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ABSTRACT

The offline reinforcement learning (RL) setting (also known as full batch RL),
where a policy is learned from a static dataset, is compelling as progress enables
RL methods to take advantage of large, previously-collected datasets, much like
how the rise of large datasets has fueled results in supervised learning. However,
existing online RL benchmarks are not tailored towards the offline setting and ex-
isting offline RL benchmarks are restricted to data generated by partially-trained
agents, making progress in offline RL difficult to measure. In this work, we in-
troduce benchmarks specifically designed for the offline setting, guided by key
properties of datasets relevant to real-world applications of offline RL. With a fo-
cus on dataset collection, examples of such properties include: datasets generated
via hand-designed controllers and human demonstrators, multitask datasets where
an agent performs different tasks in the same environment, and datasets collected
with mixtures of policies. By moving beyond simple benchmark tasks and data
collected by partially-trained RL agents, we reveal important and unappreciated
deficiencies of existing algorithms. To facilitate research, we have released our
benchmark tasks and datasets with a comprehensive evaluation of existing algo-
rithms, an evaluation protocol, and open-source examples. This serves as a com-
mon starting point for the community to identify shortcomings in existing offline
RL methods and a collaborative route for progress in this emerging area.

1 INTRODUCTION

Figure 1: A selection of pro-
posed benchmark tasks.

Impressive progress across a range of machine learning applica-
tions has been driven by high-capacity neural network models with
large, diverse training datasets (Goodfellow et al., 2016). While
reinforcement learning (RL) algorithms have also benefited from
deep learning (Mnih et al., 2015), active data collection is typi-
cally required for these algorithms to succeed, limiting the extent
to which large, previously-collected datasets can be leveraged. Of-
fline RL (Lange et al., 2012) (also known as full batch RL), where
agents learn from previously-collected datasets, provides a bridge
between RL and supervised learning. The promise of offline RL
is leveraging large, previously-collected datasets in the context of
sequential decision making, where reward-driven learning can pro-
duce policies that reason over temporally extended horizons. This
could have profound implications for a range of application domains, such as robotics, autonomous
driving, and healthcare.

Current offline RL methods have not fulfilled this promise yet. While recent work has investigated
technical reasons for this (Fujimoto et al., 2018a; Kumar et al., 2019; Wu et al., 2019), a major
challenge in addressing these issues has been the lack of standard evaluation benchmarks. Ideally,
such a benchmark should: a) be composed of tasks that reflect challenges in real-world applications
of data-driven RL, b) be widely accessible for researchers and define clear evaluation protocols for

Website with code, examples, tasks, and data is available at https://sites.google.com/view/
d4rl-anonymous/
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reproducibility, and c) contain a range of difficulty to differentiate between algorithms, especially
challenges particular to the offline RL setting.

Most recent works (Fujimoto et al., 2018b; Wu et al., 2019; Kumar et al., 2019; Peng et al., 2019;
Agarwal et al., 2019b) use existing online RL benchmark domains and data collected from training
runs of online RL methods. However, these benchmarks were not designed with offline RL in
mind and such datasets do not reflect the heterogenous nature of data collected in practice. Wu
et al. (2019) find that existing benchmark datasets are not sufficient to differentiate between simple
baseline approaches and recently proposed algorithms. Furthermore, the aforementioned works do
not propose a standard evaluation protocol, which makes comparing methods challenging.

Why simulated environments? While relying on (existing) real-world datasets is appealing, evalu-
ating a candidate policy is challenging because it weights actions differently than the data collection
and may take actions that were not collected. Thus, evaluating a candidate policy requires either col-
lecting additional data from the real-world system, which is hard to standardize and make broadly
available, or employing off-policy evaluation, which is not yet reliable enough (e.g., the NeurIPS
2017 Criteo Ad Placement Challenge used off-policy evaluation, however, in spite of an unprece-
dentedly large dataset because of the variance in the estimator, top entries were not statistically
distinguishable from the baseline). Both options are at odds with a widely-accessible and repro-
ducible benchmark. As a compromise, we use high-quality simulations that have been battle-tested
in prior domain-specific work, such as in robotics and autonomous driving. These simulators allow
researchers to evaluate candidate policies accurately.

Our primary contribution is the introduction of Datasets for Deep Data-Driven Reinforcement
Learning (D4RL): a suite of tasks and datasets for benchmarking progress in offline RL. We fo-
cus our design around tasks and data collection strategies that exercise dimensions of the of-
fline RL problem likely to occur in practical applications, such as partial observability, passively
logged data, or human demonstrations. To serve as a reference, we benchmark state-of-the-
art offline RL algorithms (Haarnoja et al., 2018b; Kumar et al., 2019; Wu et al., 2019; Agar-
wal et al., 2019b; Fujimoto et al., 2018a; Nachum et al., 2019; Peng et al., 2019; Kumar et al.,
2020) and provide reference implementations as a starting point for future work. While previ-
ous studies (e.g., (Wu et al., 2019)) found that all methods including simple baselines performed
well on the limited set of tasks used in prior work, we find that most algorithms struggle to per-
form well on tasks with properties crucial to real-world applications such as passively logged
data, narrow data distributions, and limited human demonstrations. By moving beyond simple
benchmark tasks and data collected by partially-trained RL agents, we reveal important and un-
appreciated deficiencies of existing algorithms. To facilitate adoption, we provide an easy-to-use
API for tasks, datasets, and a collection of benchmark implementations of existing algorithms
(https://sites.google.com/view/d4rl-anonymous/). This is a common starting
point for the community to identify shortcomings in existing offline RL methods, and provides a
meaningful metric for progress in this emerging area.

2 RELATED WORK

Recent work in offline RL has primarily used datasets generated by a previously trained behavior
policy, ranging from a random initial policy to a near-expert online-trained policy. This approach
has been used for continuous control for robotics (Fujimoto et al., 2018a; Kumar et al., 2019; Wu
et al., 2019; Gulcehre et al., 2020), navigation (Laroche et al., 2019), industrial control (Hein et al.,
2017), and Atari video games (Agarwal et al., 2019b). To standardize the community around com-
mon datasets, several recent works have proposed benchmarks for offline RL algorithms. Agarwal
et al. (2019b); Fujimoto et al. (2019) propose benchmarking based on the discrete Atari domain.
Concurrently to our work, Gulcehre et al. (2020) proposed a benchmark1 based on locomotion and
manipulation tasks with perceptually challenging input and partial observability. While these are
important contributions, both benchmarks suffer from the same shortcomings as prior evaluation
protocols: they rely on data collected from online RL training runs. In contrast, with D4RL, in
addition to collecting data from online RL training runs, we focus on a range of dataset collection

1Note that the benchmark proposed by Gulcehre et al. (2020) contains the Real-World RL Challenges
benchmark (Dulac-Arnold et al., 2020) based on (Dulac-Arnold et al., 2019) and also uses data collected from
partially-trained RL agents.
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procedures inspired by real-world applications, such as human demonstrations, exploratory agents,
and hand-coded controllers. As alluded to by Wu et al. (2019) and as we show in our experiments,
the performance of current methods depends strongly on the data collection procedure, demonstrat-
ing the importance of modeling realistic data collection procedures in a benchmark.

Offline RL using large, previously-collect datasets has been successfully applied to real-world sys-
tems such as in robotics (Cabi et al., 2019), recommender systems (Li et al., 2010; Strehl et al., 2010;
Thomas et al., 2017), and dialogue systems (Henderson et al., 2008; Pietquin et al., 2011; Jaques
et al., 2019). These successes point to the promise of offline RL, however, they rely on private
real-world systems or expensive human labeling for evaluation which is not scalable or accessible
for a benchmark. Moreover, significant efforts have been made to incorporate large-scale datasets
into off-policy RL (Kalashnikov et al., 2018; Mo et al., 2018; Gu et al., 2017), but these works use
large numbers of robots to collect online interaction during training. Pure online systems for real-
world learning have included model-based approaches (Hester et al., 2011), or approaches which
collect large amounts of data in parallel (Gu et al., 2017). While we believe these are promising
directions for future research, the focus of this work is to provide a varied and accessible platform
for developing algorithms.

3 BACKGROUND

The offline reinforcement learning problem statement is formalized within a Markov decision pro-
cess (MDP), defined by a tuple (S,A, P,R, ρ0, γ), where S denotes the state space, A denotes
the action space, P (s′|s, a) denotes the transition distribution, ρ0(s) denotes the initial state dis-
tribution, R(s, a) denotes the reward function, and γ ∈ (0, 1) denotes the discount factor. The
goal in RL is to find a policy π(a|s) that maximizes the expected cumulative discounted rewards
J(π) = Eπ,P,ρ0 [

∑∞
t=0 γ

tR(st, at)], also known as the discounted returns.

In episodic RL, the algorithm is given access to the MDP via trajectory samples for arbitrary π of
the algorithm’s choosing. Off-policy methods may use experience replay (Lin, 1992) to store these
trajectories in a replay buffer D of transitions (st, at, st+1, rt), and use an off-policy algorithm such
as Q-learning (Watkins & Dayan, 1992) to optimize π. However, these methods still iteratively
collect additional data, and omitting this collection step can produce poor results. For example,
running state-of-the-art off-policy RL algorithms on trajectories collected from an expert policy can
result in diverging Q-values (Kumar et al., 2019).

In offline RL, the algorithm no longer has access to the MDP, and is instead presented with a fixed
dataset of transitions D. The (unknown) policy that generated this data is referred to as a behavior
policy πB . Effective offline RL algorithms must handle distribution shift, as well as data collected
via processes that may not be representable by the chosen policy class. Levine et al. (2020) provide
a comprehensive discussion of the problems affecting offline RL.

4 TASK DESIGN FACTORS

In order to design a benchmark that provides a meaningful measure of progress towards realistic
applications of offline RL, we choose datasets and tasks to cover a range of properties designed to
challenge existing RL algorithms. We discuss these properties as follows:

Narrow and biased data distributions, such as those from deterministic policies, are problematic
for offline RL algorithms and may cause divergence both empirically (Fujimoto et al., 2018a; Kumar
et al., 2019) and theoretically (Munos, 2003; Farahmand et al., 2010; Kumar et al., 2019; Agarwal
et al., 2019a; Du et al., 2020). Narrow datasets may arise in human demonstrations, or when using
hand-crafted policies. An important challenge in offline RL is to be able to gracefully handle diverse
data distributions without algorithms diverging or producing performance worse than the provided
behavior. A common approach for dealing with such data distributions is to adopt a conservative
approach which tries to keep the behavior close to the data distribution (Fujimoto et al., 2018a;
Kumar et al., 2019; Wu et al., 2019).

Undirected and multitask data naturally arises when data is passively logged, such as recording
user interactions on the internet or recording videos of a car for autonomous driving. This data
may not necessarily be directed towards the specific task one is trying to accomplish. However,
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pieces of trajectories can still provide useful information to learn from. For example, one may be
able to combine sub-trajectories to accomplish a task. In the figure to the upper-right, if an agent
is given trajectories from A-B and B-C in a dataset (left image), it can form a trajectory from A-
C by combining the corresponding halves of the original trajectories. We refer to this property as
stitching, since the agent can use portions of existing trajectories in order to solve a task, rather than
relying on generalization outside of the dataset.

Figure 2: An example of stitching to-
gether subtrajectories to solve a task.

Sparse rewards. Sparse reward problems pose chal-
lenges to traditional RL methods due to the difficulty of
credit assignment and exploration. Because offline RL
considers fixed datasets without exploration, sparse re-
ward problems provide an unique opportunity to isolate
the ability of algorithms to perform credit assignment de-
coupled from exploration.

Suboptimal data. For tasks with a clear objective, the
datasets may not contain behaviors from optimal agents. This represents a challenge for approaches
such as imitation learning, which generally require expert demonstrations. We note prior work
(e.g., (Fujimoto et al., 2018a; Kumar et al., 2019; Wu et al., 2019)) predominantly uses data with
this property.

Non-representable behavior policies, non-Markovian behavior policies, and partial observ-
ability. When the dataset is generated from a partially-trained agent, we ensure that the behavior
policy can be realized within our model class. However, real-life behavior may not originate from a
policy within our model class, which can introduce additional representational errors. For example,
data generated from human demonstrations or hand-crafted controllers may fall outside of the model
class. More generally, non-Markovian policies and tasks with partial observability can introduce
additional modeling errors when we estimate action probabilities under the assumption that the data
was generated from a Markovian policy. These errors can cause additional bias for offline RL al-
gorithms, especially in methods that assume access to action probabilities from a Markovian policy
such as importance weighting (Precup et al., 2000).

Realistic domains. As we discussed previously, real-world evaluation is the ideal setting for bench-
marking offline RL, however, it is at odds with a widely-accessible and reproducible benchmark. To
strike a balance, we opted for simulated environments which have been previously studied and are
broadly accepted by the research community. These simulation packages (such as MuJoCo, Flow,
and CARLA) have been widely used to benchmark online RL methods and are known to fit well into
that role. Moreover, on several domains we utilize human demonstrations or mathematical models
of human behavior in order to provide datasets generated from realistic processes. However, this did
have the effect of restricting our choice of tasks. While recent progress has been made on simulators
for recommender systems (e.g., (Ie et al., 2019)), they use “stylized” user models and they have not
been thoroughly evaluated by the community yet. In the future as simulators mature, we hope to
include additional tasks.

In addition, we include a variety of qualitatively different tasks to provide broad coverage of the
types of domains where offline RL could be used. We include locomotion, traffic management,
autonomous driving, and robotics tasks. We also provide tasks with a wide range in difficulty, from
tasks current algorithms can already solve to harder problems that are currently out of reach. Finally,
for consistency with prior works, we also include the OpenAI Gym robotic locomotion tasks and
similar datasets used by Fujimoto et al. (2018a); Kumar et al. (2019); Wu et al. (2019).

5 TASKS AND DATASETS

Given the properties outlined in Section 4, we assembled the following tasks and datasets. All tasks
consist of an offline dataset (typically 106 steps) of trajectory samples for training, and a simu-
lator for evaluation. The mapping is not one-to-one – several tasks use the same simulator with
different datasets. Appendix C lists domains and dataset types along with their sources and Ap-
pendix A contains a more comprehensive table of statistics such as size. Our code and datasets have
been released open-source and are on our website at https://sites.google.com/view/
d4rl-anonymous/.
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Maze2D. (Non-markovian policies, undirected and multitask data)
The Maze2D domain is a navigation task requiring a 2D agent to reach a
fixed goal location. The tasks are designed to provide a simple test of the
ability of offline RL algorithms to stitch together previously collected
subtrajectories to find the shortest path to the evaluation goal. Three
maze layouts are provided. The “umaze” and “medium” mazes are shown to the right, and the
“large” maze is shown below.

The data is generated by selecting goal locations at random and then using a
planner that generates sequences of waypoints that are followed using a PD
controller. In the figure on the left, the waypoints, represented by circles, are
planned from the starting location (1) along the path to a goal (2). Upon reach-
ing a threshold distance to a waypoint, the controller updates its internal state
to track the next waypoint along the path to the goal. Once a goal is reached,
a new goal is selected (3) and the process continues. The trajectories in the

dataset are visualized in Appendix G. Because the controllers memorize the reached waypoints, the
data collection policy is non-Markovian.

AntMaze. (Non-markovian policies, sparse rewards, undirected and multitask data) The AntMaze
domain is a navigation domain that replaces the 2D ball from Maze2D with the more complex
8-DoF “Ant” quadraped robot. We introduce this domain to test the stitching challenge using a
morphologically complex robot that could mimic real-world robotic navigation tasks. Additionally,
for this task we use a sparse 0-1 reward which is activated upon reaching the goal.

The data is generated by training a goal reaching policy and us-
ing it in conjunction with the same high-level waypoint genera-
tor from Maze2D to provide subgoals that guide the agent to the
goal. The same 3 maze layouts are used: “umaze”, “medium”,
and “large”. We introduce three flavors of datasets: 1) the ant
is commanded to reach a specific goal from a fixed start location
(antmaze-umaze-v0), 2) in the “diverse” datasets, the ant is
commanded to a random goal from a random start location, 3) in
the “play” datasets, the ant is commanded to specific hand-picked locations in the maze (which
are not necessarily the goal at evaluation), starting from a different set of hand-picked start loca-
tions. As in Maze2D, the controllers for this task are non-Markovian as they rely on tracking visited
waypoints. Trajectories in the dataset are visualized in Appendix G.

Gym-MuJoCo. (Suboptimal agents, narrow data distributions) The Gym-MuJoCo tasks (Hopper,
HalfCheetah, Walker2d) are popular benchmarks used in prior work in offline deep RL (Fujimoto
et al., 2018a; Kumar et al., 2019; Wu et al., 2019). For consistency, we provide standardized datasets
similar to previous work, and additionally propose mixing datasets to test the impact of heterogenous
policy mixtures. We expect that methods that rely on regularizing to the behavior policy may fail
when the data contains poorly performing trajectories.

The “medium” dataset is generated by first train-
ing a policy online using Soft Actor-Critic (Haarnoja
et al., 2018a), early-stopping the training, and collect-
ing 1M samples from this partially-trained policy. The
“random” datasets are generated by unrolling a ran-
domly initialized policy on these three domains. The
“medium-replay” dataset consists of recording all samples in the replay buffer observed during train-
ing until the policy reaches the “medium” level of performance. Datasets similar to these three have
been used in prior work, but in order to evaluate algorithms on mixtures of policies, we further intro-
duce a “medium-expert” dataset by mixing equal amounts of expert demonstrations and suboptimal
data, generated via a partially trained policy or by unrolling a uniform-at-random policy.

Adroit. (Non-representable policies, narrow data distributions, sparse rewards, realistic) The
Adroit domain (Rajeswaran et al., 2018) (pictured left) involves controlling a 24-DoF simulated
Shadow Hand robot tasked with hammering a nail, opening a door, twirling a pen, or picking up and
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moving a ball. This domain was selected to measure the effect of a narrow expert data distributions
and human demonstrations on a sparse reward, high-dimensional robotic manipulation task.

While Rajeswaran et al. (2018) propose utilizing human demonstra-
tions, in conjunction with online RL fine-tuning, our benchmark
adapts these tasks for evaluating the fully offline RL setting. We
include three types of datasets for each task, two of which are in-
cluded from the original paper: a small amount of demonstration
data from a human (“human”) (25 trajectories per task) and a large
amount of expert data from a fine-tuned RL policy (“expert”). To
mimic the use-case where a practitioner collects a small amount of
additional data from a policy trained on the demonstrations, we in-
troduce a third dataset generated by training an imitation policy on

the demonstrations, running the policy, and mixing data at a 50-50 ratio with the demonstrations,
referred to as “cloned.” The Adroit domain has several unique properties that make it qualitatively
different from the Gym MuJoCo tasks. First, the data is collected in from human demonstrators.
Second, each task is difficult to solve with online RL, due to sparse rewards and exploration chal-
lenges, which make cloning and online RL alone insufficient. Lastly, the tasks are high dimensional,
presenting a representation learning challenge.

FrankaKitchen. (Undirected and multitask data, realistic) The
Franka Kitchen domain, first proposed by Gupta et al. (2019), in-
volves controlling a 9-DoF Franka robot in a kitchen environment
containing several common household items: a microwave, a kettle,
an overhead light, cabinets, and an oven. The goal of each task is
to interact with the items in order to reach a desired goal configu-
ration. For example, one such state is to have the microwave and
sliding cabinet door open with the kettle on the top burner and the
overhead light on. This domain benchmarks the effect of multitask
behavior on a realistic, non-navigation environment in which the “stitching” challenge is non-trivial
because the collected trajectories are complex paths through the state space. As a result, algorithms
must rely on generalization to unseen states in order to solve the task, rather than relying purely on
trajectories seen during training.

In order to study the effect of “stitching” and generalization, we use 3 datasets of human demon-
strations, originally proposed by Gupta et al. (2019). The “complete” dataset consists of the robot
performing all of the desired tasks in order. This provides data that is easy for an imitation learning
method to solve. The “partial” and “mixed” datasets consist of undirected data, where the robot
performs subtasks that are not necessarily related to the goal configuration. In the “partial” dataset,
a subset of the dataset is guaranteed to solve the task, meaning an imitation learning agent may
learn by selectively choosing the right subsets of the data. The “mixed” dataset contains no tra-
jectories which solve the task completely, and the RL agent must learn to assemble the relevant
sub-trajectories. This dataset requires the highest degree of generalization in order to succeed.

Flow. (Non-representable policies, realistic) The Flow
benchmark (Vinitsky et al., 2018) is a framework for study-
ing traffic control using deep reinforcement learning. We use
two tasks in the Flow benchmark which involve controlling
autonomous vehicles to maximize the flow of traffic through a
ring or merge road configuration (left).

We use the Flow domain in order to provide a task that simulates real-world traffic dynamics. A
large challenge in autonomous driving is to be able to directly learn from human behavior. Thus, we
include “human” data from agents controlled by the intelligent driver model (IDM) (Treiber et al.,
2000), a hand-designed model of human driving behavior. In order to provide data with a wider
distribution as a reference, we also include “random” data generated from an agent that commands
random vehicle accelerations.

Offline CARLA. (Partial observability, non-representable policies, undirected and multitask
data, realistic) CARLA (Dosovitskiy et al., 2017) is a high-fidelity autonomous driving simulator
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that has previously been used with imitation learning approaches (Rhinehart et al., 2018; Codevilla
et al., 2018) from large, static datasets. The agent controls the throttle (gas pedal), the steering, and
the break pedal for the car, and receives 48x48 RGB images from the driver’s perspective as obser-
vations. We propose two tasks for offline RL: lane following within a figure eight path (shown to the
right, top picture), and navigation within a small town (bottom picture). The principle challenge of
the CARLA domain is partial observability and visual complexity, as all observations are provided
as first-person RGB images.

The datasets in both tasks are generated via hand-designed controllers
meant to emulate human driving - the lane-following task uses simple
heuristics to avoid cars and keep the car within lane boundaries, whereas the
navigation task layers an additional high-level controller on top that takes
turns randomly at intersections. Similarly to the Maze2D and AntMaze do-
mains, this dataset consists of undirected navigation data in order to test
the “stitching” property, however, it is in a more perceptually challenging
domain.

Evaluation protocol. Previous work tunes hyperparameters with online evaluation inside the sim-
ulator, and as Wu et al. (2019) show, the hyperparameters have a large impact on performance.
Unfortunately, extensive online evaluation is not practical in real-world applications and this leads
to over optimistic performance expectations when the system is deployed in a truly offline setting.
To rectify this problem, we designate a subset of tasks in each domain as “training” tasks, where hy-
perparameter tuning is allowed, and another subset as “evaluation” tasks on which final performance
is measured (See Appendix D Table 5).

To facilitate comparison across tasks, we normalize scores for each environment roughly to the range
between 0 and 100, by computing normalized score = 100 ∗ score−random score

expert score−random score . A
normalized score of 0 corresponds to the average returns (over 100 episodes) of an agent taking ac-
tions uniformly at random across the action space. A score of 100 corresponds to the average returns
of a domain-specific expert. For Maze2D, and Flow domains, this corresponds to the performance
of the hand-designed controller used to collect data. For CARLA, AntMaze, and FrankaKitchen, we
used an estimate of the maximum score possible. For Adroit, this corresponds to a policy trained
with behavioral cloning on human-demonstrations and fine-tuned with RL. For Gym-MuJoCo, this
corresponds to a soft-actor critic (Haarnoja et al., 2018b) agent.

6 BENCHMARKING PRIOR METHODS

We evaluated recently proposed offline RL algo-
rithms and several baselines on our offline RL
benchmarks. This evaluation (1) provides base-
lines as a reference for future work, and (2) iden-
tifies shortcomings in existing offline RL algo-
rithms in order to guide future research. The
average normalized performance for all tasks is
plotted in the figure to the right. It is clear
that as we move beyond simple tasks and data
collection strategies, differences between algo-
rithms are exacerbated and deficiencies in all al-
gorithms are revealed. See Appendix Table 2 for
normalized results for all tasks, Appendix Table 3 for unnormalized scores, and Appendix E for
experimental details.

We evaluated behavioral cloning (BC), online and offline soft actor-critic (SAC) (Haarnoja et al.,
2018b), bootstrapping error reduction (BEAR) (Kumar et al., 2019), and behavior-regularized actor-
critic (BRAC) (Wu et al., 2019), advantage-weighted regression (AWR) (Peng et al., 2019), batch-
constrained Q-learning (BCQ) (Fujimoto et al., 2018a), continuous action random ensemble mix-
tures (cREM) (Agarwal et al., 2019b), and AlgaeDICE (Nachum et al., 2019). We note that REM
was originally designed for discrete action spaces, and the continuous action version has not been
developed extensively. In most domains, we expect online SAC to outperform offline algorithms
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when given the same amount of data because this baseline is able to collect on-policy data. There
are a few exceptions, such as for environments where exploration challenges make it difficult to find
high-reward states, such as the Adroit and maze domains.

Overall, the benchmarked algorithms obtained the most success on datasets generated from an RL-
trained policy, such as in the Adroit and Gym-MuJoCo domains. In these domains, offline RL
algorithms are able to match the behavior policy when given expert data, and outperform when
given suboptimal data. This positive result is expected, as it is the predominant setting in which
these prior algorithms have been benchmarked in past work.

Another positive result comes in the form of sparse reward tasks. In particular, many methods were
able to outperform the baseline online SAC method on the Adroit and AntMaze domains. This
indicates that offline RL is a promising paradigm for overcoming exploration challenges, which has
also been confirmed in recent work (Nair et al., 2020). We also find that conservative methods that
constrain the policy to the dataset, such as BEAR, AWR, CQL, and BCQ, are able to handle biased
and narrow data distributions well on domains such as Flow and Gym-MuJoCo.

Tasks with undirected data, such as the Maze2D, FrankaKitchen, CARLA and AntMaze domains,
are challenging for existing methods. Even in the simpler Maze2D domain, the large maze provides a
surprising challenge for most methods. However, the smaller instances of Maze2D and AntMaze are
very much within reach of current algorithms. Mixture distributions (a form of non-representable
policies) were also challenging for all algorithms we evaluated. For MuJoCo, even though the
medium-expert data contains expert data, the algorithms performed roughly on-par with medium
datasets, except for hopper. The same pattern was found in the cloned datasets for Adroit, where the
algorithms mostly performed on-par with the limited demonstration dataset, even though they had
access to additional data.

We find that many algorithms were able to succeed to some extent on tasks with controller-generated
data, such as Flow and carla-lane. We also note that tasks with limited data, such as human demon-
strations in Adroit and FrankaKitchen, remain challenging. This potentially points to the need for
more sample-efficient methods, as big datasets may not be always be available.

7 DISCUSSION

We have proposed an open-source benchmark for offline RL. The choice of tasks and datasets were
motivated by properties reflected in real-world applications, such as narrow data distributions and
undirected, logged behavior. Existing benchmarks have largely concentrated on robotic control
using data produced by policies trained with RL (Fujimoto et al., 2018a; Kumar et al., 2019; Wu
et al., 2019; Gulcehre et al., 2020; Dulac-Arnold et al., 2020). This can give a misleading sense of
progress, as we have shown in our experiments that many of the more challenging properties that we
expect real-world datasets to have appear to result in a substantial challenge for existing methods.

We believe that offline RL holds great promise as a potential paradigm to leverage vast amounts of
existing sequential data within the flexible decision making framework of reinforcement learning.
We hope that providing a benchmark that is representative of potential problems in offline RL, but
that still can be accessibly evaluated in simulation, will greatly accelerate progress in this field and
create new opportunities to apply RL in many real-world application areas.

There are several important properties exhibited in some real-world applications of RL that are not
explored in-depth in our benchmark. One is stochasticity of the environment, which can occur in
systems such as financial markets, healthcare, or advertisement. And while we explore domains
with large observation spaces, some domains such recommender systems can exhibit large action
spaces. Finally, our tasks are predominantly in the robotics, autonomous driving, and traffic control.
There are several other areas (e.g. in finance, industrial, or operations research) which could provide
simulated, yet still challenging, benchmarks.
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Ultimately, we would like to see offline RL applications move from simulated domains to real-world
domains, using real-world datasets. This includes exciting areas such as recommender systems,
where user behavior can be easily logged, and medicine, where doctors must keep complete medical
records for each patient. A key challenge in these domains is that reliable evaluation must be done
in a real system or using off-policy evaluation (OPE) methods. We believe that both reliable OPE
methods and real-world benchmarks which are standardized across different research groups, will
be important to establish for future benchmarks in offline RL.
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Appendices
A TASK PROPERTIES

The following is a full list of task properties and dataset statistics for all tasks in the benchmark. Note
that the full dataset for “carla-town” requires over 30GB of memory to store, so we also provide a
subsampled version of the dataset which we used in our experiments.

Domain Task Name Controller Type # Samples

Maze2D

maze2d-umaze Planner 106

maze2d-medium Planner 2 ∗ 106
maze2d-large Planner 4 ∗ 106

AntMaze

antmaze-umaze Planner 106

antmaze-umaze-diverse Planner 106

antmaze-medium-play Planner 106

antmaze-medium-diverse Planner 106

antmaze-large-play Planner 106

antmaze-large-diverse Planner 106

Gym-MuJoCo

hopper-random Policy 106

hopper-medium Policy 106

hopper-medium-replay Policy 200920
hopper-medium-expert Policy 2× 106

halfcheetah-random Policy 106

halfcheetah-medium Policy 106

halfcheetah-medium-replay Policy 101000
halfcheetah-medium-expert Policy 2× 106

walker2d-random Policy 106

walker2d-medium Policy 106

walker2d-medium-replay Policy 100930
walker2d-medium-expert Policy 2× 106

Adroit

pen-human Human 5000
pen-cloned Policy 5 ∗ 105
pen-expert Policy 5 ∗ 105
hammer-human Human 11310
hammer-cloned Policy 106

hammer-expert Policy 106

door-human Human 6729
door-cloned Policy 106

door-expert Policy 106

relocate-human Human 9942
relocate-cloned Policy 106

relocate-expert Policy 106

Flow

flow-ring-random Policy 106

flow-ring-controller Policy 106

flow-merge-random Policy 106

flow-merge-controller Policy 106

FrankaKitchen
kitchen-complete Policy 3680
kitchen-partial Policy 136950
kitchen-mixed Policy 136950

CARLA carla-lane Planner 105

carla-town Planner 2 ∗ 106 full
105 subsampled

Table 1: Statistics for each task in the benchmark. For the controller type, “planner” refers to a
hand-designed navigation planner, “human” refers to human demonstrations, and “policy” refers to
random or neural network policies. The number of samples refers to the number of environment
transitions recorded in the dataset.
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B RESULTS BY DOMAIN

The following tables summarize performance for each domain (excluding CARLA, due to all algo-
rithms performing poorly), sorted by the best performing algorithm to the worst.
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C TASK AND DATASETS

The following table lists the tasks and dataset types included in the benchmark, including sources
for each.

Domain Source Dataset Types
Maze2D N/A UMaze, Medium, Large
AntMaze N/A UMaze, Diverse, Play
Gym-MuJoCo Brockman et al. (2016) Expert, Random, Medium (Various)

Todorov et al. (2012) Medium-Expert, Medium-Replay
Adroit Rajeswaran et al. (2018) Human, Expert (Rajeswaran et al., 2018)

Cloned
Flow Wu et al. (2017) Random, Controller
Franka Kitchen Gupta et al. (2019) Complete, Partial, Mixed (Gupta et al., 2019)
CARLA Dosovitskiy et al. (2017) Controller

Table 4: Domains and dataset types contained within our benchmark. Maze2D and AntMaze
are new domains we propose. For each dataset, we also include references to the source if orig-
inally proposed in another work. Datasets borrowed from prior work include MuJoCo (Expert,
Random, Medium), Adroit (Human, Expert), and FrankaKitchen (Complete, Partial, Mixed). All
other datasets are datasets proposed by this work.

D TRAINING AND EVALUATION TASK SPLIT

The following table lists our recommended protocol for hyperparameter tuning. Hyperparameters
should be tuned on the tasks listed on the left in the “Training” column, and algorithms should be
evaluated without tuning on the tasks in the right column labeled “Evaluation”.

Domain Training Evaluation

Maze2D
maze2d-umaze maze2d-eval-umaze
maze2d-medium maze2d-eval-medium
maze2d-large maze2d-eval-large

AntMaze

ant-umaze ant-eval-umaze
ant-umaze-diverse ant-eval-umaze-diverse
ant-medium-play ant-eval-medium-play
ant-medium-diverse ant-eval-medium-diverse
ant-large-play ant-eval-large-play
ant-large-diverse ant-eval-large-diverse

Adroit

pen-human hammer-human
pen-cloned hammer-cloned
pen-expert hammer-expert
door-human relocate-human
door-cloned relocate-cloned
door-expert relocate-expert

Gym

halfcheetah-random hopper-random
halfcheetah-medium hopper-medium
halfcheetah-mixed hopper-mixed
halfcheetah-medium-expert hopper-medium-expert
walker2d-random ant-random
walker2d-medium ant-medium
walker2d-mixed ant-mixed
walker2d-medium-expert and-medium-expert

Table 5: Our recommended partition of tasks into “training” tasks where hyperparameter tuning is
allowed, and “evaluation” tasks where final algorithm performance should be reported.
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E EXPERIMENT DETAILS

For all experiments, we used default hyperparameter settings and minimal modifications to public
implementations wherever possible, using 500K training iterations or gradient steps. The code bases
we used for evaluation are listed below. The most significant deviation from original published
algorithms was that we used an unofficial continuous-action implementation of REM (Agarwal et al.,
2019b), which was originally implemented for discrete action spaces. We ran our experiments using
Google cloud platform (GCP) on n1-standard-4 machines.

• BRAC and AlgaeDICE: https://github.com/google-research/
google-research

• AWR: https://github.com/xbpeng/awr
• SAC: https://github.com/vitchyr/rlkit
• BEAR: https://github.com/aviralkumar2907/BEAR
• Continuous-action REM: https://github.com/theSparta/off_policy_
mujoco

• BCQ: https://github.com/sfujim/BCQ
• CQL: https://github.com/aviralkumar2907/CQL

F ASSESSING THE FEASIBILITY OF HARD TASKS

(a) carla-town

(b) antmaze-large (c) maze2d-large

Few prior methods were able to successfully solve carla-
town or the larger AntMaze tasks. While including tasks
that present a challenge for current methods is important
to ensure that our benchmark has room for improvement,
it is also important to provide some confidence that the
tasks are actually solvable. We verified this in two ways.
First, we ensured that the trajectories observed in these
tasks have adequate coverage of the state space. An il-
lustration of the trajectories in the CARLA and AntMaze
tasks are shown below, where trajectories are shown as
different colored lines and the goal state is marked with a
star. We see that in carla-town and AntMaze, each lane or
corridor is traversed multiple times by the agent.

Second, the data in AntMaze was generated by having
the ant follow the same high-level planner in the maze as
in Maze2D. Because Maze2D is solvable by most meth-
ods, we would expect this to mean that AntMaze is po-
tentially solvable as well. This While the dynamics of the
ant itself are much more complex, its walking gait is a rel-
atively regular periodic motion, and since the high-level
waypoints are similar, we would expect the AntMaze data
to provide similar coverage as in the 2D mazes, as shown
in the figures on the right. While the Ant has more erratic motion, both datasets cover the the ma-
jority of the maze thoroughly. A comparison of the state coverage between Maze2D and AntMaze
on all tasks is shown in the following Appendix section G.
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G MAZE DOMAIN TRAJECTORIES

In this section, we visualized trajectories for the datasets in the Maze2D and AntMaze domains.
Each image plots the states visited along each trajectory as a different colored line, overlaid on top
of the maze. The goal state is marked as a white star.

Figure 4: Trajectories visited in the Maze2D domain. From left-to-right: maze2d-umaze, maze2d-
medium, and maze2d-large.

Figure 5: Trajectories visited in the AntMaze domain. Top row, from left-to-right: antmaze-umaze,
antmaze-medium-play, and antmaze-large-play. Bottom row, from left-to-right: antmaze-umaze-
diverse, antmaze-medium-diverse, and antmaze-large-diverse.
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