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Abstract
Mathematical reasoning is a fundamental ca-001
pability for large language models (LLMs),002
yet achieving high performance in this do-003
main remains a significant challenge. The004
auto-regressive generation process often makes005
LLMs susceptible to errors, hallucinations, and006
inconsistencies, particularly during multi-step007
reasoning. In this paper, we propose Mars-PO,008
a novel framework to improve the mathematical009
reasoning capabilities of LLMs through a multi-010
agent system. It combines high-quality outputs011
from multiple agents into a hybrid positive sam-012
ple set and pairs them with agent-specific neg-013
ative samples to construct robust preference014
pairs for training. By aligning agents with015
shared positive samples while addressing in-016
dividual weaknesses, Mars-PO achieves sub-017
stantial performance improvements on mathe-018
matical reasoning benchmarks. For example,019
it increases the accuracy on the MATH bench-020
mark of the state-of-the-art instruction-tuned021
LLM, Llama3.1-8B-Instruct, from 50.38% to022
57.82%. Experimental results further demon-023
strate that our method consistently outperforms024
other baselines, such as supervised fine-tuning,025
vanilla DPO, and its enhanced versions, high-026
lighting the effectiveness of our approach.027

1 Introduction028

Mathematical reasoning is a critical yet highly chal-029

lenging task for large language models (LLMs) (Yu030

et al., 2023; Lu et al., 2024a; Luo et al., 2023; Wang031

et al., 2023a; Shao et al., 2024; Lu et al., 2024b;032

Lai et al., 2024). It requires not only strong foun-033

dational knowledge in mathematics but also the034

ability to perform precise computations (Yu et al.,035

2023; Touvron et al., 2023), logical reasoning (Lu036

et al., 2024a; Pang et al., 2024), and multi-step037

problem-solving (Lu et al., 2024b; Lai et al., 2024).038

Despite significant advancements in the capabili-039

ties of LLMs, achieving robust and reliable math-040

ematical reasoning remains an open challenge. A041

primary factor contributing to this difficulty is the 042

alignment of model-generated outputs with human 043

preferences for correctness and clarity, particularly 044

in complex domains like mathematical reasoning. 045

Among various alignment techniques, Direct 046

Preference Optimization (DPO) (Rafailov et al., 047

2024) has emerged as a promising method for im- 048

proving model behavior through preference-based 049

training. It optimizes LLMs by leveraging prefer- 050

ence signals derived from human or reward model 051

judgments, directly adjusting the model’s output 052

distribution. DPO methods have demonstrated 053

strong performance on general chat benchmarks, 054

but their application to standard reasoning tasks of- 055

ten yields only moderate improvements or even per- 056

formance degradation (Pang et al., 2024; Lu et al., 057

2024b; Lai et al., 2024). Moreover, while DPO has 058

achieved notable success in aligning single-agent 059

systems, it frequently falls short in leveraging the 060

collaborative potential of multi-agent systems. In 061

such systems, diverse agents can contribute com- 062

plementary strengths, which, if effectively utilized, 063

could lead to the generation of higher-quality solu- 064

tions. 065

To address these limitations, we propose a novel 066

approach to achieve multi-agent reasoning system 067

preference optimization, named as Mars-PO. This 068

method extends the standard DPO framework to 069

a multi-agent setting, leveraging the collective ca- 070

pabilities of multiple agents to improve alignment 071

and reasoning performance. Figure 1 shows the 072

framework of Mars-PO, which operates in three 073

stages: 074

(i) Response Samples Generation: Given a set of 075

prompts, response samples are generated by mul- 076

tiple agents. These responses form the foundation 077

for constructing positive and negative samples. By 078

utilizing diverse agents, this process ensures that 079

the generated responses capture a wide range of 080

reasoning patterns and quality levels. 081

(ii) Preference Pairs Construction: Using the 082
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Figure 1: Mars-PO Framework. Our preference optimization method consists of three steps: (i) Response Samples
Generation: training prompts are fed into the multi-agent system to generate candidate responses, which are then
classified as positive or negative for each agent based on answer correctness. (ii) Positive Pairs Construction:
positive samples from all agents are evaluated by a reward model to distill a high-quality positive sample set
(PS) for the entire system, while negative samples (NS) proceed directly to the next step. (iii) Hybrid Preference
Optimization: preference pairs are selected to perform Mars-PO for each agent, supplemented by NLL loss and
optional iterative training to improve model robustness and performance.

Figure 2: Accuracy of iterative Mars-PO training on GSM8K and Math.

response samples, a reward model is employed083

to score all positive samples to extract a high-084

quality hybrid positive sample set. Then prefer-085

ence pairs are constructed by combining the hybrid086

positive sample set with agent-specific negative087

samples. This step is critical for encoding both088

shared strengths and individual weaknesses into089

the training process.090

(iii) Hybrid Preference Optimization: Finally,091

the constructed preference pairs are used to train092

LLM agents via iterative preference optimization.093

By aligning the model with hybrid positive sam-094

ples while addressing agent-specific weaknesses,095

this step ensures that the model achieves robust096

improvements in reasoning accuracy.097

To evaluate the effectiveness of our method,098

we apply Mars-PO to a multi-agent system con-099

sisting of three instruction-tuned state-of-the-art100

mathematical LLMs: Qwen2.5-Math, DeepSeek-101

Math and Llama3.1. Extensive experiments on 102

standard reasoning benchmarks, i.e., GSM8K and 103

MATH, demonstrate that Mars-PO significantly im- 104

proves the mathematical reasoning capabilities of 105

LLM agents, outperforming baseline approaches 106

like single-agent DPO and other advanced fine tun- 107

ing methods, as shown in Figure 2. Notably, our 108

method can further push the state-of-the-art rea- 109

soning accuracy to new heights, with performance 110

gains of up to about 8%. The results highlight the 111

advantages of leveraging multi-agent collaboration 112

to amplify performance gains and align models 113

with task-specific requirements. To sum up, our 114

main contribution are as follows: 115

• We propose a novel method, Mars-PO, that 116

extends DPO to multi-agent systems for en- 117

hanced performance in mathematical reason- 118

ing tasks. 119

2



• We introduce a new strategy for constructing120

hybrid positive sample sets, combining the121

strengths of multiple agents to create a high-122

quality training dataset.123

• Through rigorous evaluation, we demonstrate124

the effectiveness of Mars-PO in significantly125

improving the alignment and reasoning capa-126

bilities of LLM agents, setting a new bench-127

mark in preference-based optimization for128

mathematical reasoning.129

2 Related Work130

2.1 Mathematical Reasoning131

Large Language Models (LLMs) have demon-132

strated impressive reasoning abilities, driven by133

their auto-regressive nature, which enables them134

to accurately predict the next token using contex-135

tual information. However, these models still face136

significant challenges in handling sophisticated rea-137

soning tasks, particularly in mathematical domains.138

To address these limitations, prior research has139

explored various approaches to enhance the math-140

ematical reasoning capabilities of LLMs. Several141

studies (Gao et al., 2023; Chen et al., 2022; Zhou142

et al., 2023; Yao et al., 2024) proposed advanced143

prompting methods based on the Chain-of-Thought144

(CoT) inference framework (Wei et al., 2022), aim-145

ing to bring out LLMs’ mathematical skills with-146

out changing their parameters. In contrast, other147

methods aim to improve mathematical reasoning by148

optimizing LLM parameters through continued pre-149

training on large math-specific datasets (Azerbayev150

et al., 2023; Wang et al., 2023b), or fine-tuning151

with well constructed question-solution pairs (Yuan152

et al., 2023; Yue et al., 2023; Wang et al., 2023a;153

Luo et al., 2023; Gou et al., 2023; Yang et al., 2023;154

Yu et al., 2023; Lu et al., 2024a). These approaches155

significantly push LLMs to solve complex math-156

ematical problems, achieving outstanding perfor-157

mance on benchmarks such as GSM8K (Cobbe158

et al., 2021) and MATH (Hendrycks et al., 2021).159

2.2 Direct Preference Optimization160

While Reinforcement Learning from Human Feed-161

back (RLHF) is widely used to align LLMs with hu-162

man preference to improve prediction performance,163

the adopted reinforcement learning methods, like164

PPO (Schulman et al., 2017), pose a resource-165

intensive and time-consuming requirement on the166

reward model training. To address this issue, Direct167

Preference Optimization (DPO) (Rafailov et al.,168

2024) is proposed as a more efficient and equally 169

effective alternative. DPO distinguishes itself by 170

enabling the model to learn a policy directly from 171

user preference data, eliminating the need for an 172

explicit reward function. 173

While DPO has proven effective in chat bench- 174

marks, it offers only marginal benefits or may even 175

negatively impact mathematical reasoning. Several 176

previous works (Xu et al., 2024; Jiao et al., 2024) 177

uses DPO to improve model’s mathematical genera- 178

tion quality. Several previous works leveraged step- 179

wise error annotations to further improve DPO’s 180

performance on mathematical reasoning tasks (Lu 181

et al., 2024b; Lai et al., 2024). 182

3 Methodology 183

Given a multi-agent system comprising multiple 184

pretrained or instruction-tuned large language mod- 185

els, with access to a set of training inputs and the 186

ability to evaluate the correctness of final outputs, 187

our goal is to simultaneously enhance the perfor- 188

mance of all agents within the system. To achieve 189

the goal, we propose Hybrid Preference Optimiza- 190

tion, which consists of three steps: (i) Response 191

Samples Generation, (ii) Preference Pairs Construc- 192

tion and (iii) Hybrid Preference Optimization, as 193

shown in Figure 1. We provide additional details 194

about the methodology design in the following. 195

3.1 Response Samples Generation 196

The generation of response samples lays the foun- 197

dation for constructing high-quality preference 198

pairs. In the context of a multi-agent system, this 199

process involves coordinated sampling from mul- 200

tiple agents to ensure diverse and representative 201

outputs for subsequent preference optimization. 202

We assume the target multi-agent system is com- 203

posed of K agents, denoted as {M1,M2, ...,MK}. 204

The used training dataset is denoted as D = 205

{(xi, yi)}, where xi is the question prompt and 206

yi is the corresponding correct response. Given the 207

substantial performance improvements achieved 208

by the CoT framework, mathematical reasoning 209

tasks often utilize CoT reasoning steps ci to de- 210

rive the final answer ai. Hence, the target response 211

yi can be expressed as a concatenation of ci and 212

ai, i.e., yi = (ci, ai). For each LLM agent Mk 213

(1 ≤ k ≤ K), we generate N different responses 214

for each input prompt xi ∈ D, which are denoted 215

as yni : 216

yni = (cni , a
n
i ) ∼ Mk(xi) (1) 217

3



where n ∈ {1, 2, ..., N}.218

To evaluate the correctness of answers ani in the219

generated responses, we introduce a new boolean220

variable, bni . Here, bni = 1 indicates that the n-th221

samples generated by agent Mk contains a correct222

answer, i.e., ani = ai, while bni = 0 denotes an223

incorrect answer. Hence, based on the correctness224

of deduced answers, we can further divide those225

generated responses into two sets:226

Gw
k = {(cni , ani )|bni = 1}

Gl
k = {(cni , ani )|bni = 0}

(2)227

where Gw
k denotes the set of positive (winning)228

samples with correct answers, while Gl
k denotes229

the set of negative (losing) samples with incorrect230

answers.231

3.2 Preference Pairs Construction232

After identifying positive/negative sample sets of233

the multi-agent system, the next step is to construct234

preference pairs, a process that represents the most235

critical step in DPO-like methods. These pairs236

serve as the foundation for training reward-aligned237

language models. In our Mars-PO framework, we238

extend this process to incorporate multi-agent inter-239

actions, enabling the construction of a hybrid pref-240

erence dataset that effectively leverages the comple-241

mentary strengths of multiple agents. Specifically,242

we utilize a hybrid positive sample set combined243

with multiple agent-specific negative sample sets244

for the subsequent DPO training.245

The hybrid positive sample set Gw is extracted246

from the outputs of all LLM agents, i.e., Gw
k for247

1 ≤ k ≤ K. These agents generate candidate248

solutions for a shared set of mathematical reason-249

ing tasks. A reward model, pre-trained to evaluate250

solution quality, assigns a reward score to each251

candidate. The highest-scoring outputs across all252

agents are merged into the hybrid positive sample253

set. This merging process ensures that the positive254

samples represent the best-performing solutions, ir-255

respective of the agent of origin, thereby increasing256

the diversity and quality of the training data.257

Unlike the hybrid positive set, these negative258

samples are agent-specific, reflecting each agent’s259

unique failure modes. By pairing hybrid positive260

samples with negative samples tailored to individ-261

ual agents, the constructed preference pairs expose262

the limitations of each agent while reinforcing the263

benefits of the shared positive solutions. This step264

is instrumental in aligning LLM agents to achieve265

superior performance on mathematical reasoning 266

tasks, as validated by our experimental results. 267

3.3 Hybrid Preference Optimization 268

As the core component of our Mars-PO frame- 269

work, hybrid preference optimization applies DPO 270

method to each agent using a combination of a 271

hybrid positive sample set Gw and agent-specific 272

negative sample sets Gl
k. This process leverages the 273

strengths of multi-agent collaboration to enhance 274

the reasoning capabilities of each individual agent. 275

The loss function used for optimizing parameters of 276

each agent is expressed as L = LDPO + αLNLL, 277

where LDPO and LNLL can be expressed as: 278

LDPO = −logσ(βlog
Mθ(c

w
i , a

w
i |xi)

Mk(c
w
i , a

w
i |xi)

−βlog
Mθ(c

l
i, a

l
i|xi)

Mk(c
l
i, a

l
i|xi)

)

(3) 279

LNLL =
logMθ(c

w
i , a

w
i |xi)

|cwi |+ |ywi |
(4) 280

The Negative Log-likelihood Loss (NLL) is added 281

to maintain base knowledge of the original agent 282

model and prevent overfitting to preferences. To 283

further enhance agent performance, we adopt an 284

iterative training method to repeatedly update the 285

parameters of the target LLMs. 286

4 Experimental Setup 287

In this section, we first present the evaluation LLM 288

agents in the multi-agent system, which are also 289

targets whose performance we aim to improve. Be- 290

sides, we also introduce the used reward model for 291

extracting high-quality positive samples and math- 292

ematical datasets used for reasoning tasks. Finally, 293

we detail compared baselines used to highlight the 294

advancement of our method. 295

4.1 Evaluation Models 296

We evaluate the performance of Mars-PO on the 297

multi-agent system consisting of three state-of- 298

the-art instruction-tuned mathematical LLMs, in- 299

cluding Qwen2.5-Math-Instruct (Yang et al., 2024) 300

(with 7B parameters), Llama3.1-Instruct (Touvron 301

et al., 2023) (with 8B parameters) and DeepSeek- 302

Math-RL (Shao et al., 2024) (with 7B parame- 303

ters). These three models have advanced mathemat- 304

ical reasoning capabilities to levels comparable to, 305

or even surpassing, human performance. Among 306
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Figure 3: Accuracy comparison between vanilla DPO and Mars-PO. Solid lines represent results of Mars-PO
method, while dashed lines represent results of traditional DPO method.

them, Qwen models stand out as significantly su-307

perior to their peers. Therefore, we also adopt the308

reward model used by Qwen, i.e., Qwen2.5-Math-309

RM-72B (Qwen, 2024), as our reward model to310

score the quality of generated positive samples.311

4.2 Reasoning Datasets312

Following previous research (Lu et al., 2024b; Lai313

et al., 2024; Yu et al., 2023; Shao et al., 2024),314

our evaluation performs on two mathematical rea-315

soning datasets: GSM8K (Cobbe et al., 2021) and316

MATH (Hendrycks et al., 2021). Both are clas-317

sic benchmarks specifically designed to evaluate318

the arithmetic and word problem-solving capabil-319

ities of language models. They consist of chal-320

lenging mathematical problems accompanied by321

well-structured reasoning steps leading to the cor-322

rect answers.323

4.3 Compared Baselines324

We compare the performance of Mars-PO with325

four baselines: (i) original performance of the tar-326

get instruction-tuned LLM agent, (ii) vanilla DPO327

method (Rafailov et al., 2024), where each LLM328

agent uses their own preference pairs for post-329

training; (iii) DPO method combined with NLL330

item, which has been studied in previous works331

(Pang et al., 2024) and can slightly improve reason-332

ing capability of the target model; (iv) Supervised333

Fine Tuning (SFT) with extracted positive samples,334

which aims to investigate whether incorporating335

contrastive samples contributes to performance im-336

provement.337

4.4 Implementation Details 338

To sample responses from each agent, we follow 339

previous works (Lu et al., 2024b; Lai et al., 2024; 340

Pang et al., 2024; Yu et al., 2023) to use a zero- 341

shot prompt that includes the question along with 342

clear instructions to generate a chain-of-thought 343

reasoning process. Ensure the response follows a 344

specific format, making the final answer easy to 345

identify and extract. We conduct three iterations of 346

preference optimization to fully unlock the poten- 347

tial of LLM agents. In each iteration, we generate 348

N solutions (N = 40 for GSM8K and N = 30 349

for MATH) for each problem using sampling with 350

temperature 0.8 for iterations 1 and temperature 1.2 351

for iterations 2-3, hoping for a substantial number 352

of incorrect generations in the later iterations. 353

The generated response samples are further pro- 354

cessed to construct a hybrid positive sample set, 355

extracted by the reward model, along with negative 356

sample sets for each agent. Subsequently, we se- 357

lect 15 preference pairs from these sample sets for 358

the following Mars-PO training. The post-training 359

of the target agent model is conducted over three 360

epochs, with a batch size of 16 and a learning rate 361

of 7e-7, using the AdamW optimizer. The coeffi- 362

cient α and β in Equation ?? are set as 1 and 0.1, 363

respectively. Note that for iteration 2 and 3, β is 364

increased to 0.2 and 0.4, to further amplify the dif- 365

ferences in the reward values of preference pairs. 366

All training is done using one node with eight A800 367

GPUs (80G memory). 368
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LLM Agent
Benchmark Datasets

GSM8K MATH
Qwen2.5-Math-7B-Instruct 95.60 83.36

+ Mars-PO iter1 95.75+0.15 83.52+0.16

+ Mars-PO iter2 95.79+0.19 83.73+0.37

+ Mars-PO iter3 95.82+0.22 83.65+0.29

+ Vanilla DPO 89.61−5.99 72.24−11.12

+ DPO+NLL 90.14−5.46 81.24−2.12

+ Postive SFT 95.45−0.15 83.22−0.14

DeepSeek-Math-7B-RL 87.94 51.76
+ Mars-PO iter1 89.12+1.18 53.52+1.76

+ Mars-PO iter2 90.03+3.09 53.88+2.12

+ Mars-PO iter3 90.48+3.54 54.06+3.30

+ Vanilla DPO 87.32−0.61 51.44−0.32

+ DPO+NLL 88.55+0.61 51.52−0.24

+ Postive SFT 88.17+0.23 51.94+0.18

Llama3.1-8B-Instruct 85.60 50.38
+ Mars-PO iter1 88.96+3.36 55.48+5.10

+ Mars-PO iter2 89.73+4.13 56.74+6.36

+ Mars-PO iter3 89.96+4.36 57.82+7.44

+ Vanilla DPO 79.08−6.52 42.48−7.90

+ DPO+NLL 81.96−3.64 43.08−7.30

+ Postive SFT 86.50−0.10 50.84+0.46

Table 1: Mathematical benchmark results of iterative Mars-PO using zero-shot greedy inference.

5 Evaluation Results369

In this section, we first present the main results370

of Mars-PO in improving the performance of the371

multi-agent system, highlighting the advantages372

of our approach. We then compare it with var-373

ious baselines to demonstrate the impact of the374

techniques incorporated into Mars-PO. Our experi-375

ments show that each of the introduced techniques376

contributes to a significant improvement in the per-377

formance of LLM agents.378

5.1 Main Results379

Table 1 displays the prediction accuracy of LLM380

agents in the multi-agent system on GSM8K and381

MATH tasks. Note that these are the results af-382

ter the first iteration of training. From the table,383

we can see the comparison between our method384

with four baselines. Experiment results demon-385

strate that Mars-PO consistently achieves higher386

accuracy across all baselines. Notably, our method387

even leads to a performance improvement of over388

10% on the Llama model, increasing the prediction389

accuracy on the challenging MATH dataset from390

50.38% to 55.48%.391

While conventional DPO results in a significant 392

decline in model performance, even with the addi- 393

tion of a negative log-likelihood loss to partially 394

alleviate the issue, it remains evident that vanilla 395

DPO and its variants fail to further enhance the 396

performance of state-of-the-art models. The reason 397

behind this phenomenon could be that these mod- 398

els have already undergone extensive fine-tuning 399

on widely available mathematical datasets, partic- 400

ularly GSM8K and MATH. As a result, the con- 401

tinued application of the DPO method results in 402

severe overfitting. We also compare our approach 403

with the SFT method, which directly utilizes the hy- 404

brid positive sample set, to demonstrate the neces- 405

sity of contrastive optimization using agent-specific 406

negative sample sets. Experimental results reveal 407

that combining the hybrid positive sample set with 408

agent-specific negative samples allows our method 409

to generate more informative preference pairs, re- 410

sulting in enhanced reasoning capabilities for LLM 411

agents. 412
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5.2 Enhancement with iterative training413

To further improve model performance, we adopt414

an iterative training approach that progressively re-415

fines the model’s reasoning capabilities. Iterative416

training involves multiple rounds of preference op-417

timization, where each iteration builds upon the out-418

puts and refinements from the previous round. This419

process allows the model to continually improve420

its understanding and alignment with high-quality421

reasoning patterns.422

Table 1 presents the prediction accuracy of the423

models across three iterations of training. As424

shown in the results, the accuracy generally in-425

creases with each iteration, demonstrating the ef-426

fectiveness of iterative training in improving model427

performance. However, it is worth noting that428

in some cases, there is a slight drop in accuracy429

between certain iterations. Despite these minor430

fluctuations, the overall trend indicates a consis-431

tent upward trajectory in the model’s performance,432

highlighting the benefits of continued optimization433

through iterative training.434

5.3 Effect of hybrid positive samples435

To evaluate the impact of hybrid positive samples,436

we analyze their contribution to the overall model437

performance. Given hybrid positive samples are438

constructed by merging high-quality correct out-439

puts from multiple agents, they can combine di-440

verse strengths of all agents to create a unified and441

robust dataset. Hence, this approach is able to pro-442

vide a richer and more comprehensive training sig-443

nal compared to relying on positive samples from444

a single agent.445

The comparison between the vanilla DPO446

method and our proposed Mars-PO demonstrates447

the effectiveness of hybrid positive samples in en-448

hancing model performance, where Mars-PO con-449

sistently achieves higher accuracy than the vanilla450

DPO, as shown in in Table 1. Figure 3 further451

illustrates the accuracy changes of the DPO and452

Mars-PO methods during the iterative training pro-453

cess. We can observe that Mars-PO consistently454

improves accuracy, while the vanilla DPO method455

results in a performance drop. These findings con-456

firm that incorporating hybrid positive samples is457

a key factor in improving the performance of the458

model, making Mars-PO a more effective approach459

compared to traditional DPO.460

6 Conclusion 461

In this paper, we proposed Hybrid Direct Prefer- 462

ence Optimization (Mars-PO), a multi-agent frame- 463

work to enhance the mathematical reasoning ca- 464

pabilities of large language models (LLMs). By 465

combining a hybrid positive sample set with agent- 466

specific negative samples, Mars-PO effectively 467

leverages multi-agent collaboration to construct 468

robust preference pairs for training. Experimental 469

results demonstrate that this approach significantly 470

improves LLM performance on mathematical rea- 471

soning benchmarks, showcasing the potential of 472

hybrid preference optimization for complex reason- 473

ing tasks. 474

7 Limitation 475

The developed approach Mars-PO is limited to 476

fields with well-defined answers, such as math and 477

coding, and further improvements are needed to 478

generalize it to other domains. At the same time, 479

the method’s upper limit currently depends on the 480

performance of the best model in the multi-agent 481

system. If there are models with comparable per- 482

formance, we can have them debate each other and 483

improve the upper limit through self-improvement, 484

which could be the direction of future research. 485
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