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Abstract

Multitask learning is widely used to train low-resource tasks by combining multiple related
source tasks. Yet, in practice, naively using all the source tasks does not always improve
prediction for the target task due to negative transfers. Therefore, identifying beneficial
subsets of source tasks for the target task is a critical problem. This problem is challenging
because the number of subsets grows exponentially with the number of source tasks; efficient
heuristics for subset selection may not capture the complex relationships between subsets and
the multitask learning performances. This paper designs a scalable approach to address this
problem. First, we sample random subsets of source tasks and compute their performances
to fit a surrogate model to predict the performance of unsampled subsets. We show that
fitting our model only requires sampling a number of subsets that is linear in the number of
source tasks; Moreover, the fitted model provides a relevance score of each source task to the
target task. Second, we use these scores to select source tasks to optimize the performance of
the target task. Through extensive experiments on various datasets, we demonstrate that our
approach can predict negative transfers four times more accurately than existing techniques
and can consistently improve upon existing optimization methods for multitask learning.

1 Introduction

Multitask learning (MTL) is an approach to combining several tasks together and learning one model for all
tasks simultaneously (Caruana, 1997b). The premise is that by combining the data samples of several tasks
together, the dataset size of each task increases, thus improving the learning performance for every task.
However, naively using all the source tasks may worsen performance compared to single-task learning (STL)
for target tasks if there exist source tasks that are unrelated to them. This problem is commonly referred to
as negative transfers in the literature but is challenging to predict for many tasks (Rosenstein et al., 2005).

More broadly, the importance of developing a better understanding of multiple learning performance is well
recognized. In the seminal work of Caruana (1997a, Chapter 3), heuristics for judging “task-relatedness” in
several applications are discussed; For instance, the tasks that share many input features are more likely to
be related to each other. A classical result by Ben-David et al. (2010) introduces an H-divergence notion
that quantifies the distance between two label distributions and relates the bias of source domains to this
notion. MTL may perform worse than STL if the bias is too large. In weakly-supervised learning, several
programmatic labeling functions are used to annotate a corpus of unlabeled data, and each labeling function
can be treated as a source task (Ratner et al., 2016). The task labels often conflict with each other, causing
negative transfer during training even though the tasks share the same input features (Ratner et al., 2019). In
multitask learning of language prediction tasks, negative transfers are observed between different categories
of tasks (e.g., question answering vs. sequence labeling) and different sizes of datasets (Vu et al., 2020).

Motivated by the need to reduce negative transfers between different tasks, researchers have developed
optimization methods for multitask learning from a variety of fields. The most thorough approach to
addressing these issues is to train all possible combinations of source tasks with the target task and find
which subset of source tasks improves performance on the main target task. If there are k source tasks, then
this approach requires training 2k MTL models. This is impractical (e.g., when k ≥ 20). A more efficient
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Figure 1: Our approach involves two steps, as shown in the figure above. In the first step, we sample n
random subsets of source tasks among k source tasks. Let S1, S2, . . . , Sn denote these random samples. For
i = 1, 2, . . . , n, train a model using the combined data of Si and the target task; Evaluate the loss of the
trained MTL model on the target task, denoted as f(Si). Then, we estimate the relevance scores {θj}k

j=1 in
the linear model by minimizing the MSE between gθ(Si) =

∑
j∈Si

θj and f(Si), as shown on the left. Let the
estimated scores be denoted as θ̂. In the second step, we perform subset selection on the source tasks by
choosing those tasks whose relevance scores are below some threshold γ; We choose this selection criterion by
examining the subset S that minimizes gθ̂(S) =

∑
j∈S θ̂j , as shown in the right figure.

solution is to train combinations of every single source task with the target task to determine if one task
helps and then merge the helpful tasks together. This approach is known as computing first-order task
affinities, which captures first-order transfers from one source task to the target task (Fifty et al., 2021). Due
to computational costs, approximations of higher-order transfers from multiple source tasks to one target task
have been studied, e.g., by averaging the first-order affinity scores of each source task (Standley et al., 2020).

This paper designs and analyzes a scalable approach to identify negative transfers from multiple source tasks
to one target task. The key idea is to construct a surrogate model to approximate the performance of multitask
learning, given a subset of source tasks. This is different from prior works that measure task-relatedness
based on either gradient similarity (Yu et al., 2020), or feature space alignment of neural networks (Nguyen
et al., 2020; Raghu et al., 2020; Wu et al., 2020). It is also different from existing discrepancy notions between
source and target domains, which are difficult to measure on deep neural networks. Our approach builds on a
recent work (Ilyas et al., 2022) that demonstrates the power of datamodels for predicting the predictions of
black-box models such as deep neural networks. Different from their work, we apply surrogate models to
approximate multitask learning performances of deep neural networks.

Our approach introduces a relevance score of every source task to the target task while accounting for the
presence of other source tasks. Given k source tasks and any j from 1 to k, let θj denote the relevance
score of task j. Conceptually, θj is analogous to the important score of a feature in random forests when
hundreds of other features are available. To estimate the relevance scores, we introduce a surrogate model
gθ(S), parametrized by the relevance scores, to approximate MTL performances. Given any subset of source
tasks S, let f(S) be a loss function that measures the performance of combining S and the target task to
train an MTL model, and then evaluated on the target task. Thus, the loss value of f(S) provides a relevance
measure between S and the target task; Since θj is used to fit loss values, a lower value of θj indicates more
usefulness of source task j to the target task.

We specify a linear surrogate model as gθ(S) =
∑

j∈S θj (parametrized by the relevance scores) and minimize
the mean squared error between gθ(Si) and f(Si) over n random subsets, for i from 1 to n. In particular,
we precompute the values of f(S1), f(S2), . . . , f(Sn) by training one MTL model for ech subset. We use
such a linear specification of θ because computing the performance of each subset requires training an MTL
model, which is not scalable unless n grows almost linearly in k. In addition, we take inspiration from the
recent work on datamodels (Ilyas et al., 2022), which show that a linear regression model can extrapolate the
predictions of deep neural networks for subsets of training data. We rigorously analyze the sample complexity
of our approach in Theorem 2.1. After fitting θ, we predict the performance of an unseen subset S as gθ(S)
and compare it with the STL performance of the target task to determine if S provides a negative transfer.
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Provided with the relevance scores, we optimize the performance of the target task by selecting source tasks
whose score is below some threshold γ. We observe that this algorithm is equivalent to minimizing the
surrogate model gθ(S) over subsets S. We analyze this algorithm in a setting that includes one group of
source tasks closer to the target task and another group further from the target task. The analysis reveals
that for each task i, its relevance score θi is proportional to the sum of the MTL performances of all subsets
that include i. Moreover, these performances preserve the distance gaps from the source tasks. See Theorem
3.1 for the precise result. In practice, we pick γ via cross-validation; See Section 4 for the range of γ that we
validate on in our experiments.

Taken together, our approach constitutes an efficient, accurate pipeline to predict and optimize multitask
learning performances. See Figure 1 for an illustration. We conduct extensive experiments to validate our
approach in numerous data modalities and performance metrics. We summarize a list of our results as follows:

• The runtime for constructing surrogate models until convergence scales linearly in k, and the predicted
performances accurately fit the true MTL performances of unseen subsets, measured by Spearman’s
correlation (0.8 averaged among 16 evaluations). Our approach achieves 4 times higher accuracy for
predicting positive vs. negative transfers than known approximation schemes, measured by the F1-score.

• By selecting source tasks based on the predicted MTL performances and only using the selected source
tasks, we observe consistent benefits over existing optimization methods. We evaluate our approach on
a wide range of datasets, including weak supervision, NLP, and multi-group fairness. In addition, we
apply approach to different MTL encoders, including BERT and perceptrons. For one example (while
deferring others to Section 4), we consider a weak supervision dataset that includes as many as 164
labeling functions (Zhang et al., 2021a). By selecting labeling functions with our approach and then
applying MTL, we obtain up to 3.6% absolute accuracy lift compared with existing methods.

• We further visualize the tasks that are selected by our approach and find that there is indeed a separation
between the selected tasks in terms of their labeling accuracy. Besides, our MTL approach can also
be cast to learning from multiple groups of heterogeneous subpopulations, where the performance is
measured by the worst-group accuracy among all groups.

To summarize, this paper makes three contributions to the study of negative transfers in multi-task learning.
First, we study the higher-order relationship from a set of source tasks transferred to one target task. We
propose a linear regression model to “meta-learn” such relationships. Second, we design a simple approach to
perform subset selection for multi-task learning, which adjusts a threshold on the averaged MTL performances
of subsets of tasks. Compared with the existing literature, our approach is better at modeling higher-order
task relationships (See Figure 3 in Section 3 for the detailed result). Third, we justify our approach with
extensive theoretical and experimental results.

Organization. We begin by describing the problem setup and the surrogate model in Section 2. In Section
3, we use the relevance scores to perform subset selection for multitask learning. We present the experiments
in Section 4. Then, we discuss the related works in Section 5. Lastly, we summarize the paper in Section 6.
The appendix provides complete proof of our theoretical results and omitted results from the experiments.

2 Predicting Multitask Learning Performances

This section describes the design and analysis of surrogate models for multitask learning. We begin by
defining the problem setup. Then, we describe the construction of surrogate models and the estimation of
the relevance scores. Lastly, we analyze the sample complexity of the construction procedure.

2.1 Preliminaries

Problem Setup. Let t = 0 denote the main target task of interest. Suppose the task’s features and labels
are drawn from an unknown distribution, denoted as Dt. Let X denote the feature space. Let the set of all
possible labels be denoted as Y . We are given a dataset, which includes a list of examples drawn independently
from Dt. Besides, we are also given k datasets from related source tasks, which are all supported on X × Y.
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Figure 2: Illustration of mixed outcomes in multitask learning: In each figure, we train 50 multitask models
based on one fixed target task and one source task from 50 source tasks. x axis: Each bar represents one
source task from 50 source tasks. y axis: Test accuracy of MTL with one source task minus the test accuracy
of STL with the target task alone. For further description of the experiment setup, see Section 4.1.

A naive approach to optimize MTL is combining all the datasets and evaluating the trained model on the
target task. However, this might result in worse performance than single-task learning. Thus, it is crucial
to identify if a source task would help or hurt. The most thorough solution for addressing this question is
by enumerating all possible combinations of source tasks, leading to a total of 2k combinations. For each
combination of source tasks, train a multitask model using the selected source tasks and the main task. While
this procedure optimizes the performance of MTL, it is too slow for large k.

How can we optimize the performance of MTL efficiently? Relatedly, given a set of source tasks, can we
predict their transfer effects upon the target task efficiently? Below, we define two common transfer effects.

Positive vs. Negative Transfer. Consider any multitask learning algorithm, denoted as A, which trains
a joint model given any set of tasks. For any subset S ⊆ {1, 2, . . . , k}, we say that S provides a negative
transfer to t if the performance of A(S ∪ {t}) is worse than A({t}) (e.g., in terms of higher loss values).
Likewise, we say that S provides a positive transfer to t if the performance of A(S ∪ {t}) is better than
A({t}). Our goal is to design a scalable method to predict such positive and negative transfer effects.

It is worth highlighting that both types of transfers are often observed in practice. To give an example, we
consider a binary classification dataset that involves a total of 51 tasks. We pick one of them as the target
task, use the rest as source tasks, and consider the case where |S| = 1. This leads to training 50 models for
each target task, one for every combination of one source task and the target task. The results are shown in
Figure 2, which provides illustrations for four different target tasks. The y-axis corresponds to the accuracy
difference between the MTL and STL results. For all four target tasks, we consistently find a mix of positive
and negative transfers.

Surrogate Models. A recent paper by Ilyas et al. (2022) apply linear surrogate models to approximate the
predictions of deep neural networks, trained on a subset of training data. Surprisingly, their findings suggest
that even a linear model can extrapolate these predictions accurately. This finding is later explored by the
recent work of Saunshi et al. (2022). We defer further discussions to the related works in Section 5. Their
work focuses on single-task supervised learning. Next, we will apply this idea of linear surrogate models to
multi-task learning.

2.2 Constructing the Model

First, we construct a surrogate model to fit multitask learning performances. Let ϕ be an encoder that is
shared by all tasks. For any input features x ∈ X , the encoder ϕ maps x into a feature vector. For every source
task in S and the target task, there is a separate prediction layer for each of them. Let ψ0, ψ1, ψ2, . . . , ψk

denote the prediction layers, which map the feature vectors to the output.

Given any subset S, we train ϕ and ψi, for i ∈ S ∪ {0}, by minimizing the average loss over the combined
training data along with the target task. Let ϕ(S) and ψ

(S)
i , for i ∈ S ∪ {0}, be the trained model. We

evaluate its loss on the target task’s validation dataset. Let D̃t = {(x1, y1), . . . , (xm, ym)} denote a set of m
independent samples from Dt, which is used as a validation set for the target task. Let ℓ be a non-negative
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loss such as the cross-entropy loss. We define multitask learning performances as:

f(S) = 1
m

m∑
i=1

ℓ
(
ψ

(S)
0
(
ϕ(S)(xi)

)
, yi

)
, for any S ⊆ {1, 2, . . . , k}. (1)

Our main idea is to construct a surrogate model, parametrized by a relevance score θi for each source task i.
We use a linear specification inspired by a recent work of Ilyas et al. (2022)1

gθ(S) =
∑
i∈S

θi, where θi is the i-th entry of θ, for any i = 1, 2, . . . , k. (2)

The procedure for estimating θ is as follows. First, sample n subsets of source tasks from {1, 2, . . . , k}, denoted
as S1, S2, . . . , Sn. We sample each subset from the uniform distribution over subsets with a fixed size of α;
We will justify this choice later in Section 3.2. For instance, to capture the transfer from five source tasks to
the target task, we can set α = 5. Then, compute the value of f(Si) by training one MTL model for every
i = 1, 2, . . . , n. Lastly, minimize the mean squared error (MSE) between gθ(Si) and f(Si), averaged over all i:

L̂n(θ) = 1
n

n∑
i=1

(
gθ(Si) − f(Si)

)2
. (3)

Let θ̂ denote the minimizer of the above MSE. For brevity, we refer to θ̂ as the task model.

2.3 Sample Complexity

We show that given n = O
(
k log2(k)

)
, we can estimate θ̂ accurately. To be precise, let U denote the uniform

distribution over all subsets of size α drawn from {1, 2, . . . , k}. Let T denote an unseen subset drawn from U .
The population risk for a given θ is defined as the expected MSE between f(T ) and gθ(T ):

L(θ) = E
f
E
T

[(
f(T ) − gθ(T )

)2
]
. (4)

Let the minimizer of the above risk be denoted as θ⋆. We prove that θ̂ converges to θ⋆ using Rademacher
complexity-based arguments. Let the function class of ψt and ϕ be denoted as H. Let the loss function
class be F = {ℓ(ψt(ϕ(x)), y) | ∀ψt, ϕ from H}. Recall that D̃t = {(x1, y1), (x2, y2), . . . , (xm, ym)} refers to the
dataset used to evaluate the value of f(T ), and its size is equal to m. Let σ1, σ2, . . . , σm be m independent
Rademacher random variables, collectively as σ1:m. The Rademacher complexity of F over D̃t is defined as

Rm(F) = E
D̃t

E
σ1:m

[
sup
h∈F

1
m

m∑
i=1

σi · h
(
xi, yi

)]
, (5)

where the expectation is taken over the randomness of the empirically-drawn dataset D̃t and the Rademacher
random variables σ1:m. We follow the convention of big-O notations for stating the result. Given two functions
h(n) and h′(n), we use h(n) = O(h′(n)) or h(n) ≲ h′(n) to indicate that h(n) ≤ C · h′(n) for some fixed
constant C when n is large enough. Our result is stated formally below.
Theorem 2.1. Suppose the functions in F are all bounded from above by a fixed constant C > 0. Suppose
α is less than k/2. Let n be the number of sampled subsets and m be the size of the set used to evaluate f .
With probability at least 0.99, θ̂n converges to θ⋆ as n,m are both large enough:

∥∥∥θ̂ − θ⋆
∥∥∥ ≲ C

√(
k log2 (k))α4

n
+

√(
log(k)

)
α

m
+ Rm(F), (6)

where ∥ · ∥ denotes the Euclidean norm of a vector.
1We use this specification for scalability consideration. Note that it is possible to consider more complex specifications,

such as adding quadratic variables θ1,2, θ1,3 . . . , θk−1,k. The construction procedure and the analysis is conceptually the same.
However, the sample complexity for fitting these quadratic variables is O(k2), rendering it infeasible for large k, e.g., k ≥ 100.
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Based on the above result, it is clear from equation (6) that provided with O(k log2(k)) random samples, the
first error term relating to n shrinks to a negligible value (one may think of α as a fixed constant such as 5
or 10). There are two error terms decreasing with m, the size of D̃t used to evaluate f . The Rademacher
complexity Rm(F) is known to be of order O(m−1/2) when H represents a family of neural networks (Bartlett
et al., 2017). These two error terms are due to the variance of f since it is measured on a finite set. Lastly,
we note that the probability value of 0.99 in the above theorem statement can be adjusted to other values. In
the proofs, we state the result more generally for any probability value 1 − δ, where δ > 0; See the statements
of Lemma 2.2 and Lemma 2.3 below for details.

Proof Overview. We introduce a few notations to examine gθ(S) and the covariance of U . Let In ∈ {0, 1}n×k

be a zero-one matrix; For any i = 1, 2, . . . , n, the i-th row is 1Si
, the characteristic vector of Si. Let f̂ be a

vector in which f̂i = f(Si), for any i = 1, 2, . . . , n. The θ̂ that minimizes equation (3) is equal to

θ̂ =
(
I⊤

n In

)−1 I⊤
n f̂ . (7)

Let v = I⊤
n f̂ and let vi be the i-th entry of v, for i = 1, . . . , k. Based on the definition of In, we observe that

vi =
∑

1≤j≤n: i∈Sj

f(Sj), for any 1 ≤ i ≤ k. (8)

Next, let III ∈ {0, 1}|U|×k be a zero-one matrix, where |U| is the number of subsets in U . Each row of III
corresponds to the characteristic vector of a subset. Let fff be a vector such that each entry of this vector
corresponds to the MTL performances (cf. equation (1)) of a subset in distribution U . The population risk
minimizer θ⋆ for reducing L(θ) in equation (4) is equal to

θ⋆ =
(
III⊤III

)−1 III⊤ E [fff ].

Our proof involves two steps. First, we deal with the error due to the randomness of the random subsets. Let

θ̄ =
(
III⊤III

)−1 III⊤fff.

We state the following result, which shows that θ̂ converges to θ̄ as n increases.
Lemma 2.2. In the setting of Theorem 2.1, conditional on f(T ) for any subset T ∈ U , with probability
1 − 2δ over the randomness of S1, S2, . . . , Sn, for any δ ≥ 0, the Euclidean distance between θ̂ and θ̄ satisfies:

∥∥∥θ̂ − θ̄
∥∥∥ ≤ 4C

√(
k log2(2kδ−1)

)
α4

n
+ 8C

√
kα2

δn
. (9)

The proof of the above result relies on a novel union bound taken over all subsets in S. Crucially, there are
at most 2k subsets. By taking the logarithm of 2k after the union bound, we get a factor of k as shown in
equation (9). Second, we prove the convergence from θ̄ to θ⋆, as m increases.
Lemma 2.3. In the setting of Theorem 2.1, for any δ > 0, with probability at least 1 − δ over the randomness
of S1, S2, . . . , Sn and f(S1), f(S2), . . . , f(Sn), the Euclidean distance between θ̄ and θ⋆ satisfies:

∥∥θ̄ − θ⋆
∥∥ ≤ Rm(F)√

2
+

√(
log
(
δ−1k

))
α

4m . (10)

Combining Lemma 2.2 and Lemma 2.3 together, we have thus proved that equation (6) holds. The proof of
the above two results can be found in Appendix B. This result justifies why we use a linear specification, as
we can scale up the sample complexity.

3 Optimizing Multitask Learning Performance

Next, we design an algorithm to optimize the performance of the target task using the relevance scores of
each source task. We analyze this algorithm in a setting where the tasks are separated into two groups, with
one group being more similar (measured by Euclidean distances) to the target task than the other group.
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3.1 Using Relevance Scores to Select Source Tasks

Provided with the surrogate model, we can optimize the target task performance by using the predicted MTL
performances. A natural way is to select the subset that minimizes the value of gθ̂(S) over subset S. Due to
the linear specification of gθ̂, this is equivalent to selecting source tasks with a small θ̂i. Thus, we select a
source task i if θ̂i is below the desired threshold γ, which can be determined via cross-validation. Then, we
train a model by combining the selected source tasks with the target task. The complete procedure is shown
below. We will rigorously justify the existence of a threshold afterward.

Algorithm 1 Optimizing MTL Performance Using Relevance Scores
Input: k source tasks; Training and validation datasets of the target task.
Require: Size of each subset α; Number of sampled subsets n; MTL algorithm f ; Task selection threshold γ.
Output: Trained model ϕ(S⋆), ψ

(S⋆)
t .

1: For i = 1, . . . , n, sample a random subset Si from {1, 2, . . . , k} with size α; evaluate f(Si) following equation (1).
2: Estimate the relevance scores θ̂ following equation (3).
3: Select source tasks based on their relevance scores: S⋆ =

{
i : θ̂i < γ | ∀ i = 1, 2, . . . , k

}
.

4: Train a model by combining S⋆ and t; denote the trained model as ϕ(S⋆), and ψ
(S⋆)
i for all i ∈ S⋆ ∪ {t}.

3.2 Analysis of the Algorithm

We analyze the above procedure in a synthetic setting where the data is generated from a linear process.
We assume that the input features for each task are drawn from an isotropic Gaussian distribution with p
dimensions. For each task i from 0 to k, let β(i) ∈ Rp denote the linear process for task i. Given a data point
from task i with feature vector x, its label is generated as y = x⊤β(i) + ϵ, where ϵ is a random variable with
mean 0 and variance σ2. Suppose there are two groups of tasks depending on their distances to β(t), given by
a, b such that b > a > 0. For every i = 1, . . . , k, task i is called a good task if ∥β(i) − β(t)∥ ≤ a; On the other
hand, i is a bad task if ∥β(i) − β(t)∥ ≥ b. We show that there exists a threshold that separates good tasks
from bad tasks, stated formally as follows.

Theorem 3.1. In the setting described above, suppose f is bounded from above by a fixed constant C > 0.
Suppose there are d ≳ k log k + p+ a4k4(a2 − b2)−2 data points from every source and target task. Suppose
n ≳ C2k2(a2 − b2)−2 and m ≳ p log p. With probability at least 0.99, there exists a threshold γ such that

• For any i = 1, 2, . . . , k, if task i is a good task, then θ̂i < γ.
• Otherwise, if task i is a bad task, then θ̂i > γ.

The intuition behind the above result is that θ̂i averages the MTL performances of all subsets involving i. If
i is a good task, then the averaged performances will be lower, leading to a lower relevance score. Moreover,
there exists a threshold that separates the relevance scores of good tasks and bad tasks. We give a toy
example to illustrate why θ̂ can preserve the Euclidean distance gaps from the β’s. Our experiments later
also confirm the existence of such a separation (cf. Figure 5).

Example 3.2 (One-dimensional case). Consider a one-dimensional case where p = 1 and every β is a real
value. Let β(t) = 0. Let 0 < β(i) < a if i is a good task. Let b < β(i) if i is a bad task.

• Our first observation is that θ̂i is proportional to vi (cf. equation (8)), as shown in Lemma 3.3.
• Our second observation is that vi is proportional to β(i). This is because vi is the sum of f(S) among all
S ∈ U involving i, and f(S) is the average of β(j) among j ∈ S. Thus, vi is the average of all β’s from
the n random subsets, while β(i) has a larger weight in vi than the other β’s because i is always in S.

Taken together, we conclude that the relevance scores can preserve the relative values of β’s in this example.

Proof Overview. We now generalize the intuition from the one-dimensional case, beginning with the first
observation. We show that the relevance scores preserves the distance gap of every pair of tasks from the β’s.

7



Under review as submission to TMLR

Lemma 3.3. In the setting of Theorem 3.1, with probability 1 − δ, for any δ > 0, the following holds:∣∣∣∣ 1n (θ̂i − θ̂j) − k

αn
(vi − vj)

∣∣∣∣ ≲ log(δ−1k)√
n

, for any 1 ≤ i < j ≤ k. (11)

The above result is by analyzing the covariance of In, which is proportional to identity plus a constant shift.
Let Idk×k be a k by k identity matrix and e ∈ Rk be a vector whose entries are all equal to one. By the
definition of In and Woodbury matrix identity, we have

E
[

I⊤
n In

n

]
= α

k
Idk×k +α(α− 1)

k(k − 1) ee
⊤ ⇒ E

[
I⊤

n In

n

]−1

= k

α

(
Idk×k − α− 1

kα− 1ee
⊤
)
. (12)

Crucially, if we multiply v on the right-hand side of equation (12), then we will get k
α (v− α−1

kα−1 (e⊤v)e). Recall
that e is the all ones vector, which has the same entry in every coordinate after rescaling. Then, recall θ̂
from equation (3). By matrix concentration inequalities, the spectral norm of the deviation from I⊤

n
In

n to its
expectation satisfies ∥∥∥∥I⊤

n In

n
− E

[
I⊤

n In

n

]∥∥∥∥
2
≲
α log(kδ−1)√

n
. (13)

See equation (20), Appendix B.1 for the proof. Thus, combining equations (12) and (13), we claim that θ̂
is equal to α−1kv minus a shared term for every task, modulo the deviation error of order O(n−1/2). By
subtracting θ̂i − k

αvi and θ̂j − k
αvj , we can cancel out the shared term, leading to equation (11).

Next, we formalize the second observation from the one-dimensional case. Based on equation (8), vi is a sum
of f(S) for all subsets S such that i ∈ S. We then show that f(S) is the sum of β(j) for all j ∈ S, based on
the pooling structure of our MTL model. Thus, the Euclidean distance between β(i) and β(t) will also reflect
in vi. For complete proof of Theorem 3.1 (and Lemma 3.3), see Appendix B.4. This result substantiates our
intuition that θ̂i provides the relevance score of each source task i to the target task while accounting for the
presence of other source tasks.

4 Experiments

We apply our approach to three settings. The first setting is about applying weak supervision to unlabeled
data, and we apply our algorithm to select labeling functions for combining the weak labels of the labeling
functions. The second setting involves language prediction tasks from NLP benchmarks. Again, we use
our algorithm to select source tasks to improve the performance of target tasks. The third setting involves
learning from multiple groups of heterogeneous subpopulations, where the goal is to train a model with robust
performance across all groups. We cast this multi-group learning problem into an MTL framework, and apply
our algorithm to select a subset of groups to improve the robustness of target tasks. For all these settings,
we show that surrogate models can predict negative transfers accurately, and fit MTL performances well;
Moreover, our approach provides consistent benefits over various existing optimization methods for multitask
learning. We plan to release the code after the review process, and it is also available for review upon request.

4.1 Experimental Setup

Datasets. First, we apply our approach to several text classification tasks from a weak supervision dataset
(Zhang et al., 2021a). Each dataset uses several labeling functions to create labels for every unlabeled example.
The labels generated by different labeling functions may conflict with each other. We view each labeling
function as a source task. The goal is to predict an unlabeled set of examples which is viewed as the target
task. A validation dataset that includes the correct labels is available for cross-validation. We include the
dataset statistics in Table 2.

Second, we consider MTL with natural language processing tasks. We collect twenty-five datasets across a
broad range of tasks, spanning sentiment classification, natural language inference, question answering, etc.,
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Figure 3: Left: Our approach can consistently predict positive/negative transfers from up to 20 source tasks
to the target task. Right: Convergence of surrogate models as n increases up to 400, leading to an F1-score
of 0.8 for predicting positive/negative transfers from up to 20 source tasks to one target task.

from GLUE, SuperGLUE, TweetEval, and ANLI. We view one task as the target and use the rest as source
tasks. The goal is to select a subset of source tasks for the best multitask learning performance. We provide
the statistics of the twenty-five tasks in Table 4, Appendix C.1.

Third, we consider multi-group learning settings in which a dataset involves multiple subpopulation groups.
We consider income prediction tasks based on US census data (Ding et al., 2021). The goal is to predict
whether an individual’s income is above $50,000 or not, using ten features, including the individual’s education
level, age, sex, etc. There are 51 states in this dataset; we view each state as one task. When we perform
prediction, we use one state as the target task and use the rest of the fifty states as source tasks. We use the
racial group of each individual to split a state population into nine subpopulation groups. We evaluate the
robustness of a model by the worst-group accuracy. This metric measures the accuracy of the worst-performing
group among all groups. We use six states as the target task. See Table 3 for dataset statistics.

Implementation. We use a standard approach for conducting MTL, i.e., hard parameter sharing. For text
classification, we use BERT-Base as the encoder. For tabular features, we use a fully-connected layer with a
hidden size of 32. The surrogate modeling procedure requires three parameters: the size of a subset, the
number of samples, and the loss function. We select the size from a range between 3, 5, 10, 15. We select the
number of samples from a range between 50, 200, 400, 800, depending on k. We also collect a holdout set of
size 100 for constructing the surrogate model. For classification tasks, we set the loss function as the negative
classification margin, i.e., the difference between the correct-class probability and the highest incorrect-class
probability. After estimating the surrogate model g from equation (3), we use g(S) as the predicted multitask
loss for an unseen subset S. We compare g(S) with the STL performance of task t to determine whether the
transfer from S to t is positive or negative. We measure the F1-score for the minority class (between the
positive and negative classes) on the holdout set.

4.2 Results for Predicting Negative Transfers

We validate that our fitted models can accurately identify positive vs. negative transfers from source tasks.
Then, we show that these models can be constructed efficiently by reporting the runtime.

Results. We test the accuracy of using surrogate models to predict positive vs. negative transfers. We first
evaluate the four examples shown in Figure 2. We set the size of α as 5 and n as 400. By using the model
to compare the MTL performances with STL performances, we can correctly predict the transfers with an
F1-score of 0.82, averaged over the four target tasks. Second, we conduct the same tests for weak supervision
and NLP tasks. Similarly, we find that task models can predict positive vs. negative transfers with F1-score
of 0.8 on average for ten different target tasks.

Furthermore, we compare these results with two baselines that either compute first-order task affinity scores or
higher-order approximations by averaging first-order affinity scores. Our approach yields much more accurate
predictions across different subset sizes of α, ranging from 5 up to 20. Figure 3 provides the illustration for
one target task, which is conducted on the folktables dataset, along with fifty source tasks.

Lastly, we measure the Spearman correlation between the predicted performances and true performances.
We observe an average coefficient of 0.8 across 16 target tasks. See Appendix A for the details.
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Runtime. Next, we report the runtime cost, collected on an NVIDIA Titan RTX card.
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Figure 4: Illustration of lin-
ear scaling between k and
number of GPU hours.

First, we show that the runtime of our procedure scales linearly with k, the
number of source tasks. Recall that our approach requires training n models,
one for each random subset. We find that collecting n ≤ 8k samples suffice
for the fitted model to converge. The results hold for 16 target tasks shown in
Figure 6 of Appendix A. We plot the number of hours w.r.t. k in Figure 4. The
results confirm our hypothesis.

Then, we show that the linear runtime of our approach is more efficient than
the baselines. The previous baselines (Standley et al., 2020; Fifty et al., 2021)
compute first-order affinity scores and conduct a branch-and-bound search
algorithm over the task space, which has the complexity exponential in k.
Concretely, we find that on a dataset with 10 source tasks, our approach takes
2.24 GPU hours, while using the previous approaches from Fifty et al. (2021) and Standley et al. (2020)
takes 2.84 and 4.43 hours, respectively. On datasets with more than 20 tasks, we find that baselines using
the branch-and-bound algorithm takes more than 200 hours. In contrast, our approach takes at most 145
hours. This is consistent with our theoretical predictions in Section 2.

Techniques for Further Speedup. Lastly, we show that we can further reduce the runtime of our approach
by two techniques. Our objective is to obtain similar results to the ones evaluated from fully trained MTL
models. First, we reduce the size of the training set by subsampling training data from each task. Second, we
reduce the number of iterations for training the MTL model.

We apply the two techniques to the CDR and Chemprot datasets. The results are shown in Table 1. We find
that selecting source tasks by the results of using 40% of the training data and 20% of training iterations
obtains comparable results to using the fully trained MTL models, i.e., accuracy difference is within 0.5%.
With the setup, the techniques reduce the runtime of our approach by 12× times.

Dataset (Metrics) CDR (Hours / F1) Chemprot (Hours / Acc.)

Alg. 1 w/o early stopping and downsampling 38.34H / 61.22±0.39 31.14H / 57.54±0.55
Alg. 1 w/ early stopping and downsampling 2.89H / 60.77±0.05 3.76H / 57.06±0.84

Table 1: Speeding up our approach by training models on sampled subsets of tasks with 20% training
iterations (early stopping) and 40% training data (dataset sampling). We observe comparable performance
compared with fully training the model on the entire dataset.

4.3 Results for Improving MTL Performance

Next, we apply our approach to MTL on weak supervision and NLP tasks. We compare our approach with
the following baselines. First, we consider training by naively combining all source and target tasks. Second,
we consider MTL optimization methods, including HOA (Standley et al., 2020), TAG (Fifty et al., 2021),
and a bilevel optimization method (TAWT, Chen et al. (2022)). To set the threshold γ in our algorithm, we
use grid search from −0.5 to 0.5 at an interval of 0.1. We choose this range because it covers the values of
most coefficients in our experiments.

Multitask weak supervision. First, we apply our algorithm to five weak supervision datasets, which
involve text classification from multiple weak labels. We select a subset of labeling functions so that using
their weak labels to train an end model best improves performance on the target task. We also compare
against methods that use a label model to aggregate the weak labels and then train an end model on the
aggregated label. These include taking a majority vote on the weak labels, applying probabilistic modeling to
combine the noisy labels (Ratner et al., 2016), and MeTaL (Ratner et al., 2019).

Next, we compare the experimental results, shown in Table 2. Compared with naively MTL, which trains
all tasks together, our algorithm improves the test performance by 6.4% on average. Compared with MTL
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Table 2: Accuracy/F1-score from surrogate modeling followed by task selection (ours), as compared with
MTL methods and weak supervision methods that use a label model to aggregate the weak labels.

Dataset (Metrics) Youtube (Acc.) TREC (Acc.) CDR (F1) Chemprot (Acc.) Semeval (Acc.)

Training 1,586 4,965 8,430 12,861 1,749
Validation 120 500 920 1,607 178
Test 250 500 4,673 1,607 600
# source tasks 10 68 33 26 164

Naive MTL 94.72±0.85 64.10±0.50 58.20±0.55 53.43±0.53 89.00±1.06
HOA 94.93±1.80 74.67±4.66 59.76±0.97 45.57±0.41 89.94±4.42
TAG 95.20±0.65 77.50±3.62 59.31±0.15 53.67±2.74 89.06±1.47
TAWT 94.53±1.05 72.40±2.36 59.85±0.30 53.76±2.96 86.83±1.78
Majority voting 95.36±1.71 66.56±2.31 58.89±0.50 57.32±0.98 85.03±0.83
Probabilistic modeling 93.84±1.61 68.64±3.57 58.48±0.73 57.00±1.20 83.93±0.83
MeTaL 92.32±1.44 58.28±1.95 58.48±0.90 56.17±0.66 71.74±0.57

Alg. 1 (Ours) 97.47±0.82 81.80±1.14 61.22±0.39 57.54±0.55 93.50±0.24

optimization methods and weak supervision methods, our algorithm outperforms their results by up to 3.6%
absolute and 2.3% on average.
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Figure 5: We find that there is a separation between
selected and excluded source tasks when comparing the
number of correct/incorrect labels.

Lastly, we examine the labeling functions selected
by our approach. Recall that our procedure places
a threshold over the coefficients to separate good
and bad source tasks. Here, we use the num-
ber of correct and incorrect labels as a proxy of
relatedness between a labeling function and the
target task. Figure 5 shows the results, measured
on two datasets, namely Chemprot and TREC.
Each dot represents one source task. We observe
a clear separation between selected and excluded
source tasks, when we compare the number of
correct/incorrect labels in each task. This shows
that our algorithm manages to select more accu-
rate source tasks for multi-task learning.

NLP tasks. Next, we test our approach on NLP tasks. We collect 25 datasets from GLUE, SuperGLUE,
TweetEval, and ANLI. See Table 4, Appendix C.2 for a complete list. We evaluate our approach by first
selecting source tasks and then applying MTL. We test on five target tasks: CoLA, RTE, CB, COPA, and
WSC. For each task, we use the rest 24 tasks as source tasks.

We first compare our approach with STL and naive MTL. We observe that naive MTL can perform worse
than STL, e.g., on CoLA and WSC datasets. By contrast, our approach always outperforms STL (by 5.5%)
and naive MTL (by 5.4%), on average. We then compare our approach with TAG and HOA. Our approach
shows an average improvement of 2.2% and is especially effective for tasks with a small training set.

4.4 Results for Improving Robustness in Multi-group Learning

Lastly, we apply our approach to multi-group learning settings in which the input distribution contains a
heterogeneous mixture of subpopulations. The objective of these problems is to learn a model that performs
robustly for all groups. In particular, we apply our approach to three performance metrics: worst-group
accuracy, democratic disparity, and equality of opportunity. We also compare against STL methods, including
group distributional robust optimization (GroupDRO, Sagawa et al. (2020)) and supervised contrastive
learning (correct-n-contrast, Zhang et al. (2022)). Table 3 presents the comparison.

Compared with single-task learning, including GroupDRO and correct-n-contrast, we find that task modeling
improves the worst-group accuracy by 1.17% on average. Compared with existing MTL optimization
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Table 3: Worst-group accuracies using MTL with source tasks selected by our algorithm, as compared to
STL, MTL optimization methods, and exhaustive search over combinations of up to two source tasks.

Dataset HI KS LA NJ NV SC

Training 4,638 9,484 12,400 28,668 8,884 14,927
Validation 1,546 3,161 4,133 9,556 2,961 4,976
Test 1,547 3,162 4,134 9,557 2,962 4,976
Smallest group size 67 75 58 52 61 203

GroupDRO 74.56±0.58 75.50±0.59 74.90±0.38 76.95±0.20 73.06±0.66 75.56±1.36
Correct-n-contrast 74.37±0.27 75.52±1.19 74.25±0.15 77.60±0.10 73.22±0.40 76.23±0.98
Naive MTL 73.63±0.46 75.22±0.73 73.24±1.01 77.28±0.25 73.22±1.12 76.23±0.49
HOA 74.67±0.32 75.22±1.48 73.69±0.86 77.49±0.25 73.88±0.66 76.80±0.65
TAG 74.48±0.41 75.97±1.18 73.24±1.01 77.41±0.48 74.05±0.84 76.41±0.50
TAWT 73.53±0.44 75.14±1.39 73.51±1.38 76.47±1.31 72.89±0.81 76.59±0.97
Exhaustive search (α ≤ 2) 75.10±0.37 77.03±0.76 73.60±1.02 77.40±0.24 73.21±1.10 77.16±0.21

Alg. 1 (Ours) 75.47±0.73 76.96±0.69 75.62±0.11 78.17±0.36 75.21±0.52 77.62±0.34

methods, our approach shows a favorable gain of up to 1.9% absolute accuracy. Measured by two fairness
metrics, namely democratic disparity and equality of opportunity, our algorithm outperforms all baseline
methods by 1.8% on average. These results can be found in Table 6 of Appendix C.2.

4.5 Ablation Studies

Benefit of modeling higher-order transfers. We validate the benefit of modeling higher-order task
transfers over approaches that only precompute first-order or second-order task affinities. First, compared
with approaches that compute first-order task affinities, our approach improves the accuracy by 3.0%, as
is clear from Tables 2 and 3. Second, we precompute the MTL performance for every combination of two
source tasks. We run an exhaustive search over k(k − 1)/2 combinations to find the best combination for
MTL. We test on six target tasks with k = 50, which requires training 1, 225 MTL models with two source
tasks and one target task each time. We find that our selection procedure consistently outperforms the best
two-task subsets by 1.21% absolute accuracy. This is shown on the last line of Table 3.

Sensitivity of model parameters. There are three parameters that require tuning: the subset size α,
the number of samples n, and the loss function ℓ. We set α and n based on the cross-validation results on
a holdout set. Besides, we find that choosing ℓ as the classification margin function performs the best in
practice. The threshold γ is usually set as 0.3 or 0.4 for weak supervision datasets, which selects most source
tasks except the highly noisy labelings. For the NLP and multi-group learning tasks, γ is usually set as −0.5,
which selects less than 10 source tasks. Thus, there is only a limited number of beneficial source tasks. Lastly,
we find that the selected tasks remain the same when using different random seeds to train the task model.
For details, see Appendix C.3.

5 Related Work

We note that there is a vast body of work on multitask learning from a variety of fields. A recurring theme
for multitask learning research is inspired by a desire to imitate human intelligence as we continue to learn
new information and extrapolate the learned information to new tasks and domains (Thrun et al., 1998). In
the early literature, many studies focus on MTL with linear and kernel-based models. A common approach is
to set up separate parameters for each task while adding explicit regularization to the combined parameters
(Evgeniou et al., 2004; Argyriou et al., 2007; 2008). For linear models particularly, this approach can be
related to low-rank matrix approximation (Ando et al., 2005). Inspired by the development of deep learning,
recent works focus on MTL with deep neural networks (Yang et al., 2017). More broadly, there are several
excellent surveys (Zhang et al., 2021b; Jiang et al., 2022) that provide more comprehensive references. Within
this vast literature, the primary contribution of our work is in the identification of negative transfers and the
design of principled optimization methods. Below, we discuss the topics most relevant to our study.
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Understanding Black-box Predictions. Our approach builds on the recent work of datamodels (Ilyas
et al., 2022). However, there are two major differences between our work and their work. First, we apply
the idea of surrogate models to multitask learning, whereas their work focuses on the single-task supervised
learning setting. Second, besides empirical demonstrations, we have also conducted a theoretical analysis
of our approach for multitask learning. Our findings reinforce the result of Ilyas et al. (2022) that the
performances of deep neural networks can be extrapolated efficiently and accurately. Recent work has sought
to explain why datamodels can perform well using harmonic analysis (Saunshi et al., 2022). It would be
interesting to see if their techniques can be used to explain the empirical findings of our work in the context
of MTL. More broadly, there is a line of work on developing techniques to understand the influence of data in
black-box models; see, e.g., Koh et al. (2017) and Yeh et al. (2018) for further references.

Formal Notions of Task-relatedness. There is a rich discussion about formulating notions of task-
relatedness in the literature (Ben-David et al., 2003). Ben-David et al. (2010) introduces a discrepancy notion
called H-divergence, which leads to a generalization bound for minimizing the empirical risk of naive MTL.
Transfer exponents are another measure of discrepancy between two distributions (Hanneke et al., 2019).
Geometric distance measures for linear data models have also been considered in few-shot learning (Du et al.,
2020) and meta-learning (Kong et al., 2020; Saunshi et al., 2021).

Note that none of these task-relatedness measures can be measured on deep neural networks, due to the
complexity of these models. One heuristic solution is to measure the cosine similarity between the gradients
of each task’s loss functions during training (Yu et al., 2020; Dery et al., 2021; Chen et al., 2022). Another
solution is to measure the similarity of the predicted probabilities between tasks (Nguyen et al., 2020). This
leads to a noisy estimate of task-relatedness, which is best for capturing first-order transfers. Standley et al.
(2020) combines domain knowledge from visual intelligence to build a task relation taxonomy for 26 tasks.
Compared with their approach, our approach is more generic and is applicable to any MTL settings with little
to no domain knowledge, and efficiently captures higher-order transfer in a principled framework. Rather
than defining an explicit relatedness measure, our work uses surrogate models as an implicit measure of
task-relatedness. This perspective circumvents the design of explicit task-relatedness measures for deep neural
networks but is still useful for predicting transfers and for optimizing the performance of MTL.

Optimization Methods for MTL. We draw motivation from recent work which models and integrates
weak supervision for rapidly training deep models (Ratner et al., 2016). In particular, we build on previous
multitask weak supervision approaches (Ratner et al., 2019), while adding new capability to deal with
conflicts between labeling functions in the end model. Our setting is related to the task grouping problem
(Kumar et al., 2012), which aims to assign tasks into several groups, with each group of tasks learned in a
separate MTL model. Different from this problem, we select source tasks for learning a target task, which
has been studied in several recent works using optimization methods (Guo et al., 2019; Chen et al., 2022). A
recent work (Liu et al., 2022) optimizes a weighted combination of task loss functions and jointly updates
task-specific weights by gradients of task losses during training. There are also works that apply low-rank
tensor factorization to the parameters of multiple linear regression tasks (Wimalawarne et al., 2014). Along
this line of research, recent works (Nie et al., 2018; Yang et al., 2020) apply low-rank regularization methods
with a block-diagonal structure on the parameters. Yang et al. (2017) extend the methods to deep neural
networks. Complementary to these works, we assign a relevance score to each source task and estimate these
scores by fitting a surrogate model.

Lastly, we note that task relations are characteristically different between different benchmarks, due to the
nature of the data. In this paper, we focus on developing a methodology for predicting MTL performances
using rigorous theoretical and empirical arguments. Our extensive experiments demonstrate the usefulness
of the methodology. It would be interesting to apply our methodology to large-scale benchmarks beyond
what we have studied (Zamir et al., 2018; Aribandi et al., 2022). Besides, it would be interesting to see if
our approach can be applied to other related settings such as federated learning (Wang et al., 2020) and
multitask reinforcement learning (Wang et al., 2022), where the problem of identifying negative transfers also
arises. Lastly, although our work focuses on subset selection for multitask learning at the task-level, it would
be interesting to see if similar approaches would apply to feature selection for multitask learning.
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6 Conclusion

This paper studied how to efficiently predict negative transfers from multiple source tasks to one target task.
The main contribution is the design and analysis of surrogate models for predicting MTL performances. Both
theoretical and empirical results are provided to show that our approach is efficient, accurate, and advances
over prior MTL techniques. Our work opens up many interesting questions for future work. Although we
demonstrated the empirical strength of linear models for MTL, a rigorous explanation is lacking; Can recent
analytic tools for understanding datamodels (Saunshi et al., 2022) be used here? Can more advanced sampling
techniques, such as adaptive sampling, help speed up the training of surrogate models, which might enable
the training of more powerful models? Understanding task relations is a complex and challenging research
question in multitask learning. We hope our work inspires more principled studies in this direction.
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A Results for Constructing Surrogate Models

Section 2.3 shows that the sample complexity for learning task models is linear in the number of source tasks.
Here, we provide empirical evidence to support this result. We plot the convergence of task modeling on
sixteen target tasks from three datasets described in Section 4.1. We measure the MSE between task model
predictions and empirical training results on the holdout set of size 100, following the experimental setup
described in Section 4.2. Figure 6 shows the results. The red line shows the variance of f , measured across
five random seeds. We observe that:

• The MSE of task models consistently converges close to the variance of the prediction loss.
• The Spearman correlation coefficient between the predictions and the true performances is 0.8 on average.

Thus, we conclude that linear surrogate models can be accurately fitted with less than 8k samples, and the
fitted model can accurately predict the performances of unsampled subsets.

B Complete Proofs of Theoretical Results

Notations. We use f(n) = (1 + o(1))g(n) to indicate that |f(n) − g(n)|/g(n) approaches zero as n goes to
infinity. For a matrix denoted as X, denote the spectral norm (or the largest singular value) of X as ∥X∥2.
Denote the Frobenius norm of X as ∥X∥F .

B.1 Proof of Lemma 2.2

In the first part of the proof, we prove the convergence from θ̂ to θ̄ by dealing with the randomness of
S1, S2, . . . , Sn. Recall that U is the uniform distribution over subsets of {1, 2, . . . , k} with size α. Let |U| =

(
k
α

)
denote the number of subsets from U .

Proof of Lemma 2.2. Recall the definitions of θ̂ and θ̄ from Section 2. They can be written equivalently as
follows:

θ̂ =
(

I⊤
n In

n

)−1
v

n
and θ̄ =

(
III⊤III
|U|

)−1 III⊤fff

|U|
.
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Figure 6: The MSE of linear surrogate models converges close to the variance of MTL performances. (a-d)
Weak supervision tasks. (e-h) NLP tasks. (i-p) Multi-group learning tasks.

We will use the triangle inequality to separate the error between θ̂ and θ̄ into two parts:

∥∥∥θ̂ − θ̄
∥∥∥ =

∥∥∥∥∥
((

I⊤
n In

n

)−1

−
(

III⊤III
|U|

)−1)
v

n
+
(

III⊤III
|U|

)−1 ( v
n

− III⊤fff

|U|

)∥∥∥∥∥
≤

∥∥∥∥∥
(

I⊤
n In

n

)−1

−
(

III⊤III
|U|

)−1∥∥∥∥∥
2

·
∥∥∥ v
n

∥∥∥ (14)

+
∥∥∥∥∥
(

III⊤III
|U|

)−1∥∥∥∥∥
2

·
∥∥∥∥ vn − III⊤fff

|U|

∥∥∥∥ . (15)

We compare v
n and III⊤fff

|U| . Recall that both vectors have k coordinates, each corresponding to one task. For
any task i = 1, . . . , k, let Ei denote the difference between the i-th coordinate of v

n and the i-th coordinate of
III⊤fff
|U| :

Ei = 1
n

∑
1≤j≤n: i∈Sj

f(Sj) − 1
|U|

∑
T ∈U : i∈T

f(T ). (16)
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Notice that the sampling of S1, S2, . . . , Sn is independent of the randomness in f . Therefore, we have that
the expectation of Ei is zero:

E [Ei] = 0, for any i = 1, 2, . . . , k.

Next, we apply Chebyshev’s inequality to analyze the deviation of Ei from its expectation. We consider the
variance of Ei, which is equal to the expectation of E2

i since the mean of Ei is zero:

E
[
E2

i

]
= E


 1
n

∑
1≤j≤n: i∈Sj

f(Sj) − 1
|U|

∑
T ∈U : i∈T

f(T )

2


= E

 1
n2

 ∑
1≤j≤n:i∈Sj

f(Sj)

2

− 2
n |U|

∑
1≤j≤n: i∈Sj

f(Sj)
∑

T ∈U : i∈T

f(T ) + 1
|U|2

( ∑
T ∈U : i∈T

f(T )
)2


(17)

Notice that for any T ∈ U such that i ∈ T , the probability that T is sampled in the training dataset of size n
is equal to (|U|−1

n−1
)(|U|

n

) = n

|U|
.

For any two subsets T ̸= T ′ that are both from U such that i ∈ T and i ∈ T ′, the probability that T and T ′

are both sampled in the training set (of size n) is equal to(|U|−1
n−1

)(|U|
n

) ·
(|U|−1

n−1
)(|U|

n

) = n2

|U|2
.

Thus, by taking the expectation over the randomness of the sampled subsets in equation (17) conditional on
f , we can cancel out the cross terms for every pair of two tasks i ̸= i′, leaving only the squared terms as:

E
[
E2

i

]
= E

[(
1
n2

n

|U|
− 2
n |U|

n

|U|
+ 1

|U|2

) ∑
T ∈U : i∈T

(
f(T )

)2
]

≤ C2

n
· |T ∈ U : i ∈ T |

|U|
≤ C2

n
,

since the value of f is bounded from above by an absolute constant C. Therefore,

E

[
k∑

i=1
E2

i

]
≤ C2k

n
.

By Markov’s inequality, for any a > 0,

Pr
[

k∑
i=1

E2
i ≥ a2k

n

]
≤ C2

a2 .

Therefore, with probability at least 1 − δ, for any δ > 0, conditional on the randomness of f , we have that∥∥∥∥ vn − III⊤fff

|U|

∥∥∥∥ ≤ C

√
k

δn
. (18)

Next, we use random matrix concentration results to analyze the difference between the indicator matrix of
the sampled subsets and the indicator matrix of all subsets in U . Denote by

E = I⊤
n In

n
− III⊤III

|U|
and A = III⊤III

|U|
.
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By the Sherman-Morrison formula calculating matrix inversions, we get∥∥∥∥(I⊤
n In

n

)−1
−
(III⊤III

|U|

)−1
∥∥∥∥

2
=
∥∥(E +A)−1 −A−1∥∥

2

=
∥∥∥∥A−1

(
AE−1 + Idk×k

)−1
∥∥∥∥

2

=
∥∥∥∥A−1E

(
A+ E

)−1
∥∥∥∥

2

≤
(
λmin(A)

)−1 · ∥E∥2 ·
(
λmin(A+ E)

)−1

≤ ∥E∥2

λmin(A)(λmin(A) − ∥E∥2) . (19)

We now use the matrix Bernstein inequality (cf. Theorem 6.1.1 in Tropp (2015)) to deal with the spectral
norm of E. Let

Xi = 1Si
1

⊤
Si

− III⊤III
|U|

, for any i = 1, . . . , n.

In expectation over U , we know that E [Xi] = 0, for any i = 1, . . . , n. Additionally, ∥Xi∥2 ≤ 2α, since it is a
linear combination of indicator vectors with α entries of ones in each indicator vector. Therefore, for all t ≥ 0,

Pr [∥E∥2 ≥ t] = Pr
[∥∥∥∥∥

n∑
i=1

Xi

∥∥∥∥∥
2

≥ nt

]
≤ 2k · exp

(
− (nt)2/2

(2α)2n+ (2α)nt/3

)
.

With some standard calculations, this implies that for any δ ≥ 0, with probability at least 1 − δ,

∥E∥2 ≤
4α · log

(
2kδ−1)

√
n

. (20)

By applying equation (18) into equation (14) and equation (20) into equation (15), we have shown that with
probability at least 1 − 2δ, for any δ ≥ 0,

∥∥∥θ̂ − θ̄
∥∥∥ ≤

∥∥∥ v
n

∥∥∥
2

·
4α · log

(
2kδ−1

)
√
n

+ 1(
λmin(A)

)2(
λmin(A) − ∥E∥2

) · C
√

k

δn
. (21)

Lastly, we examine the norm of v
n . Let zi be the number of subsets Sj among 1 ≤ j ≤ n such that i ∈ Sj , for

any i = 1, . . . , n. Recall that the value of f is bounded from above by an absolute constant C. Thus, based
on the definition of v from equation (8), we have:

∥∥∥ v
n

∥∥∥ ≤ 1
n

√√√√C2
k∑

i=1
z2

i ≤ C

n

(
k∑

i=1
zi

)
= Cα, (22)

since the size of each subset is strictly equal to α.

Regarding the minimum eigenvalue of A, notice that the diagonal entry of III⊤III
|U| is equal to

(
k−1
α−1
)
. The

off-diagonal entries of this matrix are equal to
(

k−2
α−2
)
. Thus, based on standard algebra, one can prove that

λmin(A) ≥ 1 −
(

k−2
α−2
)(

k−1
α−1
) = 1 − α− 1

k − 1 ≥ 1 − α

k
. (23)

Applying equations (22) and (23) back into equation (21), we conclude that with probability at least 1 − 2δ,
θ̂ the estimation error between θ̂ and θ̄ grows at a rate of

√
k
n as follows:

∥∥∥θ̂ − θ̄
∥∥∥ ≤ 4Cα2 log(2kδ−1) ·

√
k

n
+
(

1 − α

k

)−3
Cα ·

√
k

δn
.

Thus, we have proved that equation (9) holds, and the proof is complete.
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B.2 Proof of Lemma 2.3

In the second part, we prove the convergence from θ̄ to θ⋆ by dealing with the randomness of f .

Proof of Lemma 2.3. Based on the definitions of θ̄ and θ⋆, their difference can be written as follows:

∥∥θ̄ − θ⋆
∥∥ =

∥∥∥∥(III⊤III
)−1

III⊤(fff − E [fff ]
)∥∥∥∥ (24)

≤

∥∥∥∥∥(III⊤III
|U|

)−1 III⊤√
|U|

∥∥∥∥∥
2

·

∥∥∥∥∥fff − E [fff ]√
|U|

∥∥∥∥∥
=

√√√√(III⊤III
|U|

)−1

· ∥fff − E [fff ]∥√
|U|

≤
(

1 − α

k

)− 1
2 · ∥fff − E [fff ]∥√

|U|
. (by equation (23))

For each subset T ∈ U , recall that f(T ) is the MTL outcome of combining the datasets of all tasks of T with
the main target task. We will apply a Rademacher complexity-based generalization bound to analyze the
generalization error f(T ) − E [f(T )]. Recall the Rademacher complexity of F with m samples from Dt is
defined in equation (5). By Bartlett et al. (2002, Theorem 5), with probability at least 1 − δ, we can get:

f(T ) ≤ E [f(T )] + Rm(F)
2 +

√
log
(
1/δ
)

2m . (25)

Similarly, one can get the result for the other directions of the error estimate. With a union bound over all
subsets T ∈ U , with probability at least 1 − δ, we get:

f(T ) ≤ E [f(T )] + Rm(F)
2 +

√
α log

(
k
δ

)
2m , for all T ∈ U , (26)

since

log
((

k
α

)
δ

)
≤ α log

(
k

δ

)
.

Let z =
√
α log

(
kδ−1

)
/(2m). Applying equation (26) back into equation (24), we have shown

∥∥θ̄ − θ⋆
∥∥ ≤

(
1 − α

k

)− 1
2

√√√√ 1
|U|

∑
T ∈U

(
Rm(F)

2 + z

)2

=
(

1 − α

k

)− 1
2

(
Rm(F)

2 + z

)
.

Thus, based on the condition that α ≤ k/2, the proof of equation (10) is complete.

Proof of Theorem 2.1. Notice that equation (6) follows by combining equation (9) from Lemma 2.2 and
equation (10) from Lemma 2.3, together with the condition that α ≤ 1/2. Thus, the proof of the theorem is
finished.

B.3 Convergence of the Empirical Risk

Based on the results from Lemma 2.2 and Lemma 2.3, we can also prove the convergence of the loss values.
This is stated precisely in the following result.
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Corollary B.1 (of Theorem 2.1). In the setting of Theorem 2.1, we have that

L(θ⋆) − L̂n

(
θ̂
)
≲ Cα · Rm(F) + Cα1.5

√
log(δ−1k)

m
+ C2α3.5 log

(k
δ

)√k

n
+ C2α2.5

√
k

δn
. (27)

Proof. To analyze the generalization error of L̂n(θ̂), based on equation (2), we can expand out the loss term
as

L̂n(θ̂) = 1
n

∥∥∥Inθ̂ − f̂
∥∥∥2

= 1
n

∥∥∥∥∥Inθ̂ − Ê
f

[
f̂
]

+ Ê
f

[
f̂
]

− f̂

∥∥∥∥∥
2

= 1
n

∥∥∥∥∥Inθ̂ − Ê
f

[
f̂
]∥∥∥∥∥

2

+ 2
n

⟨Inθ̂n − Ê
f

[
f̂
]
, Ê

f

[
f̂
]

− f̂⟩ + 1
n

∥∥∥∥∥Êf
[
f̂
]

− f̂

∥∥∥∥∥
2

. (28)

Based on Lemma 2.2, the distance between θ̂ and θ⋆ is at the order of O(n−1/2) with high probability. We
will use this result to deal with the first term in equation (28) as follows:

1
n

∥∥∥∥∥Inθ̂n − Ê
f

[
f̂
]∥∥∥∥∥

2

− 1
n

∥∥∥∥∥Inθ
⋆ − Ê

f

[
f̂
]∥∥∥∥∥

2

(29)

=
∣∣∣∣∣ 1n ⟨I⊤

n In, θ̂(θ̂)⊤ − θ⋆(θ⋆)⊤⟩ − 2
n

⟨Ê
f

[
f̂
]
, θ̂ − θ⋆⟩

∣∣∣∣∣
≤
∥∥∥∥ 1
n

I⊤
n In

∥∥∥∥
2

·
∥∥∥θ⋆(θ⋆)⊤ − θ̂(θ̂)⊤

∥∥∥
F

+ 2
n

∥∥∥∥∥Êf
[
f̂
]∥∥∥∥∥ ·

∥∥∥θ⋆ − θ̂
∥∥∥ (by triangle inequality)

≤α
∥∥∥θ⋆(θ⋆)⊤ − θ̂(θ̂)⊤

∥∥∥
F

+ 2Cα · e1,

where e1 denotes the right hand side of equation (6). In the last step, the first part uses the fact that I⊤
n In/n

is the average of n rank one matrices, each with spectral norm α since they have exactly α ones. The second
part uses an argument similar to equation (22) and the result of equation (6). Next,∥∥∥θ⋆(θ⋆)⊤ − θ̂n(θ̂n)⊤

∥∥∥
F

=
∥∥∥θ⋆(θ⋆ − θ̂n)⊤ + (θ⋆ − θ̂n)(θ̂n)⊤

∥∥∥
F

≤
∥∥∥θ⋆(θ⋆ − θ̂n)⊤

∥∥∥
F

+
∥∥∥(θ⋆ − θ̂n)(θ̂)⊤

∥∥∥
F

(by triangle inequality)

≤
(

∥θ⋆∥ +
∥∥∥θ̂∥∥∥)e1. (by equation (6))

We show that the norm of θ⋆ and θ̂n are both bounded by a constant factor times
√
k. To see this,

∥θ⋆∥ =
∥∥∥(III⊤III)−1III⊤ E [fff ]

∥∥∥
≤
∥∥∥∥(III⊤III

|U|

)−1
∥∥∥∥

2
·
∥∥∥∥III⊤ E [fff ]

|U|

∥∥∥∥
≤
(

1 − α

k

)−1
· C

√
α (by equation (23) and the condition that f is bounded by C)

Notice that the spectral norm of the difference between III⊤III/ |U| and I⊤
n In/n has been analyzed in equation

(20). Thus, with similar steps as above, we can show that

∥∥∥θ̂∥∥∥ ≤

((
1 − α

k

)−1
+

4α log
(
2kδ−1)

√
n

)
C

√
k.
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To wrap up our analysis above, we have shown that equation (29) is at most

e3 = α

(
2(1 − α/k)−1 +

4α log
(
2kδ−1)

√
n

)
C

√
α · e1 + 2Cα · e1.

Next, we consider the second term in equation (28). Let e2 = Rm(F)
2 +

√
α log(k/δ)

2m be the deviation error

indicated in equation (26). Thus, every entry of f̂ − E
[
f̂
]

is at most e2. Besides, each entry of Inθ̂n − E
[
f̂
]

is less than
√
α∥θ̂n∥ + C,

because ∥In∥2 ≤
√
α and f is bounded from above by C. Thus, the second term in equation (28) is less than

e4 = e2

(
√
α ·
((

1 − α

k

)−1
+

4α log
(
2kδ−1)

√
n

)
C

√
α+ C

)
.

For the population loss L(θ⋆), notice that

L(θ⋆) = E
fff

[
1

|U|
∥IIIθ⋆ − fff∥2

]
= E

fff

[
1

|U|

∥∥∥∥IIIθ⋆ − E
fff

[fff ] + E
fff

[fff ] − fff

∥∥∥∥2
]

= 1
|U|

∥∥∥∥IIIθ⋆ − E
fff

[fff ]
∥∥∥∥2

+ 1
|U|

(
E
fff

[∥∥∥∥fff − E
fff

[fff ]
∥∥∥∥2
])

(30)

We know that each entry of IIIθ⋆ − E [fff ] is at most (1 − α/k)−1√
α+C. Thus, by Hoeffding’s inequality, with

probability at least 1 − δ, we have

∣∣∣∣∣ 1n
∥∥∥∥∥Inθ

⋆ − Ê
f

[
f̂
]∥∥∥∥∥− 1

|U|

∥∥∥∥IIIθ⋆ − E
fff

[fff ]
∥∥∥∥
∣∣∣∣∣ ≤

(
(1 − α/k)−1√

α+ C
)√ log

(
δ−1
)

n
. (31)

Lastly, we consider the third term in equation (28), compared with the second term in equation (30). For
every T ∈ U , let eT = f(T ) − E [f(T )]. By equation (26), we know that eT is of order O(m−1/2), for every
T ∈ U . Therefore ∣∣∣∣∣ 1n

n∑
i=1

e2
Si

∣∣∣∣∣ ≤
(Rm(F)

2 +
√
α log(k/δ)

2m

)2
, (32)

which is of order O(m−1). Similarly, the same holds for the variance of fff in the second term of equation (30).

Comparing equations (31) and (28), we have shown that

L(θ⋆) − L̂n(θ̂) ≤
(
(1 − α/k)−1√

α+ C + C2)√ log(δ−1)
n

+ C · e2 + e3 + e4

≲ (C + Cα)
(

Rm(F) +
√
α log(kδ−1)√

m

)
+
C2α7/2 log

(
2kδ−1)+ 8C2α5/2δ−1/2

√
k

√
n

.

The above follows by incorporating the definitions of the error terms e2, e3, e4. Thus, we have proved that
equation (27) holds. The proof is now finished.
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B.4 Proof of Theorem 3.1

Recall that In ∈ {0, 1}n×k is the indicator matrix corresponding to the task indices from the training dataset.
Given a set of tasks S with size α, denote their feature matrices and label vectors as (X1, Y1), (X2, Y2), . . . ,
(Xα, Yα). With hard parameter sharing (Yang et al., 2021), we minimize

ℓ(B) =
α∑

i=1
∥XiB − Yi∥2

. (33)

The minimizer of ℓ(B), denoted as B̂, is equal to the following

B̂ =
(

α∑
i=1

X⊤
i Xi

)−1( α∑
i=1

X⊤
i Yi

)
.

For isotropic covariates, by matrix concentration results, the loss of using B on the validation set of the
target task is equal to

f(S) =
∥∥∥B̂ − β(t)

∥∥∥2
+O

(√
p

m

)
.

First, we state the proof of Lemma 3.3 from Section 3.1.

Proof of Lemma 3.3. We have that Yi = Xiβ
(i) +ϵ(i), where ϵ(i) is a random vector whose entries are sampled

independently with mean 0 and variance σ2. We have

f(S) =

∥∥∥∥∥∥
(

α∑
i=1

X⊤
i Xi

)−1 α∑
i=1

X⊤
i ϵ

(i)

∥∥∥∥∥∥
2

. (34)

For a task i, we know that its coefficient is equal to the i-th entry of

(I⊤
n In

n

)−1 I⊤
n f̂

n
.

Let Z = I⊤
n In/n. By equation (12), for any i ̸= j, we observe that∣∣∣∣∣ θ̂i − θ̂j

n
− k

α
· vi − vj

n

∣∣∣∣∣ =
∣∣∣(ei − ej)⊤(Z−1 − E [Z]−1 ) v

n

∣∣∣
≤ ∥ei − ej∥ ·

∥∥∥Z−1 − E [Z]−1
∥∥∥

2
·
∥∥∥ v
n

∥∥∥
≤ 2Cα ·

∥∥∥Z−1 − E [Z]−1
∥∥∥

2
(by equation (22))

≤
4α log

(
2kδ−1)

√
n

2
(1 − α/k)2 . (by equations (19), (20), (23))

The last step follows by applying equations (20) and (23) into equation (19). Thus, we have finished the
proof of equation (11).

Second, we show that provided n, and d are sufficiently large, a separation exists in the coefficients of v
between good and bad tasks.
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Proof of Theorem 3.1. We calculate vi/n for all i = 1, . . . , k and compare its value between a good task and
a bad task. We first compare their expectations over the randomly sampled subsets. By equation (18), we get∣∣∣∣∣vi

n
− 1

|U|
∑

T ∈U : i∈T

f(T )
∣∣∣∣∣ ≤ Ckδ−1/2

√
n

, and∣∣∣∣∣∣vj

n
− 1

|U|
∑

T ∈U : j∈T

f(T )

∣∣∣∣∣∣ ≤ Ckδ−1/2
√
n

.

Therefore, by applying the triangle inequality with the above two results, we get∣∣∣∣vi − vj

n
−
∑

T ∈U :i∈T f(T ) −
∑

T ∈U :j∈T f(T )
|U|

∣∣∣∣ ≤ 2Ckδ−1/2
√
n

. (35)

To deal with equation (35), we apply a union bound over the sample covariance matrix of every subset T in U
to show that they are close to their expectation. By Gaussian covariance estimation results (e.g., Wainwright
(2019, equation (6.12))), for a fixed T ∈ U such that T = {i1, i2, . . . , iα}, we get∣∣∣∣∣∣ 1

αd

∑
j∈T

X⊤
j Xj − Idp×p

∣∣∣∣∣∣ ≤ 2
√

p

αd
+ 2ϵ+

(√
p

αd
+ ϵ

)2

, (36)

with probability at least 1 − 2 exp
(

− 1
2αdϵ

2). With a union bound over all T ∈ U , we have that the above
holds with probability at least 1 − δ for all T ∈ U , for ϵ that is equal to

ϵ =
√

2αk log(2kδ−1)
αd

.

Let ε1 denote the error term from equation (36), by inserting the value of ϵ:

ε1 = 2
√

p

αd
+ 2
√

2α log(2kδ−1)
αd

+
(√

p

αd
+ ϵ

)2

.

Let
uT = 1

αd

∑
j∈T

X⊤
j ϵ

(j), for any T ∈ U .

One can verify that ∣∣∣f(T ) − ∥uT ∥2
∣∣∣ ≤

(
(1 − ε1)−2 − 1

)
∥uT ∥2 ≤ 3ε1 ∥uT ∥2

.

Notice that

E
[
∥uT ∥2] = E

 1
(αd)2 Tr

∑
j∈T

X⊤
j ε

(j)(ε(j))⊤Xj

 .
If j is a good task, then the expectation over ε(j) is equal to a2 Id by the assumption of Theorem 3.1. If j is
a bad task, on the other hand, then the expectation over ε(t) is equal to b2 Id.

Let s(T ) denote the number of good tasks in T , for any T ⊆ {1, 2, . . . , k}. Thus,

E
[
∥uT ∥2] =

p
(
a2s(T ) + b2(α− s(T )

))
α2d

. (37)
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To argue about the deviation error of ∥uT ∥2, we use the following two estimates (see, e.g., Vershynin (2011)),
which holds with high probability:∣∣∣(ε(j))⊤

XjX
⊤
j ε

(j) − E
[(
ε(j))⊤

XjX
⊤
j ε

(j)
]∣∣∣ ≲ p

√
da2, for any j = 1, . . . , k;∣∣∣(ε(i))⊤

XiX
⊤
j ε

(j)
∣∣∣ ≲ p

√
da2, for any 1 ≤ i < j ≤ k.

Therefore, we get that for any T ∈ U , ∣∣∣∥uT ∥2 − E
[
∥uT ∥2

]∣∣∣ ≤ p
√
da2

d2 . (38)

To finish the proof, consider a good task i versus a bad task j. We need the gap in the expectation term
between the good/bad tasks to dominate the standard deviation from the error terms. The gap in the
expectations is based on equation (37). The standard deviation terms are upper bounded by the sum of
equations (35) and (38).

Thus, provided that

(1 − 3ε1)p(a
2 − b2)
α2d

≥ (1 + 3ε1)p
√
da2

d2 + 2Ckδ−1/2
√
n

, (39)

there must exist a threshold separating all the good tasks from the bad ones. We can verify that condition
(39) is satisfied when

n ≳ C2 · k2 · 1
(a2 − b2)2 , and

d ≳
( a2

a2 − b2

)2
k4 + k log

(2k
δ

)
+ p.

To apply Algorithm 1, we set the threshold γ as k/α times any value between the left-hand and right-hand
side of equation (39) (recall that k/α is inherited from Lemma 3.3). Thus, when n and d satisfy the condition
above, combined with Lemma 3.3, with high probability, for any i such that θ̂i < γ, i must be a good task.
When θ̂i > γ, i much be a bad task. Thus, we have finished the proof.

C Experiment Details

We describe details that were left out of the paper’s main text. First, we describe the additional experimental
setup and the implementation specifics. Second, we present results to further validate the sample complexity
of task modeling. Third, we provide the experimental results that are omitted from Section 4, including the
results for fairness measures and ablation studies.

C.1 Implementation Details

For evaluating multitask learning with natural language processing tasks, we collect twenty-five tasks from
several benchmarks, including GLUE, SuperGLUE, TweetEval, and ANLI. Due to the computation constraint,
we did not include the tasks with a training set size larger than 100k. The collection spans numerous categories
of tasks, including sentence classification, natural language inference, and question answering. Table 4 shows
the statistics of the twenty-five tasks.

Next, we report the results for baselines by running the open-sourced implementations from the respective
publications. We describe the hyperparameters for baselines as follows. For higher-order approximation and
task affinity grouping, we compute the task affinity scores between source and target tasks. Then, we select
m tasks with the largest task affinity scores as source tasks for each target task. m is searched between 0 and
the number of total tasks.
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Table 4: Dataset description and statistics of twenty-five text datasets.

Task Benchmark Train. Set Dev. Set Task Category Metrics

CoLA GLUE 8.5k 1k Grammar acceptability Matthews corr.
MRPC GLUE 3.7k 1.7k Sentence Paraphrase Acc./F1
RTE GLUE 2.5k 3k Natural language inference Acc.
SST-2 GLUE 67k 1.8k Sentence classification Acc.
STS-B GLUE 7k 1.4k Sentence similarity Pearson/Spearman corr.
WNLI GLUE 634 146 Natural language inference Acc.
BoolQ SuperGLUE 9.4k 3.3k Question answering Acc.
CB SuperGLUE 250 57 Natural language inference Acc./F1
COPA SuperGLUE 400 100 Question answering Acc.
MultiRC SuperGLUE 5.1k 953 Question answering F1a/EM
WiC SuperGLUE 6k 638 Word sense disambiguation Acc.
WSC SuperGLUE 554 104 Coreference resolution Acc.
Emoji TweetEval 45k 5k Sentence classification Macro-averaged F1
Emotion TweetEval 3.2k 374 Sentence classification Macro-averaged F1
Hate TweetEval 9k 1k Sentence classification Macro-averaged F1
Irony TweetEval 2.9k 955 Sentence classification F1(i)

Offensive TweetEval 12k 1.3k Sentence classification Macro-averaged F1
Sentiment TweetEval 45k 2k Sentence classification Macro-averaged Recall
Stance (Abortion) TweetEval 587 66 Sentence classification Avg. of F1(a) and F1(f)

Stance (Atheism) TweetEval 461 52 Sentence classification Avg. of F1(a) and F1(f)

Stance (Climate) TweetEval 355 40 Sentence classification Avg. of F1(a) and F1(f)

Stance (Feminism) TweetEval 597 67 Sentence classification Avg. of F1(a) and F1(f)

Stance (H. Clinton) TweetEval 620 69 Sentence classification Avg. of F1(a) and F1(f)

ANLI (A1) ANLI 1.7k 1k Natural language inference Acc.
ANLI (A2) ANLI 4.5k 1k Natural language inference Acc.

Table 5: Accuracy/Correlation scores on the development set using surrogate modeling followed by thresholding
(ours), as compared with STL and MTL methods.

Dataset CoLA RTE CB COPA WSC
Metrics Matthews Corr. Accuracy Accuracy Accuracy Accuracy

Train 8500 2500 250 400 554
Validation 1000 3000 57 100 104

STL 59.38±0.70 67.94±0.74 70.36±1.82 64.00±2.19 60.00±2.76
Naive MTL 57.11±0.81 69.31±0.97 71.78±1.39 66.00±2.02 58.20±1.98
HOA 60.09±0.75 69.03±2.03 80.71±2.62 67.20±2.56 61.35±3.12

Alg. 1 (Ours) 60.43±0.79 70.83±1.97 83.57±2.43 69.20±3.71 65.38±2.31

For gradient decomposition, we search the number of decomposition basis and auxiliary task gradient direction
parameters, following the search space in Dery et al. (2021).

For weighted training, we search the task weight learning rate in [10−2, 102]. The hyper-parameters are tuned
on the validation dataset by grid search. For each target task, we search 10 times over the hyper-parameter
space. We use the same number of trials in tuning hyper-parameters for baselines.

C.2 Omitted Results from Section 4.3

Complete results for NLP tasks. In Table 5, we report the complete experimental results for applying
our approach to NLP tasks, as reported in Section 4.3.

Optimizing fairness-related metrics. We show that task modeling is applicable to various performance
metrics for capturing task affinity. Besides the average performance and worst-group performance discussed
in Section 4.3, we consider two fairness measures: demographic parity and equality of opportunity (Ding
et al., 2021).
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Table 6: Violation of two fairness-related measures (demographic parity and equality of opportunity) on six
multi-group learning tasks with tabular features, averaged over ten random seeds. Lower is better.

Demographic parity HI KS LA NJ NV SC

STL 12.95±1.76 4.09±1.15 26.30±1.21 26.06±0.53 12.62±1.99 22.51±0.47
Naive MTL 8.25±1.31 4.06±1.17 21.24±0.66 27.73±0.94 13.35±0.51 18.83±0.80
HOA 8.63±2.95 6.15±3.00 22.83±0.53 26.14±0.29 13.15±0.64 19.39±1.05
TAG 8.93±2.35 3.97±0.61 20.72±0.86 25.21±0.68 12.24±0.82 18.77±0.85
TAWT 18.12±1.80 4.84±0.71 25.77±0.94 25.66±0.38 12.40±0.74 23.16±0.42

Alg. 1 (Ours) 7.63±2.12 1.06±0.62 17.25±1.13 24.96±0.63 11.34±1.31 17.66±0.80

Equality of opportunity HI KS LA NJ NV SC

STL 9.86±1.29 1.43±3.62 29.64±3.24 22.43±1.02 13.61±3.67 29.93±0.77
Naive MTL 3.86±0.84 2.03±2.11 21.26±1.35 24.43±1.49 12.14±2.21 21.22±1.75
HOA 3.55±2.85 4.34±3.18 22.88±1.72 22.98±1.18 12.92±2.23 23.31±1.77
TAG 4.27±0.25 1.18±0.97 20.66±1.43 21.89±0.69 11.66±1.58 19.89±1.10
TAWT 4.21±2.25 1.40±2.14 30.38±2.17 23.26±0.30 11.77±1.01 30.86±0.84

Alg. 1 (Ours) 0.24±1.32 0.21±1.34 14.14±2.32 21.48±0.90 9.65±3.49 18.54±1.61

The demographic parity measure is defined as:∣∣∣Pr
[
ŷ = 1 | g = black

]
− Pr

[
ŷ = 1 | g = white

]∣∣∣,
which measures the difference in the positive rates between white and African American demographic groups.

The equality of opportunity measure is defined as:∣∣∣Pr
[
ŷ = 1 | y = 1, g = black

]
− Pr

[
ŷ = 1 | y = 1, g = white

]∣∣∣,
which measures the difference in the true positive rates between the two groups.

We consider the binary classification tasks with multiple subpopulation groups. Table 6 shows the comparative
results. First, similar to the worst-group accuracy results, we find that multitask approaches (including
ours and previous methods) decrease the violation of both fairness measures compared to ERM, suggesting
the benefit of combining related datasets. Second, our approach consistently reduces both fairness measure
violations more by 1.26% and 2.31% on average than previous multitask learning approaches, respectively.

C.3 Ablation Studies for Constructing Surrogate Models

Loss function: We consider three choices of prediction losses, including zero-one accuracy, cross-entropy
loss, and classification margin. We observe that using the classification margin is more effective than the
other two metrics. The Spearman correlation of using the margin is 0.86 on average over two tasks (HI and
LA). In contrast, the Spearman correlations of using the loss and accuracy are 0.61 and 0.34, respectively.
Besides, we compare the task selection using the three metrics in Table 7. We find that using the margin
outperforms the other two by 0.37% on average over the six target tasks in terms of worst-group accuracy.

HI KS LA NJ NV SC

f uses zero-one accuracy 75.16±0.70 76.39±1.09 75.15±0.43 77.40±0.49 74.34±1.81 77.29±0.19
f uses cross-entropy loss 75.33±0.80 75.82±0.60 74.19±1.37 77.51±0.35 74.55±1.60 77.21±0.27
f uses classification margin 75.47±0.73 76.96±0.69 75.62±0.11 78.17±0.36 75.21±0.52 77.62±0.34

Table 7: Choosing different loss functions ℓ for six target tasks in the multi-group learning setting.

Subset size: Recall that we collect training results by sampling n subsets from a uniform distribution
over subsets of a constant size. We evaluate the MSE of task models by varying α ∈ {2, 5, 10, 20}. To
control the computation budget the same, we scale the number of subsets n according to α. We train
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(b) α = 5
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(d) α = 20

Figure 7: Fitting surrogate models using different α evaluated on a fixed target task.

n = 800, 400, 200, 100 models with α = 2, 5, 10, 20, respectively. We observe similar convergence results as in
Figure 7. Among them, α = 5 yields a highest Spearman’s correlation of 0.89 between f(·) and g(·).

Number of sampled subsets: Lastly, we show that task selection remains stable under different values of
n. We measure the effect on two tasks (HI and LA) by comparing the 10 tasks with the smallest coefficients
estimated from n = 100, 200, 400 subsets. We observe that using 100 subsets identifies 7/10 source tasks
compared with n = 400. Increasing n to 200 further identifies 9/10 source tasks compared with n = 400.
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