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Abstract

Mathematical reasoning is a fundamental ca-
pability for large language models (LLMs),
yet achieving high performance in this do-
main remains a significant challenge. The
auto-regressive generation process often makes
LLMs susceptible to errors, hallucinations, and
inconsistencies, particularly during multi-step
reasoning. In this paper, we propose Mars-PO,
anovel framework to improve the mathematical
reasoning capabilities of LLMs through a multi-
agent system. It combines high-quality outputs
from multiple agents into a hybrid positive sam-
ple set and pairs them with agent-specific neg-
ative samples to construct robust preference
pairs for training. By aligning agents with
shared positive samples while addressing in-
dividual weaknesses, Mars-PO achieves sub-
stantial performance improvements on mathe-
matical reasoning benchmarks. For example,
it increases the accuracy on the MATH bench-
mark of the state-of-the-art instruction-tuned
LLM, Llama3.1-8B-Instruct, from 50.38% to
57.82%. Experimental results further demon-
strate that our method consistently outperforms
other baselines, such as supervised fine-tuning,
vanilla DPO, and its enhanced versions, high-
lighting the effectiveness of our approach.

1 Introduction

Mathematical reasoning is a critical yet highly chal-
lenging task for large language models (LLMs) (Yu
etal., 2023; Lu et al., 2024a; Luo et al., 2023; Wang
et al., 2023a; Shao et al., 2024; Lu et al., 2024b;
Lai et al., 2024). It requires not only strong foun-
dational knowledge in mathematics but also the
ability to perform precise computations (Yu et al.,
2023; Touvron et al., 2023), logical reasoning (Lu
et al., 2024a; Pang et al., 2024), and multi-step
problem-solving (Lu et al., 2024b; Lai et al., 2024).
Despite significant advancements in the capabili-
ties of LLMs, achieving robust and reliable math-
ematical reasoning remains an open challenge. A

primary factor contributing to this difficulty is the
alignment of model-generated outputs with human
preferences for correctness and clarity, particularly
in complex domains like mathematical reasoning.

Among various alignment techniques, Direct
Preference Optimization (DPO) (Rafailov et al.,
2024) has emerged as a promising method for im-
proving model behavior through preference-based
training. It optimizes LLMs by leveraging prefer-
ence signals derived from human or reward model
judgments, directly adjusting the model’s output
distribution. DPO methods have demonstrated
strong performance on general chat benchmarks,
but their application to standard reasoning tasks of-
ten yields only moderate improvements or even per-
formance degradation (Pang et al., 2024; Lu et al.,
2024b; Lai et al., 2024). Moreover, while DPO has
achieved notable success in aligning single-agent
systems, it frequently falls short in leveraging the
collaborative potential of multi-agent systems. In
such systems, diverse agents can contribute com-
plementary strengths, which, if effectively utilized,
could lead to the generation of higher-quality solu-
tions.

To address these limitations, we propose a novel
approach to achieve multi-agent reasoning system
preference optimization, named as Mars-PO. This
method extends the standard DPO framework to
a multi-agent setting, leveraging the collective ca-
pabilities of multiple agents to improve alignment
and reasoning performance. Figure 1 shows the
framework of Mars-PO, which operates in three
stages:

(i) Response Samples Generation: Given a set of
prompts, response samples are generated by mul-
tiple agents. These responses form the foundation
for constructing positive and negative samples. By
utilizing diverse agents, this process ensures that
the generated responses capture a wide range of
reasoning patterns and quality levels.

(ii) Preference Pairs Construction: Using the
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Figure 1: Mars-PO Framework. Our preference optimization method consists of three steps: (i) Response Samples
Generation: training prompts are fed into the multi-agent system to generate candidate responses, which are then
classified as positive or negative for each agent based on answer correctness. (ii) Positive Pairs Construction:
positive samples from all agents are evaluated by a reward model to distill a high-quality positive sample set
(PS) for the entire system, while negative samples (NS) proceed directly to the next step. (iii) Hybrid Preference
Optimization: preference pairs are selected to perform Mars-PO for each agent, supplemented by NLL loss and

optional iterative training to improve model robustness and performance.
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Figure 2: Accuracy of iterative Mars-PO training on GSM8K and Math.

response samples, a reward model is employed
to score all positive samples to extract a high-
quality hybrid positive sample set. Then prefer-
ence pairs are constructed by combining the hybrid
positive sample set with agent-specific negative
samples. This step is critical for encoding both
shared strengths and individual weaknesses into
the training process.

(iii) Hybrid Preference Optimization: Finally,
the constructed preference pairs are used to train
LLM agents via iterative preference optimization.
By aligning the model with hybrid positive sam-
ples while addressing agent-specific weaknesses,
this step ensures that the model achieves robust
improvements in reasoning accuracy.

To evaluate the effectiveness of our method,
we apply Mars-PO to a multi-agent system con-
sisting of three instruction-tuned state-of-the-art
mathematical LLMs: Qwen2.5-Math, DeepSeek-

Math and Llama3.1. Extensive experiments on
standard reasoning benchmarks, i.e., GSM8K and
MATH, demonstrate that Mars-PO significantly im-
proves the mathematical reasoning capabilities of
LLM agents, outperforming baseline approaches
like single-agent DPO and other advanced fine tun-
ing methods, as shown in Figure 2. Notably, our
method can further push the state-of-the-art rea-
soning accuracy to new heights, with performance
gains of up to about 8%. The results highlight the
advantages of leveraging multi-agent collaboration
to amplify performance gains and align models
with task-specific requirements. To sum up, our
main contribution are as follows:

* We propose a novel method, Mars-PO, that
extends DPO to multi-agent systems for en-
hanced performance in mathematical reason-
ing tasks.



* We introduce a new strategy for constructing
hybrid positive sample sets, combining the
strengths of multiple agents to create a high-
quality training dataset.

* Through rigorous evaluation, we demonstrate
the effectiveness of Mars-PO in significantly
improving the alignment and reasoning capa-
bilities of LLM agents, setting a new bench-
mark in preference-based optimization for
mathematical reasoning.

2 Related Work

2.1 Mathematical Reasoning

Large Language Models (LLMs) have demon-
strated impressive reasoning abilities, driven by
their auto-regressive nature, which enables them
to accurately predict the next token using contex-
tual information. However, these models still face
significant challenges in handling sophisticated rea-
soning tasks, particularly in mathematical domains.
To address these limitations, prior research has
explored various approaches to enhance the math-
ematical reasoning capabilities of LLMs. Several
studies (Gao et al., 2023; Chen et al., 2022; Zhou
et al., 2023; Yao et al., 2024) proposed advanced
prompting methods based on the Chain-of-Thought
(CoT) inference framework (Wei et al., 2022), aim-
ing to bring out LLMs’ mathematical skills with-
out changing their parameters. In contrast, other
methods aim to improve mathematical reasoning by
optimizing LLM parameters through continued pre-
training on large math-specific datasets (Azerbayev
et al., 2023; Wang et al., 2023b), or fine-tuning
with well constructed question-solution pairs (Yuan
et al., 2023; Yue et al., 2023; Wang et al., 2023a;
Luo et al., 2023; Gou et al., 2023; Yang et al., 2023;
Yu et al., 2023; Lu et al., 2024a). These approaches
significantly push LLMs to solve complex math-
ematical problems, achieving outstanding perfor-
mance on benchmarks such as GSM8K (Cobbe
etal., 2021) and MATH (Hendrycks et al., 2021).

2.2 Direct Preference Optimization

While Reinforcement Learning from Human Feed-
back (RLHF) is widely used to align LLMs with hu-
man preference to improve prediction performance,
the adopted reinforcement learning methods, like
PPO (Schulman et al., 2017), pose a resource-
intensive and time-consuming requirement on the
reward model training. To address this issue, Direct
Preference Optimization (DPO) (Rafailov et al.,

2024) is proposed as a more efficient and equally
effective alternative. DPO distinguishes itself by
enabling the model to learn a policy directly from
user preference data, eliminating the need for an
explicit reward function.

While DPO has proven effective in chat bench-
marks, it offers only marginal benefits or may even
negatively impact mathematical reasoning. Several
previous works (Xu et al., 2024; Jiao et al., 2024)
uses DPO to improve model’s mathematical genera-
tion quality. Several previous works leveraged step-
wise error annotations to further improve DPO’s
performance on mathematical reasoning tasks (Lu
et al., 2024b; Lai et al., 2024).

3 Methodology

Given a multi-agent system comprising multiple
pretrained or instruction-tuned large language mod-
els, with access to a set of training inputs and the
ability to evaluate the correctness of final outputs,
our goal is to simultaneously enhance the perfor-
mance of all agents within the system. To achieve
the goal, we propose Hybrid Preference Optimiza-
tion, which consists of three steps: (i) Response
Samples Generation, (ii) Preference Pairs Construc-
tion and (iii) Hybrid Preference Optimization, as
shown in Figure 1. We provide additional details
about the methodology design in the following.

3.1 Response Samples Generation

The generation of response samples lays the foun-
dation for constructing high-quality preference
pairs. In the context of a multi-agent system, this
process involves coordinated sampling from mul-
tiple agents to ensure diverse and representative
outputs for subsequent preference optimization.
We assume the target multi-agent system is com-
posed of K agents, denoted as { My, Ma, ..., Mk }.
The used training dataset is denoted as D =
{(zi,v:)}, where z; is the question prompt and
v; 1s the corresponding correct response. Given the
substantial performance improvements achieved
by the CoT framework, mathematical reasoning
tasks often utilize CoT reasoning steps c¢; to de-
rive the final answer a;. Hence, the target response
y; can be expressed as a concatenation of ¢; and
a;, i.e., y; = (¢;,a;). For each LLM agent Mj,
(1 <k < K), we generate N different responses
for each input prompt z; € D, which are denoted
as y;":
g = (e a}) ~ Mi(es) M
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wheren € {1,2,..., N}.

To evaluate the correctness of answers a;' in the
generated responses, we introduce a new boolean
variable, b}'. Here, b;' = 1 indicates that the n-th
samples generated by agent M}, contains a correct
answer, i.e., aj’ = a;, while b} = 0 denotes an
incorrect answer. Hence, based on the correctness
of deduced answers, we can further divide those
generated responses into two sets:

P=lair =1

G = (e}, a) |} = 0}
where G}/ denotes the set of positive (winning)
samples with correct answers, while ch denotes
the set of negative (losing) samples with incorrect
answers.

3.2 Preference Pairs Construction

After identifying positive/negative sample sets of
the multi-agent system, the next step is to construct
preference pairs, a process that represents the most
critical step in DPO-like methods. These pairs
serve as the foundation for training reward-aligned
language models. In our Mars-PO framework, we
extend this process to incorporate multi-agent inter-
actions, enabling the construction of a hybrid pref-
erence dataset that effectively leverages the comple-
mentary strengths of multiple agents. Specifically,
we utilize a hybrid positive sample set combined
with multiple agent-specific negative sample sets
for the subsequent DPO training.

The hybrid positive sample set G is extracted
from the outputs of all LLM agents, i.e., G}/ for
1 < k < K. These agents generate candidate
solutions for a shared set of mathematical reason-
ing tasks. A reward model, pre-trained to evaluate
solution quality, assigns a reward score to each
candidate. The highest-scoring outputs across all
agents are merged into the hybrid positive sample
set. This merging process ensures that the positive
samples represent the best-performing solutions, ir-
respective of the agent of origin, thereby increasing
the diversity and quality of the training data.

Unlike the hybrid positive set, these negative
samples are agent-specific, reflecting each agent’s
unique failure modes. By pairing hybrid positive
samples with negative samples tailored to individ-
ual agents, the constructed preference pairs expose
the limitations of each agent while reinforcing the
benefits of the shared positive solutions. This step
is instrumental in aligning LLM agents to achieve

superior performance on mathematical reasoning
tasks, as validated by our experimental results.

3.3 Hybrid Preference Optimization

As the core component of our Mars-PO frame-
work, hybrid preference optimization applies DPO
method to each agent using a combination of a
hybrid positive sample set G* and agent-specific
negative sample sets Gfk. This process leverages the
strengths of multi-agent collaboration to enhance
the reasoning capabilities of each individual agent.
The loss function used for optimizing parameters of
each agent is expressed as £L = Lppo + aLnNLL,
where Lppo and L, can be expressed as:

Mp(c¥, a|x;
Lppo = —loga(ﬁlogj\w

(¢}, af|z:)
'y 3)
My(c;, ag|zi)
—plog————1—)
My (c;, a;|z;)
logMy(cy’, ai’|x;
Loy = -2 olci 2:) “4)

] + |y

The Negative Log-likelihood Loss (NLL) is added
to maintain base knowledge of the original agent
model and prevent overfitting to preferences. To
further enhance agent performance, we adopt an
iterative training method to repeatedly update the
parameters of the target LLMs.

4 Experimental Setup

In this section, we first present the evaluation LLM
agents in the multi-agent system, which are also
targets whose performance we aim to improve. Be-
sides, we also introduce the used reward model for
extracting high-quality positive samples and math-
ematical datasets used for reasoning tasks. Finally,
we detail compared baselines used to highlight the
advancement of our method.

4.1 Evaluation Models

We evaluate the performance of Mars-PO on the
multi-agent system consisting of three state-of-
the-art instruction-tuned mathematical LLMs, in-
cluding Qwen2.5-Math-Instruct (Yang et al., 2024)
(with 7B parameters), Llama3.1-Instruct (Touvron
et al., 2023) (with 8B parameters) and DeepSeek-
Math-RL (Shao et al., 2024) (with 7B parame-
ters). These three models have advanced mathemat-
ical reasoning capabilities to levels comparable to,
or even surpassing, human performance. Among
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Figure 3: Accuracy comparison between vanilla DPO and Mars-PO. Solid lines represent results of Mars-PO
method, while dashed lines represent results of traditional DPO method.

them, Qwen models stand out as significantly su-
perior to their peers. Therefore, we also adopt the
reward model used by Qwen, i.e., Qwen2.5-Math-
RM-72B (Qwen, 2024), as our reward model to
score the quality of generated positive samples.

4.2 Reasoning Datasets

Following previous research (Lu et al., 2024b; Lai
et al., 2024; Yu et al., 2023; Shao et al., 2024),
our evaluation performs on two mathematical rea-
soning datasets: GSM8K (Cobbe et al., 2021) and
MATH (Hendrycks et al., 2021). Both are clas-
sic benchmarks specifically designed to evaluate
the arithmetic and word problem-solving capabil-
ities of language models. They consist of chal-
lenging mathematical problems accompanied by
well-structured reasoning steps leading to the cor-
rect answers.

4.3 Compared Baselines

We compare the performance of Mars-PO with
four baselines: (i) original performance of the tar-
get instruction-tuned LLM agent, (ii) vanilla DPO
method (Rafailov et al., 2024), where each LLM
agent uses their own preference pairs for post-
training; (iii) DPO method combined with NLL
item, which has been studied in previous works
(Pang et al., 2024) and can slightly improve reason-
ing capability of the target model; (iv) Supervised
Fine Tuning (SFT) with extracted positive samples,
which aims to investigate whether incorporating
contrastive samples contributes to performance im-
provement.

4.4 TImplementation Details

To sample responses from each agent, we follow
previous works (Lu et al., 2024b; Lai et al., 2024;
Pang et al., 2024; Yu et al., 2023) to use a zero-
shot prompt that includes the question along with
clear instructions to generate a chain-of-thought
reasoning process. Ensure the response follows a
specific format, making the final answer easy to
identify and extract. We conduct three iterations of
preference optimization to fully unlock the poten-
tial of LLM agents. In each iteration, we generate
N solutions (N = 40 for GSM8K and N = 30
for MATH) for each problem using sampling with
temperature 0.8 for iterations 1 and temperature 1.2
for iterations 2-3, hoping for a substantial number
of incorrect generations in the later iterations.

The generated response samples are further pro-
cessed to construct a hybrid positive sample set,
extracted by the reward model, along with negative
sample sets for each agent. Subsequently, we se-
lect 15 preference pairs from these sample sets for
the following Mars-PO training. The post-training
of the target agent model is conducted over three
epochs, with a batch size of 16 and a learning rate
of 7e-7, using the AdamW optimizer. The coeffi-
cient o and /3 in Equation ?? are set as 1 and 0.1,
respectively. Note that for iteration 2 and 3, 5 is
increased to 0.2 and 0.4, to further amplify the dif-
ferences in the reward values of preference pairs.
All training is done using one node with eight A800
GPUs (80G memory).



Benchmark Datasets

LLM Agent GSMSK MATH
Qwen2.5-Math-7B-Instruct 95.60 83.36

+ Mars-PO iterl 95.75 83.52

+ Mars-PO iter2 95.79 83.73

+ Mars-PO iter3 95.82 83.65

+ Vanilla DPO 89.61 599 72.24~ 1112

+ DPO+NLL 90.14 546 81.24212

+ Postive SFT 95.45=0-15 83.22 014
DeepSeek-Math-7B-RL 87.94 51.76

+ Mars-PO iterl 89.12 53.52

+ Mars-PO iter2 90.03 53.88

+ Mars-PO iter3 90.48 54.06

+ Vanilla DPO 87.3270:61 51.44-0-32

+ DPO+NLL 88.55 51.5270-24

+ Postive SFT 88.17 51.94
Llama3.1-8B-Instruct 85.60 50.38

+ Mars-PO iterl 88.96 55.48

+ Mars-PO iter2 89.73 56.74

+ Mars-PO iter3 89.96 57.82

+ Vanilla DPO 79.08 652 42487790

+ DPO+NLL 81.96 364 43.08 730

+ Postive SFT 86.500-10 50.84

Table 1: Mathematical benchmark results of iterative Mars-PO using zero-shot greedy inference.

5 Evaluation Results

In this section, we first present the main results
of Mars-PO in improving the performance of the
multi-agent system, highlighting the advantages
of our approach. We then compare it with var-
ious baselines to demonstrate the impact of the
techniques incorporated into Mars-PO. Our experi-
ments show that each of the introduced techniques
contributes to a significant improvement in the per-
formance of LLM agents.

5.1 Main Results

Table 1 displays the prediction accuracy of LLM
agents in the multi-agent system on GSM8K and
MATH tasks. Note that these are the results af-
ter the first iteration of training. From the table,
we can see the comparison between our method
with four baselines. Experiment results demon-
strate that Mars-PO consistently achieves higher
accuracy across all baselines. Notably, our method
even leads to a performance improvement of over
10% on the Llama model, increasing the prediction
accuracy on the challenging MATH dataset from
50.38% to 55.48%.

While conventional DPO results in a significant
decline in model performance, even with the addi-
tion of a negative log-likelihood loss to partially
alleviate the issue, it remains evident that vanilla
DPO and its variants fail to further enhance the
performance of state-of-the-art models. The reason
behind this phenomenon could be that these mod-
els have already undergone extensive fine-tuning
on widely available mathematical datasets, partic-
ularly GSM8K and MATH. As a result, the con-
tinued application of the DPO method results in
severe overfitting. We also compare our approach
with the SFT method, which directly utilizes the hy-
brid positive sample set, to demonstrate the neces-
sity of contrastive optimization using agent-specific
negative sample sets. Experimental results reveal
that combining the hybrid positive sample set with
agent-specific negative samples allows our method
to generate more informative preference pairs, re-
sulting in enhanced reasoning capabilities for LLM
agents.



5.2 Enhancement with iterative training

To further improve model performance, we adopt
an iterative training approach that progressively re-
fines the model’s reasoning capabilities. Iterative
training involves multiple rounds of preference op-
timization, where each iteration builds upon the out-
puts and refinements from the previous round. This
process allows the model to continually improve
its understanding and alignment with high-quality
reasoning patterns.

Table 1 presents the prediction accuracy of the
models across three iterations of training. As
shown in the results, the accuracy generally in-
creases with each iteration, demonstrating the ef-
fectiveness of iterative training in improving model
performance. However, it is worth noting that
in some cases, there is a slight drop in accuracy
between certain iterations. Despite these minor
fluctuations, the overall trend indicates a consis-
tent upward trajectory in the model’s performance,
highlighting the benefits of continued optimization
through iterative training.

5.3 Effect of hybrid positive samples

To evaluate the impact of hybrid positive samples,
we analyze their contribution to the overall model
performance. Given hybrid positive samples are
constructed by merging high-quality correct out-
puts from multiple agents, they can combine di-
verse strengths of all agents to create a unified and
robust dataset. Hence, this approach is able to pro-
vide a richer and more comprehensive training sig-
nal compared to relying on positive samples from
a single agent.

The comparison between the vanilla DPO
method and our proposed Mars-PO demonstrates
the effectiveness of hybrid positive samples in en-
hancing model performance, where Mars-PO con-
sistently achieves higher accuracy than the vanilla
DPO, as shown in in Table 1. Figure 3 further
illustrates the accuracy changes of the DPO and
Mars-PO methods during the iterative training pro-
cess. We can observe that Mars-PO consistently
improves accuracy, while the vanilla DPO method
results in a performance drop. These findings con-
firm that incorporating hybrid positive samples is
a key factor in improving the performance of the
model, making Mars-PO a more effective approach
compared to traditional DPO.

6 Conclusion

In this paper, we proposed Hybrid Direct Prefer-
ence Optimization (Mars-PO), a multi-agent frame-
work to enhance the mathematical reasoning ca-
pabilities of large language models (LLMs). By
combining a hybrid positive sample set with agent-
specific negative samples, Mars-PO effectively
leverages multi-agent collaboration to construct
robust preference pairs for training. Experimental
results demonstrate that this approach significantly
improves LLM performance on mathematical rea-
soning benchmarks, showcasing the potential of
hybrid preference optimization for complex reason-
ing tasks.

7 Limitation

The developed approach Mars-PO is limited to
fields with well-defined answers, such as math and
coding, and further improvements are needed to
generalize it to other domains. At the same time,
the method’s upper limit currently depends on the
performance of the best model in the multi-agent
system. If there are models with comparable per-
formance, we can have them debate each other and
improve the upper limit through self-improvement,
which could be the direction of future research.
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