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ABSTRACT

Protein function inference relies on annotating protein domains via sequence simi-
larity, often modeled through profile Hidden Markov Models (profile HMMs),
which capture evolutionary diversity within related domains. However, pro-
file HMMs make strong simplifying independence assumptions when modeling
residues in a sequence. Here, we introduce PSALM (Protein Sequence Annotation
using Language Models), a hierarchical approach that relaxes these assumptions
and uses representations of protein sequences learned by protein language models to
enable high-sensitivity, high-specificity residue-level protein sequence annotation.
We also develop the Multi-Domain Protein Homology Benchmark (MDPH-Bench),
a benchmark for protein sequence domain annotation, where training and test
sequences have been rigorously split to share no similarity between any of their
domains at a given threshold of sequence identity. Prior benchmarks, which split
one domain family at a time, do not support methods for annotating multi-domain
proteins, where training and test sequences need to have multiple domains from
different families. We validate PSALM’s performance on MDPH-Bench and high-
light PSALM as a promising alternative to HMMER, a state-of-the-art profile
HMM-based method, for protein sequence annotation.

1 INTRODUCTION

Proteins are composed of distinct structural and functional units conserved through evolution, known
as domains. The primary aim of protein sequence annotation is to locate and characterize these
domains within a given sequence. Insight into the individual functions of these domains, which
may act independently or in concert with neighboring domains, may shed light on the overall
biological role of the protein (Fig. [I). Since experimental characterization of protein function can
be difficult, function is often inferred and annotated through sequence similarity (homology) to
domains with known function (Pearson, 2013} [Eddyl |1998])). As the size of protein sequence databases
and the number of protein sequences with unknown function continue to grow rapidly (UniProt
Consortium,, [2023)), methods for large-scale sequence annotation are essential for exploiting this
wealth of information to understand the molecular basis and evolutionary trajectory of life.

Large-scale annotation differs from a typical homology search, where a query protein sequence of
interest is searched against a database of many millions of other protein sequences. There are many,
varied approaches to identifying homologous sequences including both structure-based methods, like
Foldseek (Van Kempen et al., [2024), and sequence-based methods, like JackHMMER (Johnson et al.,
20105 [Eddyl 2011]), a profile hidden Markov model (profile HMM)-based approach, and pLM-BLAST
(Kaminski et al.| [2023)), a protein language model (pLM)-based approach. However, annotation
involves more than simply identifying similar sequences; it requires linking those similarities to
specific families of domains with known function. The state of the art in protein domain sequence
annotation uses profile HMMs to detect domains (Eddy}, |2011) and profile/profile comparison to
identify homologous domains (Remmert et al., 2012). Databases of protein domain families, like
Pfam (Mistry et al., |2021)), categorize millions of protein sequences into approximately 20,000
domains. Annotation can be achieved by using databases of protein families to compare a protein
sequence against 20,000 predefined domain profiles rather than scanning against millions of individual
sequences, a strategy that is well-suited for large-scale annotation tasks. Domain-based annotation
goes beyond classifying the whole protein sequence; it identifies the domain composition as well as
the boundaries of each domain. This “domain annotation” requires annotation at the residue level,
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Figure 1: Annotated domain architecture of a human phospholipase D1 protein (Q59EA4)
(EMBL-EBL [2024; Paysan-Lafosse et al.,|2023)), featuring PX (phox), PH (pleckstrin homology), and
PLD (phospholipase D-like) domains. Together, the function of these domains suggest that the full
length protein (1,059 amino acids) is involved in phosphatidylcholine (PI) cleavage and intracellular
signaling, consistent with experimental evidence.

labeling each amino acid symbol in the sequence. Domain annotation helps with function inference
and avoids the “transitive annotation catastrophe”, where sequence-level annotations inferred from
the presence of one domain can erroneously transfer between sequences due to homology of an
unrelated domain (Doerks et al., |1998)).

Profile HMMs make simplifying independence assumptions when modeling residues in protein
sequences that may limit their ability to recognize more subtle, long-range dependencies between
residues, potentially reducing sensitivity to distant evolutionary relationships. While deep learning-
based methods have been explored as a more sensitive alternative, most focus on whole-protein
or single-domain classification (Bileschi et al.| 2022; Heinzinger et al., 2022} Nallapareddy et al.,
2023}, [Kaminski et al.l [2023; [Hamamsy et al.} 2023)), they do not address the challenge of identifying
individual domain subsequences within longer target sequences, which requires careful benchmarking
and data curation to assess performance.

In this work, we introduce Protein Sequence Annotation with Language Models (PSALM), a novel
approach that extends the capabilities of ESM-2, a pre-trained protein language model (pLM) (Lin
et al.| 2023)), to predict residue-level sequence annotations. Our contributions include:

* First deep learning model for residue-level protein domain annotation: PSALM is
the first deep learning approach to annotate domain boundaries and subsequences within
multidomain proteins.

¢ Relaxation of HMM independence assumptions for improved sensitivity and specificity:
PSALM leverages pLMs to overcome the simplifying assumptions of profile HMMs, allow-
ing for greater sensitivity in detecting conserved domains across distantly-related sequences
and higher specificity in identifying previously unannotated domains.

¢ First benchmark for multi-domain protein annotation, MDPH-Bench: To enable robust
evaluation, we introduce the Multi-Domain Protein Homology Benchmark (MDPH-Bench).
This benchmark rigorously curates training and test sets to prevent any domain similarity
above a predefined threshold, enabling realistic assessments of model performance across
diverse domain families and multidomain proteins, which previous benchmarks do not
support.

2 RELATED WORK

2.1 PROFILE HMMs

Profile HMMs use curated multiple sequence alignments (MSAs) of related domains, which reveal
patterns of conservation and variability at the residue level, to model consensus using “match”,
“insert”, and “delete” hidden states (Durbin et al.| |1998} [Eddy, [1998). These models serve as
templates for comparison against the sequence of interest, enabling the identification of domains by
finding subsequences that match the profile HMMs. Sequences with multiple, unrelated domains will
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require the use of multiple profile HMMs for annotation. HMMER (Eddy, 2011) is the state-of-the-art
protein sequence domain annotation method and underlies many different databases, which organize
related domains into MSAs and profile HMMs at varying levels of granularity, enabling profile-based
annotations at the superfamily (Pandurangan et al.|[2019)), family (Mistry et al., [2021)), and sub-family
(Thomas et al.,|2022) levels. While profile HMMs have enabled sensitive, high-coverage, large-scale
annotation of the known protein universe (Mistry et al., 2021), they make two limiting assumptions.
Profile HMMs assume both that the observed residues are conditionally independent given the hidden
state and that the transition to the next hidden state depends only on the current state (Markov
property). While these assumptions simplify the modeling process, they may prevent profile HMMs
from capturing complex dependencies between residues in a sequence by ignoring how residues
distant in the one-dimensional sequence can interact with each other, especially over long distances,
in the folded three-dimensional structure of the protein.

2.2 DEEP MODELS

Recent breakthroughs like AlphaFold2 (Jumper et al., [2021) prove that deep-learning-based ap-
proaches can learn these complex relationships from sequence data. However, efforts to apply
deep learning methods to predict protein function from sequence have either focused on predicting
ontology-based functional annotation at the sequence level (Cao & Shen, |2021;Hong et al., [2020;
Kulmanov & Hoehndorf], 2020; [Sanderson et al.l [2023)) or recognizing homology at the sequence level
(Heinzinger et al., [2022; Nallapareddy et al., 2023} |Kaminski et al., [2023; Hamamsy et al.| [2023). To
our knowledge, ProtENN, an ensemble of convolutional neural networks, represents the first attempt
to predict Pfam domains directly from protein sequences (Bileschi et al.,|2022). ProtENN, however,
is constrained to make one domain prediction per input sequence and cannot natively identify domain
boundaries or multiple domains within a sequence without ad hoc post-processing. Additionally,
ProtENN cannot provide information on the contribution of an individual residue to a predicted
annotation.

3 METHODS

3.1 PROBLEM FORMULATION

Here, we formalize the residue-level sequence annotation problem as a mapping from a protein
sequence x = (z1, T2, ..., ) to a sequence of protein domain families y = (y1,y2,. .., yr). For
residue 7 in a sequence, x; is anindex 1 ... 25 representing the ¢-th amino acid character (20 canonical,
2 non-canonical, and 3 ambiguous amino acid characters), and y; is an index 1. .. D representing
the ¢-th protein domain family annotation, with D + 1 for none. Approximately 23% of protein
sequences and 47% of residues across all sequences in UniProt do not belong to any Pfam domain
family (Mistry et al., [2021). The goal of residue-level annotation is to learn a model that predicts
domain family annotations for each residue in a protein sequence:

§i = argmax P(Y; = f|x), M
f

where P(Y;) is the distribution over D + 1 family annotations for a given residue i.

3.2 PROTEIN LANGUAGE MODEL

Numerically encoding protein sequences is necessary as an input for machine learning tasks such
as classification. Protein language models (pLMs) learn vector representations of both individual
residues and full-length protein sequences, which capture long-range interactions, predict function
via transfer learning, and achieve state-of-the-art performance in several structure prediction tasks
Bepler & Berger| (2021); Rao et al.|(2020); Meier et al.|(2021)); [Elnaggar et al.|(2021). We use ESM-2
(specifically, the 8M, 35M, 150M, and 650M parameter models), a pre-trained general-purpose pLM
(Lin et al.,[2023), to generate residue-level sequence embeddings x’ for a given sequence x. ESM-2
was trained using a BERT-style masked token prediction task (Devlin et al., [2018]), enabling it to
capture contextual information and dependencies within protein sequences and allowing us to replace
x with x’.
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Figure 2: Overview of residue-level protein sequence annotation with PSALM. A sequence x of
length L is embedded as x’ with a frozen ESM-2. The PSALM clan and family models predict the
clan annotations z and family annotations ¥, respectively, and are trained to minimize cross-entropy
loss L(-). During training only, the true clan annotations z are provided to the family model. Here,
the example outputs are predicted across a set of 2 families.

3.3 PSALM

We introduce PSALM (Protein Sequence Annotation using Language Models), a method to predict
domains across a protein sequence at the residue-level (Fig. [J). PSALM uses a hierarchical approach
that considers both individual protein domain families and clans, which are collections of evolutionar-
ily related (homologous) protein domain families categorized by Pfam [2006). In Pfam
35.0, approximately 45% of the 19,632 Pfam families are grouped into 655 clans, and a family can
only belong to at most one clan. While our primary aim is to predict protein domain families at each
residue, modeling clans — the super class — is an interpretable intermediate step that aids in identifying
areas of functional or structural importance that may not have clear family-level annotations.

This intermediate annotation problem is a mapping from x to a sequence of Pfam clans z =
(#1,22,...,21), where z; is an index 1 ... C representing the i-th clan annotation, with C' + 1 for
“non-clan” or C' + 2 for none. The non-clan annotation describes a residue which belongs to a domain
family that is not a member of clan, and none refers to a residue which does not belong to a domain
family and thus does not belong to a clan. For a given residue, the PSALM clan and family models
learn to predict:

2; = argmax P(Z; = c|x') 2)
c

i = arg]rcnaxP(Yi = flZ; = C(f),x)P(Z; = C(f)|x), 3)

where C(f) is the clan label to which family f belongs, and P(Z;) is the distribution over all C' + 2
clan annotations for a given residue 7. The inclusion of a separate clan prediction task ensures the
interpretability of the clan model, preventing it from becoming an abstract hidden state. The family
model is trained via the teacher forcing algorithm (Williams & Zipser, [1989), where it is provided the
correct clan annotation for each residue in order to mitigate error propagation.

The clan and family models follow a similar structure and are trained separately. Protein sequences
are initially embedded at the residue level using a pre-trained and frozen instance of ESM-2, providing
a sequence of continuous, context-dependent residue-level embeddings as a replacement for the
sequence of amino acid characters typically used as input to profile HMMSs. The resulting embeddings
are then passed into a single bidirectional Long Short-Term Memory (BiLSTM) layer to capture
sequential dependencies (Hochreiter & Schmidhuber;,[1997) in the forwards and backwards directions.
This bidirectional approach was chosen to mimic the backward pass in profile HMM optimization,
aligning with their ability to account for sequence contexts in both directions [T998). RNNs,
including BiLSTMs, have been shown to generalize profile HMMs by extending their capacity to
model complex, nonlinear dependencies in sequential data, while retaining state-based representations
(Wessels & Omlin| [2000; [Salatin et all, [2019). The choice of BILSTM was made deliberately to
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introduce as few changes as possible, ensuring that the observed performance improvements could be
attributed primarily to the use of the protein language model, rather than architectural differences
from profile HMMs. The output from the BiLSTM layer is subsequently decoded using a stack
of three dense layers, scaled to the number of clans or family labels, to produce logits across the
prediction space. Probabilities are computed by applying softmax to the logits generated by each
model.

4 BENCHMARK

In many machine learning contexts, data samples are often assumed to be independent instances
drawn from a distribution of the data, justifying random training-test splits. However, this assumption
does not hold for sequences in protein domain families, which share evolutionary relationships.
Random data splits for protein sequences may lead to performance overestimation, motivating the
need to explicitly consider sequence similarity when partitioning data into distinct training and test
sets (Soding & Remmert, 2011; Walsh et al., 20165 Jones|, 2019; Walsh et al.| 2021} Petti & Eddy,
2022). For MDPH-Bench, we aim to create a benchmark that simulates the challenges posed by
the remote homology detection problem, where previously unknown or unannotated sequences with
little similarity to the training set are especially difficult to detect and annotate. To address this, the
MDPH-Bench test set includes a diverse selection of multi-domain proteins, spanning a wide range
of sequence similarity to the training set.

4.1 BENCHMARK CREATION

The goal of benchmark creation is performed in two phases. In the first phase, we filter domains
by a strict sequence percent identity (PID; Appendix [A.T.T) to remove similar domains and ensure
that test domains are sufficiently dissimilar from training domains. In the second phase, we retrieve
the full-length sequences corresponding to these domains and categorize them by their similarity
to the training set. We begin by collecting the 1.2M “seed domains” from Pfam-A Seed 35.0, a
set of curated, representative domains for each domain family that are used to build the 20K Pfam
profile HMMs (Mistry et al., [2021). We apply BLUE (Petti & Eddy} 2022), a graph-based sequence
splitting algorithm, to partition the seed domains into preliminary training and test sets, defining an
edge between two domains as their pairwise PID )Appendix [A.T.T). We choose a PID threshold of
25% to split the seed domains as a meaningful cutoff to differentiate structurally and functionally
distinct domains — protein pairs that share >25% identity indicate similar structure and function
(Sander & Schneider} [1991)), and less than 1-% of protein pairs sharing <25% identity have similar
structures (Rost, [1999)). This filtering step results in 560K training domains and 190K test domains.
The remaining 450K seed domains were discarded due to sharing > 25% PID with both test and
training sets.

In order to effectively assess the ability of PSALM to identify multiple domains in a sequence (as
opposed to annotating a pre-determined region of interest), the benchmark needs to contain full-
length protein sequences. We retrieve the full-length sequences corresponding to these representative
training and test domains from UniProt release March 2021, a comprehensive database of 230M
protein sequences. This results in 517K training sequences. From the test set, we eliminate duplicate
sequences also present in the training set. All sequences across both training and test sets are annotated
via the hmmscan tool from HMMER (Eddy, 2011) with strict inclusion thresholds (E-value < 0.001,
bitscore > 30) in order to identify domain hits that constitute a “ground truth”, with special care to
nested, contiguous domains, which may escape typical processing methods (Appendix [A-T.2). For
training and test purposes, family and clan labels are only assigned to ground truth domains. We
discard sequences in test that do not contain an annotated ground truth domain represented by at least
20 ground truth domains from the same family in the training set, resulting in 73K test sequences.

Simply splitting domains by PID is not sufficient to enforce the same gaurantees on full-length,
multi-domain proteins, as the full-length sequences may contain additional domains beyond the seed
domains. Thus, we further categorize each retrieved test sequence by the maximum PID that any of
its domains shares with any domain in the training set as a conservative proxy for its distance from
the training set (Appendix [A-T.3). We partition the test set into five subsets based on this maximum
PID (Table[T), and a total of 6K validation sequences are sampled uniformly across the test subsets.
Such a partition may result in test sequences that, for example, may be placed in the 80 < PID < 100
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Table 1: MDPH-Bench test subset, training, and validation details
Test splits 0-20%  20-40% 40-60% 60-80% 80-100% \ Train Val

Sequences 4,087 37,319 17,446 8,570 5,864 517,936 5,775
Families 543 2,456 1,952 1,731 1,697 14,811 2,097
Clans 180 414 365 341 319 646 388
Coverage 65.31% 59.74% 58.66% 62.02%  56.71% | 60.41% 58.79%
Average PID  18.35% 27.64% 4245% 58.08%  80.01% NA 45.08%

subset due to a single domain closely related to one in the training set, whereas the test sequence may
have several other domains that share significantly lower PID with domains in the training set (this
is why the average PID is near the lower bound of the max PID range for many of the test subsets
in Table[T). The domain coverage, defined as the average percent of residues in a sequence that are
labeled by Pfam domains, is similar across all test subsets.

4.2 ADDRESSING POSSIBLE LEAKAGE

We address the potential for unannotated domains to introduce data leakage across the training and
test sets by shuffling all subsequences without family and clan labels in the test sequences to disrupt
possible domain structures, preserving 0t" order residue-composition (Pearson, [2013; Eddy, [2011).
The ground truth for protein sequence annotation is fundamentally unknown, relying on inference
rather than complete structural and evolutionary knowledge — this is why we must assume natrual
sequences contain unannotated true domains that new methods may discover. Since PSALM may be
sensitive enough to identify unannotated domains, it is trained with these regions shuffled, to mitigate
penalties for “false positives” (with respect to the ground truth annotations). Another source of data
leakage may arise from the millions of representative sequences from the UniRef50 database release
April 2021 (Suzek et al.| [2015) used to train ESM-2. We identify that none of the 4,087 sequences in
the 0 < PID < 20 test subset were present as representative sequences in this version of UniRef50.
However, UniRef50 may contain close homologs to the sequences in this test subset.

5 RESULTS

5.1 BASELINES

We establish four baseline methods for comparison. We use HMMER, the current state-of-the-art
protein sequence annotation method, to build profile HMMs from MSAs of the ground truth domains
in the training set, denoted as HMMER*, and use these profiles to annotate the test sequences with
hmmscan. This allows us to evaluate how a state-of-the-art profile HMM method compares to
PSALM when using the same training and testing sets. Additionally, we implement three variants of
PSALM, denoted as PSALMgoy, where one-hot embeddings for each amino acid in a protein sequence
are utilized instead of embeddings from the pre-trained protein language model ESM-2, PSALME,
where the intermediate clan annotations are ommitted, leaving only a PSALM family model with
no clan priors, and PSALMgr (prompted by a reviewer), where the BILSTM components of both
the clan and family models are removed, leaving just the FFNN. These comparisons help discern
whether differences in performance between PSALM and HMMER¥* are influenced more by the
ESM-2 embeddings, intermediate clan predictions, or by the subsequent neural network architecture.

More recent deep learning approaches (e.g., ProtENN) are not included as baselines because they
address sequence-level or single-domain classification, which is a different problem that is largely
irrelevant to domain- or residue-level annotation. We discuss the difference between the two in
our related work section (Section[2.2). Biologists prefer domain-level annotation for many reasons,
including avoiding the “transitive annotation catastrophe”, where unrelated sequences cluster through
homologous domains (e.g., protein AB shares homology with BC, BC with CD, and all three cluster;
but AB shares no homology with CD) (Doerks et al.l [1998} |Ponting & Birneyl, 2005} [Dawson et al.
2017). Biologists rely on extensive domain-level annotation resources built on a state of the art of
profile HMMs (Mistry et al.l 2021; Paysan-Lafosse et al., [2023).
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# Params Learning Rate
Clan Family | Clan Family

PSALMgs9 69M  166M | be—4  be—5
PSALM;50 18M  67M | be—4  be—5H
PSALM35 IOM  47M | be—4  5e—5H
PSALMg SM 29M | be—4  be—H
PSALMpog 56M  153M | le—4 1le—5
PSALMpr 1IM  60M | 5e—4 5e—5

Model

Table 2: Number of parameters and learning rates (LR) for PSALM models.

5.2 IMPLEMENTATION DETAILS

Both PSALM and PSALM-onehot are trained using cross entropy loss over the entire sequence for
both family and clan annotations. For training all PSALM+ESM-2 models, we use ADAM optimizer
(Kingma & Ba, 2014) with initial learning rate 5e—4 for the clan model and 5e—5 for the family
model. These values were selected via hyperparameter tuning from across the following learning
rates: [le—3,5e—4, le—4,5e—5, le—5]. A similar hyperparameter search results in a learning rate
of 1le—4 for the PSALMop clan model and 1e—5 for the family model. We employ a learning rate
scheduler that reduces the learning rate by a factor of \/10 if the validation loss fails to decrease over
consecutive epochs with an additional early stopping criterion of 5 epochs with no improvement.
The effective batch size is 32,768 tokens. We assess the model capacity of PSALM by evaluating
performance across different model sizes, using the 8M, 35M, 150M, and 650M parameter ESM-2
models denoted as PSALMg, PSALM35, PSALM; 50, and PSALMgs.

The number of parameters for all PSALM clan and family models are given in Table[2] All models
were trained on four NVIDIA A100 80GB GPUs. To accommodate memory limitations on the GPU,
all sequences are truncated to a maximum length of 4096 residues. This truncation strategy only
applies to approximately 0.25% of sequences across the training and test sets and does not reflect a
model limitation —- PSALM can be used to annotate sequences of any length provided enough memory.
All procedures from the HMMER tool suite use version 3.4 (Eddy, |2011). Runtime benchmarking
of PSALMgs against HMMER* on all test subsets (Table [} Appendix [A.2) demonstrates PSALM
annotates the test subsets 5-13x faster than HMMER* but has significantly higher peak memory
requirements of 39GB compared to HMMER*’s 0.35GB.

5.3 METRICS

Protein sequence databases have vastly more negatives than positives, requiring extremely low
(essentially zero) and controllable false positive rates (FPR), as false annotations are amplified and
propagated to additional sequences by later searches. Methods in this field are typically benchmarked
for the sensitivity or true positive rate (TPR) they can achieve at a high specificity (low FPR). We
also report the F1 score and Matthews Correlation Coefficient (MCC). Here, FPR is defined as the
fraction of true negative residues (shuffled, preserving residue composition) incorrectly identified
as homologous to a Pfam protein domain family, and TPR is defined as the fraction of residues in
ground truth domains correctly identified. We emphasize that we report per-residue, not per-domain,
metrics.

5.4 EVALUATION

We highlight the key observations from the sequence annotation benchmark (Table [3). PSALMgso
demonstrates superior performance in residue-level domain annotation, accurately annotating a
substantial portion of true domain regions while consistently calling fewer false positives compared
to HMMER*. Specifically, PSALMgs( reaches higher TPR, F1 and MCC scores at a lower FPR than
HMMER*, with the single exception being family TPR at the 20-40% max PID range test subset. The
performance of PSALMg;sy is especially noteworthy in the 0-20% max PID range test subset, which
constitutes the most difficult to detect domains in MDPH-Bench, as these sequences share very little
max sequence similarity with any domain in the training set — PSALMgs( is much more sensitive
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Table 3: PSALM MDPH-Bench residue-level domain annotation results

Clan Family
PID Model TPR  FPR Fl1 MCC | TPR  FPR F1 MCC

HMMER* 0.694 0.033 0.819 0.642 | 0.659 0.033 0.810 0.636
PSALMgs0 0.944 0.022 0.985 0.957 | 0.750 0.012 0.978 0.947
0-20%  PSALM_Fg50 | 0.701 0.015 0.827 0.664 | 0.632 0.015 0.811 0.653
PSALMpgr 0.906 0.025 0976 0.935 | 0.767 0.014 0.966 0.919
PSALMop 0.490 0.100 0.764 0.559 | 0.089 0.022 0.236 0.203
HMMER* 0907 0.043 0941 0.862 | 0.876 0.043 0.939 0.861
PSALMgs0 0.966 0.020 0.985 0.964 | 0.845 0.015 0.982 0.959
20-40% PSALM_Fg50 | 0.781 0.011 0.878 0.764 | 0.747 0.011 0.873 0.760
PSALMprp 0.933 0.023 0.979 00951 | 0.845 0.016 0.975 0.945
PSALMop 0.516 0.107 0.780 0.602 | 0.102 0.023 0.282 0.251
HMMER* 0.951 0.058 0.957 0.898 | 0.921 0.058 0.956 0.896
PSALMg¢s0 0.977 0.020 0.986 0.966 | 0.924 0.017 0.984 0.964
40-60% PSALM_Fgs0 | 0.833 0.012 0.906 0.810 | 0.816 0.012 0.904 0.809
PSALMprp 0.964 0.022 0.982 0.957 | 0.921 0.018 0.981 0.955
PSALMoy 0.666 0.104 0.835 0.671 | 0.159 0.029 0.430 0.363
HMMER* 0.974 0.059 0971 0924 | 0.946 0.059 0.970 0.923
PSALMgs0 0.984 0.018 0.988 0.970 | 0.957 0.016 0.988 0.968
60-80% PSALM_Fg5o | 0.888 0.012 0938 0.857 | 0.876 0.012 0.937 0.856
PSALMprp 0.977 0.021 0.986 0.962 | 0.952 0.018 0.985 0.960
PSALMoy 0.788 0.094 0.890 0.745 | 0.216 0.027 0.573 0.478
HMMER* 0.977 0.051 0.972 0935 | 0950 0.051 0971 0.934
PSALMgs0 0.981 0.015 0.986 0.969 | 0.967 0.012 0.986 0.968
80-100% PSALM_Fgs0 | 0.892 0.010 0940 0.875 | 0.887 0.010 0.939 0.875
PSALMprp 0.975 0.017 0.983 0961 | 0961 0.014 0982 0.959
PSALMop 0.877 0.066 0.925 0.836 | 0.282 0.018 0.709 0.630

and specific than HMMER*. Additionally, PSALMgso outperforms all other models in every metric
at the clan-level across all PID categories. Our results on model capacity (Table[5} Appendix
demonstrate that PSALM performance increases with model size until PSALMgso, which is the only
model that is competitive with HMMER*.

PSALMpgy, the baseline to ablate the significance of the ESM-2 contextual residue-level embeddings
performs poorly at the family level across all PID categories, though it has a consistently low FPR,
and PSALMg. Without the intermediate clan predictions, PSALM_Fgsq is only competitive with
HMMER* at the clan level for the 0-20% max PID range test subset, though PSALM_Fgs( achieves
the lowest max FPR across most test subsets, suggesting that the hierarchical approach leads to
a consistent performance gain across PID categories and model sizes (Table [} Appendix [A.4).
PSALMgr achieves the best TPR on the 0-20% PID test set and achieves competitive TPR in all
PID categories to PSALMgsg, which achieves higher F1 and MCC scores in all PID categories. Both
of these pLM-based residue-level domain annotation methods achieve superior performance over
HMMER®*.

6 EXAMPLES

In Figure 3] we compare the PSALMgso and HMMER* annotations to the ground truth annotations
determined by HMMER, focusing on three protein sequences drawn from the 0-20% PID test subset,
which contains the domains most distantly related to those in the training set.

PSALM is able to identify domains in this test subset that HMMER* either misidentifies (Fig. [3]
A) or fails to identify (Fig. |3| B). The nucleoporin domain-containing protein example (Fig. [3| B)
demonstrates both PSALM’s ability to identify multiple domains in a single input sequence and
a limitation to PSALM’s high sensitivity — the pink Nucleoporin_C domain is too diverged from
related domains in the training set for PSALM to identify the entire length of the domain. The
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Figure 3: Comparison of PSALM and HMMER* annotations to the ground truth HMMER
annotations for three selected protein sequences from the 0-20% PID test subset.

vacuolar protein example (Fig. [3] C) highlights two key difficulties in per-residue sensitivity and
specificity evaluations. Both PSALM and HMMER* correctly identify the Secl domain, but both
methods yield different per-residue TPRs and FPRs. HMMER#* annotates the domain boundary
starting a few residues earlier than the ground truth annotation. This phenomenon is referred to as
homologous over-extension (HOE) (Gonzalez & Pearson|, 2010), where correct domain assignments
may extend for a few residues beyond the precise domain boundary determined in our ground truth
annotations, resulting in an increase in per-residue FPR. This would not correspond to an increase
in domain-level FPR, as HMMER* almost exactly recreates the ground truth annotation. Without
explicit domain-calling on top of the residue-level predictions, it is difficult to separate HOE from
completely erroneous annotations in per-residue metrics. The lack of a domain-calling algorithm
can also impact PSALM’s metrics. PSALM predicts the Secl domain correctly at all residues except
the two regions with low probability annotations indicated in Fig. [3] B, which reduce PSALM’s
per-residue TPR. However, these two regions correspond to insert states (insertions in the vacuolar
protein relative to the Secl domain family alignment) in the raw output of the HMMER ground truth
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annotation and would presumably be "smoothed" over with a domain-calling algorithm, ultimately
recreating the HMMER annotation.

7 CONCLUSIONS

We introduce PSALM, a highly sensitive and specific pLM-based protein sequence annotation
method. PSALM extends the capabilities of self-supervised pLMs with just a few hundred thousand
protein sequences, enabling interpretable residue-level annotations at both the clan and family levels.
Comparisons with InterPro show PSALM’s ability to detect multiple domains, including those
currently unannotated. Ablation experiments confirm the importance of pLM embeddings over
one-hot encodings and the importance of clan annotations in achieving higher family-level sensitivity
and specificity. We find that PSALM performance improves with larger ESM-2 models. The
surprising performance of PSALMgr (pLM + FFENN), comparable to PSALMgso (pLM + BiLSTM +
FFNN), implies that residue embeddings from large pre-trained pLMs like ESM-2 strongly encode
residue-level domain membership information. Both PSALMgsg and PSALMgr outperform HMMER,
the state-of-the-art profile-HMM based method for protein domain sequence annotation. We also
introduce MDPH-Bench, the first protein sequence benchmark that splits training and test sequences
by domain-level sequence similarity for multi-domain proteins. This benchmark minimizes data
leakage and enables model evaluation across an evolutionarily-diverse set of proteins.

We provide implementations of the PSALMgsg family and clan models in a Python package and make
all code, data, and benchmark splits used in this work available in our public GitHub repository to
support reproducibility and further research in protein sequence annotation.

8 LIMITATIONS & FUTURE WORK

8.1 DATA LEAKAGE

Despite our efforts to mitigate it, information from the test set may still contribute to training through
the millions of sequences used to train ESM-2. While we exclude sequences used to train ESM-2
from our test subset with the lowest maximum PID, indirect leakage through homology remains a
possibility. For instance, having established that ESM-2 embeddings encode residue-level domain
membership, ESM-2 may infer remote homology through embeddings learned from sequences
outside of benchmark training set, violating the 0-20% max PID guarantee. Consider a scenario
where sequence A and sequence D are a pair of remote homologs with <20% identity. The homology
between these sequences could be inferred via intermediate sequences B and C, which are not remote
homologs. Even if sequences B and C are not present in MDPH-Bench, ESM-2 was trained on
all these sequences and may encode contextual domain information linking residues from A, B,
and C. Consequently, embeddings from ESM-2 could violate MDPH-Bench’s guarantee of 0-20
PID between sequences A and D, leading to data leakage and/or memorization. Ideally, retraining
ESM-2 from scratch on our training data would provide better insight into the out-of-distribution
generalization capabilities of PSALM. We have not done this in the present work because of the
compute demand for training a pLM like ESM-2, but we plan to rigorously split a much larger set of
proteins to train a pLM from scratch.

8.2 DOMAIN CALLING

PSALM cannot distinguish between repeated domains occurring consecutively or accurately resolve
split domains. For example, if a domain repeats immediately after itself, PSALM labels the entire
two domain block instead of recognizing two separate domains within it. Similarly, when a domain
is split, PSALM identifies the two halves as separate domains from the same family, rather than
as originating from a single domain. We aim to address this by explicitly modeling the domain
boundaries and developing domain-calling algorithms. As mentioned previously, explicit domain
calling is necessary to separate the two error modes that contribute to the overall residue-level FPR —
incorrect domain assignment and HOE — and we aim to characterize these different error modes in
our evaluations once we implement domain calling.

10
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A APPENDIX

A.1 BENCHMARK CREATION

A.1.1 BLUE

We use the BLUE algorithm (Petti & Eddy, 2022) to split the 1.2M Pfam Seed domains into
preliminary train and test sets with a PID threshold of 25%. The pairwise PID between two sequences
x and y is defined as follows:

# aligned residues
min(¢(x), £(y)) ’

where £(x) and £(y) represent the lengths of sequences x and y, respectively. If two domains are in
the same family, PID is directly calculated from their seed alignment. If two domains are not in the
same family but are in the same clan, they are aligned using the gl search tool from the FASTA3
software package (Pearson, |1999), which performs a “global-local” alignment to account for possible
large differences in sequence length. If two domains are not in the same clan, they are assumed to
share < 25% PID.

PID(x,y) = “

A.1.2 GROUND TRUTH ANNOTATION

We determine “ground truth” by annotating full length sequence with Pfam Seed profile HMMs
using hmmscan with strict inclusion criteria (E-value < 0.001, bitscore > 30). The highest-scoring
annotation at each residue is taken as ground truth, but additional post-processing is necessary to
ensure that “nested”” domain structures are retained. This is accomplished by considering the “match
strings” that HMMER generates for an alignment. The match strings contain characters that represent
matches, where residues align to a given domain profile, and characters that represent inserts, where
unaligned residues are inserted into the sequence relative to the domain profile. Annotating the
highest-scoring match state at each residue preserves nested domain structure in the ground truth
annotations (Fig. @).

In a match string, regions with majority matches may contain a few inserts and vice versa. To prevent
frequently alternating annotations in the ground truth, we smooth the match and insert states in the

hmmscan Annotation .
. Domain A
(Bitscore = 34)
0 L
Match String MMMMIMMIIMMMMMMMIIIITIIIIMITIIIIIIIMMMMMMIMMMMMMMMMM
hmmscan Annotation .
. Domain B
(Bitscore = 31)
0 L
Match String MMMMMMMMMMMMMMMMM
Ground T.ruth Domain A Domain B Domain A
Annotation
0 L

Figure 4: A schematic of nested domains with two domains A and B in the nested format A-B-A.
As A is annotated with a higher score than B and overlaps with B, annotating residues only via highest
score will fail to include domain B. Using the match state strings to identify smoothed maximal
segments preserves the nested domain structure in the ground truth annotation.
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match string by identifying maximal scoring segments within the sequence. We assign insert states
a positive score and match states a negative score. The segment of the sequence with the greatest
aggregate score is known as the maximal segment (Karlin & Altschul, |1990), and all residues in the
maximal segment are denoted as insert states. The scores s; for each state are inferred from the match

string for a given sequence:
s; < log (%) , 5)
D

where p; is the frequency with which the state appears in the match string, and g; is a state’s target
frequency, with ). p; = 1 and ), ¢; = 1. We set the insert state target frequency at 0.85, the match
state target frequency at 0.15, and the length threshold at 20, below which maximal segments are
ignored.

A.1.3 MAXIMUM PID CALCULATION

Once the full length test sequences have been retrieved and subsequently filtered, we compute, for
each test sequence, the maximum PID between any of its annotated domains and any annotated
domain in train via Algorithm[I} Each test sequence is assigned to a single (out of five) test subset
based on its maximum PID.

Algorithm 1 Percent identity splitting test set

Require: train sequences D", test sequences D', Pfam family profile HMMs F
Initialize an empty dictionary-like structure record_max_pids
for f € Fdo > identify domains belonging to family f
train_domains < hmmsearch f against D"
test_domains <~ hmmsearch f against D
for (domain,sequence_id) € test_domains do > find max PID b/w test domain and train
MSA + hmmal ign domain to train_domains with f
domain_pids < esl-alipid MSA
max_pid <— max(domain_pids)
if sequence_id not in record_max_pids then > Label sequence with max domain PID
record_max_pids[sequence_id] <— max_pid
else if max_pid > record_max_pids[sequence_id] then
record_max_pids[sequence_id] <— max_pid
end if
end for
end for
Assign each sequence in D to a test split based on max pid

The es1-alipid tool calculates PID for all pairs of sequences for a given MSA, and is part of the
EASEL software package, which can be downloaded together with HMMER (Eddy, [2011}).

A.2 RUNTIME BENCHMARKING

Runtimes are recorded as total (wall clock) time. All HMMER* timings were measured on a single
core on a dedicated cluster node. Additionally, the PSALMgs is run on a single NVIDIA A100 GPU
with 80GB memory.

15
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Table 4: Memory and runtime usage for PSALMg59 and HMMER* across PID categories.

Test Subset | 0-20% | 20-40% | 40-60% | 60-80% | 80-100%
# Sequences 4,087 | 37,319 | 17,446 8,570 5,864
Average Length 399.55 | 409.47 | 617.95 | 774.33 1,044.7
PSALMgso Peak Mem (GB) | 22.49 38.49 34.97 36.46 29.74
PSALMgsg Time (s) 99.88 | 815.39 | 662.97 | 451.03 488.36
HMMER* Peak Mem (GB) 0.18 0.35 0.27 0.24 0.21
HMMER* Time (s) 1,330 | 10,805 5,802 3,119 2,403

A.3 MODEL CAPACITY EXPERIMENTS
We assess the model capacity of PSALM by evaluating performance across different model sizes,

using the 8M, 35M, 150M, and 650M parameter ESM-2 models denoted as PSALMg, PSALM3s,
PSALM150, and PSALM650 (Table@

Table 5: PSALM model capacity results on MDPH-Bench

Clan Family
PID Model TPR  FPR F1 MCC | TPR FPR F1 MCC
HMMER* | 0.694 0.033 0.819 0.642 | 0.659 0.033 0.810 0.636
PSALMgso | 0.944 0.022 0985 0.957 | 0.750 0.012 0.978 0.947
0-20% PSALM;5p | 0.862 0.133 0912 0.758 | 0.621 0.050 0.869 0.730
PSALM35; | 0.729 0.174 0.847 0.620 | 0.428 0.071 0.721 0.532
PSALMg 0.589 0.214 0.772 0.488 | 0.211 0.079 0.463 0.293
PSALMon | 0.490 0.100 0.764 0.559 | 0.089 0.022 0.236 0.203
HMMER* | 0907 0.043 0.941 0.862 | 0.876 0.043 0.939 0.861
PSALMgsp | 0.966 0.020 0985 0.964 | 0.845 0.015 0.982 0.959
20-40% PSALM;5 | 0.887 0.092 0925 0.819 | 0.727 0.036 0910 0.817
PSALM35 | 0.799 0.131 0.873 0.709 | 0.607 0.056 0.825 0.682
PSALMg 0.636 0.192 0.788 0.553 | 0.353 0.074 0.623 0.452
PSALMoy | 0.516 0.107 0.780 0.602 | 0.102 0.023 0.282 0.251
HMMER* | 0951 0.058 0.957 0.898 | 0.921 0.058 0.956 0.896
PSALMgso | 0.977 0.020 0986 0.966 | 0.924 0.017 0.984 0.964
40-60% PSALM;5p | 0.888 0.058 0.927 0.834 | 0.806 0.026 0.919 0.832
PSALM35; | 0.826 0.101 0.882 0.736 | 0.728 0.049 0.866 0.738
PSALMg 0.704 0.158 0.809 0.598 | 0.532 0.072 0.741 0.567
PSALMoy | 0.666 0.104 0.835 0.671 | 0.159 0.029 0.430 0.363
HMMER* | 0974 0.059 0.971 0.924 [ 0946 0.059 0970 0.923
PSALMgso | 0.984 0.018 0.988 0.970 | 0.957 0.016 0.988 0.968
60-80% PSALM;50 | 0912 0.058 0.940 0.850 | 0.859 0.028 0.936 0.852
PSALM35 | 0.845 0.083 0900 0.761 | 0.782 0.045 0.888 0.759
PSALMg 0.728 0.154 0.827 0.609 | 0.605 0.084 0.778 0.583
PSALMoy | 0.788 0.094 0.890 0.745 | 0.216 0.027 0.573 0.478
HMMER* | 0977 0.051 0.972 0.935 [ 0.950 0.051 0971 0.934
PSALMgso | 0.981 0.015 0986 0.969 | 0.967 0.012 0.986 0.968
80-100% PSALM;50 | 0.895 0.049 0.929 0.845 | 0.851 0.024 0.924 0.845
PSALM35; | 0.812 0.088 0.872 0.732 | 0.732 0.046 0.853 0.725
PSALMg 0.711 0.114 0.809 0.624 | 0.601 0.059 0.761 0.600
PSALMoy | 0.877 0.066 0925 0.836 | 0.282 0.018 0.709 0.630
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A.4 FAMILY-ONLY PSALM FULL RESULTS

We conduct an additional ablation experiment in order to study the effect of predicting clan-level
annotations as an interpretable intermediate in PSALM (Table @) We retrain the PSALMy,, family
model without providing any predicted clan annotations and denote this model as PSALM_F;,, for
all ESM-2 model sizes tested in the main text. Clan predictions are generated by identifying the clan
corresponding to the predicted family.

Table 6: Family-only PSALM MDPH-Bench Results

Clan Family
PID Model TPR  FPR F1 MCC | TPR FPR F1 MCC

HMMER* 0.694 0.033 0819 0.642 | 0.659 0.033 0.810 0.636
PSALM_Fg59 | 0.701 0.015 0.827 0.664 | 0.632 0.015 0.811 0.653
0-20% PSALM_F;50 | 0.630 0.034 0.781 0.596 | 0.540 0.034 0.753 0.576
PSALM_F35 | 0.560 0.065 0.733 0.523 | 0412 0.065 0.670 0.476
PSALM_Fg 0.394 0.115 0.599 0.355 | 0.232 0.115 0.469 0.253
HMMER* 0.907 0.043 0941 0.862 | 0.876 0.043 0.939 0.861
PSALM_Fgsp | 0.781 0.011 0.878 0.764 | 0.747 0.011 0.873 0.760
20-40% PSALM_Fi59 | 0.705 0.032 0.833 0.691 | 0.651 0.032 0.822 0.682
PSALM_F3z5 | 0.662 0.058 0.800 0.632 | 0.581 0.058 0.778 0.614
PSALM_Fg 0479 0.102 0.674 0.462 | 0356 0.102 0.605 0.406
HMMER* 0.951 0.058 0.957 0.898 | 0.921 0.058 0.956 0.896
PSALM_Fgso | 0.833  0.012 0906 0.810 | 0.816 0.012 0.904 0.809
40-60% PSALM_Fi59 | 0.785 0.025 0.877 0.759 | 0.758 0.025 0.873 0.756
PSALM_F3; | 0.746 0.048 0.846 0.703 | 0.708 0.048 0.839 0.697
PSALM_Fg 0.594 0.087 0.749 0.557 | 0.520 0.087 0.723 0.535
HMMER* 0.974 0.059 0971 0924 | 0.946 0.059 0970 0.923
PSALM_Fg5p | 0.888 0.012 0.938 0.857 | 0.876 0.012 0.937 0.856
60-80% PSALM_Fi50 | 0.842 0.025 0910 0.801 | 0.823 0.025 0.908 0.799
PSALM_Fs35 | 0.792 0.048 0.876 0.733 | 0.770 0.048 0.872 0.730
PSALM_Fg 0.632 0.093 0.776 0.569 | 0.586 0.093 0.762 0.558
HMMER* 0.977 0.051 0972 0935 | 0950 0.051 0971 0.934
PSALM_Fg59 | 0.892 0.010 0940 0.875 | 0.887 0.010 0.939 0.875
80-100% PSALM_F;50 | 0.835 0.024 0903 0.808 | 0.819 0.024 0.901 0.806
PSALM_F3z5 | 0.740 0.047 0.839 0.701 | 0.720 0.047 0.835 0.697
PSALM_Fg 0.661 0.078 0.783 0.609 | 0.627 0.078 0.774 0.601
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