix embeddings, it does not ex-
plicitly address issues related to inconsistent label pref-
erences across fine-tuning datasets. We conducted a toy
experiment on the IMDB sentiment classification dataset,
which contains movie reviews labeled with sentiments.
The detailed design of this experiment can be found in
A.2.

We analyze the layer-wise cosine similarity of the em-
beddings, the edit distance, and the KL-Divergence of the
label preference distributions. The results are shown in
Figure 2.

In the early layers (layers 1-5), the embeddings for eA
and eB remain highly similar, as reflected in both the co-
sine similarity and the low edit distance. However, as the
layers deepen, the predicted label preferences begin to di-
verge significantly. This suggests that, despite similar se-
mantic representations, the model’s predicted preferences
are drifting, likely due to learned biases or inconsistencies
in the training data.

This experiment reveals that semantically similar inputs
can lead to inconsistent label preferences, which escalate
as the model processes deeper layers. The increasing KL-
Divergence suggests that the model’s internal biases or
preferences become more pronounced, even when the in-
puts remain similar in meaning. To counteract this effect, there is a need for a mechanism that

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Transformer Layer 1

e([CLS]) e([Fair]) e(Book]) e(!)

Transformer Layer 1

e([CLS]) e([Nice]) e(Book]) e(!)

Transformer Layer 2

Transformer Layer 2 Transformer Layer N

... Transformer Layer N

Label A: Positive

Label B: Neutral

...

eA

eB

eA

eB
θ LambiguityPCM

Lalign

M

Auxiliary classifier

Auxiliary classifier

μ σ

μ σ

μ

σ

μ

σ

Lkl
Shared

parameters

Learnable Frozen Multiplication

Figure 3: The overall pipeline of the proposed framework, Dynamic Cross-Layer Preference Cor-
rection (DCPC). The model first computes embeddings for two input sequences at each transformer
layer. A preference-sensitive similarity mechanism compares these embeddings and triggers fur-
ther steps if ambiguities arise. When label preference inconsistencies are detected, the cross-layer
prefix alignment ensures that the embeddings are aligned across layers. Meanwhile, the Preference
Correction Module (PCM) is activated to generate new prefix embeddings and correct for label pref-
erence discrepancies. The model learns to adapt its predictions dynamically by incorporating these
corrections across layers.

realigns the model’s predicted preferences with its embeddings, ensuring that the outputs remain
consistent and less influenced by these learned biases.

3.2 OVERALL

The proposed framework, referred to as Dynamic Cross-Layer Preference Correction (DCPC) and
illustrated in Figure 3, addresses label preference inconsistencies through a structured sequence
of steps. For two input sequences xA and xB , the model computes their respective embeddings
elA ∈ Rd and elB ∈ Rd at transformer layer l, where d is the embedding dimension.

The DCPC framework first evaluates the similarity between embeddings elA and elB using a
preference-sensitive similarity mechanism. If cos(θ) between elA and elB is high but LA ̸= LB ,
it indicates a preference inconsistency, triggering corrective mechanisms.

Next, when significant discrepancies between labels LA and LB arise, the cross-layer prefix align-
ment mechanism is activated. This ensures alignment between both the prefix embeddings Pl

A,
Pl

B , and token embeddings Tl
A, Tl

B across all layers l. The goal is to maintain consistency be-
tween representations by minimizing differences in Pl

A and Pl
B through each transformer layer. In

parallel, the Preference Correction Module (PCM) dynamically adjusts prefix embeddings Pnew by
leveraging a meta-matrix M ∈ Rm×d, where m is the prefix length. New prefixes are computed
based on auxiliary classifier outputs and preference distributions p(eA), p(eB). The PCM minimizes
discrepancies via adjustments to Pnew, ensuring alignment in the preference space.

This integration of cross-layer prefix alignment and preference correction dynamically corrects in-
consistencies, making DCPC an efficient framework designed to optimize both inter-layer consis-
tency and preference-driven discrepancies.

3.3 PREFERENCE-SENSITIVE SIMILARITY MECHANISM

To address the issue of inconsistent labeling preferences, we introduce a preference-sensitive similar-
ity mechanism. This mechanism measures the representational similarity between input embeddings
and compares it with the predicted labels to detect any discrepancies.

Given two input sequences, xA and xB , their respective embeddings at layer l are denoted as elA ∈
Rd and elB ∈ Rd. To assess the similarity between these embeddings, we compute their cosine
similarity:

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

cos(θ) =
elA · elB
∥elA∥∥elB∥

(3)

If the embeddings elA and elB are similar (i.e., cos(θ) ≥ τcos for a predefined threshold τcos), but
their respective predicted labels LA and LB differ significantly, we use the label distributions (e.g.,
the softmax output probabilities) to measure the discrepancy between LA and LB . Specifically, we
compute the cross-entropy between the label distributions:

Dlabel(LA, LB) = −
∑
i

LA(i) logLB(i) (4)

The ambiguity loss is defined as:

Lambiguity = I[cos(θ) ≥ τcos] · cos(θ) ·Dlabel(LA, LB) (5)

Here, the indicator function I[cos(θ) ≥ τcos] ensures that the ambiguity loss is only computed when
the cosine similarity exceeds the threshold τcos. The term cos(θ) acts as a weighting factor, ampli-
fying the impact of label discrepancies when the embeddings are highly similar. This mechanism
encourages the model to minimize label differences for semantically similar inputs during training.

3.4 CROSS-LAYER PREFIX ALIGNMENT

When the ambiguity loss Lambiguity exceeds a threshold τambiguity, indicating a substantial label pref-
erence misalignment, we activate the cross-layer prefix alignment mechanism. This step ensures that
embeddings are aligned across transformer layers for inputs that exhibit high semantic similarity but
have conflicting label predictions.

Let Pl
A and Tl+1

B represent the prefix embedding of input A at layer l and the token embedding of
input B at layer l + 1, respectively. To align the representations, we concatenate the prefix of one
input with the token embeddings of the other, forming new representations Cl

A and Cl
B :

Cl
A = Pl

A ⊕Tl+1
B , Cl

B = Pl
B ⊕Tl+1

A (6)

To ensure alignment between these cross-layer representations, we define the alignment loss Lalign
using the squared Euclidean distance:

Lalign =
∥∥Cl

A −Cl
B

∥∥ (7)

Here, ∥Cl
A −Cl

B∥22 represents the squared Euclidean distance between the two concatenated repre-
sentations. Minimizing this loss encourages the cross-layer embeddings Cl

A and Cl
B to be as close

as possible in the embedding space, promoting consistency between semantically similar inputs.
Theorem 1 (Asymptotic Consistency of Cross-Layer Prefix Alignment). Assume two input se-
quences xA and xB have high semantic similarity at transformer layer l, i.e., their embeddings
satisfy

cos(θ(elA, e
l
B)) ≥ τcos, (8)

where elA and elB are the embeddings at layer l. By applying the cross-layer prefix alignment mecha-
nism, the prefix embeddings P l

A and P l
B will progressively converge in deeper layers (l+1, l+2, . . .),

ensuring consistent predictions across the model’s layers.

The proof of Theorem 1 can be found in A.3.

3.5 PREFERENCE CORRECTION MODULE (PCM)

Simultaneously, when Lambiguity exceeds τambiguity, the Preference Correction Module (PCM) is acti-
vated to adjust the prefix embeddings and resolve label preference discrepancies. The PCM consists
of two key components: auxiliary classifiers and a meta-matrix M. The auxiliary classifiers are

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

responsible for predicting preference distributions for the input embeddings. The meta-matrixM
stores learned patterns related to preference correction and is used to generate new prefix embed-
dings for each layer.

Auxiliary Classifier Predictions For each input embedding eA and eB with dimension Rd, the
auxiliary classifier predicts two parameters, µ ∈ Rd (mean) and σ ∈ Rd (variance), which represent
the distribution of preferences for each embedding. The shared parameters ensure consistency across
transformer layers. These parameters are predicted as:

(µA, σA) = AuxClassifier(eA), (µB , σB) = AuxClassifier(eB) (9)

Here, µA ∈ Rd and σA ∈ Rd are the predicted mean and variance for input A, while µB ∈ Rd and
σB ∈ Rd are for input B.

Once we have the predicted parameters, we sample a random noise vector ϵ ∈ Rd from a standard
normal distribution. Using these elements, we construct a preference distribution based on the pre-
dicted mean and variance. To ensure the stability and smoothness of this distribution, we apply a
softmax operation:

ppref(µ, ϵ) = softmax(µ+ σ · ϵ) ∈ Rd (10)

Here, σ ·ϵ ∈ Rd introduces variability into the distribution by perturbing the predicted mean µ ∈ Rd.

Generation of New Prefix Embeddings The normalized preference distribution ppref(µ, ϵ) ∈ Rd

is then combined with the meta-matrixM∈ Rm×d, where m represents the length of the new prefix
embedding, and d is the dimension of the embeddings. The new prefix embeddings Pnew ∈ Rm are
generated via matrix multiplication:

Pnew =M · ppref(µ, ϵ) (11)

Here, M ∈ Rm×d is multiplied by ppref(µ, ϵ) ∈ Rd, resulting in a new prefix embedding Pnew ∈
Rm. This operation adjusts the prefix embeddings based on the learned preference patterns encoded
inM and the input embeddings’ distributions.

KL-Divergence Loss for Preference Alignment To ensure that the newly generated prefix
embeddings align with the original embeddings’ preference distributions, we introduce a KL-
divergence loss. This loss penalizes the divergence between the predicted preference distributions
for eA and eB :

LKL = DKL(pA(µA, σA)∥pB(µB , σB)) (12)

The KL-divergence ensures that the distributions for the two inputs become closer, leading to more
aligned prefix embeddings across layers.

Finally, The overall loss function is defined as:

Ltotal = λ1Lambiguity + λ2Lalign + λ3LKL (13)

where λ1, λ2, and λ3 are hyperparameters controlling the relative importance of each loss term. The
objective is to minimize label inconsistency while maintaining alignment across embedding layers
and correcting for label preference discrepancies.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets We evaluate the performance of DCPC framework using a variety of datasets that in-
volve subjective labeling or human preference discrepancies:(a) three tasks from SuperGLUE bench-
mark(BoolQ,COPA, and ReCoRD)(Wang et al., 2019). (b)two tasks from GLUE benchmark(SST-2

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

and RTE)(Wang, 2018). (c) Alpaca Dataset(Taori et al., 2023). For a detailed description of these
datasets, see A.1.1.

Additionally, we extend these datasets with modified versions to introduce shifts in label
preferences and biases, such as BoolQ-PreferenceShift(BoolQ-PS), COPA-BiasShift(COPA-
BS),ReCoRD-Rephrase(ReCoRD-R), SST-2-PolarityShift(SST-2-P), RTE-EntailmentShift(RTE-
E), and Alpaca-InstructionShift(Alpaca-IS). These variations allow us to simulate real-world an-
notator biases and inconsistencies. Detailed descriptions of the datasets and modifications can be
found in the appendix (see A.1.1).

Evaluation Metrics For SST-2, RTE, BoolQ, and COPA, we measure performance based on
the accuracy of the model’s predictions (denoted as acc), which reflects the proportion of correct
answers compared to ground truth labels. For ReCoRD, we calculate both the F1 score and the
exact match (EM) score. The final evaluation metric for ReCoRD is the average of these two scores
(denoted as f1-em). For the Alpaca dataset and its modified versions, we leverage GPT-4o as an
evaluator to assign a quantitative score to each response, based on coherence, completeness, and
adherence to the task instructions. The average score provided by GPT-4o on a scale from 1 to 10
(denoted as gpt-score) is used as the primary performance metric for instruction-tuning tasks.

Baselines We compare our Dynamic Cross-Layer Preference Correction (DCPC) with full-
parameter fine-tuning (Full-FT) and several state-of-the-art PEFT methods. Representation modifi-
cation methods include BitFit (Zaken et al., 2021), which adds trainable bias terms, and (IA)3 (Liu
et al., 2022a), which scales hidden representations using trainable vectors. Adapter-based methods,
such as Houlsby-Adapter (Houlsby et al., 2019) and Learned-Adapter (Zhang et al., 2023b), add
bottleneck layers for efficient tuning. Prompt-based tuning methods include P-Tuning v2 (Liu et al.,
2021), LPT (Liu et al., 2022b), and PEDRO (Xie et al., 2024). We also evaluate LoRA (Hu et al.,
2021) and its variant AdaLoRA (Zhang et al., 2023a), which use low-rank adaptation matrices with
dynamic pruning. For a detailed overview of the baseline, please refer to A.1.2.

Implementation Details All experiments are conducted using NVIDIA A100. For our main ex-
periments, we fine-tune the LlaMA-2 models(Touvron et al., 2023), specifically the LlaMA-2 7B
and LlaMA-2 13B models, as the backbone for the DCPC framework. We also conducted ablation
experiments on Mistral-7B(Jiang et al., 2023). The predictions are generated using the standard
language modeling (LM) head provided by the LlaMA-2 models. During inference, we apply beam
search with a beam size of 3 to enhance the diversity and quality of generated outputs. The hyper-
parameters of the DCPC framework are set as follows: (a) the length of the prefix embeddings m is
fixed at 16, (b) the meta-matrixM in the Preference Correction Module (PCM) is configured with
dimensions m× d, where d = 4096 for LlaMA-2 7B and d = 5120 for LlaMA-2 13B, correspond-
ing to the hidden dimension of each model. (c) The cross-layer alignment similarity threshold τcos
is set to 0.85, and the ambiguity loss threshold τambiguity is set to 0.3.

We fine-tune the LlaMA-2 7B and 13B models using the HuggingFace Transformers library. The
maximum sequence length is set to 2048 tokens for both models, and training runs for up to 10
epochs. The batch size is 16 for smaller datasets (e.g., SST-2 and RTE) and 64 for larger datasets
(e.g., ReCoRD and BoolQ). We employ the AdamW optimizer with an initial learning rate of 1 ×
10−4, utilizing a linear learning rate decay and a warm-up phase covering 6% of the training steps.
Evaluation is performed on the development set every 200 steps, and early stopping is applied if no
improvement is observed after 10 evaluations. The best checkpoint based on the development set is
used for final testing.

4.2 MAIN RESULTS

The experimental results on both the original and modified datasets are shown in Table 1 and Table
2, respectively.

Performance on Original Datasets As shown in Table 1, our DCPC method consistently outper-
forms all baseline methods on the original datasets. Specifically, DCPC achieves the highest ac-
curacy on BoolQ (88.9%), COPA (93.5%), ReCoRD (92.2%), SST-2 (95.0%), and RTE (84.7%),
demonstrating the effectiveness of our method in handling preference discrepancies in these tasks.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Performance comparison of DCPC and baseline methods on original datasets. Results are
median performance across five random seeds. The backbone is LlaMA-2 7B. Bold and underlined
values represent the best and second-best results, respectively.

Method Tunable Params BoolQ COPA ReCoRD SST-2 RTE Alpaca
(acc) (acc) (f1-em) (acc) (acc) (gpt-score)

Full-FT 7B 88.6 91.5 92.1 94.1 84.8 9.2
P-Tuning v2 9.4M 85.4 89.8 89.2 92.5 80.9 8.9
LPT 8.4M 86.2 90.1 89.5 92.7 81.5 9.0
Houlsby-Adapter 9.5M 86.5 90.3 89.7 92.9 81.8 9.1
Learned-Adapter 9.5M 86.9 90.5 90.0 93.4 84.3 9.3
LoRA 10.0M 86.7 90.8 90.2 93.5 82.3 9.2
AdaLoRA 10.0M 87.1 91.0 91.8 93.6 82.7 9.2
(IA)3 9.8M 86.6 90.6 90.1 93.2 82.0 9.4
PEDRO 8.9M 88.1 92.3 91.7 94.7 84.2 9.3
DCPC (ours) 9.6M 88.9 93.5 92.2 95.0 84.7 9.5

DCPC also achieves the best gpt-score of 9.5 on the Alpaca dataset, showing its superiority in
instruction-following tasks. Among the baselines, the closest competitor is the PEDRO method,
which also performs well but is consistently outperformed by DCPC across all datasets.

Table 2: Performance comparison of DCPC and baseline methods on modified datasets. Results are
median performance across five random seeds. The backbone is LlaMA-2 7B. Bold and underlined
values represent the best and second-best results, respectively.

Method Tunable Params BoolQ-PS COPA-BS ReCoRD-R SST-2-P RTE-E Alpaca-IS
(acc) (acc) (f1-em) (acc) (acc) (gpt-score)

Full-FT 7B 82.4 88.5 88.4 90.1 80.7 8.7
P-Tuning v2 9.4M 78.0 86.1 85.9 87.5 77.9 8.4
LPT 8.4M 78.5 86.4 86.2 87.8 78.3 8.5
Houlsby-Adapter 9.5M 78.9 86.9 86.5 86.4 78.6 8.6
Learned-Adapter 9.5M 79.2 86.8 87.1 88.3 78.9 8.7
LoRA 10.0M 79.1 86.9 86.9 88.5 79.1 8.6
AdaLoRA 10.0M 79.4 87.1 87.0 88.7 79.2 8.6
(IA)3 9.8M 79.0 87.0 86.8 88.6 79.0 8.5
PEDRO 8.9M 79.1 87.5 87.5 88.1 79.7 8.6
DCPC (ours) 9.6M 86.1 91.7 91.9 92.8 83.7 9.4

Performance on Modified Datasets Table 2 shows the performance of DCPC and baseline meth-
ods on the modified datasets, where preference shifts or biases have been introduced. DCPC again
demonstrates its robustness, outperforming all baselines on the modified datasets as well. In partic-
ular, DCPC achieves the best performance on BoolQ-PS (86.1%), COPA-BS (91.7%), ReCoRD-R
(91.9%), SST-2-P (92.8%), RTE-E (83.7%), and Alpaca-IS (9.4). The performance degradation of
baseline methods on the modified datasets is more pronounced compared to DCPC, which shows
a relatively smaller drop in performance. For example, Full-FT drops significantly from 88.6% to
82.4% on BoolQ-PS, whereas DCPC only drops from 88.9% to 86.1%. Similarly, on COPA-BS,
Full-FT sees a large performance drop from 91.5% to 88.5%, while DCPC remains strong with a
smaller drop to 91.7%. This highlights DCPC’s ability to mitigate the impact of label preference
shifts and biases effectively.

4.3 ABLATION STUDY

To assess the contribution of each component in the Dynamic Cross-Layer Preference Correction
(DCPC) framework, we conduct an ablation study. We disable key components one at a time and
evaluate the performance on both original and modified datasets. The following four ablated variants
of DCPC are tested:

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

• DCPC w/o CLPA: The Cross-Layer Prefix Alignment (CLPA) is removed. This variant
tests the model’s ability to manage preference discrepancies without explicit cross-layer
alignment.

• DCPC w/o PCM: The Preference Correction Module (PCM) is disabled. This assesses
the impact of removing the module that corrects label preference discrepancies via prefix
adjustments.

• DCPC w/o Ambiguity Loss: The ambiguity loss component is excluded, which mea-
sures how performance is impacted when the model does not explicitly minimize semantic
similarity-based label discrepancies.

• DCPC w/o CLPA & PCM: Both CLPA and PCM are removed, leaving only the ambiguity
loss mechanism in place. This acts as a minimal variant of DCPC, similar to a standard
fine-tuning approach with ambiguity-aware adjustments.

We evaluate the ablation variants on modified datasets to determine the importance of each compo-
nent in handling preference shifts. Table 3 presents the results.

Table 3: Ablation Study: Performance comparison of DCPC with different components disabled.
Results are median performance across five random seeds. The backbone is LlaMA-2 7B. Bold and
underlined values represent the best and second-best results, respectively. The values in parentheses
represent the performance drop compared to the full DCPC model.

Method BoolQ-PS COPA-BS ReCoRD-R SST-2-P RTE-E Alpaca-IS
(acc) (acc) (f1-em) (acc) (acc) (gpt-score)

DCPC (Full) 86.1 91.7 91.9 92.8 83.7 9.4
DCPC w/o CLPA 82.7 (-3.4) 89.0 (-2.7) 88.5 (-3.4) 90.0 (-2.8) 80.8 (-2.9) 8.9 (-0.5)
DCPC w/o PCM 81.2 (-4.9) 88.5 (-3.2) 87.0 (-4.9) 89.5 (-3.3) 79.1 (-4.6) 8.9 (-0.5)
DCPC w/o Ambiguity Loss 80.0 (-6.1) 87.1 (-4.6) 88.0 (-3.9) 89.2 (-3.6) 80.0 (-3.7) 8.8 (-0.6)
DCPC w/o CLPA & PCM 78.5 (-7.6) 86.5 (-5.2) 87.3 (-4.6) 88.7 (-4.1) 79.5 (-4.2) 8.7 (-0.7)

Ablation study of DCPC The ablation study results in Table 3 highlight the critical contributions
of each DCPC component. Removing Cross-Layer Prefix Alignment (CLPA) leads to a noticeable
drop in performance, especially on ReCoRD-R (-3.4 f1-em) and BoolQ-PS (-3.4 acc), showing
CLPA’s importance in maintaining consistency across layers. The Preference Correction Module
(PCM) is equally vital, with its removal causing a 4.9-point accuracy drop on BoolQ-PS and 4.6
points on RTE-E, underscoring its role in correcting preference discrepancies. Disabling ambiguity
loss results in a sharper decline (e.g., -6.1 acc on BoolQ-PS), indicating its key role in reducing
label inconsistencies. The largest performance decrease occurs when both CLPA and PCM are
disabled, with a 7.6-point drop on BoolQ-PS and 5.2 points on COPA-BS, confirming the combined
effectiveness of CLPA, PCM, and ambiguity loss.

Table 4: Backbone model ablation study.
Backbone Model Params BoolQ-PS COPA-BS ReCoRD-R

(acc) (acc) (f1-em)
DCPC (LlaMA-2 7B) 7B 86.1 91.7 91.9
DCPC (LlaMA-2 13B) 13B 86.4 92.0 91.7
DCPC (Mistral-7B) 7B 85.7 91.8 91.8

Ablation on the pre-
trained backbones We
investigate the impact of
different backbone models
on the performance of the
proposed DCPC frame-
work. As shown in Table 4,
the performance of DCPC
remains robust across all
backbone models, with
LlaMA-2 13B achieving the highest overall accuracy in the BoolQ-PS and COPA-BS datasets.

4.4 ROBUSTNESS ANALYSIS

In this section, we analyze the robustness of the proposed DCPC framework by studying the impact
of key hyperparameters on model performance. We focus on three primary hyperparameters: (1) the
length of prefix embeddings (m), (2) the ambiguity loss threshold (τambiguity), and (3) the cross-layer
prefix alignment similarity threshold (τcos).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Prefix Length (m): The prefix length m controls the dimensionality of the prefix embeddings
inserted into each transformer layer. To study its effect, we vary m from 8 to 24 and observe the
changes in model performance across datasets. Figure 4 shows that as m increases, the performance
improves until saturation is reached at m = 16. Beyond this value, performance either stagnates or
slightly declines, suggesting that overlong prefix embeddings may introduce noise and reduce the
model’s ability to capture meaningful preference shifts efficiently.

Ambiguity Loss Threshold (τambiguity): The ambiguity loss threshold τambiguity determines when
the Preference Correction Module (PCM) is triggered to correct label discrepancies. We experi-
ment with τambiguity values ranging from 0.1 to 0.5. As shown in Figure 4, a moderate value of
τambiguity = 0.3 yields the best performance. Lower thresholds (e.g., τambiguity = 0.1) result in fre-
quent activations of the PCM, potentially over-correcting minor discrepancies, while higher thresh-
olds (e.g., τambiguity = 0.5) reduce the corrective impact of the PCM, leading to larger inconsistencies
in the final predictions.

Cosine Similarity Threshold (τcos): The cosine similarity threshold τcos is critical for determining
when embeddings are considered semantically similar enough to trigger the ambiguity loss. We vary
τcos from 0.7 to 0.95 to assess its impact on performance. Figure 4 shows that setting τcos = 0.85
achieves optimal results. Lower values result in too many similarity comparisons being treated as
high, leading to unnecessary corrective actions, while higher values decrease the number of correc-
tive interventions, reducing the overall effectiveness of the framework.

Figure 4: Impact of different hyperparameters on the performance of DCPC across multiple datasets.
Subfigures show the effect of (a) prefix length (m), (b) ambiguity loss threshold (τambiguity), and (c)
cosine similarity threshold (τcos) on five datasets.

5 CONCLUSION AND FUTURE WORK

In this work, we proposed Dynamic Cross-Layer Preference Correction (DCPC) to address label
preference inconsistencies in fine-tuning large language models. DCPC effectively reduces the im-
pact of subjective labeling, outperforming state-of-the-art Parameter-Efficient Fine-Tuning (PEFT)
methods across multiple datasets. It improves the alignment of semantically similar inputs, ensuring
consistent label predictions, while highlighting the challenge of handling human preference shifts
often overlooked in traditional fine-tuning techniques.

Our findings suggest future directions, including enhancing robustness against systematic biases
in human annotations and exploring more efficient methods for aligning label preferences, such
as innovations in prefix-tuning or preference correction mechanisms. Additionally, the ethical and
practical implications of addressing label biases, particularly in sensitive domains, warrant further
exploration.

Future work should extend DCPC’s applicability to more diverse real-world datasets and refine cor-
rective techniques, while also considering the societal and ethical challenges of mitigating subjective
label biases in AI systems.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Alessandro Checco, Kevin Roitero, Eddy Maddalena, Stefano Mizzaro, and Gianluca Demartini.
Let’s agree to disagree: Fixing agreement measures for crowdsourcing. In Proceedings of the
AAAI Conference on Human Computation and Crowdsourcing, volume 5, pp. 11–20, 2017.

Keyu Chen, Yuan Pang, and Zi Yang. Parameter-efficient fine-tuning with adapters. arXiv preprint
arXiv:2405.05493, 2024.

Pengpeng Chen, Hailong Sun, Yili Fang, and Xudong Liu. Conan: A framework for detecting and
handling collusion in crowdsourcing. Information Sciences, 515:44–63, 2020.

Ziqi Chen, Liangxiao Jiang, and Chaoqun Li. Label augmented and weighted majority voting for
crowdsourcing. Information Sciences, 606:397–409, 2022.

Daixuan Cheng, Shaohan Huang, and Furu Wei. Adapting large language models via reading com-
prehension. In The Twelfth International Conference on Learning Representations, 2023.

Shilpa Devalal and A Karthikeyan. Lora technology-an overview. In 2018 second international con-
ference on electronics, communication and aerospace technology (ICECA), pp. 284–290. IEEE,
2018.

Ziqi Gao, Qichao Wang, Aochuan Chen, Zijing Liu, Bingzhe Wu, Liang Chen, and Jia Li.
Parameter-efficient fine-tuning with discrete fourier transform. arXiv preprint arXiv:2405.03003,
2024.

Xu Han, Zhengyan Zhang, Ning Ding, Yuxian Gu, Xiao Liu, Yuqi Huo, Jiezhong Qiu, Yuan Yao,
Ao Zhang, Liang Zhang, et al. Pre-trained models: Past, present and future. AI Open, 2:225–250,
2021.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In International conference on machine learning, pp. 2790–2799. PMLR, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

Xuchen Li, Xiaokun Feng, Shiyu Hu, Meiqi Wu, Dailing Zhang, Jing Zhang, and Kaiqi Huang.
Dtllm-vlt: Diverse text generation for visual language tracking based on llm. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7283–7292, 2024.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and
Colin A Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context
learning. Advances in Neural Information Processing Systems, 35:1950–1965, 2022a.

Xiangyang Liu, Tianxiang Sun, Xuanjing Huang, and Xipeng Qiu. Late prompt tuning: A late
prompt could be better than many prompts. arXiv preprint arXiv:2210.11292, 2022b.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Lam Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-
tuning v2: Prompt tuning can be comparable to fine-tuning universally across scales and tasks.
arXiv preprint arXiv:2110.07602, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher Potts.
Learning word vectors for sentiment analysis. In Proceedings of the 49th annual meeting of the
association for computational linguistics: Human language technologies, pp. 142–150, 2011.

Wiktoria Mieleszczenko-Kowszewicz, Kamil Kanclerz, Julita Bielaniewicz, Marcin Oleksy, Marcin
Gruza, Stanislaw Wozniak, Ewa Dzieciol, Przemyslaw Kazienko, and Jan Kocon. Capturing
human perspectives in nlp: Questionnaires, annotations, and biases. In NLPerspectives@ ECAI,
2023.

Yawen Ouyang, Yongchang Cao, Yuan Gao, Zhen Wu, Jianbing Zhang, and Xinyu Dai. On prefix-
tuning for lightweight out-of-distribution detection. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1533–1545, 2023.

Vikas C Raykar and Shipeng Yu. Annotation models for crowdsourced ordinal data. Journal of
Machine Learning Research, 13, 2012.

Filipe Rodrigues and Francisco Pereira. Deep learning from crowds. In Proceedings of the AAAI
conference on artificial intelligence, volume 32, 2018.

Zeqi Tan, Yongliang Shen, Xiaoxia Cheng, Chang Zong, Wenqi Zhang, Jian Shao, Weiming Lu, and
Yueting Zhuang. Learning global controller in latent space for parameter-efficient fine-tuning.
In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 4044–4055, 2024.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. Stanford alpaca: An instruction-following llama model, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Tu Vu, Brian Lester, Noah Constant, Rami Al-Rfou, and Daniel Cer. Spot: Better frozen model
adaptation through soft prompt transfer. arXiv preprint arXiv:2110.07904, 2021.

Alex Wang. Glue: A multi-task benchmark and analysis platform for natural language understand-
ing. arXiv preprint arXiv:1804.07461, 2018.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel Bowman. Superglue: A stickier benchmark for general-purpose language
understanding systems. Advances in neural information processing systems, 32, 2019.

Xiaoqian Wu, Yong-Lu Li, Jianhua Sun, and Cewu Lu. Symbol-llm: leverage language models for
symbolic system in visual human activity reasoning. Advances in Neural Information Processing
Systems, 36, 2024.

Tianfang Xie, Tianjing Li, Wei Zhu, Wei Han, and Yi Zhao. Pedro: Parameter-efficient fine-tuning
with prompt dependent representation modification. arXiv preprint arXiv:2409.17834, 2024.

Yi Xin, Siqi Luo, Haodi Zhou, Junlong Du, Xiaohong Liu, Yue Fan, Qing Li, and Yuntao
Du. Parameter-efficient fine-tuning for pre-trained vision models: A survey. arXiv preprint
arXiv:2402.02242, 2024.

Wenjun Yang, Chaoqun Li, and Liangxiao Jiang. Learning from crowds with robust support vector
machines. Science China Information Sciences, 66(3):132103, 2023.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. arXiv preprint arXiv:2106.10199, 2021.

Jing Zhang, Xindong Wu, and Victor S Sheng. Imbalanced multiple noisy labeling. IEEE Transac-
tions on Knowledge and Data Engineering, 27(2):489–503, 2014.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos Karampatziakis, Pengcheng He,
Yu Cheng, Weizhu Chen, and Tuo Zhao. Adalora: Adaptive budget allocation for parameter-
efficient fine-tuning. arXiv preprint arXiv:2303.10512, 2023a.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yuming Zhang, Peng Wang, Ming Tan, and Wei Zhu. Learned adapters are better than manually
designed adapters. In Findings of the Association for Computational Linguistics: ACL 2023, pp.
7420–7437, 2023b.

Conghui Zheng, Li Pan, and Peng Wu. Attribute augmented network embedding based on generative
adversarial nets. IEEE Transactions on Neural Networks and Learning Systems, 34(7):3473–
3487, 2021.

A APPENDIX

A.1 DETAILED EXPERIMENTAL SETUP

A.1.1 DESCRIPTION OF THE DATASETS

Original Datasets:

• BoolQ (SuperGLUE): A yes/no question-answering task where answers are based on
Wikipedia passages. Annotators may have subjective preferences when determining
whether the passage supports a ”yes” or ”no” answer.

• COPA (SuperGLUE): This task asks models to select the cause or effect of a given
premise. Human judgment about cause-effect relationships is often subjective.

• ReCoRD (SuperGLUE): A reading comprehension task that involves identifying co-
references in complex passages. Different annotators may interpret the text in unique ways,
leading to inconsistent labels.

• SST-2 (GLUE): A sentiment analysis task where sentences are labeled as positive or nega-
tive. Since sentiment labels are influenced by personal judgment, SST-2 is an ideal bench-
mark for testing how well DCPC manages subjective labeling.

• RTE (GLUE): The Recognizing Textual Entailment (RTE) task asks whether one sentence
entails another.

• Alpaca Dataset: This general-purpose instruction tuning dataset involves open-ended tasks
where responses vary based on annotator preferences.

We extend the benchmark datasets with additional experimental setups to test the robustness of
DCPC framework. In these additional setups, we introduce variations in label preferences by
rephrasing or biasing the original annotations. The modified datasets allow us to simulate real-world
conditions where annotator preferences and biases may influence labeling.

BoolQ-PreferenceShift(BoolQ-PS) For the BoolQ dataset, we use the GPT-3.5 API to rephrase
the original yes/no labels into various styles, such as casual, formal, or expressive. The semantic
meaning remains the same, but the phrasing of the answer is altered. The prompt used to generate
the rephrased labels is as follows:

You are given a question and a yes/no answer. Please
rewrite the answer in three different styles: 1)
Casual, 2) Formal, 3) Expressive. Keep the meaning
of the answer the same.
Example:
Question: "Is the sky blue?"
Answer: "Yes."
Rephrased Answers:
1) Casual: "Yeah, for sure."
2) Formal: "Indeed, it is."
3) Expressive: "Absolutely, without a doubt!"

COPA-BiasShift(COPA-BS) In the COPA dataset, we introduce an artificial bias in the selection
of cause or effect by systematically shifting the chosen labels to favor human-related causes over
natural causes. For each premise in the COPA dataset, the model must choose between two options:

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

one is the cause/effect related to human activity (e.g., ”The person went to the store because...”), and
the other is related to a natural event (e.g., ”The rain caused flooding because...”). We introduce a
bias β that increases the likelihood of selecting human-related causes or effects.

Let the original probability of selecting cause/effect oi for a given premise be denoted as P (oi),
where i = 1 represents the human-related option and i = 2 represents the natural-related option.
The bias is introduced as a weighted probability shift, which is mathematically defined as follows:

Pbiased(o1) =
P (o1) + α · I[o1 is human-related]

P (o1) + P (o2) + α
(14)

Pbiased(o2) =
P (o2)

P (o1) + P (o2) + α
(15)

where P (o1) and P (o2) represent the original, unbiased probabilities for the human-related and
natural-related options, respectively. α is a bias factor that we introduce to shift preference toward
human-related options. I[·] is an indicator function that equals 1 when the condition inside it is true
(i.e., when o1 is a human-related option) and 0 otherwise. Pbiased(o1) and Pbiased(o2) represent the
biased probabilities after applying the preference shift.

ReCoRD-Rephrase(ReCoRD-R) For the ReCoRD dataset, we introduce variability in the ex-
pression of correct answers by using the GPT-3.5 API to generate alternative phrasings. While the
core information and correctness of the answers remain unchanged, the phrasing and style are varied
to simulate scenarios where different annotators might express the same answer in different ways.
This tests how well the DCPC framework can reconcile these textual inconsistencies across layers.
We use GPT-3.5 to rephrase the answers to the original questions in the ReCoRD dataset. Below is
the prompt template used to generate the rephrased answers:

You are given a passage and a correct answer. Please
rewrite the answer in three different ways while
keeping the meaning the same. Try to express the
same information using different words and sentence
structures.
Example:
Passage: "John went to the store to buy milk, but he
forgot to bring his wallet."
Answer: "John forgot his wallet when he went to buy
milk."
Rephrased Answers:
1) "John went to the store for milk but didn’t have
his wallet with him."
2) "When John went to purchase some milk, he realized
he had left his wallet behind."
3) "John didn’t remember his wallet when he went to
buy milk."

The same prompt is applied to all answers in the dataset.

SST-2-PolarityShift(SST-2-P) For sentiment analysis in the SST-2 dataset, we modify the sen-
timent labels by introducing slight shifts in their polarity. We adjust the labels of some positive
reviews toward neutral sentiment, and negative reviews are softened to be less extreme. We define
the sentiment labels for the SST-2 dataset as binary: yi ∈ {0, 1}, where yi = 1 represents a positive
sentiment and yi = 0 represents a negative sentiment. To introduce variability in the sentiment po-
larity, we apply a weighted shift to the original sentiment label yi, producing a modified sentiment
label y′i.

For each sample, we introduce a shift parameter δ ∈ [0, 1] that represents the degree to which the
sentiment label is altered. The modified sentiment label y′i is computed as:

y′i = (1− δ) · yi + δ · ŷi (16)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

where yi is the original sentiment label (either 0 or 1). ŷi is the opposite sentiment label of yi (i.e.,
ŷi = 1 − yi). δ is a shift factor that controls the degree of sentiment modification. For example,
δ = 0.2 indicates a 20% shift toward the opposite sentiment.

To simulate a range of annotator subjectivity, we apply the polarity shift selectively to a portion of
the dataset:

Positive reviews (yi = 1): We shift some positive reviews toward neutral by decreasing the prob-
ability of a positive label using a lower δ value. For example, if δ = 0.3, a positive review will be
30% closer to neutral, resulting in a softened sentiment of y′i = 0.7.

y′i = 0.7 (Shifted from fully positive to moderately positive) (17)

Negative reviews (yi = 0): We soften some negative reviews by increasing the probability of a
neutral sentiment. If δ = 0.4, a negative review will be 40% softened, resulting in a less extreme
sentiment label y′i = 0.4.

y′i = 0.4 (Shifted from fully negative to less negative) (18)

RTE-EntailmentShift(RTE-E) In the RTE dataset, we introduce biases into the entailment labels
by systematically shifting the label distribution to prefer contradictions over entailments. The RTE
dataset consists of premise-hypothesis pairs, where each pair is labeled as either Entailment (y = 1)
or Contradiction/Neutral (y = 0). To introduce bias into the dataset, we adjust the labels of a subset
of the pairs to favor contradictions. Specifically, we alter the probability distribution over the label
space for each pair.

Let the original probability of the correct label for a given premise-hypothesis pair be denoted as
P (yi), where yi = 1 represents entailment and yi = 0 represents contradiction or neutral. The
biased probability Pbiased(yi) is defined as:

Pbiased(yi = 0) =
P (yi = 0) + β · I[yi = 1]

P (yi = 0) + P (yi = 1) + β
(19)

Pbiased(yi = 1) =
P (yi = 1)

P (yi = 0) + P (yi = 1) + β
(20)

where P (yi = 0) and P (yi = 1) are the original probabilities for the contradiction/neutral and
entailment labels, respectively. β is the bias factor that we introduce to increase the likelihood
of selecting contradictions over entailments. I[·] is an indicator function that equals 1 when the
original label is entailment (yi = 1) and 0 otherwise. Pbiased(yi = 0) and Pbiased(yi = 1) are the
biased probabilities after applying the label preference shift.

This biasing process systematically shifts the probability distribution in favor of contradictions. For
a subset of the dataset, we modify the labels based on the biased probabilities. For each premise-
hypothesis pair, we select the final label y′i based on the biased distribution Pbiased(yi):

y′i =

{
0, if Pbiased(yi = 0) > Pbiased(yi = 1)

1, otherwise
(21)

Alpaca-InstructionShift(Alpaca-IS): For the Alpaca dataset, we introduce variability in the in-
structional outputs by using the GPT-3.5 API to generate responses in different styles, such as terse,
elaborate, or conversational. While the core task remains unchanged, the stylistic variations in the
instructions and responses introduce preference-driven differences.

To modify the instructional outputs and responses, we use GPT-3.5 to rephrase the original response
in multiple styles. The following prompt template is designed to preserve the core task and meaning
of the response while varying the style:

You are given an instruction and a response. Please
rewrite the response in three different styles: 1)
Terse, 2) Elaborate, and 3) Conversational. Keep the
meaning and the task the same, but vary the tone and

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

style of the response.
Example:
Instruction: "Write a summary of the novel ’1984’ by
George Orwell."
Response: "1984 is a dystopian novel about
totalitarianism."
Rephrased Responses:
1) Terse: "1984 is a dystopian story on totalitarian
rule."
2) Elaborate: "George Orwell’s novel ’1984’ explores
a dystopian world under totalitarian rule, focusing on
themes of surveillance, freedom, and oppression."
3) Conversational: "So, 1984 is basically a story
where a totalitarian government controls everything,
and it’s really all about how this impacts people’s
lives."

A.1.2 BASELINES

We compare our proposed Dynamic Cross-Layer Preference Correction (DCPC) framework with
full-parameter fine-tuning (Full-FT) and several state-of-the-art Parameter-Efficient Fine-Tuning
(PEFT) methods.

Representation Modification Methods: We include two common representation modification
methods: (1) BitFit (Zaken et al., 2021), which introduces learnable parameters directly into the
hidden representations by adding trainable bias terms; (2) (IA)3 (Liu et al., 2022a), which modifies
the hidden representations by scaling them using trainable vectors. Both methods keep the trainable
vectors fixed across different samples. To adjust the number of tunable parameters, we initialize the
vectors in a reduced dimension r′ < dmodel and project them back to dmodel using a learnable matrix.
For BitFit, r′ = 8, and for (IA)3, r′ = 16.

Adapter-Based Tuning: We include two adapter-based methods as baselines: (1) Houlsby-
Adapter (Houlsby et al., 2019), which is configured with a bottleneck dimension of 18, and (2)
Learned-Adapter(Zhang et al., 2023b), which is configured with a bottleneck dimension of 36.

Prompt-Based Tuning: For prompt-based fine-tuning, we compare against: (1) P-Tuning v2(Liu
et al., 2021), where the number of soft prompt tokens per layer is set to 64, (2) LPT (Liu et al.,
2022b), which uses a bottleneck dimension of 1024 and a soft prompt length of 64 tokens, and (3)
PEDRO(Xie et al., 2024) involves integrating a lightweight vector generator into each Transformer
layer.

LoRA and Its Variants: We also consider LoRA (Hu et al., 2021) and its variant
AdaLoRA(Zhang et al., 2023a) as baselines. For LoRA, the rank of the low-rank adaptation matri-
ces is set to 4. For AdaLoRA, the initial rank is set to 8 per module, and half of the rank budget is
dynamically pruned during fine-tuning.

A.2 TOY EXPERIMENT: EXPLORING LABEL PREFERENCE INCONSISTENCIES IN SIMILAR
INPUT EMBEDDINGS

The goal of this toy experiment is to investigate how semantically similar input sequences can lead
to different label preference distributions under the P-Tuning v2 framework. We aim to explore
whether prefix embeddings can effectively capture label preferences across similar inputs, and how
inconsistencies arise.

A.2.1 DATASET PREPARATION

Dataset Selection We use the IMDB sentiment classification dataset(Maas et al., 2011), where
the sentiment labels (positive, neutral, negative) are often influenced by annotator preferences. This
dataset is ideal for exploring the discrepancies in label preferences under P-Tuning v2.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Sample Selection Two semantically similar review pairs are chosen:

• Review A: ”The movie was enjoyable but not amazing.” (Positive sentiment)
• Review B: ”The film was okay, but nothing special.” (Neutral sentiment)

These reviews have similar semantic meaning but are assigned different sentiment labels.

Label Distributions We assume that for each input, the model generates a soft sentiment label
distribution (e.g., probabilities of positive, neutral, and negative sentiment) instead of a hard label.
These distributions represent the model’s predicted preferences for each input sequence, which is
influenced by the optimized prefix embeddings learned under P-Tuning v2.

A.2.2 EXPERIMENT SETUP

Layer-wise Embedding Calculation For each review, xA and xB , we extract layer-wise embed-
dings elA ∈ Rd and elB ∈ Rd from a pre-trained transformer model (e.g., BERT), where d = 768
represents the embedding dimension. In P-Tuning v2, task-specific prefix embeddings are inserted
into each transformer layer, and the embeddings elA and elB include the influence of these prefix
embeddings.

Label Preference Distribution At each layer l, the model with P-Tuning v2 computes the label
preference distributions for both inputs using the softmax function over the model’s output logits:

p(elA) = Softmax(f(elA)), p(elB) = Softmax(f(elB)) (22)

where f(elA) and f(elB) represent the logits for sentiment prediction at layer l. The resulting soft-
max outputs represent the predicted probability distributions over sentiment categories, which reflect
how well the task-specific prefix embeddings capture label preferences.

KL-Divergence Calculation We measure the divergence between the predicted label distributions
for the two inputs at each layer using KL-Divergence:

LKL(pA, pB) = DKL(p(e
l
A)∥p(elB)) (23)

This quantifies how much the predicted label distributions for the two inputs deviate, even though
their embeddings remain similar. The goal is to assess how much P-Tuning v2’s prefix embeddings
contribute to such discrepancies in label preferences.

A.2.3 QUANTITATIVE ANALYSIS: LAYER-WISE EMBEDDING AND PREFERENCE
DISTRIBUTION CHANGES

We analyze the layer-wise cosine similarity of the embeddings, the edit distance, and the KL-
Divergence of the label preference distributions. The results are summarized in Table 5, demon-
strating how prefix embeddings under P-Tuning v2 influence the emergence of preference inconsis-
tencies.

A.3 PROOF OF THEOREM 1

Proof. We aim to prove that, under the cross-layer prefix alignment mechanism, the difference be-
tween the prefix embeddings P l+k

A and P l+k
B decreases as we move to deeper layers l + k, where

k ≥ 1. Specifically, we will show that:

∥P l+k
A − P l+k

B ∥2 ≤ ρk∥P l
A − P l

B∥2, (24)

for some constant ρ ∈ [0, 1), indicating exponential decay of the difference, leading to convergence.

Let elA, e
l
B ∈ Rd be the embeddings of inputs xA and xB at layer l. Let P l

A, P
l
B ∈ Rm×d be their

respective prefix embeddings at layer l, where m is the prefix length.

The cross-layer prefix alignment mechanism defines the concatenated embeddings:

Cl
A = P l

A ⊕ T l+1
B , Cl

B = P l
B ⊕ T l+1

A , (25)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 5: Layer-wise Cosine Similarity, Edit Distance, KL-Divergence, and Label Prediction Differ-
ences

Layer l Cosine Similarity Edit Distance KL-Divergence Label Difference (Prediction)
1 0.98 10 0.05 0
2 0.96 15 0.07 0
3 0.94 25 0.12 0
4 0.90 35 0.15 0
5 0.87 50 0.22 0
6 0.82 70 0.30 1
7 0.76 85 0.38 1
8 0.65 110 0.45 1
9 0.52 140 0.55 1

10 0.40 170 0.62 1
11 0.28 190 0.70 1
12 0.15 210 0.78 1

where ⊕ denotes concatenation, and T l+1
A , T l+1

B are the token embeddings at layer l + 1.

The alignment loss at layer l is:
Ll

align = ∥Cl
A − Cl

B∥22. (26)

The training objective includes minimizing Ll
align to encourage Cl

A and Cl
B to become closer.

This minimization updates P l
A and P l

B such that:

P l
A ← P l

A − η
∂Ll

align

∂P l
A

, P l
B ← P l

B − η
∂Ll

align

∂P l
B

, (27)

where η is the learning rate.

The transformer layer updates the embeddings using a function f , which includes attention and
feed-forward networks:

P l+1
A = f(P l

A), P l+1
B = f(P l

B). (28)

Our goal is to analyze ∥P l+1
A − P l+1

B ∥2.

Assume the function f is Lipschitz continuous with Lipschitz constant Lf > 0:

∥f(u)− f(v)∥2 ≤ Lf∥u− v∥2, ∀u, v ∈ Rm×d. (29)

Using the Lipschitz property:

∥P l+1
A − P l+1

B ∥2 = ∥f(P l
A)− f(P l

B)∥2 ≤ Lf∥P l
A − P l

B∥2. (30)

Applying the same reasoning recursively for layers l + 1, l + 2, . . . , l + k:

∥P l+k
A − P l+k

B ∥2 ≤ Lk
f∥P l

A − P l
B∥2. (31)

Since Lf > 0, the difference decreases exponentially if Lf < 1.

The high semantic similarity of xA and xB at layer l implies ∥elA − elB∥2 is small. Therefore, the
initial difference ∥P l

A − P l
B∥2 is small due to the alignment loss minimization.

If Lf < 1, then as k →∞:
∥P l+k

A − P l+k
B ∥2 → 0. (32)

This indicates that P l+k
A and P l+k

B converge.

As the prefix embeddings converge, the model’s outputs (predictions) based on these embeddings
also become consistent. The transformation function f propagates the alignment through the net-
work, reducing discrepancies.

18

	Introduction
	Related works
	Methods
	Preliminary
	Overall
	Preference-Sensitive Similarity Mechanism
	Cross-Layer Prefix Alignment
	Preference Correction Module (PCM)

	Experiments
	Experimental Setup
	Main results
	Ablation Study
	Robustness Analysis

	Conclusion AND FUTURE WORK
	Appendix
	Detailed Experimental Setup
	Description of the Datasets
	Baselines

	Toy Experiment: Exploring Label Preference Inconsistencies in Similar Input Embeddings
	Dataset Preparation
	Experiment Setup
	Quantitative Analysis: Layer-wise Embedding and Preference Distribution Changes

	Proof of Theorem 1

