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ABSTRACT

The ever-growing computational demands of increasingly complex machine learn-
ing models frequently necessitate the use of powerful cloud-based infrastructure
for their training. Binary neural networks are known to be promising candidates
for on-device inference due to their extreme compute and memory savings over
higher-precision alternatives. In this paper, we demonstrate that they are also
strongly robust to gradient quantization, thereby making the training of modern
models on the edge a practical reality. We introduce a low-cost binary neural net-
work training strategy exhibiting sizable memory footprint reductions and energy
savings vs Courbariaux & Bengio’s standard approach. Against the latter, we see
coincident memory requirement and energy consumption drops of 2—6x, while
reaching similar test accuracy in comparable time, across a range of small-scale
models trained to classify popular datasets. We also showcase ImageNet training
of ResNetE-18, achieving a 3.12x memory reduction over the aforementioned
standard. Such savings will allow for unnecessary cloud offloading to be avoided,
reducing latency and increasing energy efficiency while also safeguarding privacy.

1 INTRODUCTION

Although binary neural networks (BNN5s) feature weights and activations with just single-bit preci-
sion, many models are able to reach accuracy indistinguishable from that of their higher-precision
counterparts (Courbariaux & Bengiol 2016;|Wang et al.,|2019b). Since BNNs are functionally com-
plete, their limited precision does not impose an upper bound on achievable accuracy (Constan-
tinides, |2019). BNNs represent the ideal class of neural networks for edge inference, particularly
for custom hardware implementation, due to their use of XNOR for multiplication: a fast and cheap
operation to perform. Their use of compact weights also suits systems with limited memory and
increases opportunities for caching, providing further potential performance boosts. FINN, the sem-
inal BNN implementation for field-programmable gate arrays (FPGAs), reached the highest CIFAR-
10 and SVHN classification rates to date at the time of its publication (Umuroglu et al.,[2017).

Despite featuring binary forward propagation, existing BNN training approaches perform back-
ward propagation using high-precision floating-point data types—typically £1oat 32—often mak-
ing training infeasible on resource-constrained devices. The high-precision activations used between
forward and backward propagation commonly constitute the largest proportion of the total memory
footprint of a training run (Sohoni et al.| 2019; Ca1 et al.| [2020). Additionally, backward propagation
with high-precision gradients is costly, challenging the energy limitations of edge platforms.

An understanding of standard BNN training algorithms led us to ask two questions: why are high-
precision weight gradients used when we are only concerned with weights’ signs, and why are high-
precision activations used when the computation of weight gradients only requires binary activations
as input? In this paper, we present a low-memory, low-energy BNN training scheme based on
this intuition featuring (i) the use of binary, power-of-two and 16-bit floating-point data types, and
(ii) batch normalization modifications enabling the buffering of binary activations.

By increasing the viability of learning on the edge, this work will reduce the domain mismatch be-
tween training and inference—particularly in conjunction with federated learning (McMahan et al.,
2017} Bonawitz et al.l |2019)—and ensure privacy for sensitive applications (Agarwal et al., [2018).
Via the aggressive energy and memory footprint reductions they facilitate, our proposals will enable
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Table 1: Comparison of applied approximations vs related low-cost neural network training works.

Weights Wei'ght Activations Activ.ation Batph .

gradients gradients  normalization
Zhou et al.[(2016) inte! int6 int6 int6 X
Gruslys et al.| (2016) X b 4 Recomputed? b 4 X
Ginsburg et al. (2017) floatlé6 floatl6 floatlé floatlé X
Graham| (2017) b 4 b 4 int b 4 X
Bernstein et al. (2018)) X bool X X X
Wu et al.{(2018b) b 4 X b 4 X I

This work bool bool bool po2? BNN-specific I3

! Arbitrary precision was supported, but significant accuracy degradation was observed below 6 bits.
2 Activations were not retained between forward and backward propagation in order to save memory.
3 Power-of-two format comprising sign bit and exponent.

networks to be trained without the network access reliance, latency and energy overheads or data
divulgence inherent to cloud offloading. To this end, we make the following novel contributions.

e We conduct the first variable representation and lifetime analysis of the standard BNN
training process, informing the application of beneficial approximations. In particular, we

— binarize weight gradients owing to the lack of importance of their magnitudes,

— modify the forward and backward batch normalization operations such that we remove
the need to buffer high-precision activations and

— determine and apply appropriate additional quantization schemes—power-of-two acti-
vation gradients and reduced-precision floating-point data—taken from the literature.

o Against/Courbariaux & Bengio|(2016)’s approach, we demonstrate the preservation of test
accuracy and convergence rate when training BNNs to classify MNIST, CIFAR-10, SVHN
and ImageNet while lowering memory and energy needs by up to 5.67x and 4.53x.

e We provide an open-source release of our training software, along with our memory and
energy estimation tools, to the communit

2 RELATED WORK

The authors of all published works on BNN inference acceleration to date made use of high-precision
floating-point data types during training (Courbariaux et al.,|2015;|Courbariaux & Bengio, 2016;|Lin
et al.l 2017 |Ghasemzadeh et al.l 2018} |Liu et al., 2018} Wang et al., [2019a}; 2020 [Umuroglu et al.,
2020; He et al., 2020; |Liu et al., [2020). There is precedent, however, for the use of quantization
when training non-binary networks, as we show in Table [I] via side-by-side comparison of the ap-
proximation approaches taken in those works along with that proposed herein.

The effects of quantizing the gradients of networks with high-precision data, either fixed or floating
point, have been studied extensively. [Zhou et al.| (2016) and Wu et al.| (2018a) trained networks
with fixed-point weights and activations using fixed-point gradients, reporting no accuracy loss for
AlexNet classifying ImageNet with gradients wider than five bits. Wen et al.| (2017) and Bernstein
et al.| (2018)) focused solely on aggressive weight gradient quantization, aiming to reduce commu-
nication costs for distributed learning. Weight gradients were losslessly quantized into ternary and
binary formats, respectively, with forward propagation and activation gradients kept at high preci-
sion. In this work, we make the novel observations that activation gradient dynamic range is more
important than precision, and that BNNSs are more robust to approximation than higher-precision net-
works. We thus propose a data representation scheme more aggressive than all of the aforementioned
works combined, delivering large memory and energy savings with near-lossless performance.

Gradient checkpointing—the recomputation of activations during backward propagation—has been
proposed as a method to reduce the memory consumption of training (Chen et al., 2016} |Gruslys

'Source supplied in . zip for review.
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Figure 1: Standard BNN training graph for fully connected layer [. “sgn,” “x” and “BN” are sign,
matrix multiplication and batch normalization operations. Forward propagation dependencies are
shown in black; those for backward passes are gray.

et al} 2016). Such methods introduce additional forward passes, however, and so increase each
run’s duration and energy cost. (Graham| (2017)) and (Chakrabarti & Moseley| (2019) saved memory
during training by buffering activations in low-precision formats, achieving comparable accuracy to
all-f1oat 32 baselines. [Wu et al|(2018b) and |[Hoffer et al.| (2018) reported reduced computational
costs via [y batch normalization. Finally, Helwegen et al.| (2019) asserted that the use of both train-
able weights and momenta is superfluous in BNN optimizers, proposing a weightless BNN-specific
optimizer, Bop, able to reach the same level of accuracy as Adam. We took inspiration from these
works in locating sources of redundancy present in standard BNN training schemes, and propose
BNN-specific modifications to /; batch normalization allowing for activation quantization all the
way down to binary, thus saving both memory and energy without inducing latency increases.

3 STANDARD TRAINING FLOW

For simplicity, we assume the use of a multi-layer perceptron (MLP), although the presence of
convolutional layers would not change any of the principles that follow. Let W, and X denote
matrices of weights and activations, respectively, in the network’s [ layer, with W, and 90X,
being their gradients. For W, rows and columns span input and output channels, respectively, while
for X they represent feature maps and channels. Henceforth, we use decoration to indicate low-
precision data representation, with  and e respectively denoting binary and power-of-two encoding.

Figure [T| shows the training graph of a fully connected binary layer. A detailed description of the
standard BNN training procedure introduced by |Courbariaux & Bengio| (2016) for each batch of B
training samples, which we henceforth refer to as as a step, is provided in Algorithm[1] Therein, “®”
signifies element-wise multiplication. For brevity, we omit some of the intricacies of the baseline
implementation—lack of first-layer quantization, use of a final softmax layer and the inclusion of
weight gradient cancellation (Courbariaux & Bengiol [2016)—as these standard BNN practices are
not impacted by our work. We initialize weights as outlined by |Glorot & Bengio| (2010).

Many authors have found that BNNs require batch normalization in order to avoid gradient explo-
sion (Alizadeh et al.l 2018} [Sari et al.,[2019;|Qin et al.,[2020), and our early experiments confirmed
this to indeed be the case. We thus apply it as standard. Matrix products Y; are channel-wise batch-
normalized across each layer’s M output channels (Algorithm [I]lines SH6) to form the subsequent
layer’s inputs, X 1. 3 constitutes the batch normalization biases. Layer-wise moving means p(y;)
and standard deviations o (y;) are retained for use during backward propagation and inference. We
forgo trainable scaling factors, commonly denoted ~y; these are of irrelevance to BNNs since their
activations are binarized prior to use during forward propagation (line[2).

4 VARIABLE ANALYSIS

In order to quantify the potential gains from approximation, we conducted a variable representation
and lifetime analysis of Algorithm [I]following the approach taken by [Sohoni et al.| (2019). Table
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Algorithm 1 Standard BNN training step. Algorithm 2 Proposed BNN training step.
1: forl + {1,--- ,L—1}do > Forward 1: forl «+ {1,--- ,L— 1} do > Forward
2: X « sgn(X)) 2: X, « sgn(X))
3: W, « sgn(W;) 3: W, « sgn(W))
4 Y+ XiW, 4 Y+ XiW,
5: for m «+ {1,--- ,M;} do 5: for m « {1,--- ,M;} do
. o W) o . om o w ()
| R e I ' A PR NP
7: for |+ {L—1,--- ,1} do > Backward 7: forl <+ {L—1,---,1} do > Backward
8 form « {1,---,M;} do 8 form <« {1,---, M} do -
9 « 1 __gglm 9: v A ox,""
vy T
10: ayf’”) —v—p(v) — 10: QY v — M(('U)) - :
~(m (m) ~(m
N(v © ml(fl))ml(fl) M(U OF IS H"’l“ I/B)m’('“
1: ap™ 3 oxlT) 11 OB = 20z
12: X, « O, W] 12: 0Y; ¢ po2(9Y1)
A ) T
14: for | < {1,---,L — 1} do >Update 14 OWi < X 0V,
15: W, < Optimize(W;, 0OW;, 1) 15 OW; < sgn(0W))
16: B; < Optimize(B;, 96, n) 16: for !l < {1,---,L—1}do > Update
17: 1 < LearningRateSchedule(n) 17: W, « Optimize(W;, oW/, /i1, _,n)

18: B « Optimize(B1, 081, n)
19: 7 < LearningRateSchedule(n)

lists the properties of all variables in Algorithm [T} with each variable’s contributions to the total
footprint shown for a representative example. Variables are divided into two classes: those that must
remain in memory between computational phases (forward propagation, backward propagation and
weight update), and those that need not. This is of pertinence since, for those in the latter category,
only the largest layer’s contribution counts towards the total memory occupancy. For example, 0.X
is read during the backward propagation of layer [ — 1 only, thus 0.X;_; can safely overwrite 0.X;
for efficiency. Additionally, Y and 0X are shown together since they are equally sized and only
need to reside in memory during the forward and backward pass for each layer, respectively.

5 Low-CoST BNN TRAINING

As shown in Table 2] all variables within the standard BNN training flow use £1oat32 represen-
tation. In the subsections that follow, we detail the application of aggressive approximation specifi-
cally tailored to BNN training. Further to this, and in line with the observation by many authors that
float16 can be used for ImageNet training without inducing accuracy loss (Ginsburg et al.|, |2017
Wang et al., 2018 Micikevicius et al.,|2018)), we also switch all remaining variables to this format.
Our final training procedure is captured in Algorithm [2] with modifications from Algorithm|I]in red
and the corresponding data representations used shown in bold in Table[2] We provide both theoreti-
cal evidence and training curves for all of our experiments in Appendix [A]to show that our proposed
approximations do not cause material degradation to convergence rates.

5.1 GRADIENT QUANTIZATION

Binarized weight gradients. Intuitively, BNNs should be particularly robust to weight gradient
binarization since their weights only constitute signs. On line [I5] of Algorithm 2] therefore, we
quantize and store weight gradients in binary format, OW , for use during weight update. During
the latter, we attenuate the gradients by v/N;, where N is layer I’s fan-in, to reduce the learning rate



Under review as a conference paper at ICLR 2021

Table 2: Memory-related properties of variables used during training. To obtain the exemplary
quantities of total memory given, BinaryNet was trained for CIFAR-10 classification with Adam.

. Per-layer Standard training Proposed training
Variable ... .77
lifetime”  pya type  Size (MiB) % Data type Size (MiB) Saving (x)

X X float32 111.33 26.18 bool 3.48 32.00
0X,Y? v float32 50.00 11.76 floatle 25.00 2.00
w(yr) X float32 0.01 0.00 floatlé 0.01 2.00
o(y1) X  float32 0.01 0.00 floatlé  0.01 2.00
oY v float32 50.00 11.76 po2_53 7.81 6.40
w X float32 53.49 12.58 floatlé6 26.74 2.00
191%4 X float32 53.49 12.58 bool 1.67 32.00
B X float32 0.01 0.00 floatle 0.01 2.00
o8 b 4 float32 0.01 0.00 floatls 0.01 2.00
Momenta b 4 float32 106.98 25.15 floatleé 53.49 2.00
Total 425.33 100.00 118.23 3.60

! Variables that need not be retained between forward, backward or update phases of Algorithms|1{and
2 9X and Y can share memory since they are equally sized and have non-overlapping lifetime.
3 5-bit power-of-two format with 4-bit exponent.

and prevent premature weight clipping as advised by |Sari et al.| (2019)). Since fully connected layers
are used as an example in Algorithm@ N; = M;_q in this instance.

Table |2 shows that, with binarization, the portion of our exemplary training run’s memory con-
sumption attributable to weight gradients dropped from 53.49 to just 1.67 MiB, leaving the scarce
resources available for more quantization-sensitive variables such as W and momenta. Energy con-
sumption will also decrease due to the associated reduction in memory traffic.

Power-of-two activation gradients. The tolerance of BNN training to weight gradient binariza-
tion further suggests that activation gradients can be aggressively approximated without causing
significant accuracy loss. Unlike previous proposals, in which activation gradients were quantized
into fixed- or block floating-point formats (Zhou et al., 2016;(Wu et al.,[2018a), we hypothesize that
power-of-two representation is more suitable due to their typically high inter-channel variance.

We define power-of-two quantization into k-bit “po2 k™ format as po2, () = sgn(e) @ 2XP(®)=,
comprising a sign bit and k — 1-bit exponent exp(e) = max(—2~2, [log,(e) -+ b]) with bias
b=2""2_—1—[log,(||e||l..)]- Square brackets signify rounding to the nearest integer. With b,
we scale exp(e) layer-wise to make efficient use of its dynamic range. This is applied to quantize
matrix product gradients JY; on line[I2] of Algorithm[2] We chose to use k = 5 as standard, gener-
ally finding this value to result in high compression while inducing little loss in accuracy. While we
elected not to similarly approximate X due to its use in the computation of quantization-sensitive
3, our use of of Y = po2(JY’) nevertheless leads to sizeable reductions in total memory footprint.
Our use of Y further allows us to reduce the energy consumption associated with lines in
Algorithm 2] for both of which we now have one binary and one power-of-two operand. Assuming
that the target training platform has native support for only 32-bit fixed- and floating-point arith-
metic, these matrix multiplications can be computed by (i) converting powers-of-two into int 32s
via shifts, (ii) performing sign-flips and (iii) accumulating the int 32 outputs. This consumes far
less energy than the standard training method’s all-f 1oat 32 equivalent.

5.2 BATCH NORMALIZATION APPROXIMATION

Analysis of the backward pass of Algorithm [I]reveals conflicting requirements for the precision of
X. When computing weight gradients OW (line , only binary activations X are needed. For
the batch normalization training (lines [BHIT), however, high-precision X is used. As was shown in
Table |2| the storage of X between forward and backward propagation constitutes the single largest

portion of the algorithm’s total memory. If we are able to use X in place of X for these operations,
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there will be no need to retain the high-precision activations, significantly reducing memory footprint
as a result. We achieve this goal via the following two steps.

Step 1: /; normalization. Standard batch normalization sees channel-wise [, normalization per-
formed on each layer’s centralized activations. Since batch normalization is immediately followed
by binarization in BNNs, however, we argue that less-costly /; normalization is good enough in this
circumstance. Replacement of batch normalization’s backward propagation operation with our [y
norm-based version sees lines of Algorithm [T|swapped with

o™ ’ .
v+ Hyf"”*”(;zm)\\ /5 3yl(m) +—v—p(v)— ,u('v ©) a:l(:_”l))a,l.l(JrLl)7 0
1.

where B is the batch size. Not only does our use of [; batch normalization eliminate all squares and

(m) - (m)

square roots, it also transforms one occurrence of ;| into its binary form, ;.

Step 2: acl(fl) approximation. Since JY is quantized into our power-of-two format immediately

after its calculation (Algorithm[2|line[I2)), we hypothesize that it should be robust to approximation.

(m

Consequently, we replace the ;| term remaining in with the product of its signs and mean

magnitude: ﬁcl(fl) |2 /5.
Our complete batch normalization training functions are shown on lines [SHIT|of Algorithm 2] which
only require the storage of binary X along with layer- and channel-wise scalars. With elements of

X now binarized, we not only reduce its memory cost by 32x but also save energy thanks to the
corresponding memory traffic reduction.

6 EVALUATION

We implemented our BNN training method using Keras and TensorFlow, and experimented with the
small-scale MNIST, CIFAR-10 and SVHN datasets, as well as large-scale ImageNet, using a range
of network models. Our baseline for comparison was the standard BNN training method introduced
by [Courbariaux & Bengio| (2016)), and we followed those authors’ practice of reporting the highest
test accuracy achieved in each run. Energy consumption results were obtained using the inference
energy estimator from QKeras (Coelho Jr. et al., |2020), which we extended to also estimate the
energy consumption of training. This tool assumes the use of an in-order processor fabricated on
a 45 nm process and a cacheless memory hierarchy, as modeled by Horowitz (2014)), resulting in
high-level, platform-agnostic energy estimates useful for relative comparison. Note that we did not
tune hyperparameters, thus it is likely that higher accuracy than we report is achievable.

For MNIST we evaluated using a five-layer MLP—henceforth simply denoted “MLP”—with 256
neurons per hidden layer, and CNV (Umuroglu et al.,2017)) and BinaryNet (Courbariaux & Bengio,
2016) for both CIFAR-10 and SVHN. We used three popular BNN optimizers: Adam (Kingma &
Bal 20135)), stochastic gradient descent (SGD) with momentum and Bop (Helwegen et al., [2019).
While all three function reliably with our training scheme, we used Adam by default due to its
outstanding stability in performance. Experimental setup minutiae can be found in Appendix

Our choice of quantization targets primarily rested on the intuition that BNNs should be more robust
to approximation in backward propagation than their higher-precision counterparts. To illustrate that
this is indeed the case, we compared our method’s loss when applied to BNNs vs f1oat32 net-
works with identical topologies and hyperparameters. Generally, per Table [3] significantly higher
accuracy degradation was observed for the non-binary networks, as expected. While our proposed
BNN training method does exhibit limited accuracy degradation—a geomean drop of 1.21 percent-
age points (pp) for these examples—this comes in return for simultaneous geomean memory and
energy savings of 3.66x and 3.09 x, respectively, as shown in Table[d] It is also interesting to note
that the training cost reductions achievable for a given dataset depend on the model chosen to clas-
sify it, as can be seen across Tables [3|and ] This observation is largely orthogonal to our work:
by applying our approach to the training of a more appropriately chosen model, one can obtain the
advantages of both optimized network selection and training, effectively benefiting twice.
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Table 3: Test accuracy of non-binary and BNNs using standard and proposed training approaches
for various models and datasets optimized with Adam. Results for our training approach applied to
the former are included for reference only; we do not advocate for its use with non-binary networks.

Top-1 test accuracy

Model Dataset Standard training Reference training Proposed training
NN (%)' BNN (%) A(pp) NN(%)' A (pp)> BNN(%) A (pp)’

MLP MNIST 98.22 98.24 0.02  89.98 —8.24 96.83 —1.41
CNV CIFAR-10 86.37 82.67 —3.70 69.88 —16.49 82.31 —-0.36
CNV SVHN 97.30 96.37r —0.93 79.44 —-17.86 94.22 —-2.15
BinaryNet CIFAR-10 88.20 89.81 1.61 76.56 —11.64 88.36 —1.45
BinaryNet SVHN 96.54 97.40 0.86 85.71 —10.83 95.78 —1.62

! Non-binary neural network.
2 Baseline: non-binary network with standard training.
3 Baseline: BNN with standard training.

Table 4: Memory footprint and per-batch energy consumption of the standard and our proposed
training schemes for various models using the Adam optimizer.

Memory Energy/batch

Model  gandard Proposed Saving Standard Proposed Saving
(MiB)  (MiB) (x) (mJ) (mJ) (x)

MLP 7.40 2.56 2.89 2.40 0.97 2.48
CNV 128.33 27.13 4.73 144.24 52.61 2.74
BinaryNet 425.31 118.21 3.60 85541 196.26 4.36

In order to explore the impacts of the various facets of our scheme, we applied them sequentially
while training BinaryNet to classify CIFAR-10 with multiple optimizers. As shown in Table [5
choices of data types, optimizer and batch normalization implementation lead to clear tradeoffs
against performance and resource costs. Major memory savings are attributable to the use of
floatl6 variables and through the use of our /; norm-based batch normalization. The bulk of
our scheme’s energy savings come from the power-of-two representation of Y, which eliminates
floating-point operations from lines[T3HT4]of Algorithm[2] We also evaluated the quantization of 0Y
into five-bit layer-wise block floating-point format, denoted “int 5” in Table [5]since the individual
elements are fixed-point values. With this encoding, significantly higher accuracy loss was observed
than when 0Y was quantized into the proposed, equally sized power-of-two format, confirming that
representation of this variable’s range is more important than its precision.

Figure 2| shows the memory footprint savings from our proposed BNN training method for different
optimizers and batch sizes, again for BinaryNet with the CIFAR-10 dataset. Across all of these,
we achieved a geomean reduction of 4.86x. Also observable from Figure 2] is that, for all three
optimizers, movement from the standard to our proposed BNN training allows the batch size used to
increase by 10 x, facilitating faster completion, without a material increase in memory consumption.
With respect to energy, we saw an estimated geomean 4.49x reduction, split into contributions
attributable to arithmetic operations and memory traffic by 18.27x and 1.71x. Figure[2]also shows
that test accuracy does not drop significantly due to our approximations. With Adam, there were
small drops (geomean 0.87 pp), while with SGD and Bop we actually saw modest improvements.

We trained ResNetE-18, a mixed-precision model with most convolutional layers binarized (Bethge
et al.| [2019), to classify ImageNet. ResNetE-18 represents an exemplary instance within a broad
class of ImageNet-capable networks, and we believe that similar results should be achievable for
models with which it shares architectural features. Setup specifics can be found in Appendix

We show the performance of this network and dataset when applying each of our proposed approxi-
mations in turn, as well as with the combination we found to work best, in Table[6] Since the Tensor
Processing Units we used here natively support bf 1oat16 rather than f1oat 16, we switched to
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Table 5: Accuracy, memory and energy impacts of moving from standard to our proposed data rep-
resentations. We include block floating-point 0X to illustrate the importance of dynamic range over
precision for its representation. For these experiments, BinaryNet was trained to classify CIFAR-10.

Optimizer Data type Batch  Top-1 test accuracy Mf:mory 1 Eflergy 1
OW oY norm. % A (pp)l saving (x)' saving (X)

float32 float32 ly 88.74 - - -
floatle floatlé ls 88.71 —0.03 2.00 1.09
bool floatlé6 lo 87.93 —0.81 2.27 1.10
Adam bool int52 ly 81.12 —7.62 2.50 4.32
bool po2.5 lo 89.47 0.73 2.50 4.01
bool po2.5 l1 87.64 —1.10 2.50 4.01
bool po2.5 Proposed 88.59 —0.15 3.60 4.36

float32 float32 Iy 88.52 - - -
floatle floatlé6 ly 88.54 0.02 2.00 1.09
. bool floatl6 Iy 87.35 —-1.17 2.31 1.10
SODwith 001 ints I, 8189 —6.63 2.59 4.40
bool po2.5 lo 89.08 0.56 2.59 4.06
bool po2.5 I 88.69 0.17 2.59 4.06
bool po2.5 Proposed 87.45 —1.07 4.07 4.45

float32 float32 lo 91.38 - - -
floatl6 floatlé lo 91.36 —0.02 2.00 1.09
bool floatl6 ly 90.54 —0.84 2.37 1.10
Bop bool int5 ly 40.55 —50.83 2.72 4.48
bool po2.5 lo 89.34 —2.04 2.72 4.11
bool po2.5 l1 87.81 —3.57 2.72 4.11
bool po2.5 Proposed 86.28 —5.10 4.92 4.53

! Baseline: float32 OW and X with standard (I2) batch normalization.
2 5-bit fixed-point elements of layer-wise block floating-point format.

the former for these experiments. Where bfloat16 variables were used, these were employed
across all layers; the remaining approximations were applied only to binary layers. Despite in-
creasing the precision of our power-of-two quantized 0Y by moving from k& = 5 to 8, this scheme
unfortunately induced significant accuracy degradation, suggesting incompatibility with large-scale
datasets. Consequently, we disapplied it for our final experiment, which saw our remaining three
approximations deliver memory and energy reductions of 3.12x and 1.17x in return for a 2.25 pp
drop in test accuracy. While these savings are smaller than those of our small-scale experiments,
we note that ResNetE-18’s first convolutional layer is both its largest and is non-binary, thus its
activation storage dwarfs that of the remaining layers. We also remark that, while ~2 pp accuracy
drops may not be acceptable for some application deployments, sizable training resource reductions
are otherwise possible. The effects of binarized OW are insignificant since ImageNet’s large im-
ages result in proportionally small weight memory occupancy. Nevertheless, this proof of concept
demonstrates the feasibility of large-scale neural network training on the edge.

7 CONCLUSION

In this paper, we introduced the first training scheme tailored specifically to BNNs. Moving first
to 16-bit floating-point representations, we selectively and opportunistically approximated beyond
this based on careful analysis of the standard training algorithm presented by Courbariaux & Ben-
gio. With a comprehensive evaluation conducted across multiple models, datasets, optimizers and
batch sizes, we showed the generality of our approach and reported significant memory and energy
reductions vs the prior art, challenging the notion that the resource constraints of edge platforms
present insurmountable barriers to on-device learning. In the future, we will explore the potential of
our training approximations in the custom hardware setting, within which we expect there to be vast
energy-saving potential through the design of tailor-made arithmetic operators.
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Figure 2: Batch size vs training memory footprint, achieved test accuracy and per-batch training
energy consumption for BinaryNet with CIFAR-10. The upper plots show memory and accuracy
results for the standard and our proposed training flows. In the lower plots, total energy is split into
compute- and memory-related components. Annotations show reductions vs the standard approach.

Table 6: Test accuracy, memory footprint and per-batch energy consumption of the standard and our
proposed training schemes for ResNetE-18 classifying ImageNet with Adam used for optimization.

. Top-1 test accuracy Memory Energy/batch
Approximations
% A (pp)!  GiB  Saving (x)! J Saving (x)!

None 58.57 - 57.84 - 185.08 -
All-bfloatl6 58.55 0.02 29.32 1.97 162.41 1.14
bool OW only 57.30  —1.27 57.80 1.00 185.08 1.00
po2_8 JY only 29.56 —29.01 57.84 1.00 116.06 1.59
{1 batch norm. only 57.34  —1.23 57.84 1.00 185.08 1.00
Proposed batch norm. only 57.25 —1.32 35.59 1.63 176.87 1.05
Final combination’ 56.32 —2.25 18.54 3.12 158.44 1.17

! Baseline: approximation-free training.

> bool OW and bfloat 16 remaining variables with proposed batch normalization.
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A CONVERGENCE RATE ANALYSIS

A.1 THEORETICAL SUPPORT
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Figure 3: Weight density of the sixth convolutional layer of BinaryNet trained with bool weight
and po2_5 activation gradients using Adam and the CIFAR-10 dataset.

Bernstein et al.| (2018) proved that training non-binary networks with binary weight gradients
may result in similar convergence rates to those of unquantized training if weight gradient den-

sity ¢([,u((")W1), e ,u(aWs)]T> and weight noise density ¢([0(8Wl), e ,a(&WS)]T) remain
within an order of magnitude throughout a training run. Here, S is the training step size and

_ el : :
o(e) = NI|-|1|§ denotes the density function of an /NV-element vector.

We repeated Bernstein et al.’s evaluation with our proposed gradient quantization applied during
BinaryNet training with the CIFAR-10 dataset using Adam and hyperparameters as detailed in Ap-
pendix [B.1] The results of this experiment can be found in Figure[3] We chose to show the densities
of BinaryNet’s sixth convolutional layer since this is the largest layer in the network. Each batch
of inputs was trained using quantized gradients OW and QY. The trained network was then evalu-
ated using the same training data to obtain the f1oat 32 (unquantized) OW used to plot the data
shown in Figure [3] We found that the weight gradient density ranged from 0.55-0.62, and weight
noise density 0.92-0.97, therefore concluding that our quantization method may result in similar
convergence rates to the unquantized baseline.

It should be noted that Bernstein et al.’s derivations assumed the use of smooth objective functions.
Although the forward propagation of BNNs is not smooth due to binarization, their training functions
still assume smoothness due to the use of straight-through estimation.

A.2  EMPIRICAL SUPPORT
Figures[d] 5] [6|and [7] contain the training accuracy curves of all experiments conducted for this work.

The curves of the standard and our proposed training methods are broadly similar, supporting the
conclusion from Appendix[A.T|that our proposals do not induce significant convergence rate change.
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Figure 4: Achieved training accuracy over time for experiments reported in Table
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Figure 5: Achieved training accuracy over time for experiments reported in Table
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Figure 6: Achieved training accuracy over time for experiments reported in Figure@
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B EXPERIMENTAL SETUP

B.1 SMALL-SCALE DATASETS

We used the development-based learning rate scheduling approach proposed by [Wilson et al.|(2017)
with an initial learning rate n of 0.001 for all optimizers except for SGD with momentum, for which
we used 0.1. We used batch size B = 100 for all except for Bop, for which we used B = 50 as
recommended by |[Helwegen et al| (2019). MNIST and CIFAR-10 were trained for 1000 epochs;
SVHN for 200.

B.2 IMAGENET
Finding development-based learning rate scheduling to not work well with ResNetE-18, we resorted

to the fixed decay schedule described by Bethge et al.|(2019). 1 began at 0.001 and decayed by a
factor of 10 at epochs 70, 90 and 110. We trained for 120 epochs with B = 4096.
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