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Abstract

We examine hypothesis testing within a principal-agent framework, where a strate-
gic agent, holding private beliefs about the effectiveness of a product, submits data
to a principal who decides on approval. The principal employs a hypothesis testing
rule, aiming to pick a p-value threshold that balances false positives and false neg-
atives while anticipating the agent’s incentive to maximize expected profitability.
Building on prior work, we develop a game-theoretic model that captures how the
agent’s participation and reporting behavior respond to the principal’s statistical
decision rule. Despite the complexity of the interaction, we show that the princi-
pal’s errors exhibit clear monotonic behavior when segmented by an efficiently
computable critical p-value threshold, leading to an interpretable characterization
of their optimal p-value threshold. We empirically validate our model and these
insights using publicly available data on drug approvals. Overall, our work offers a
comprehensive perspective on strategic interactions within the hypothesis testing
framework, providing technical and regulatory insights.

1 Introduction
In data-driven decision making, the outcome assigned to an agent often depends on data submitted
by them, creating the potential for misaligned incentives. The role of strategic behavior in decision
making systems has thus become a burgeoning area of research in the machine learning community,
from classification [1, 2], to regression [3, 4, 5] and beyond [6]. However, limited literature exists
on this perspective for a widely used and influential process in regulatory and scientific settings:
hypothesis testing. Widely used in clinical trials, scientific research, and technological innovations [7,
8, 9, 10], hypothesis testing serves as a foundational method for assessing whether the evidence
provided by a participating agent is both statistically significant and convincing. Consider, for
instance, the U.S. Food and Drug Administration (FDA), which oversees drug approvals by setting
a p-value threshold α for submitted clinical trials. Pharmaceutical firms incur substantial costs
by participating in drug development and running trials in the hopes of being approved. Although
falsifying results has high reputational and legal risks, firms are free to decide if to participate and how
large to run a trial. We argue these decisions are intimately shaped by the FDA’s p-value threshold
and the cost-benefit calculus of the overall process. We thus propose a principal-agent model to
understand these nuanced strategic decisions surrounding participation and evidence collection for a
hypothesis test.
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Bates et al. [11] initiated this literature by casting how agents respond to regulatory approval thresholds
as a Stackelberg game. We extend this framework to capture additional real-world complexities
that are abstracted away in their model. Specifically, we extend the analysis beyond binary notions
of effectiveness and fixed trial costs, allowing agents to strategically choose their trial size based
on the expected benefit relative to marginal per-sample cost. This extension not only enriches the
analysis of agent incentives but also provides a more nuanced understanding of how regulatory
policies can influence participation and decision outcomes. This richer model, however, leads to
a more complex relationship between the regulator-specified p-value and the resulting error rates
that they wish to control – for instance, if marginal costs increase faster than the expected revenue
gains, raising α could paradoxically reduce the likelihood of passing the hypothesis test. This is
further complicated by the principal wishing to control any combination of Type I (false positive) and
Type II (false negative) errors within our model. Indeed, while the broader literature focuses on only
the former [11, 12, 13, 14], we argue that minimizing the rejection or non-participation of effective
products is also consequential to decision-makers, especially when this is influenced by low revenue
relative to costs, as is the case for low-cost and orphan drugs [15]. We outline our key contributions
toward addressing these challenges below:

1. Game-Theoretic Framework: Like Bates et al. [11], we consider a principal-agent (Stackelberg
game) framework but relax several key assumptions to adhere more closely to real-world settings.
We allow agents to strategically choose their sample sizes as part of their best responses and
account for the marginal cost of such samples. Further, we model the principal as aiming to
minimize any combination of Type I and II errors.

2. Analysis of Component-Wise Losses: We rigorously analyze the principal’s loss components
as functions of the p-value threshold under agent best-responding behavior. Despite the complex
interplay between several factors, the monotonicity of Type I and Type II errors as a function of
the p-value threshold α is preserved in a piecewise manner. Specifically, there exists a critical
threshold α̂ such that the error dynamics are monotonic within each segmented region: one for
α < α̂ and one for α ≥ α̂.

3. Empirical Validation and Policy Implications: We validate our theoretical findings through
an empirical analysis of drug approvals for three major drug categories and show that under our
model, the commonly used p-value of 0.05 aligns well with median revenue thresholds in these
markets. The results suggest our model captures the economic dynamics of this process and
suggests new policy insights.

Additional Related Works: Our work is closely related to the literature on economic aspects
of statistical testing, p-hacking, contract theory, and FDA regulatory policies. A growing body of
research examines the economic incentives in statistical decision-making [12, 14, 16, 13, 17]. Shi
et al. [13] extends the work of Bates et al. [11] (which is discussed above) by studying strategic
hypothesis testing under general concave utility functions, providing bounds on the Bayes False
Discovery Rate (FDR). Relatedly, Bates et al. [14] models the agent-principal interaction through a
contract-theoretic lens for incentive alignment, differing from our Stackelberg game approach. Also
related is the well-known issue of p-hacking, where researchers manipulate sample sizes or selectively
report findings to artificially achieve statistical significance [18, 9, 10, 19, 8]. Note that the strategic
behavior in our setting is not inherently malicious, but rather reflects rational decision-making based
on cost, revenue, and expected trial outcomes. A good p-value threshold discourages agents with
ineffective drugs from participating based on economic incentives: the costs of participation outweigh
the potential benefits. This disincentives p-hacking insofar as data collection is costly. Our work
also intersects with the literature on contract theory, which examines incentive alignment in the
presence of private information [20, 21, 22, 23, 24]. Recent work by Min [25] applies contract theory
to model FDA approval processes, analyzing how firms of different sizes choose between cheaper
and more expensive trials. Further, Isakov et al. [26] employs Bayesian Decision Analysis (BDA) to
optimize p-value thresholds by balancing Type I and Type II errors. Our empirical results leverage
the statistical testing-based framework used by the FDA. Typically, this is established through either
two successful controlled trials (with a p-value < 0.05) or a single robust multicenter trial (with a
p-value < 0.005), as outlined in [7]. We simplify this in our analysis by only considering the former.

2 Model
Preliminaries: Consider a principal who must decide between approving or rejecting a product
manufactured by an agent based on evidence provided by the agent. Let X ∈ {0, 1} be a Bernoulli
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random variable indicating whether the product was effective on a random instance. Let µ0 = E[X]
denote the mean effectiveness of this product, with µ0 ∼ q. While µ0 is private (known only by the
agent), the distribution q is assumed public (known to both the principal and agent). Let µb denote
a baseline effectiveness (i.e. effectiveness of current products) and be treated as a constant: the
principal’s goal is to only approve products perceived to be at least as good as the baseline (µ0 ≥ µb),
with (µ0 − µb) denoted as effect size. An agent faces two possible decisions for their product. First,
they can choose whether or not to participate in the approval process and engage with the principal.
Not participating, equivalent to n = 0, incurs no cost and collects no revenue. If they participate,
they must also decide on the number of samples n ∈ [nmin, nmax] to collect and submit an evidence
set Xn = (X1, . . . , Xn) to the principal. This incurs a fixed cost c0 and a marginal per-sample cost
c. Thus, cost(n) = 1 [n ̸= 0] (c0 + cn). If their product is approved, they earn revenue R. Agents
are assumed rational and act to maximize their expected utility – expected revenue minus cost (see
Definition 2.2). We assume the revenue and cost parameters are known to the principal.

Connecting this to our running example, the FDA (the principal) decides on the approval of new
drugs from pharmaceutical companies (the agents) based on whether the clinical trial data suggests
them to be at least as effective as current alternatives on the market. If a firm follows through on the
development of a new drug and participates in clinical trials, c0 denotes any fixed costs herein, and
c, the per-subject marginal cost of the trial. An FDA approval means a lifetime revenue R for their
new drug, while rejection means no revenue. As such, the firm only participates if its expected profit
(utility) is non-negative, and chooses the samples n to maximize this.

Hypothesis Testing: The agent’s decision clearly hinges on how the principal uses the evidence set
to evaluate effectiveness. We model this process on hypothesis testing given its ubiquity and relevance
in settings like drug approval, manufacturing, public policy, and so on [7, 8, 9, 10]. Formally, let
H0 = {µ0 ≤ µb} be the null hypothesis (the product is less effective than baseline) and denote
the alternative as H1 = {µ0 > µb}. The principal uses a p-value threshold α to reject the null
hypothesis and approve the product. To expand, given an evidence set Xn, let µ̂ denote the empirical
mean. Further, let Sn denote the random sum of n variables sampled from the baseline process with
effectiveness µb. Then the p-value is defined as the probability of observing outcomes at least as good
as the evidence, conditioned on the null hypothesis: p(µ0, n) = Pr[Sn ≥ nµ̂|H0]

2. Observe that
when the empirical mean of the evidence is worse than the baseline, the p-value will likely be higher
than α, leading the principal to reject; otherwise, when p(µ0, n) ≤ α, the principal will accept. For
an evidence set with n samples and a p-value α, the critical region is the number of successes needed
to reject the null-hypothesis and thus be approved. Since the sample outcomes are Bernoulli and the
sum random variable follows a Binomial distribution, it is common to use a normal distribution ϕ to
approximate the p-value and critical region:

zα,n ≈
{
k ∈ R

∣∣∣∣ ∫ ∞

k

ϕ(nµb, nµb(1− µb)) ≤ α

}
≈ nµb +Φ−1(1− α)

√
nµb(1− µb)

where Φ is the CDF of the standard normal and Φ−1, its inverse. Formalizing the principal’s decision-
making process means that we can now compile the probability that a product with effectiveness µ0

is approved (the randomness is over the evidence set), and thereby the agent’s utility:
Definition 2.1 (Pass Probability). For a p-value threshold α and baseline effectiveness µb, a product
with effectiveness µ0 and evidence set |Xn| = n is approved with probability:

Pass(α, µ0, n) ≜ Pr[p(µ0, n) ≤ α] ≈ 1− Φ

(
zα,n − nµ0√
nµ0(1− µ0)

)
(1)

Non-participation is considered equivalent to n = 0, and Pass(α, µ0, n = 0) ≜ 0, ∀µ0, α.
Definition 2.2 (Agent Utility). An agent with revenue R, cost parameters (c0, c), and a product with
effectiveness µ0 ∼ q has the following utility for their participation/sample parameter n:

u(α, µ0, n) = R · Pass(α, µ0, n)− 1 [n ̸= 0] (c0 + cn) (2)

While the agent aims to maximize their utility, the principal’s goal is to choose a p-value threshold
that minimizes some combination of their Type I and Type II errors, a standard desideratum in

2While p value calculations depends on µb, we drop this from function signatures since it is a constant.
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hypothesis testing. In machine learning terminology, these are equivalent to minimizing the false
positive (approving ineffective products) and false negative (not approving effective products) rates.
These error components are defined with respect to the effectiveness distribution q, and we note that
the principal may desire an arbitrary trade-off between the two error components. This principal loss
and its objective are shortly defined in Definition 2.3.

Game Theoretic Model: It is evident that agents will choose n strategically to maximize their
utility, while the principal selects a p-value threshold α to minimize a loss function, which we will
define in Definition 2.3. This naturally leads to a game-theoretic framework. In most regulatory
settings (drug approval, manufacturing, etc), the principal must first communicate the acceptance
criteria to all possible participants. Agents, on the other hand, can make their decision to participate
and collect samples based on the revealed criteria. This interaction outlines a Stackelberg Game, an
asymmetric model of strategic decision-making: the principal first commits to the p-value threshold,
allowing agents to then make their optimal decision/best-response (participation decisions and number
of samples) thereafter3. In such games, the core solution concept is the Stackelberg Equilibrium – the
optimal principal strategy, given that downstream agents will best respond. We formally define the
game and its details below:
Definition 2.3 (Stackelberg Game in Strategic Hypothesis Testing). The principal-agent interactions
in a hypothesis testing setting outline a Stackelberg game defined by the tuple I = (q,R, c, c0, µb).
The best-response of an agent with effectiveness µ0 ∼ q when the principal commits to a
p-value threshold α is: nµ0

(α) = argmaxn u(α, µ0, n).

The principal in choosing a p value threshold α suffers the following loss when agents best respond
(we denote Fail(·) = 1− Pass(·) and λfp, λfn are constants that scale the respective loss terms):

L(α, I) = λfp E
µ0∼q

[Pass(α, µ0, nµ0
(α))|µ0 < µb]︸ ︷︷ ︸

False Positive (Type I error) ≜ FP(α, q)
Approval of ineffective products (µ0<µb)

+λfn E
µ0∼q

[Fail(α, µ0, nµ0
(α))|µ0 ≥ µb]︸ ︷︷ ︸

False Negative (Type II error) ≜ FN(α, q)
Non-approval of effective products(µ0≥µb)

The principal optimal strategy and the Stackelberg Equilibrium is to choose α⋆ = argminα L(α, I).

In Section 3 and Section 4, we will investigate the agent’s best response behavior as well as how the
principal chooses p-value threshold affects the loss defined in Definition 2.3.

3 Agent Best Response

According to our strategic model, after the principal releases a p-value threshold α, the utility-
maximizing agent must decide (1) if they want to develop the product and participate in the approval
process, and if so, (2) how many samples they ought to include in their submitted evidence set.
Notice that this decision-making process is ex-ante and relies on the agent’s belief in their product’s
effectiveness µ0. Intuitively, the agent intends to determine the optimal number of samples n to
maximize their ex-ante expected utility; if this is negative, they have no incentive to participate.
Mathematically, participation is defined by 1 [u(α, µ0, nµ0(α)) ≥ 0], where u(α, µ0, n) is defined in
Definition 2.2 and nµ0(α) is the optimal number of samples. We now show that this can be efficiently
computed by the agent. We sketch the proof below, with the full proof in Appendix B
Theorem 3.1. For an instance I and a released p-value α, an agent with effectiveness µ0 can
compute their best-response (participation decision and number of samples) in O(log nmax).

Proof Sketch. By leveraging properties of the normal CDF that define the pass probability, we first
show that when µ0 < µb, the optimal n = nmin. For µ0 ≥ µb, we undertake a first and second-order
analysis to partition the utility function into a constant number of intervals wherein it is convex or
concave; the boundaries of these regions can be computed in constant time, and the optimal n within
each region requires at-most a binary search. Once the optimal n is computed, it suffices to compute
the passing probability and participate if the corresponding expected utility is non-negative. □

We now prove that despite the agent being strategic and their participation and sampling decisions
dynamically changing in both α and µ0, several natural and intuitive results still hold. These are

3Technically, our setting is a Bayesian Stackelberg Game since agents have hidden types (the effectiveness
µ0), but the principal knows the distribution q.
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instrumental to the analyses of the principal’s optimal/equilibrium p-value threshold. We first show
that the participation behaviour is monotonic in α (Lemma 3.1). The full proof is in Appendix B.

Lemma 3.1. For an instance I = (q,R, c, c0, µb) and p-value threshold α, if an agent with effective-
ness µ0 participates in the statistical test, then any agent with belief µ1 ≥ µ0 will also participate.
Similarly, if an agent with belief µ′

0 does not participate, neither will one with belief µ′
1 < µ′

0.

This monotonicity result immediately implies the existence of a participation threshold µτ (α) for
any given p-value α. That is, for any instance I and p-value α, agents with effectiveness µ0 ≥ µτ (α)
will always participate, and those below will not. As we subsequently show, the participation
threshold is a crucial concept in understanding the principal’s decision – it determines the selection
mechanism induced by the p-value threshold α, shaping the set of participating agents based on
their effectiveness. Consequently, understanding how µτ (α) changes as a function of the instance
parameters R, c, α provides key insights into optimizing the principal’s objective function. We now
show that the participation threshold decreases as the p-value threshold α increases; further, it can be
computed in log time and is agnostic to the effectiveness distribution q (full proof in Appendix B).

Definition 3.1 (Participation Threshold). For an instance I and a p-value α, we denote µτ (α) as the
participation threshold if it is optimal for agents with effectiveness µ0 ≥ µτ (α) to participate, and
for those with µ0 < µτ (α) to abstain.

Lemma 3.2. The participation threshold µτ (α) decreases in the p-value α. Further, this threshold
can be computed with ε precision in O

(
log
(
1
ε

)
log(nmax)

)
.

Proof Sketch. Since the passing probability of the hypothesis test increases with α for a fixed effect
size, agents with lower beliefs are more likely to meet the passing condition as α increases. By
the monotonicity of participation (Lemma 3.1), if an agent participates at µτ (α1) under a p-value
α2 > α1, then agents with beliefs greater than µτ (α1) must also participate. This implies that the
participation threshold under α2 must be at or below the threshold under α1, establishing that µτ (α)
is non-increasing in α. To determine µτ (α), we can discretize the effectiveness space into 1

ε intervals
and run binary search. The algorithm and correctness rely on Lemma 3.1 and Theorem 3.1. □

This formalizes the intuition that even under strategic sampling and participation decisions, as the
principal increases the p-value threshold, namely when it’s “easier” to pass the statistical test, agents
with lower effectiveness (who can still be better than baseline) will find it beneficial to participate
in the approval process. The monotonicity of the agent participation decision also means that the
agent’s utility is increasing in µ0. This is formalized below, with the proof in Appendix B.

Lemma 3.3. For any given p-value α, the agent’s utility under optimal number of samples
u(α, µ0, nµ0(α)) increases in their effectiveness µ0.

4 Principal Equilibrium and Loss Dynamics

The principal’s strategic choice is to set the p-value threshold α. Given the agent’s best response
behavior, how should the principal select α to minimize their loss, as defined in Definition 2.3? The
loss captures the trade-off between two risks: approving ineffective products (false positives) and
failing to approve effective ones (false negatives). A product can fail to be approved either by explicit
rejection after participating in the approval process, or by the agents opting not to participate. Since the
p-value threshold α influences the participation decision (Lemma 3.2), this becomes an implicit factor
in the loss function. The principal’s challenge is to set α optimally: a low α reduces false positives
but may discourage worthy candidates from participation, increasing false negatives; conversely,
a high α boosts participation but raises the risk of approving ineffective products. Optimizing α
requires a careful balance between these risks while accounting for agents’ strategic behaviour.

We begin by re-expressing the cumulative loss conditioned on the participation decision induced by
α for a given agent, a decision entirely captured by the condition µ0 ≥ µτ (α):

L(α, I) = λfp E
µ0∼q

[Pass(α, µ0, nµ0
(α))|µ0 < µb, µ0 ≥ µτ (α)]P (µ0 ≥ µτ (α)|µ0 ≤ µb) (FPparticip)

+ λfp E
µ0∼q

[Pass(α, µ0, nµ0
(α))|µ0 < µb, µ0 < µτ (α)]P (µ0 < µτ (α)|µ0 ≤ µb) (FPabstain)

+ λfn E
µ0∼q

[Fail(α, µ0, nµ0(α))|µ0 ≥ µb, µ0 ≥ µτ (α)]P (µ0 ≥ µτ (α)|µ0 ≥ µb) (FNparticip)
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+ λfn E
µ0∼q

[Fail(α, µ0, nµ0(α))|µ0 ≥ µb, µ0 < µτ (α)]P (µ0 < µτ (α)|µ0 ≥ µb) (FNabstain)

= FPparticip(α, I) + FPabstain(α, I) + FNparticip(α, I) + FNabstain(α, I)

Note that the overall false positive FP(α, I) = FPparticip(α, I) + FPabstain(α, I) and similarly, the
overall false negative FN(α, I) = FNparticip(α, I) + FNabstain(α, I). Further, observe that when the
agent does not participate, their probability of passing the test is 0 – therefore, FPabstain = 0 at all
times. Thus, the cumulative loss is fully specified by L(α, I) = FPparticip + FNparticip + FNabstain. We
will now analyze the properties of these components as a function of α. Remarkably, despite the
complex interplay between the agent’s strategic participation and the principal’s decision, the loss
terms exhibit consistent monotonic behavior within regions segmented by a critical threshold α̂ –
intuitively, this is the p-value wherein the participation threshold µτ (α̂) = µb (see Definition 4.1).

Definition 4.1 (Critical p-value α̂). The critical p-value threshold α̂ is the p-value at which the
participation threshold (Definition 3.1) is equal to the baseline effectiveness – µτ (α̂) = µb. This
quantity is agnostic to the effectiveness distribution q and scaling parameters (λfp, λfn).

Before our detailed analysis, we highlight that the forthcoming results depend on a core observation –
for effective agents (µ0 ≥ µb), the probability of passing the statistical test increases as the p-value
α increases. While this is intuitive when the participation and the number of samples used (n) are
fixed, when agents are strategic and dynamically change these decisions, it is trickier. For example, if
an increased α led the agent to use fewer samples due to high marginal cost relative to the increase
in passing probability and thus revenue (this is indeed common as the p-value becomes high), the
pass probability could decrease. The lemma below highlights that despite the complicated dynamics
of optimal samples, nµ0

(α), the passing probability is always non-decreasing in α. The proof is
technical and appears in Appendix C, but we sketch the key ideas below.

Lemma 4.1. For an instance I and an agent with effectiveness µ0 ≥ µb, the probability of passing –
Pass(α, µ0, nµ0(α)) – is non-decreasing in α when the agent participates and uses nµ0(α) samples.

Proof Sketch. We prove that for µ0 ≥ µb, we have ∂
∂αPass(α, µ0, nµ0(α) ≥ 0. The total effect is

decomposed into a direct effect, capturing the change in pass probability purely due to α, and an
indirect effect, which accounts for changes in the agent’s optimal sample size nµ0(α). For the direct
effect, an increase in α reduces the critical threshold Φ−1(1 − α), making it easier for agents to
pass the test. For the indirect effect, the agent adjusts their optimal sample size nµ0

(α) based on
the value of α. We compute ∂Pass

∂n and apply the Implicit Function Theorem to determine dn(α)
dα ,

which incorporates the agent’s optimal behavior. The second derivative of the pass probability with
respect to n is shown to be negative, ensuring the utility is concave with respect to sample size. This
concavity guarantees a unique optimal sample size nµ0

(α), which varies predictably with α. Finally,
we show that the combination of the direct and indirect effects results in the total derivative being
non-negative, confirming that the pass probability is monotonic with respect to α. □

4.1 False Positive Loss

Since FPabstain = 0 (non-participation means the probability of passing is 0), the overall false positive
is purely determined by FPparticip. We now show below that for α ≤ α̂, FPparticip = 0, while for
α > α̂, this is increasing. We set the scaling factor λfp = 1 since it does not affect the analysis.

Theorem 4.1. The overall false positive loss, FP(α, I) = FPparticip(α, I). Further, this quantity is 0
for α < α̂, and non-decreasing in α for α ≥ α̂.

Proof. It suffices to prove the property for FPparticip. First, consider an α < α̂. We know from
Lemma 3.1 that the participation threshold is decreasing in α. Thus, since µτ (α̂) = µb, it means that
our given α, µτ (α) > µb. In other words, any agents participating under this p-value are effective
(above baseline) and do not contribute to the false positive.

Next, consider α ≥ α̂. We know from above that the participation threshold now is below µb.
Observe that for any α, we can write the false positive rate as follows:

FPparticip =
P [µτ (α) ≤ µ0 ≤ µb]

P [µ0 ≤ µb]

∫ µb

µτ (α)

Pass(α, µ0, nµ0(α))P [µ0|µτ (α) ≤ µ0 ≤ µb]dµ0
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=
1

P [µ0 ≤ µb]

∫ µb

µτ (α)

Pass(α, µ0, nµ0
(α))q(µ0)dµ0

Note that 1
P [µ0≤µb]

is a constant and as α increases to α′, µτ (α
′) < µτ (α), meaning we integrate over

a larger region. The integrand itself is always positive, and for every µ0 ≥ max(µτ (α), µτ (α
′)) =

µτ (α), the pass probability has increased (Lemma 4.1). Thus, FPparticip is non-decreasing in α.

4.2 False Negative Loss

We next consider the components of the false negative loss: FNparticip and FNabstain. We first establish
the monotonicity properties of FNabstain, which is exactly equal to the proportion of effective agents
not participating since not participating means that Pass(·) = 0, implying Fail(·) = 1. In other words,
FNabstain = P (µ0 < µτ (α)|µ0 ≥ µb). Once more, segmenting the p-value space by α̂ is crucial to
establishing this relationship. As before, we set λfn = 1 since it does not affect the analysis.
Proposition 4.1. The non-participation false negative loss, FNabstain(α, I) is non-increasing in α for
α ≤ α̂, and is 0 for any α ≥ α̂.

Proof. Consider α1, α2 where α2 ≥ α1, where both α1, α2 ≤ α̂. Thus, we first need to show that:
P (µ0 < µτ (α1)|µ0 ≥ µb) ≥ P (µ0 < µτ (α2)|µ0 ≥ µb). We know from the monotonicity of the
threshold belief (Lemma 3.1), µτ (α2) ≤ µτ (α1). Let Q≥µb

denote the CDF of the effectiveness
distribution, conditioned on the event µ0 ≥ µb. Then Q≥µb

(µτ (α)) = P [µ0 ≤ µτ (α)|µ0 ≥ µb].
It is then immediate that Q≥µb

(µτ (α2)) ≤ Q≥µb
(µτ (α1)). Lastly, for α ≥ α̂, we note that by

definition of α̂ and Lemma 3.1: µτ (α) ≤ µb. In other words, it is optimal for all effective agents to
participate, meaning FNabstain = 0 in this regime.

One might expect to show a similar result for FNparticip and thereby conclude the cumulative behavior
of the false negative loss. Indeed, when α ≥ α̂, the participation threshold is smaller than the baseline
µτ (α) < µτ (α̂) = µb, which means all agents whose prior is greater than µb will participate, thus
Pr[µ0 ≥ max(µτ (α), µb)|µ0 ≥ µb] = 1. The FN under participation loss simplifies to

for α ≥ α̂: FNparticip(α, I) = E
µ0∼Q

[1− Pass(α, µ0, nµ0
(α))|µ0 ≥ µb] (3)

Following directly from the monotonicity of the passing probability (Lemma 4.1), this implies that
FNparticip decreases as a function of α when α ≥ α̂. We formally state this below:
Proposition 4.2. FNparticip(α, I) is non-increasing in α for all α ≥ α̂.

When α < α̂, however, FNparticip displays a much more nuanced behaviour – indeed, in Section 5, we
show that this component is not monotonic and can be increasing, decreasing, or both in the α ≤ α̂
region. This may suggest that, unlike the false positive setting, little can be said about the combined
false negative effect (FNparticip +FNabstain). As we show in Theorem 4.2, however, this is not true, and
we directly establish the monotonicity of the combined false negative rate when the p-value domain
is segmented by α̂. The result is technical and the full proof is given in Appendix C.
Theorem 4.2. The overall false negative loss, FN(α, I) = FNparticip(α, I) + FNabstain(α, I), is
non-increasing in α on both sides of α̂, that is, it is not increasing for α ≤ α̂, and for all α ≥ α̂.

4.3 Characterizing α∗ – The Optimal p-value Threshold

FPparticip FPabstain Overall FP FNparticip FNabstain Overall FN
α ≤ α̂ 0 0 0 – Non-Inc Non-Inc
α > α̂ Non-Dec 0 Non-Dec Non-Inc 0 Non-Inc

Table 1: Summary of the loss dynamics as α increases. α̂ is defined in Definition 4.1. We comment
on FNparticip in the α ≤ α̂ regime in Section 5. See figure 1 for this dynamic visualized on an instance.

We summarize our analysis of the different loss components in the table above. These results lead to
a succinct characterization of how the principal should use their equilibrium α∗. Observe that for any
α ≤ α̂, the overall false positive is 0, while the overall false negative rate is decreasing in α. This
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immediately implies that α̂ is weakly better than any α ≤ α̂, and that α∗ must be at least as large
as α̂! This observation and the value of α̂ are agnostic to both the effectiveness distribution q and
the loss scaling constants λfp, λfn. This is a powerful characterization. While the true optimal α∗

may be larger, the principal suffers additional false positives here while lowering the false negatives.
In settings like drug approvals and manufacturing, where the cost of false-positives is very high –
λfp ≫ λfn – the optimal may indeed be close to α̂.

In recommending values close to α̂ as optimal, the question of computation arises. Fortunately, since
by definition at α̂, µτ (α̂) = µb, and the participation threshold µτ (α) can be computed to ε accuracy
in O(log 1

ε log(nmax)) time, an α̂ can be efficiently computed to ε accuracy in O(log2 1
ε log(nmax)).

This follows from discretizing the p-value domain into 1
ε intervals and running binary search,

leveraging the monotonicity of the participation threshold Lemma 3.2.

Theorem 4.3. For any instance I, the principal’s optimal p-value α∗ satisfies α∗ ≥ α̂, where
α̂|µτ (α̂) = µb. Further, an ε approximation to an α̂ such that µτ (α̂) ∈ [µb ± ε] can by computed in
O(log2 1

ε log(nmax)).

5 Experimental Studies

FNparticip losses for different distributions Loss components for q = TruncNorm(0.62, 0.04)

Figure 1: On the left, we plot the FNparticip losses for different effectiveness distributions q. On the
right, we plot all the different loss components for one of these distributions with λfp = λfn = 1

5.1 False Negative Rate Among Participating Agents

Our technical analysis in the preceding section accounts for all components of the loss except
one: FNparticip for α ≤ α̂. For a principal unaware of the strategic implications of their chosen
significance level (α)—particularly that it may discourage participation by agents with above-baseline
effectiveness—this may be the only false negative they observe. At first glance, it seems increasing
α should reduce this: the test becomes easier to pass, so effective agents should be more likely to
succeed. Theorem 4.2 also aligns with this intuition since the overall FN rate decreases with α.

However, FNparticip behaves more intricately. We highlight this with an example. Consider µb = 0.5
and a truncated normal distribution q between 0.4 and 0.7 with standard deviation 0.04. First, suppose
the mean of q is 0.53, meaning a large mass of effective agents are only slightly better than baseline.
As α increases from α1 to α2, the participation threshold falls (by Lemma 3.1), causing a large mass
of these slightly-effective agents to switch from abstaining to participating. However, due to their
small effect size and samples being costly, these new participants pass with a lower probability than
those who also participated under α1. Their inclusion in the FN metric at α2 outweighs increased
pass probability among previously participating agents, increasing the FN rate under α2.

This effect is not monotonic and depends on the distribution. If q’s mean rises to 0.62, the same
initial increase in FN rate occurs in the small α regime. For higher values of α, however, most
effective agents are already participating, and few agents remain that are both slightly better than
baseline and could switch; as α increases, the effect is dominated by the increasing pass probability
of those already participating, decreasing the FNparticip. As shown in Figure 1, FNparticip increases and
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then decreases. In selecting a higher mean (0.67), FNparticip is always decreasing. Overall, this rich
behavior is fundamentally due to participation and evidence set size being a strategic decision.

5.2 Analysis of α̂ in Drug Approvals

We now conduct a case study of our strategic hypothesis testing model by considering our running
example: drug approvals. Despite much of the data in this setting being proprietary, we use public
sources to capture relevant metrics for three classes of drugs: oncology, vaccines, and cardiovascular.
ProRelix [27] mentions the per-participant expense (c) of vaccine testing to be ∼ $50, 000, while
oncology and cardiovascular trials being around ∼ $128, 000 and ∼ $136, 000 respectively. The
fixed expenditure (c0) for clinical trials, regulatory approvals, and R&D, as well as the lifetime
revenue (R) vary widely, even within drug categories. Prasad and Mailankody [28] highlights the
median fixed expenditure to be around $650 million for oncology drugs, although in the extremes it
can be as low as $150 million or higher than a billion. The median four year revenue to be around 1.6
Billion; data on lifetime revenue is limited, but [29, 30] suggest it can be around 10-15 billion, with
blockbuster drugs above 50 billion [14]. Analysis from Bhatt et al. [16] gives ranges of $74 - $183
million for fixed costs of Cardiovascular drugs with a median of $141 million. Rashid and Chandel
[31] suggests the corresponding revenue of approved drugs here to be between under a billion to
over 10 billion, with a median of around $3.5 billion. For vaccines, Sertkaya et al. [32] outlines
revenues between 6.9 billion to 36.9 billion for blockbusters, with median fixed costs around $886
million. In the extremes, it can be below $100 million or above a billion. We present this rough data
in Section 5.2.

Drug Category Revenue if approved (R) Fixed Cost (c0) Cost Per Sample (c)

Oncology [1, 500− 50, 000] (648); [150− 1, 000] 0.136

Cardiovascular (3,560); [1, 000− 10, 000] (141); [74− 183] 0.128

Vaccine [6, 900− 36, 900] (886); [100− 1, 000] 0.05

Table 2: Rough costs and revenue by drug category. The median value, where available, is presented
in parentheses. All numbers in millions USD, for US-based development.

Figure 2: α̂ vs Revenue - Oncology Figure 3: α̂ vs Revenue - Cardiovascular

Our goal is to understand what α̂, the critical p-value that weakly dominates any lower p-value , looks
like in the drug approval setting. Due to the variability of fixed costs c0 and revenue R as compared to
per-sample-cost c, we fix c and plot α̂ for different revenue and fixed costs. These ranges are centered
around the median values (where available) gathered in the table. We plot the figures for oncology
and cardiovascular categories above (see Figure 2 and 3); the vaccines figure is in Appendix E)4.
Each plot also displays the α = 0.05 boundary, a commonly used p-value threshold by the FDA [34].

The results suggest that our strategic model is roughly capturing the economic dynamics of drug
approvals. The in-practice used p-value of 0.05 is the ideal choice at around the median revenue for

4The experiments were conducted using a MacBook with only CPU resources and the NumPy package [33].
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each drug category. Within our leader-follower dynamic, the FDA is committing to this threshold,
first suggests that pharmaceuticals are choosing their parameters (samples collected, price, etc) to
ensure profitability. Conversely, if regulatory bodies wish for decreased drug prices with the fixed
costs being immutable, they ought to specify a higher p-value threshold, as the current value may
dissuade effective but low-revenue drugs. In oncology, for instance, the critical threshold α̂ for around
$5 billion revenue is between 0.1 and 0.2. Given our analysis, such a value does not induce any more
false positives than more stringent ones (Theorem 4.1), but lowers the false negative rate. However,
one may argue that choosing a higher p-value would imply that those with much higher revenue (say
25 billion) will be approved even when they are ineffective since their α̂ is lower. Practically, this is
unlikely to happen since it is rare that an ineffective drug, albeit FDA-approved, would achieve such
blockbuster revenue, as the market and post-market surveillance would generally expose inefficacy.
Conversely, choosing p-values stricter than α̂ hamstrings low-revenue but effective drugs; this is a
real concern for orphan drugs or low-cost therapeutics where margins are much slimmer.

6 Discussion

This work spiritually extends the growing literature on strategic machine learning to hypothesis
testing, a ubiquitous method used in regulatory approvals. Given the costs of data collection,
firms may strategically choose smaller trials or opt out entirely if the expected revenue, shaped by
approval probabilities under the chosen threshold, does not justify the expense. By modeling this
dynamic within a principal-agent framework, our work uncovers a systematic connection between
the regulator-specified p-value and the resulting firm decision. This allows us to give an interpretable
characterization of the regulator’s optimal p-value, which minimizes false positive and negative error
rates under such strategic consideration. We validate the findings of our model with real cost, revenue,
and approval data from the US pharmaceutical sector and derive two key policy insights. First, the
commonly used FDA p-value of 0.05 is fairly strict given development costs, requiring firms to
extract large revenue from approved drugs for economic viability. This matches empirical evidence
from the US pharmaceutical market. Second, to decrease drug costs while maintaining minimal error
rates, regulators can either selectively increase the p-value threshold or give subsidies for running
trials; our model gives guidance on how to adjust either lever.

Our main results rely on all parties knowing the cost and revenue parameters (c0, c, R) – this
determines agent participation and the principal’s optimal threshold α̂5. While these quantities may in
practice be estimated, our qualitative conclusions are robust to small estimation errors. In Appendix D,
we discuss how small perturbations in the cost and revenue parameters affect the agents’ participation
thresholds and the principal’s optimal choice of α̂, and argue that these perturbations have only a
limited impact and leave the qualitative behavior of the model unchanged.
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to reproduce that algorithm.
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the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Code for the experiments are in the supplemental materials.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: This is not a deep learning paper. All relevant details for experiments are in
the main body - Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: There is no randomness in the experiments we supply. It is just plotting
analytical results. So there are no error bars to report
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We mentioned in Section 5 that all experiments were conducted on a CPU
machine. Again, this is not a deep learning paper; the experiments simply validate analytical
results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We conform to the Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the policy implications of our work, especially as it relates to drug
approvals, in Section 5.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This is a theory paper - not applicable.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: We do not use any existing assets, beyond standard library packages (NumPy).
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not release new assets. We share our code in the supplementary
materials.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This is not applicable.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This is not applicable.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs are not used in this paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Notation Table

Symbol Usage

X ⊂ {0, 1} Bernoulli random variable indicating

whether a product was effective on a random instance

q PDF of the effectiveness distribution

Q CDF of the effectiveness distribution Q.

µ0 product effectiveness

µb baseline effectiveness

σ0 variance of a product’s effectiveness: σ0 =
√

(1− µ0)µ0

σb variance of a baseline product’s effectiveness: σb =
√

(1− µb)µb

c0 fixed cost of running a clinical trial

c per-sample cost

R revenue upon approval

α p-value threshold used by the principal

p(µ0, n;µb) the probability of observing outcomes at least

as good as the evidence conditioned on the null hypothesis µb

zα,n The critical region given n samples and p-value α

Pass(α, µ0, n) the probability that a product with effectiveness µ0 is approved

u(α, µ0, n) utility for an agent with effective size µ0 and number of samples n

nµ0
(α) optimal number of samples given p-value threshold α and effectiveness µ0

µτ (α) The participation threshold belief under a p-value threshold α

α∗ The critical p-value threshold such that µτ (α
∗) = µb

Table 3: Primary Notation
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B Omitted proofs in Section 3

Proof of Theorem 3.1

Proof. We first define the following variables for brevity. Let ∆µ = µ0 − µb denote the effect size,
σ0 =

√
µ0(1− µ0) denote the standard deviation of the true process and σb =

√
µb(1− µb) the

standard deviation of the baseline Bernoulli variable. We use ϕ(z) to denote the standard normal,
and Φ(z) to denote its CDF. Lastly, let dα = Φ−1(1− α) denote the 1− α percentile of the standard
normal. Recall that we work under the normal approximation of the binomial distribution where the
critical threshold is:

z′α,n =

{
k ∈ R

∣∣∣∣ ∫ ∞

k

N (nµb, nµb(1− µb))

}
= nµb+Φ−1(1−α)

√
nµb(1− µb) = µbn+dασb

√
n

(4)
Thus, we may write the pass probability as follows, from which the expected utility expression
follows:

Pass(·) = 1− Φ

(
z′n,α − nµ0√
nµ0(1− µ0)

)
= 1− Φ

(
nµb + dα

√
nµb(1− µb)− nµ0√

nµ0(1− µ0)

)

= 1− Φ

(
dασb

σ0
− ∆µ

√
n

σ0

)
=⇒ u(n;α, µ0, µb) = R−RΦ

(
dασb

σ0
− ∆µ

√
n

σ0

)
− cn− c0

Observe that when the drug is not effective, i.e. µ0 < µb, then the argument to Φ() increases in n.
Hence, the passing probability, and thus the expected revenue, decreases with increasing n. It is
evident that the cost also increases in n. Thus, when the underlying drug is not effective, it is optimal
for the agent to choose the smallest value nmin possible. Computing the pass probability oracle with
nmin, they can determine their maximum expected utility and choose to participate if this is positive.
In other words, when µ0 < µb, a constant amount of computation suffices to determine the optimal
participation decision.

We next turn to the more interesting case where µ0 ≥ µb. Our goal is to efficiently search the sample
space by leveraging structural properties of the utility function. Letting v = dασb

σ0
− ∆µ

√
n

σ0
, the

derivative of the utility function with respect to n is as follows:

∂u

∂n
= −R

∂Φ

∂v

∂v

∂n
− c (5)

= ϕ(v)
R∆µ

2σ0
√
n
− c =

R∆µ

2σ0
√
n
ϕ

(
dασb

σ0
− ∆µ

√
n

σ0

)
− c (6)

The first term is always positive, and since the image of ϕ() is always above 0. As n increases, this
first term tends to 0, and the derivative is dominated by the second term and becomes negative. In
other words, increasing n only increases utility to a point. To precisely understand this characteristic,
consider the second derivative of the utility function:

∂2u

∂n2
=

−R∆µ

2σ0n3/2
ϕ(v) +

R∆2
µ

2σ2
0n

vϕ(v) =
Rϕ(v)∆µ

2σ0n3/2

[
∆µv

2σ0

√
n− 1

]
(7)

The sign of the second derivative, and thus the concavity/convexity properties of the utility function
depend solely on

[
∆µv
2σ0

√
n− 1

]
since the term multiplying it is always positive. We now expand it

by plugging in the definition of v:[
∆µv

2σ0

√
n− 1

]
=

−∆µ

2σ2
0

n+
dα∆µσb

2σ2
0

√
n− 1 =

−∆µ

2σ2
0

t2 +
dα∆µσb

2σ2
0

t− 1 (8)

where we substitute in t =
√
n. Observe that this is a negative quadratic expression with only positive

real root being meaningful (since
√
n cannot be negative). The roots n1, n2 can easily be computed

by applying the quadratic formula to the instance parameters. We categorize the outcome as follows:
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1. No positive roots =⇒ the function is always concave
2. One positive root at n1 =⇒ the function is convex over [0, n1] and concave over [n1,∞).
3. Two positive root at n1, n2 with n2 > n1 =⇒ that over [0, n1] the function is concave, over

[n1, n2] is is convex and over [n2,∞) it is concave.

We can consider the problem of optimizing n over each of these convex/concave regions defined by
the roots. Note that a convex function always attains its maximum on the boundary. Thus, for a the
convex interval, it suffices to just check the boundary points, of which there are only two. At the
optimal n for a concave interval, the first derivative is always 0, or it is a boundary point. Since the
latter case is similar to the first one, it suffices to find where the first derivative is 0, if it exists. Since
the first derivative is always increasing (monotonic) and we need to find the x-intercept, a binary
search suffices: starting in the middle of the interval, increase n if the first derivative is positive, and
decrease it if negative. This makes at most log nmax calls. It is immediate that taking max over the
best n from each of the at most three yields the globally optimal nµ0(α). The agent can compute the
corresponding passing probability and utility and decide to participate if this is positive.

Proof of Lemma 3.1

Proof. We start with the first direction. If an agent with prior belief µ0 participates with n samples,
then by individual rationality, they must have non-negative utility. That is, Pr[p(n, µ0;µb) ≤ α] ·R ≥
(c · n+ c0), where (c · n+ c0) is the cost. Now consider an agent with a prior belief µ1 ≥ µ0 and
using the same number of samples-n. Observe that if Pr[p(n, µ1;µb)) ≤ α] ≥ Pr[p(n′, µ0;µb)) ≤
α], then the agent will participate under belief µ1. To compute Pr[p(n, µ1;µb) ≤ α], let nµ̂ =∑n

i=1 Xi denote the observed outcomes of n samples drawn independently from the distribution with
effectiveness µ1. Observe that since the same number of samples are used here as when the belief
was µ0, the critical region zα,n does not change since it depends only on α, n and µb. The probability
that these samples, drawn with respect to belief µ1, will lie in this critical region:∑

i∈zα,n

(
n

i

)
µi
1(1− µ1)

n−i ≥
∑

i∈zα,n

(
n

i

)
µi
0(1− µ0)

n−i

where the inequality follows immediately since µ1 ≥ µ0.

For the reverse, consider an agent with effectiveness µ′
0 not participating. This means that for all

n, we have Pr[p(n, µ′
0;µb)) ≤ α] · R0 < (c · n + c0). Then for an agent with belief µ′

1 < µ′
0 the

following holds:

∀n
∑

i∈zα,n

(
n

i

)
µ′i

1(1− µ′
1)

n−i <
∑

i∈zα,n

(
n

i

)
µ′i

0(1− µ′
0)

n−i

In other words, for each n, the passing probability under µ′
1 is worse than µ′

0, and the agent was
already not participating under µ′

0 for any n.

Proof for Lemma 3.2

Proof. We first consider solving for µτ (α), given an α. To solve this upto some accuracy ε, we can
discretize the belief space into k = 1

ε intervals of size ε, and use the mid-point of the interval as
its representative belief. The monotonicity of beliefs implies that we can run a binary search over
these intervals. Starting with the middle interval k

2 , if the agent participates at its representative
belief, we need not search intervals larger than this. Similarly, if the agent does not participate, we
need not search all intervals smaller than this. Clearly, this terminates in log

(
1
ε

)
calls to the pass

probability oracle. To check participation, we need to compute the optimal n at every belief. Assume
the maximum number of sample is nmax, it will again take log(nmax) to search for the optimal
number of samples. So the total complexity should be log

(
1
ε

)
∗ log(nmax).

Next, we show that µτ (α) is non-increasing as α increases. For any α, we know that at the
corresponding threshold belief µτ (α) and its corresponding optimal sample size nµτ

(α) ≜ nτ (α),
the utility is 0. In other words: R · Pass(nτ (α), µτ (α), µb, α) = cnτ (α) + c0. It is known that for a
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fixed effect size and number of samples, the passing probability of a hypothesis test increases in α. In
other words, for two p-values α1, α2 where α1 ≤ α2, the following holds:

Pass(α1, µτ (α1), nτ (α1)) ≤ Pass(α2, µτ (α2), nτ (α2)) and u(nτ (α1), µτ (α1), α2) ≥ 0

Since the agent with effectiveness µτ (α1) will have non-negative utility when using nτ (α1) samples
when the p-value is α2, this agent will participate at this p-value (but not necessarily using nτ (α1)
samples as that may not be optimal). The monotonicity of participation (Lemma 3.1) implies that
under α2, agents with effectiveness greater than µτ (α1) will also participation. Thus, the participation
threshold under α2 by definition must be to the left of µτ (α1) - i.e. µτ (α2) ≤ µτ (α1) as desired.

Proof for Lemma 3.3

Proof. We prove by contradiction. Assume that there exists an α and µ1 ≥ µ0 such that
u(α, µ0, nµ0

(α)) ≥ u(α, µ1, nµ1
(α)). First note that if the agent is not participating in either,

then the utility is always 0. If they participate in one and not the other, the monotonicity of participa-
tion ( Lemma 3.1) means it must be under µ1 (giving positive utility), with µb being 0. Thus, the only
situation where the initial claim could hold if the agent participates under both. We divide this into
the following three cases:

• µ0 ≤ µ1 ≤ µb: since both µ0 and µ1 are less effective than the baseline drug, Theorem 3.1
implies that in both cases, nmin samples are used, and in Lemma 3.1 we know that in such
settings, for a fixed n, the pass probability increases in µ. Thus the utility under µ1 cannot be
lower than µ0.

• µ0 ≤ µb ≤ µ1 and µb ≤ µ0 ≤ µ1: We know from Lemma 3.1 for every fixed n, the pass
probability in this regime increases in µ. Thus, ∀n, u(α, µ0, n) ≤ u(α, µ1, n). Since nµ1

(α) is
the optimal number of samples for µ1, we have

u(α, µ0, nµ1
(α)) ≤ u(α, µ1, nµ1

(α)) ≤ u(α, µ0, nµ0
(α))

The last step is according to the contradiction statement. However, this cannot be true since an
nµ1(α) could not be the optimal number of samples for µ1 if it led to a lower utility than nµ0(α).

C Omitted Proof for Section 4

For the ease of notation, let Q denote the CDF of the effectiveness distribution q. Further, let Q<µb

and Q≥µb
denote the CDF of the belief distribution q, conditioned on µ0 < µb and µ0 ≥ µb.

Proof of Lemma 4.1

Proof. We are interested in the total derivative of the pass probability with respect to α for any
agent with effectiveness µ0 ≥ µb. Note that for this lemma, we consider the agent to always be
participating. This total derivative can be expanded using the multi-variable chain rule as follows:

d

dα
Pass(α, µ0, nµ0

(α)) =
∂Pass
∂α︸ ︷︷ ︸

Direct effect

+
∂Pass
∂n

· dnµ0
(α)

dα︸ ︷︷ ︸
indirect effect

. (9)

To simplify notation, denote wα = Φ−1(1− α), and let

ξ(n, α) =
Φ−1(1− α)σb −

√
n(µ0 − µb)

σ0
=

σb

σ0
wα −

√
n(µ0 − µb)

σ0

Then we have: Pass(α, µ0, nµ0
(α)) = 1− Φ(ξ(nµ0

(α), α)). We now separate the analysis based on
the direct and indirect influence.

Direct effect: The partial derivative with respect to α is:

∂Pass
∂α

= − d

dα
Φ(ξ(n, a)) = −ϕ(ξ) · ∂ξ

∂α
= −ϕ(ξ)

σb

σ0

dwα

dα
=

σb

σ0

ϕ(ξ)

ϕ(zα)
≥ 0
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since a higher α lowers the critical threshold wα and makes the test easier to pass.

Indirect effect: The indirect effect depends on the optimal number of samples the agent uses for a
given α. That is, while having more samples increases the chance of passing (∂Pass

∂n > 0), the agent
might reduce this effort when α increases (since the test becomes easier). The product of these two
terms is therefore unclear. Formally,

∂Pass
∂n

= − d

dn
Φ(ξ(n, α)) = −ϕ(ξ)

∂ξ

∂n
= ϕ(ξ) · µ0 − µb

2σ0
√
n

> 0

To compute dnµ0
(α)

dα , let F (n, α) be the first-order condition of the agent’s utility function:
u(α, µ0, n) = RPass(α, µ0, n)− cn− c0. Since we know nµ0

(α) is the optimal number of samples,
we claim that:

F (α, nµ0
(α)) = R · ∂Pass

∂n

∣∣∣∣
n=nµ0

(α)

− c = 0. (10)

This holds because, as we show immediately below, the second derivative of the Pass(·) function
is always strictly negative with respect to n, meaning the utility function is always strictly concave.
This is formalized below:

Lemma C.1. The second derivative of Pass with respect to n is always negative – ∂2Pass
∂n2 < 0.

Proof. To see this,
∂2Pass
∂n2

=
d

dn

(
ϕ(ξ) · (µ0 − µb)

2σ0
√
n

)
= ϕ(ξ) ·

(
−ξ(µ0 − µb)

2

4σ2
0n

− (µ0 − µb)

4σ0n3/2

)
.

Since ϕ(ξ) > 0, µ0 − µb > 0, σ0 > 0, and n > 0, and since ξ can be either sign, the two terms in
the parentheses are both negative (even if ξ < 0, the negative sign in front ensures negativity). Thus,
the entire expression is strictly negative: ∂2Pass

∂n2 < 0. Intuitively this means that every new sample
increases the chance of passing, but each one helps less than the last.

The result above also means that the first derivative of F (α, n) is always non-zero at nµ0
(α). It is

also evident that F (α, n) is continuously differentiable. Thus, we can apply the Implicit Function
Theorem. Differentiating both sides of F (α, nµ0

(α)) = 0 with respect to α yields:

∂F

∂n
(α, nµ0(α)) ·

dnµ0
(α)

dα
+

∂F

∂α
(α, nµ0(α)) = 0 =⇒ dnµ0

(α)

dα
= −

∂F
∂α
∂F
∂n

(11)

Next we compute ∂F
∂α and ∂F

∂n accordingly. Observe that:

∂F

∂α
= R0 ·

∂2Pass
∂n ∂α

, where
∂2Pass
∂n ∂α

=
µ0 − µb

2σ0
√
n

· ∂ϕ(ξ)
∂α

.

Since:
∂ϕ(ξ)

∂α
=

dϕ(ξ)

dξ
· ∂ξ
∂α

= −ξϕ(ξ) · ∂ξ
∂α

= ξϕ(ξ) · σb

σ0

1

ϕ(wα)
,

we have
∂F

∂α
= R0 ·

µ0 − µb

2σ0
√
n

· ξϕ(ξ) · 1

ϕ(zα)

σb

σ0
.

We next turn to computing the derivative of F with respect to n. Observe the following (where we
plug in ∂2Pass

∂n2 from above):

∂F

∂n
= R0 ·

∂2Pass
∂n2

= R0 ·
(
ξϕ(ξ)(µ0 − µb)

2

4σ2
0n

− ϕ(ξ)(µ0 − µb)

4σ0n3/2

)
.

Now plugging them back into the expression computed by the Implicit function theorem, we have:

dnµ0
(α)

dα
= −

∂F
∂α
∂F
∂n

∣∣∣
n=nµ0

(α)
=−

(µ0−µb) ξ ϕ(ξ)

2σ0

√
nµ0

(α)ϕ(wα)

σb

σ0

ξϕ(ξ)(µ0−µb)2

4σ2
0nµ0

(α)
− ϕ(ξ)(µ0−µb)

4σ0nµ0 (α)
3/2

= −
2ξ
√

nµ0
(α)σb

ϕ(wα)

ξ(µ0 − µb)− σ0√
nµ0 (α)

.
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Total derivative. Having computed the direct and indirect effects, we can directly compute the
total derivative. We have:

d

dα
Pass(α, µ0, nµ0(α)) =

∂Pass
∂α︸ ︷︷ ︸

Direct effect

+
∂Pass
∂n

∣∣∣∣
n=nµ0 (α)

· dnµ0
(α)

dα︸ ︷︷ ︸
indirect effect

. (12)

=
σb

σ0

ϕ(ξ)

ϕ(zα)
+ ϕ(ξ) · µ0 − µb

2σ0

√
nµ0

(α)
· dnµ0

(α)

dα
(13)

=
σb

σ0

ϕ(ξ)

ϕ(zα)

1− (µ0 − µb) ξ(
ξ(µ0 − µb)− σ0√

nµ0
(α)

)
 . (14)

The sign of

1− (µ0−µb) ξ(
ξ(µ0−µb)−

σ0√
nµ0 (α)

)
 decides the monotonicity of the passing probability. As we

show below, when agent chooses the optimal number of samples n = nµ0
(α), it will never be the case

that ξ(µ0 − µb)− σ0√
n(α)

> 0 (Lemma C.2), which implies that

1− (µ0−µb) ξ(
ξ(µ0−µb)−

σ0√
nµ0

(α)

)
 > 0

always holds at the optimal nµ0
(α), thus the passing probability at the optimal number of samples

nµ0
(α) is always monotonically increasing. We finish the proof by proving Lemma C.2:

Lemma C.2. When nµ0
(α) is the optimal sample size chosen by the agent to maximize utility, then

ξ(µ0 − µb)−
σ0√
n(α)

> 0 never holds.

Proof. Recall the second derivative of the utility w.r.t n is:

∂2Utility(n, µ0;µb, α)

∂n2
=

∂2Pass
∂n2

=
ξϕ(ξ)(µ0 − µb)

2

4σ2
0n

− ϕ(ξ)(µ0 − µb)

4σ0n3/2

=
ϕ(ξ)(µ0 − µb)

4σ2
0n

(ξ(µ0 − µb)−
σ0√
n
)

At the optimal number of sample n = nµ0(α), the second derivative of the utility must be negative,
otherwise it implies that increasing the number of samples will increase the utility, which leads
to a contradiction to the fact that n = nµ0(α) is an optimal number of samples, thus we have the
following always holds at n = nµ0

(α): ξ(µ0 − µb)− σ0√
nµ0 (α)

≤ 0.

Proof of Theorem 4.2

Proof. Recall that the false negative rate in our setting consists of two components, conditioned on
whether agents participate. Observing that when an agent does not participate – i.e. µ0 < µτ (α) –
their probability of passing the statistical test is 0, we can simplify the overall FN rate as follows:

FN(α, I) = E
µ0∼q

[Fail(α, µ0, nµ0
(α))|µ0 ≥ µb]

= E
µ0∼q

[Fail(α, µ0, nµ0
(α))|µ0 ≥ µb, µ0 ≥ µτ (α)]P (µ0 ≥ µτ (α)|µ0 ≥ µb)︸ ︷︷ ︸

FNparticip

+ P [µ0 ≤ µτ (α)|µ0 ≥ µb]︸ ︷︷ ︸
FNabstain

25



Consider first any α1 ≤ α̂. We can explicitly express each component of the false negative as follows,
since we are guaranteed that µτ (α1) ≥ µb:

FNparticip(α1, I) =
1−Q(µτ (α1))

1−Q(µb)

∫ 1

µτ (α1)

Fail(α1, µ0, nµ0(α))
q(µ0)

1−Q(µτ (α1))
dµ0 (15)

FNabstain(α1, I) =
Q(µτ (α1))−Q(µb)

1−Q(µb)
(16)

Let us focus on FNparticip. To simplify this, the following result is helpful. For a positive function
g(x) and a function f(x) with minimum and maximum values fmin and fmax over an interval [a, b],
the following holds:

fmin

∫ b

a

g(x) ≤
∫ b

a

g(x)f(x)dx ≤ fmax

∫ b

a

g(x) =⇒ fmin ≤
∫ b

a
g(x)f(x)dx∫ b

a
g(x)

≤ fmax

Since the expression in the middle is between fmin and and fmax, by the intermediate value theorem,

there exists an c ∈ [a, b] such that: f(c) =
∫ b
a
g(x)f(x)dx∫ b

a
g(x)

which means: there exists a c such that

f(c)
∫ b

a
g(x) =

∫ b

a
f(x)g(x). This can be interpreted as an integral mean value theorem. Using this,

there exists a value µ1
c ∈ [µτ (α1), 1] such that the FNparticip(α1) can be expressed as follows:

FNparticip(α1, I) =
1−Q(µτ (α1))

1−Q(µb)
Fail(α1, µ

1
c , nµ1

c
(α))

∫ 1

µτ (α1)

q(µ0)

1−Q(µτ (α1))
dµ0

=
1

1−Q(µb)
Fail(α1, µ

1
c , nµ1

c
(α))

∫ 1

µτ (α1)

q(µ0)

1−Q(µτ (α1))
dµ0

=
1−Q(µτ (α1))

1−Q(µb)
Fail(α1, µ

1
c , nµ1

c
(α))

Therefore, we can write:

for some µ1
c ∈ [µτ (α1), 1]: FN(α1, I) =

1−Q(µτ (α1))

1−Q(µb)
Fail(α1, µ

1
c , nµ1

c
(α))+

Q(µτ (α1))−Q(µb)

1−Q(µb)

Now consider an α2 such that α1 < α2 ≤ α∗. Note that due to Appendix B, µτ (α2) ≤ µτ (α1). We
can thus write the FNparticip of this instance as follows:

FNparticip(α2, I) =
1−Q(µτ (α2))

1−Q(µb)

∫ 1

µτ (α2)

Fail(α2, µ0, nµ0(α))
q(µ0)

1−Q(µτ (α2))
dµ0

=
1

1−Q(µb)

[∫ µτ (α1)

µτ (α2)

Fail(α2, µ0, nµ0
(α2))q(µ0)dµ0 +

∫ 1

µτ (α1)

Fail(α2, µ0, nµ0
(α2))q(µ0)dµ0

]

=
1

1−Q(µb)

[
Fail(α2, µ

2,1
c , nµ2,1

c
(α))

∫ µτ (α1)

µτ (α2)

q(µ0)dµ0 + Fail(α2, µ
2,2
c , nµ2,2

c
(α))

∫ 1

µτ (α1)

q(µ0)dµ0

]

= Fail(α2, µ
2,1
c , nµ2,1

c
(α))

Q(µτ (α1))−Q(µτ (α2))

1−Q(µb)
+ Fail(α2, µ

2,2
c , nµ2,2

c
(α))

1−Q(µτ (α1))

1−Q(µb)

where in the third transition, we use the integral mean value theorem as in the previous α1 case. Note
that for the integral between [µτ (α1), 1] in the α2 setting, we know that for every µ0 ∈ [µτ (α1), 1],
Fail(α2, µ) < Fail(α1, µ) since from Lemma 4.1, we know that the pass probability increases as
alpha increases and this set of agents participated under both α1 and α2. This immediately means that
Fail(α2, µ

2,2
c , nµ2,2

c
(α)) ≤ Fail(α2, µ

1
c , nµ2,1

c
(α)). In the [µτ (α2), µτ (α1)], the failure probability is

at most 1. Hence, Fail(α2, µ
2,1
c , nµ2,1

c
(α)) ≤ 1. Thus, we can upper bound the FN participation loss

at α2 as follows:

FNparticip(α2) ≤
Q(µτ (α1))−Q(µτ (α2))

1−Q(µb)
+ Fail(α1, µ

1
c , nµ1

c
(α))

1−Q(µτ (α1))

1−Q(µb)
(17)
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We now express the abstain loss for α2 as follows:

FNabstain(α2) =
Q(µτ (α2))−Q(µb)

1−Q(µb)
=

Q(µτ (α1))−Q(µb)

1−Q(µb)
− Q(µτ (α1))−Q(µτ (α2))

1−Q(µb)

Then we have that:

FN(α2, I) = FNparticip + FNabstain (18)

≤ Fail(α1, µ
1
c , nµ1

c
(α))

1−Q(µτ (α1))

1−Q(µb)
+

Q(µτ (α1))−Q(µb)

1−Q(µb)
= FN(α1, I) (19)

Lastly, for any α ≥ α̂, we know from Proposition 4.2 that FNparticip(α, I) = 0 and from Proposi-
tion 4.1 that FNabstain(α, I) = 0.

D Discussion on Sensitivity Analysis

In this section, we discuss how our framework can be naturally extended to accommodate small
misspecifications on either the agent or principal side, and why our main insights remain stable under
such uncertainty.

Both the agent’s participation decision and the principal’s optimal p-value threshold α̂ depend only
on the cost and revenue parameters (c0, c, R). In realistic settings such as drug development, these
parameters are estimated from historical data or business forecasts and may contain some error. We
can therefore model parameter uncertainty by assuming that the agent and principal each have slightly
perturbed estimates of the true values. In particular, we assume the agent has access to approximate
parameters (ĉ0, ĉ, R̂) within ϵ of the true values, and let the principal have their own estimates
(c̃0, c̃, R̃) within δ of the true values. The magnitudes of ϵ and δ can differ across parameters.

Agent-side uncertainty. We first examine how such ϵ-level errors affect the agent’s decision for a
given belief µ0. Extending Theorem 3.1, recall that the utility function u(n;α) can be partitioned
by indices (n1, n2) where it is either convex or concave. As noted in Equation (8) of Appendix B,
these indices are invariant to small parameter perturbations. In the convex region, the optimal n
occurs at an endpoint and is therefore unchanged. In the concave region, the optimum corresponds to
the x-intercept of ∂u/∂n. A perturbation of size ϵ shifts this derivative by O(ϵ), implying that the
optimal n moves by at most O(ϵ)/L, where L is the inverse Lipschitz constant of ∂u/∂n6:

|n̂µ0(α)− nµ0(α)| ≤ O(ϵ)/L.

A similar argument bounds the difference in participation thresholds:

|µ̂τ (α)− µτ (α)| ≤ O(ϵ)/k,

where k is the inverse Lipschitz constant (with respect to µ0) of u(µ0, n(α, µ0)).

Principal-side uncertainty. If the principal’s perceived parameters (c̃0, c̃, R̃) differ from those of
the agent, they will infer a different threshold belief µ̃τ (α). Without observing the agent’s ϵ, the
principal optimizes α under their own model, obtaining α̂ such that µ̃τ (α̂) = µb. However, because
ϵ ̸= δ, the agent’s actual threshold µ̂τ (α̂) may not equal µb. This deviation can again be bounded by
the inverse Lipschitz constant k:

|µ̂τ (α̂)− µb| ≤ O(|ϵ− δ|)/k.

The agent’s deviation depends only on the difference between their perceived parameters and the true
ones, whereas the principal’s deviation depends on the gap between their perception and the agent’s.
These uncertainties can thus be analyzed independently. Overall, small estimation errors in cost or
revenue induce proportionally small and bounded shifts in the optimal participation and threshold
decisions.

6by inverse lipschitz constant, we mean |f(x1)− f(x2)| ≥ L|x1 − x2|, allowing us to bound change in the
domain given change in range
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Stability of our results Building on the above observations, we now explain why the main insights
of our model remain stable under such uncertainty. This robustness follows from two structural
properties of the model: monotonicity and Lipschitz continuity. First, both the participation threshold
µτ (α) and the principal’s optimal choice α̂ are continuous and monotone functions of the cost and
revenue parameters (c0, c, R). Second, their derivatives with respect to these parameters are bounded
by Lipschitz constants k and L, ensuring that small perturbations induce at most proportional changes:

|∆µτ (α)| ≤ k ∥(∆c0,∆c,∆R)∥, |∆α̂| ≤ L ∥(∆c0,∆c,∆R)∥.

These bounds imply that the relative ordering of participation and approval thresholds is preserved:
The curves may shift, but they do not cross or invert. As a result, the qualitative behavior of the
model—for instance, that higher costs discourage participation and looser α increases it—remains
unchanged.

E Plot for Vaccine Drugs

Figure 4: α̂ vs Revenue - Vaccines
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