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ABSTRACT

Large language models (LLMs) have made significant advancements in natural language
understanding. However, through that enormous semantic representation that the LLM has
learnt, is it somehow possible for it to understand images as well? This work investigates
this question. To enable the LLM to process images, we convert them into a representation
given by Scalable Vector Graphics (SVG). To study what the LLM can do with this XML-
based textual description of images, we test the LLM on three broad computer vision tasks:
visual reasoning, image classification under distribution shift, and generating new images
using visual prompting. Even though we do not naturally associate LLMs with any visual
understanding capabilities, our results indicate that the LLM can indeed do a pretty decent
job in many of these tasks, potentially opening new avenues for research into LLMs ability
to understand images.

<?xml version="1.0" encoding="iso-8859-1"?>
<svg version="1.1" id="Capa_1" xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"
viewBox=“0 0 60 60” style=“enable-background:new 0 0 54 54;”
xml:space=“preserve”> </svg>

<rect id="Rectangle" data-name="Rectangle" width="58" height="58"
rx="2" transform="translate(1 1)" fill="white" stroke="skyblue" stroke-
miterlimit="10" stroke-width="1"/>

<ellipse style="fill:#88C057;" cx="30" cy="40" rx="27" ry="11.5"/>
<ellipse style="fill:#659C35;" cx="22" cy="40.833" rx="18" ry="7.667"/>
<ellipse style="fill:#38454F;" cx="24.071" cy="39.222" rx="6.071"
ry="4.722"/>

<polygon style="fill:#E64C3C;" points="21,3.5 40,8.5 21,14.5 "/>

<circle style="fill:#FFFFFF;" cx="43" cy="42.5" r="3"/>

<line style="fill:none;stroke:#ECF0F1;stroke-width:2;stroke-
linecap:round;stroke-miterlimit:10;" x1="22" y1="38.5" x2="22"
y2="3.5"/>
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Figure 1: (a) An SVG representation illustrating a golf course. Each geometric shape represents a distinct
object. (b) LLMs are able to understand and generate shapes, color, and relationships between different
elements in an interactive manner.

1 INTRODUCTION

Large-scale data and enormous compute: the effect of these two ingredients has been on display in recent
years in the significantly increased capability of machine learning systems. Models operating on the two
most popular forms of data - image and text - have particularly felt that effect the most. From the side
dealing with textual data, we have seen the emergence of large language models (LLMs) such as Chat-
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GPT (OpenAI, 2023a) and GPT-4 (OpenAI, 2023b). Similarly, the vision side has also shown impressive
accomplishments (Dosovitskiy et al., 2020; Liu et al., 2022; Dehghani et al., 2023).

However, when we compare these two realms, the abilities of LLMs do stand out in a distinct way because
of their remarkable abilities in reasoning, in-context learning, and open-ended tasks (Bubeck et al., 2023).
These analytical capabilities are something that the vision models, despite their significant advances, have not
yet mirrored to the same depth (Dehghani et al., 2023; Alayrac et al., 2022).

This distinction can be attributed to the inherent nature of their respective data: LLMs thrive on the diverse and
sequential structure of textual data, which is conducive to understanding intricate relationships and producing
contextually relevant responses. In contrast, the continuous and varied nature of visual data complicates the
discernment of nuanced relationships, potentially hindering the depth of analysis LVMs can achieve (Bar
et al., 2022; Diwan et al., 2022; Lake et al., 2017). Moreover, there is an ongoing debate on whether LLMs,
trained on internet-scale data, can learn world models that could lead to AGI capabilities, or that they are
fundamentally limited due to their lack of grounding on physical interaction and visual perception in the real
world (LeCun, 2022).

The disparity between LLMs and LVMs, and the debate on the necessity of physical interaction and perceptual
grounding, intrigue us to a question: Can LLMs, which have never seen visual data, understand and reason
about images? Answering this question will bring us closer to understanding the capabilities of LLMs beyond
the textual domain, whether they possess world models, and what their fundamental limitations may be. As
such, our study takes a small but important step toward this goal.

In order to enable an off-the-shelf pre-trained LLM to “read” images, we use the Scalable Vector Graphics
(SVG) (Ferraiolo et al., 2000) representation to convert images into readable text. Unlike traditional pixel-
based images, SVGs are described in XML, offering a text-based portrayal of mid-level shapes, curves, lines,
and colors, as shown in Figure 1. The textual nature of SVG provides a data modality that LLMs excel at,
acting as a bridge to apply their analytical strengths to the visual domain. While the Sparks of AGI paper
(Bubeck et al., 2023) showed some initial qualitative results on the image understanding capabilities of LLMs
using a similar idea, we provide a deeper, comprehensive study that includes both qualitative and quantitative
analyses on a variety of visual understanding and reasoning tasks.

Specifically, we evaluate whether an LLM can perform both discriminative and generative visual understanding
tasks. For discriminative tasks, we study their visual reasoning capability as well as few-shot in-context
learning performance for image classification tasks, and measure their robustness to distribution shifts in
visual data. Surprisingly, despite never having seen dense visual data, LLMs perform much better than
chance and are often robust to distribution shifts. For generative tasks, we study LLMs’ image generation and
editing capabalities based on interactive, chat-based feedback. We find that LLMs can identify and execute
transformations related to color, shape, style, and content within the SVG image representation, to generate
credible outcomes.

2 RELATED WORK

2.1 LEVERAGE LLMS FOR VISUAL TASKS

Upon observing the powerful reasoning capabilities of LLM, researchers began to harness its potential for
visual tasks. Presently, there are three primary approaches to utilizing LLM for these purposes: 1. The first
approach involves using LLM to produce textual guidelines. Vision models then rely on these instructions to
execute a range of visual tasks. Examples include Visual ChatGPT (Wu et al., 2023), visual programming as
seen in Gupta & Kembhavi (2023), and ViperGPT (Surı́s et al., 2023). 2. The second approach, as illustrated
by LLaVa (Liu et al., 2023) and MiniGPT4 (Zhu et al., 2023), incorporates the pretrained vision encoder
model, along with a trainable linear projector. This allows for feeding visual features directly to LLMs,
demonstrating remarkable reasoning abilities. VisionLLM (Wang et al., 2023) presents bounding boxes
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and segmentation masks in text format (as polygons), enabling LLMs to address more intricate perception
challenges. 3. The third approach seeks to represent images directly in a text-based format, bypassing the use
of visual encoders. The goal here is to allow LLMs to interpret these text-based representations. For instance,
LIFT (Dinh et al., 2022) represents images using their raw pixel values in textual form and then fine-tunes the
language model on them for visual tasks. Another study (Bubeck et al., 2023) explores image generation by
expressing the image in text formats, like TiKZ or SVG.

Key difference: Our research aligns with the third approach. Unlike LIFT (Dinh et al., 2022), we represent
images using SVG, a format that inherently encodes more structural information than raw pixel values. This
could enable LLMs to better grasp intricate relationships and yield contextually relevant responses. Distinct
from the methods presented in Bubeck et al. (2023), we conduct a comprehensive study of how LLMs process
images via textual representations, including both discriminative and generative tasks.

2.2 SCALABLE VECTOR GRAPHICS

Vector graphics describe images as collections of parameterized shape primitives such as polygons, circles,
and rectangles, rather than a regular raster grid of pixel values (Peng & Zhang, 2004). This representation is
extensively supported by web browsers and can be rendered without any special software or plugins (Badros
et al., 2001). Primitives are usually characterized by a set of coordinates delineating their contour and the
associated color. This leads to a compact and infinitely scalable representation where the appearance can
be easily modified by adjusting stroke or color parameters. Consequently, vector graphics are the preferred
choice among graphic artists and designers, as images maintain their sharpness regardless of the zoom
level. Encapsulated PostScript (EPS) and Scalable Vector Graphics (SVG) are two notable vector-based
formats (Ferraiolo et al., 2000).

SVG format stores images as XML-based text files that define geometrical objects and their properties (Fer-
raiolo et al., 2000), shown in Figure 1. This enables easy editing, manipulation, and embedding, which makes
SVG particularly versatile for web applications and graphic design tasks (Badros et al., 2001). EPS is another
vector format for high-quality graphics that can be resized without losing quality (Gruber et al., 2008). In this
paper, we employ large language models (LLMs) to understand images in the SVG format, achieving robust
shape-color debiasing along with enhanced visual understanding and generation.

2.3 LARGE LANGUAGE MODELS

Large Language Models (LLMs) have attracted much attention in recent years due to their remarkable
performance across numerous natural language processing tasks. GPT-3 (Brown et al., 2020a), developed
by OpenAI, is a prime example of this category, boasting an immense scale of 175 billion parameters and
human-like text generation capabilities. In a similar vein, BERT (Devlin et al., 2019) (Bidirectional Encoder
Representations from Transformers), introduced by Google, takes advantage of the transformer architecture
and has substantially enhanced the state-of-the-art across various tasks by learning deep bidirectional repre-
sentations. ChatGPT (OpenAI, 2023a), another noteworthy model, is a GPT variant specifically designed
for human-like conversational abilities. The most recent iteration, GPT-4 (OpenAI, 2023b), succeeds GPT-
3 (Brown et al., 2020b) and carries on the LLM advancements in terms of scale and performance. These
models lay the groundwork for our research, enabling us to investigate their potential in more complex tasks
such as image processing and understanding. Our work effectively illustrates the applicability of LLMs
to SVG-based image understanding and generation, paving the way for novel applications and research
directions in the visual domain.

3 TASKS AND EXPERIMENTAL RESULTS

The domain of computer vision contains a variety of problems, and often times, models need to have different
kinds of abilities to solve them. In this section, we wish to investigate if LLMs can indeed have those required
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(a) In-distribution test set

(c) Out-of-distribution test set on shape

(d) Out-of-distribution test set on color

Unary: 
Q: What is the shape of the green object? 
A: Rectangle

Binary:
Q: How many objects have the same shape as the red object?
A: 4

Ternary:
Q: Is there an object lies on the line connecting the blue 
and gray objects?
A: Yes

(b) Sample questions from in-distribution test set

Figure 2: Illustration of In-Distribution and Out-of-Distribution Test Sets: (a) Images from the in-distribution
test set, showcasing random sampling of object color, shape, and location. (b) Accompanying each image
are questions assessing unary, binary, and ternary reasoning capabilities. (c) Expansion of shape variety to
include ellipses alongside rectangles and circles. (d) Introduction of additional colors, including magenta,
black, and purple, to the sampling palette.

abilities. However, for them to solve a computer vision problem, there needs to be a way for them to see an
image. SVG can be that bridge, where an image is converted into a structured XML code (please see Fig. 1
for an example). And like any other code, LLMs can potentially read the code and perform some task. To
test what is possible using this form of image representation, we consider three broad categories of computer
vision tasks.

Sec. 3.1 first studies the problem of visual reasoning, where the model is asked certain kinds of questions
about the contents of an input image (e.g., How many objects have the same shape as the red object?). Next,
in Sec 3.2, we study how LLMs fare in image classification tasks; especially under non-trivial settings like
distribution shifts and few-shot learning. After studying their abilities in discriminative tasks, we then test
the generative modeling capabilities of LLMs through the task of visual prompting, which asks the model to
generate a new image following the pattern depicted by three images - A : B, C : ?.

Unless otherwise mentioned, all the experiments will use GPT-4 OpenAI (2023b) as the LLM model. The
common theme across all these different experiments will be that the LLM will be processing all the images
converted in the form of SVG.

3.1 VISUAL REASONING

With all the successes in the traditional perception tasks like image classification/segmentation Liu et al.
(2022); Kirillov et al. (2023), visual reasoning still remains a pivotal challenge for many modern computer
vision systems Zhang et al. (2019); Barrett et al. (2018); Santoro et al. (2017). It typically refers to the ability
of a model to answer questions about different constituents of an image. To better understand what entails
that task, we will discuss the dataset we will be using for this experiment.

Dataset: We use Sort-of-Clevr dataset that was introduced by Santoro et al. Santoro et al. (2017). As
shown in Figure 2, each image in the dataset is composed of 6 objects, each with a unique color, having
a randomly chosen shape between rectangle and circle. For each such image, the dataset contains many
{question, answer} pairs. There are three categories of questions crafted to test three levels of reasoning
capabilities: unary, binary, and ternary relationships. An example question testing binary reasoning ability is -
What is the shape of the object closest to the gray object? Please refer to Fig. 2 for more examples of the
questions. Each question is, ultimately, a classification problem. The methods are evaluated based on their
top-1 accuracy on questions from the test set of the dataset. Please refer to appendix for the details about the
test sets used for evaluation.
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Methods: Broadly speaking, we show the results on two kinds of methods - (i) LLMs which are not trained
for this task, and are only prompted during inference, and (ii) methods which are trained for this task on the
training set of Sort-of-Clevr dataset. Among the first category, we analyze (a) GPT4-brief (OpenAI, 2023b),
(b) GPT-CoT (Chain of thought) and (c) LLaVa (Liu et al., 2023). Among the second category, we study
two methods: (a) CNN+MLP and (b) Relation Networks (Santoro et al., 2017). The reason we choose to
evaluate on this category of trained models is to have an idea of what the upper bound could be; i.e., how
difficult the task really is. To evaluate any of the LLMs during inference, we transform the original images
into geometric primitives into their SVG format. Then we query the LLM using the following prompt: “Give
the following SVG image <svg>...</svg>, what is the shape of the red object?” The difference between
GPT4-brief and GPT4-CoT is the way we ask the final question: in GPT4-brief, as the name suggests, our
final question asks the model to provide the answer briefly, whereas in GPT4-CoT, we explicitly ask the
model to break down its reasoning before arriving at the answer (please see the appendix for the exact prompt
used to elicit this behavior). By querying a LLM, we obtained answers which were then summarized post
human evaluation to determine the final accuracy. Due to costs associated with probing GPT4 models, our
evaluation was restricted to 120 examples.

Table 1: Visual reasoning performance of Sort-of-Clevr dataset under in-distribution test set and out-of-
distribution test set with shape and color distribution shift.

Distribution shift i.i.d. o.o.d. Shape o.o.d. Color

Question type GPT4-brief GPT4-CoT CNN Rel. Net. GPT4-CoT CNN Rel. Net. GPT4-CoT CNN Rel. Net.

Image format SVG SVG PNG PNG SVG PNG PNG SVG PNG PNG

Unary 0.50 0.90 0.65 0.89 0.95 0.58 0.82 0.95 0.56 0.83
Binary 0.90 0.36 0.57 0.66 0.95 0.36 0.44 0.95 0.57 0.66
Ternary 0.10 0.52 0.47 0.54 0.63 0.52 0.56 0.71 0.47 0.54

Average 0.50 0.89 0.65 0.75 0.84 0.49 0.61 0.87 0.53 0.67

Table 1 shows the top-1 accuracy of different methods (left: zero-shot inference of LLMs, right: methods
trained for the task). Note that the results of LLaVa are shown in the appendix. When looking at the two
LLM models which process images in the SVG format, GPT4-brief and GPT-CoT, we can first see that their
performance is much higher than chance (many questions in the test set have 5-6 correct answers, thereby
reducing the chance performance accuracy; please see the appendix). Furthermore, the performance of
GPT-CoT even surpasses the performance of a model explicitly trained for this task. If we take a step back
and think once more about the nature of SVG representation (Fig. 1), the best case scenario might be when
images from the Sort-of-Clevr dataset have the locations of certain shapes embedded in their XML code.
But even if such a nicely structured code is often available to the LLM, to properly be able to reason about
questions like the ones described in Fig. 2, the LLM needs to precisely perform many mathematical relational
operations - all without ever being told how to do it. From that perspective, the results depict that LLMs
might be possessing much complex models already.

Distribution shift: Furthermore, to study an even more difficult version of the problem, we test the perfor-
mance of models in distribution shifts. Specifically, we evaluate under both shape and color distribution shifts.
As for the color, we replace 3 colors from the original 6 colors with the new colors. For shape, we randomly
enlarge the options to further include the ellipse and triangle, as shown in Figure 2 (c) (d). As a result, each
object can sample the shape uniformly from the 4 choices. Importantly, we make sure that all visual reasoning
questions can be answered using the original one-hot choices for vision models like CNN-MLP and relation
networks.

As shown in Table 1, the LLM model (GPT4-CoT) using the SVG format to process images does not suffer
much by any of the newly added complications in the test images (e.g., more shapes added under the shape
distribution shift), maintaining its ability to perform the reasoning tasks. Here is what this means in simple
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Table 2: Image classification results with vision and language model. We utilized the Mini-MNIST dataset,
which comprises 100 images, to evaluate GPT4’s ability to understand SVG through both zero-shot and
one-shot in-context learning. To evaluate the model’s robustness against distribution shift, vision model
ConvNeXt and language model Vicuna are finetuned on the MNIST training set, and evaluated on the MNIST
test set, CMNIST-A, and CMNIST-B respectively. CMNIST denotes the Colored-MNIST dataset. ICL
denotes in-context learning.

Method ConvNeXt(fine-tuning) Vicuna(fine-tuning) GPT4(Zero-Shot) GPT4(One-Shot ICL)

Image Format PNG SVG SVG SVG

MNIST 99.5% 99.1% 20% 24%

CMNIST-(A) 79.5% 95.7% 16% 19%
CMNIST-(B) 32.6% 92.9% 13% 20%

words, as understood through an example: if in the original image (before distribution shift), there was a
red circle immediately to the left of a blue rectangle, even after introducing other shapes (e.g., triangles),
the LLM can still detect the red circle to the left of that rectangle. This is not something which is trivial,
because the models which were explicitly trained on the Sort-of-Clevr dataset do suffer a non-trivial loss in
performance; both in color and shape distribution shift. Overall, these results indicate that the internal model
used by the LLM is surprisingly effective at tasks that we wouldn’t have naturally thought of it being good at.

3.2 OUT-OF-DISTRIBUTION GENERALIZATION

To DNNs, innocuous transformations can completely change predictions. This has been reported in var-
ious cases such as shifting the image by a few pixels (Azulay & Weiss, 2018), adding a bit of random
noise (Hendrycks & Dietterich, 2019) or changing the background, color, or texture (He et al., 2021; Arjovsky
et al., 2019; Geirhos et al., 2018) while keeping the shape intact. In this section, we aim to investigate if
representing images as SVG could mitigate these issues. Specifically, we study if models learn to rely on the
color or the background rather than the actual task (recognizing the shapes).

Datasets: We have constructed two variants of the Colored-MNIST dataset to assess model robustness against
color and background variations. The first version, termed Colored-MNIST-A, assigns a color of either red or
green to the foreground, with each color being selected randomly at an equal likelihood of 50%. In the more
challenging second version, dubbed Colored-MNIST-B, both the background and foreground are selected
from a color palette that includes black, white, red, blue, and green. The background and foreground colors
are always distinct, yielding 20 unique color combinations. Visualization of these Colored-MNIST datasets
can be viewed in Figure 3. Furthermore, we utilize the curve tracing algorithm to convert MNIST images into
the SVG format. More details can be found in the supplementary materials.

Task and experimental setting: In the first setup, we fine-tune the ImageNet pre-trained vision model
ConvNeXt (Liu et al., 2022) using PNG images and the pre-trained language model Vicuna using SVG-
converted images on MNIST. Subsequent testing is carried out on both Colored-MNIST variants (A) and (B).
This setup seeks to examine whether the model can prioritize shape over other features for its predictions.
In the second setup, our objective is to explore the potential of harnessing the potent in-context capabilities
of Large Language Models (LLMs) to enhance image classification using SVG. To this end, we employ
GPT-4 (OpenAI, 2023b) to conduct both zero-shot and in-context learning on MNIST variants. More detail
on ConvNeXt and Vicuna fine-tuning, prompting for in context learning can be found in the supplementary
materials.

Results and discussion: In Table 2, fine-tuning Vicunna with SVG representations has shown promising
results on the CMNIST-A and CMNIST-B benchmarks, achieving accuracies of 95.7% and 92.9% respectively.
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Figure 3: Illustration of the Out-of-Distribution generalization tasks. We train models on the standard
Vanilla MNIST dataset and evaluate them on the more challenging OoD datasets: Colored-MNIST-(A) and
Colored-MNIST-(B). The goal is to determine whether models inadvertently prioritize color or background
over the primary task of shape recognition.

Figure 4: Synthetic data study results. The generation results of our method are annotated with a red square.

This suggests some level of robustness against color and background perturbations. On the other hand,
ConvNeXt seems more susceptible to these perturbations, with a noticeable decline in performance on both
benchmarks compared to i.i.d results. We hypothesize that SVG might offer a representation more biased
towards shape, given its explicit textual encoding of object shapes, allowing for disentanglement of shape
from color information. Further, as illustrated in Table 2, there’s a notable 4% accuracy boost when using a
single in-context sample, as compared to a zero-shot classification approach. This demonstrates the capability
of LLM to grasp visual concepts contextually.

3.3 VISUAL PROMPTING

The last two sections discussed the emergent abilities of LLMs in discriminative tasks. In this section, we
turn our attention towards the generative side, to see if LLMs can understand and generate logically coherent
images as well. In particular, we consider the task of visual prompting, where, given a series of images, the
goal is to understand the transformation and fill in the remaining spot with an appropriate image.

Dataset We follow Bar et al. (2022) to create a set of three simple synthetic tasks of filling in the remaining
spot (Fig. 4), and three of their combinations, and evaluate each model on 100 examples per task.

Tasks and Evaluation. Every pair in our example set includes an SVG showcasing a colored shape along
with a corresponding SVG with specific transformations. The transformations consist of color, size, or a
combination of these aspects. We delve into a more detailed description of each task in the appendix. For
evaluation purposes, we adopt the method from Bar et al. (2022), for measuring and reporting the color-aware
mean Intersection over Union (mIOU).
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Table 3: Synthetic data study results. We report the color-aware mIOU on the six tasks (Bar et al., 2022). It
demonstrates that GPT4 is able to understand and reason shape, color, and size transformation using SVG
representation.

Method Color Shape Size Color Shape Color Size Shape Size

VQGAN (Esser et al., 2021) 7.0 19.1 16.2 7.4 2.2 18.4
BEiT (Bao et al., 2022) 40.9 31.4 7.1 33.1 21.2 13.0
MAE (He et al., 2022) 70.2 44.0 34.7 19.3 19.0 46.0
MAE-VQGAN (Bar et al., 2022) 40.4 46.5 42.0 20.4 18.3 40.3

SVG with GPT4 100.0 92.6 100.0 92.6 100.0 86.5

Prompt. Given two example pairs and a query SVG, we structure the text prompt in the same fashion for
all tasks. The prompt is designed to figure out the common transformation in the two examples first and then
transform that query into the corresponding key SVG code. We include the prompt details in the appendix.

Qualitative and quantitative results. The results are presented in Table 3. See Figure 4 for our generated
results. We believe that GPT4 can clearly understand simple shape, color, and size transformations by
analyzing the SVG code without any pixel-level information.

3.3.1 STYLE AND CONTENT EXTRAPOLATION

In this section, we assess if LLMs can extrapolate SVG codes with more challenging transformations, such as
content and style.

Style generation: We present LLMs with sample SVG letters. The first task is to figure out the style in the
given examples. Then, given a new test query, the second task is to transform this given query so that it
adheres to the same stylistic conventions as the example letters. The qualitative results can be found in the
appendix.

Content generation: LLMs are shown two examples of SVG code pairs. Each pair consists of a query and
key pair (both are numbers), where the query describes an SVG code of a number, and the key describes
the SVG code of another number with an introduced mathematical operation. The operation can consist of
add, subtract, multiply, and divide. The mathematical operation should be held in both example pairs. The
first task is to figure out the mathematical operation in the two examples. Then, given a new test query SVG
number, the second task is to identify what number it is and follow the mathematical operation discovered to
generate the corresponding test key number. We include qualitative results in Figure 5. The prompt details
can be found in the appendix.

4 LIMITATION

While our research demonstrates the potential of using Scalable Vector Graphics (SVG) with large language
models (LLMs) to tackle visual tasks without a parameterized visual encoder, the major limitation of SVG
representation is the loss of fine details: Though our method of converting raster images into SVG format and
leveraging XML-based textual descriptions allows for efficient processing of crisp graphics and designs, it is
not as effective in handling photographic content. As a result, fine-grained details, such as image textures,
may be lost during conversion. Conversely, when the SVG code incorporates an excessive level of detail, its
sequence length can become prohibitively long, which can pose challenges for the training and inference of
current Transformer-based LLMs. Developing hybrid representations that can retain the advantages of both
discrete and continuous data, while preserving finer details, is an area for future exploration. For example, in
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Figure 5: Understanding SVG content through the lens of GPT-4: GPT-4 demonstrates its ability to generate
accurate content by analyzing the correlation between provided example number pairs, and subsequently
applying this relationship to ascertain the corresponding test key number. Remarkably, in scenarios where the
relationship exhibits ambiguity, GPT-4 cna identify multiple possible interpretations.

LLMs, the processing unit is the token, which can correspond to one or several words. However, in SVG,
we would prefer to have a specific embedding module for each geometric primitive in SVG, such as circles,
polygons, and so on.

Additionally, our empirical tests highlighted certain areas where LLMs fell short, particularly in handling
low-level image manipulation tasks. For instance, when prompted to manipulate SVG images in tasks like
enlarging dimensions, shrinking dimensions, or rotations, LLMs like GPT-4 displayed inadequate proficiency.
Such operations, which mandate considerable updates to the SVG code, currently lie outside the proficiency
range of these models.

In summary, while LLMs do present limitations, it offers promising initial results for the integration of LLMs
and SVG for visual tasks. Addressing these limitations could lead to more powerful image representation
algorithms and pave the way for more versatile and comprehensive artificial intelligence systems.

5 CONCLUSION

This paper explored the possibility of enabling large language models (LLMs) to “see” and process images
through the Scalable Vector Graphics (SVG) format. By converting raster images into SVG representations
and leveraging XML-based textual descriptions, we showed that LLMs have some ability understand and
manipulate images.

We studied LLMs’ capabilities across various visual reasoning, recognition, and generative tasks, revealing
the underlying shape-color disentanglement nature of SVG. Through these experiments, we showed that SVG
representation shows better performance compared to the closed-set trained model, and could continue refine
the outcome with chat-based feedback.

This research can open the door to new opportunities in the realm of computer vision by integrating the
powerful capabilities of LLMs with SVG format. We believe that our work provides an initial exploratory step
for future research in the integration of LLMs and SVG for the development of advanced image representation
formats and more complex vision tasks. As we continue to explore the potential of large language models on
visual input, this approach could inspire further progress in the understanding of visual data with multi-modal
fusion approaches.
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APPENDIX

A EXPERIMENT DETAILS

A.1 DATASET

Human Designed SVG Dataset We collect a dataset from the public collection of SVG images.1 Specifically,
we collect the digits and icons to demonstrate image recognition and generation capabilities. Examples are
shown in Figure 6 (a) and (b).

Convert Raster Images to SVG 1) Directly convert using curve tracing. Given the rich set of natural
images in raster format, we utilize the curve tracing algorithm to convert RGB images into the SVG format.2
Specifically, we convert MNIST (LeCun et al., 2010) to SVG format using this approach, shown in Figure 6
(c).

1https://www.svgrepo.com/, https://www.kaggle.com/datasets/victorcondino/
svgicons

2https://github.com/visioncortex/vtracer
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(a) (b) (c) (d)

Figure 6: Visualization of our datasets. (a) and (b) are human-designed SVG vectors and icons. (c) and (d)
are converted from raster images. Specifically, (c) is generated using curve tracing from MNIST (LeCun
et al., 2010), while (d) is generated using SAM (Kirillov et al., 2023) and curve tracing sequentially.

A.2 RASTER IMAGES TO SVG CONVERSION

One of the most fundamental pieces of information for visual perception is object shape. Our method can be
conceptualized as selectively diminishing details from an image, prioritizing the extraction of less significant
shapes. This guided process of reduction offers a quantitative way to manage the amount of visual data present
within an image. Within this framework, we perceive segmentation as an example of extreme simplification,
whereas vectorization serves as a more moderate form of the same. Here we introduce how we use such two
approaches to convert the raster images to SVG.

Image Vectorization. The vector tracing algorithm operates in a sequential three-step process. Initially,
pixels are transformed into a defined path. Subsequently, this path is condensed into a simplified polygonal
representation. Lastly, the polygon is refined and approximated using a curve-fitting (tracing) technique,
which enhances its smoothness.

There are several online tools to convert the raster images (jpg and png) into vector graphics (SVG), such as
Adobe Illustrator (Adobe Inc., 2019), Inkscape (Inkscape Project, 2020), and VTracer (VTracer, 2020). We
experiment with all of them and found that VTracer leads to the best balance between SVG complexity (code
length) and rich semantic representation.

In MNIST (LeCun et al., 2010), we use the default hyperparameters during conversion. Specifically, we
(i) first binarize the MNIST pixel value from the continuous range [0, 255] to the binary set {0, 255} using
the threshold 127.5, (ii) set the foreground to black, and the background to white, and (iii) apply the vector
tracing algorithm VTracer.

Segmentation Prior. As mentioned earlier, segmentation can provide a strong prior for object shape. We
want a generalist model that can segment any image, i.e., not trained and thus biased towards a certain dataset.
The Segment Anything (SA) (Kirillov et al., 2023) project introduces such an image segmentation model,
the Segment Anything Model (SAM), and a large-scale dataset, SA-1B, with the aim of achieving powerful
generalization and zero-shot transfer across diverse segmentation tasks, demonstrating competitive results
often surpassing prior fully supervised methods. We use the default hyper-parameters of SAM to segment
the whole image into a set of masks without class labels, where the color of each mask is represented by
the average value of the pixels within the mask. Specifically, we sample 32 query points per side (1024
points overall) to generate the image mask. Then we select the top 20 masks with the highest area as the final
representation for an image.
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We then use VTracer to transform the mask into SVG format. Note that, to reduce the final SVG, we adjust
several settings: we set the number of significant bits to use in an RGB channel to 0; we set the minimum
angle displacement degree to splice a spline to 90; we set the color difference between gradient layers to be
35; we consider a corner to have a minimum momentary angle of 0 degrees; we discard patches smaller than
16 pixels in size; and we perform iterative subdivide smoothing until all segments are shorter than 10 pixels.

A.3 FINE-TUNING DATASET FOR VICUNA

We use the same JSON format in Vicuna (Vicuna, 2023) to construct the fine-tuning dataset. We use all the
training samples in MNIST, translating to 60,000 SVG images. For each sample, we construct one round of
conversation: (i) From human: ‘‘Which digit does the following SVG reflect? <SVG
code here>’’, and (ii) From GPT: ‘‘<label>’’. Here <label> denotes the digit label, which
ranges from 0 to 9. Then we use this dataset to fine-tune Vicuna using the default hyper-parameters 3 for 3
epochs.

A.4 PROMPT ENGINEERING

In this section, we provide the details of prompt engineering for each task. The prompt is designed to figure
out the common transformation in the SVG example pairs first (each example pair consists of a query and
a key) and then transform the query into the corresponding key SVG by following the discovered common
transformation.

In-context Image Classification. In this task, in-context examples are aimed to provide more context
information using several image-label pairs, thus facilitating the final classification. The specific
prompt utilized for this purpose using 3 in-context examples is detailed below: ‘‘Instruction:
please predict the digit number for each of the following SVG images.
Please think step by step, and closely look at the key identifying
image characteristics. Please just tell me the image class, no other
information is needed. Q: What digit does this SVG image represent?
<SVG code here> A: This SVG image represents digit <label> Q: What
digit does this SVG image represent? <SVG code here> A: This SVG image
represents digit <label> Q: What digit does this SVG image represent?
<SVG code here> A: This SVG image represents digit <label> Q: What
digit does this SVG image represent? <SVG code here> A: This SVG image
represents digit .

Synthetic Data Study: In this task, the objective is to conduct an analytical evaluation of the provided
two example pairs, examining changes that occur in aspects such as color, shape, and size. The insight
gathered from this analysis will then be used to adapt the given query into its corresponding key. The specific
prompt utilized for this purpose is detailed below: ‘‘Please perform the following task
carefully. In this task, you will be shown two examples of Scalable
Vector Graphics (SVG) code pairs. Each pair consists of a query and
key pair, where the query describes the SVG code of the original image,
and the key describes the SVG code of the transformed image. Each
will be named ‘‘Example Query #" and ‘‘Example Key #" respectively.
Your first task is to figure out the common transformation in the two
examples. The transformation can consist of color, shape, size, or
any combination thereof. Then, given a new test query SVG code (named

3https://github.com/lm-sys/FastChat
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\Test Query"), your second task is to transform that query into the
corresponding key SVG code (named \Test Key"), following the common
transformation that you discovered in the two example pairs. Here
are the two example query and key pairs: Example Query 1: <SVG code
here>; Example Key 1:<SVG code here>; Example Query 2:<SVG code here>;
Example Key 2:<SVG code here>; Here are the test query and key pair:
Test Query:<SVG code here>; Test Key:’’

Content Extrapolation: In this task, LLMs are presented with SVG code pairs, each containing
a query-key set that depicts numbers. The key introduces a consistent mathematical operation (ad-
dition, subtraction, multiplication, or division) to the query number. The tasks are to identify this
operation in the examples and apply it to new test queries to generate corresponding test keys. To
facilitate a more comprehensive understanding of SVG number codes for the LLM, we initially present
the SVG codes for numbers 0 through 9 to the LLM prior to posing specific queries. The specific
prompt utilized for this purpose is detailed below: ‘‘Please perform the following task
carefully. In this task, you will be shown two examples of Scalable
Vector Graphics (SVG) code pairs. Each pair consists of a query and
key pair, where the query describes an SVG code of an integer number,
and the key describes the SVG code of another integer number with an
introduced mathematical operation. Each will be named \Example Query
#" and \Example Key #" respectively. In addition to the example pairs,
you will be shown a new test query SVG code (named \Test Query"). Your
first task is to identify which number each example query, example key,
and test query represents. Your second task is to figure out all the
possible mathematical operations that are held for all given example
pairs. The operation could be add, subtract, multiply, and divide (the
subtract or multiply factor could be a fraction). Then, according to
the numbers of example pairs and test query you identified, your third
task is to predict the corresponding test key number (named \Test Key"),
following all the mathematical operations that you discovered in the
given example pairs. Finally, you need to generate the corresponding
SVG code of the test key number. Here are the two example query and
key pairs: Example Query 1: <SVG code here>; Example Key 1:<SVG code
here>; Example Query 2:<SVG code here>; Example Key 2:<SVG code here>;
Here are the test query and key pair: Test Query: <SVG code here>;
Test Key: (Note: think about four operations one by one, and the
operation should be consistent for all given example pairs)’’

B VISUAL REASONING RESULTS OF LLAVA

Here we evaluate the recent multi-modal large language model, LLaVa (Liu et al., 2023). As the result in
Table 4 shows, LLaVa struggles at this fundamental reasoning task. Besides,we observe that LLaVa frequently
defaults to ’yes’ for yes/no queries and often resorts to random guessing for counting tasks. This behavior
underscores the limitations of current large multimodal models in structured and sophisticated reasoning.

C QUALATATIVE CHAT RESULTS

Image Recognition and Manipulation. In this section, we provide examples for chat-based im-
age recognition and manipulation using GPT4 (OpenAI, 2023b). The qualitative results are shown
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Table 4: Catogori-wise accuracy on the Sort-of-Clevr dataset.
Question type GPT4-brief GPT-CoT LLaVa CNN+MLP Relation Networks

Unary 0.50 0.90 0.60 0.65 0.89
Binary 0.90 0.95 0.60 0.75 0.80
Ternary 0.10 0.88 0.10 0.55 0.55
Average 0.50 0.89 0.43 0.65 0.75

Generate SVG letter “D” 
with same style as “B” and 
“C”?

Keep font size consistent 
with “B” and “C”

What’s the object?

Segment the 
airplane

Airplane.

What’s the food?

Change lettuce to 
tomato

Sure! Here is the 
SVG drawing:

Great! Please 
remove cheese

Sure! Here is the 
SVG drawing:

The SVG drawing 
represents a 
hamburger.

(a) (d)

(b)

What digit does 
this SVG represent?

No, it is 8. What 
about this? 

The SVG drawing 
represents the digit 2.

Apologies for the 
error. Current SVG 
represents digit 6.

No, it is 0. What 
about this?

1.

Great! What about 
this?

5.

Great! Thank you!

You're welcome! If 
you have any more 
questions or need 
further assistance, 
feel free to ask!

(c)

Figure 7: In-context learning and image generation capabilities of SVG with LLMs. (a) With human feedback,
LLM gradually performs better on digit classification. (b) LLM powers SVG with the capability of image
recognition and referring segmentation. (c) With human feedback, the content generation performance
becomes better. (d) LLM can recognize and manipulate specific parts of the hamburger, such as removing or
replacing them.
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in Figure 7 and 8: (a) SVG representation empowers robust in-context digit recognition capability
given different background and foreground colors, (b) GPT4 can recognize and depict the details of
a dog with the prompt: "a stylized bear or a similar mammal with a round face
and ears." Furthermore, GPT-4 can identify the location of the dog’s left eye and remove it. (c) GPT4 is
capable of recognizing a natural image from the CIFAR-10 dataset.

What object does this SVG 
represent? 

What kind of animal is it?

It's difficult to 
determine the exact 
animal based on the 
SVG, but it resembles 
a stylized bear or a 
similar mammal with a 
round face and ears.

This SVG represents a 
cute, symmetric face 
with ears, eyes, and a 
mouth.

This SVG 
represents a bird.

(a) (b)

What digit does this 
SVG image represent?

No, this is digit 3. What 
about this? 

This SVG image 
represents the digit 0.

This SVG image 
represents the digit 6.

Great! What about 
this?

This SVG image 
represents the digit 1.

(c)

Remove the left eye

What animal does this 
SVG represent? 

Great, thank you!

You're welcome! I'm 
glad I could help. If you 
have any more 
questions, feel free to 
ask.

Figure 8: More qualitative results of chat-based image recognition and manipulation. (a) In-context digit
recognition in Colored-MNIST-(B). (b) GPT can explain and manipulate the dog SVG image. (c) GPT4 can
also recognize the bird from a CIFAR-10 example.

Referring Segmentation The objective of the task is to label pixels in an image or video that correspond to
an object instance referred by a linguistic expression. SVG representation has two advantages. First, language
instruction is naturally embedded within the prompt, thus a separate design of the image segmentation model
is not needed. Second, a large corpus of text and programming languages including XML are seen during
pretraining, benefiting the vision-language understanding ability.

SVG is typically composed of several colored polygons, where each of them can correspond to a part of
the object. Therefore, we can use the referring segmentation instructions to guide the LLM in finding the
corresponding SVG code. Shown in Figure 7 (b) and (d), LLM can localize the object decently well. In (b),
the majority of the airplane is selected as foreground, while in (d), not only is the lettuce recognized, but also
the two pieces of cheese are localized and subsequently removed.

Style Extrapolation: LLMs are provided with five example pairs and are tasked with deciphering
the stylistic attributes inherent in these examples. Following this, a new test query is presented
to the LLMs. Their objective is to modify this query into the corresponding key, ensuring that it
aligns with the same stylistic principles showcased in the example pairs. The qualitative results
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Figure 9: More qualitative results of style extrapolation. The generation results of our method are annotated
with a red square.
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are shown in figure 9. The specific prompt utilized for this purpose is detailed below:‘‘Please
perform the following task carefully. In this task, you will be shown
five examples of Scalable Vector Graphics (SVG) code pairs. Each pair
consists of a query and key pair (both are English letter), where
the query describes the SVG code of the original image, and the key
describes the SVG code of the transformed image. Each will be named
\Example Query #" and \Example Key #" respectively. Your first task
is to figure out the common transformation in the five examples. The
transformation can consist of color, shape, size, style, font, and
background changes, or any combination thereof. Even though you cannot
see the images, and only their SVG codes, you need to discover the
transformations that are happening at the image level and not just at
the code level. Be detailed, and try to discover every change, and
the most important change is that the paths in the SVG code between
each query and key is different due to the common transformation but
the shapes of the letters that query and key are representing remain
the same. Then, given a new test query SVG code (named \Test Query"),
your second task is to transform that query into the corresponding
key SVG code (named \Test Key"), following the common transformation
that you discovered in the five example pairs. To help you better
understand the transformation, I will also inform you of what letter
each query and key represent. You need to find the shape of each query
and key by analyzing their path. Here are the five example query and
key pairs: Example Query 1 (letter B):; Example Key 1 (letter B):<SVG
code here>; Example Query 2 (letter R):<SVG code here>; Example Key 2
(letter R):<SVG code here>; Example Query 3 (letter Z):<SVG code here>;
Example Key 3 (letter Z):<SVG code here>; Example Query 4 (letter
E):<SVG code here>; Example Key 4 (letter E):<SVG code here>; Example
Query 5 (letter N):<SVG code here>; Example Key 5 (letter N):<SVG code
here>; Here is the test query and key pair: Test Query (letter #):;
Test Key: ’’
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