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ABSTRACT

Gradient descent dynamics on the deep matrix factorization problem is extensively
studied as a simplified theoretical model for deep neural networks. Although
the convergence theory for two-layer matrix factorization is well-established, no
global convergence guarantee for general deep matrix factorization under ran-
dom initialization has been established to date. To bridge this gap, we provide
a polynomial-time global convergence guarantee for randomly initialized gradient
descent on four-layer matrix factorization, given certain conditions on the target
matrix and a standard balanced regularization term. Our analysis employs new
techniques to show saddle-avoidance properties of gradient decent dynamics, and
extends previous theories to characterize the eigenvalue change of layer weights.

1 INTRODUCTION

This paper investigates matrix factorization, a fundamental problem in non-convex optimization.
This topic, in its canonical form, seeks to optimize the following objective:

1
LOWy,... W) = 3 Wi -+ Wy = |5 + Lreg(Wh, ..., Wy) (1)

where W; € F?*4 denotes the j™ layer weight matrix, ¥ € F?*¢ denotes the target matrix and L,
is a (optional) regularizer. Here F € {C, R} as we consider both real and complex matrices in this
paper. Following a long line of works (Arora et al.,|2019a; Jiang et al., [2023}|Ye & Du, 2021} |Chou
et al.| 2024)), we aim to understand the dynamics of gradient descent (GD) on this problem:

J= L N Wyt 4+ 1) = Wi(t) — ¥, LWL (D), ... Wi (1)), @)

where 17 € RT is the learning rate.

While global convergence guarantee for the case of two-layer matrix factorization (N = 2) is well
studied (Du et al., 2018; Ye & Dul 2021} Jiang et al., 2023)), the deep matrix factorization problem,
i.e.,the N > 2 case is less explored. While the model representation power is independent of depth
N, the deep matrix factorization problem is naturally motivated by the goal of understanding benefits
of depth in deep learning (see, e.g.,|Arora et al.| (2019b)). A long line of previous works (Hardt &
Ma, 2016; |Arora et al., 2019bjaj, [Wang & Jacot, 2023) studies this regime as it directly captures
Deep Linear Networks (DLN), the simplest type of deep neural networks. However, a general
global convergence guarantee is still missing. Therefore, the following open research question can
be naturally asked:

Can we prove global convergence of GD for matrix factorization problem (1)) with N > 2 layers?

In this paper, we provide a positive answer to the question above. Specifically, we consider 4-layer
matrix factorization (N = 4) with the standard balancing regularization term (see Park et al.|(2017);
Ge et al.|(2017); Zheng & Lafferty| (2016))) as

3
1 1 2
LWy, Wa, W, W) i= o [WaWsWa Wi — 2|5 + 1 Soww =W Wi, ]
j=1
where WjH denotes the Hermitian transpose of W; and a € R is a hyperparameter. We consider

both real (F = R) and complex (F = C) setting with random Gaussian initialization and prove
global convergence of gradient descent. Our main result can be summarized as follows:
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Theorem 1 (Main theorem, informal). For four-layer matrix factorization under gradient descent,
random Gaussian initialization with scaling factor ¢ < O'i/ 4(E) /poly(cy, ca, d), regularization fac-

tor a > 01(X) - poly (cl7 ¢ca,d,In (Ui/4(2)/6)), then for target matrix ¥ with identical singular
values, there exists learning rate n = O (1/ [Uf/Q(Z) - poly (a/al(Z),cl,CQ,d, 01/4(2)/6)})

and convergence time T'(6,n) = n_10f3/2(2) - poly (cl7 ca,d, U%M(Z)/e, In (@)) such that

for any 6 > 0, (1) with high probability over the complex initialization (2) with probability close to
1 over the real initialization, when t > T(6), L(t) < 6.

The formal version of Theorem I]is stated in Theorem 48]in Appendix.

Remark 1. A natural question is why the convergence guarantee in the real case holds only with
probability close to %, but not 1. For the other % probability, Theorem |2| presents a special case -
considering gradient flow under the strict balance condition (which can be viewed as the limit as
a — +00), showing that the optimization process does not converge to a global minimum in finite
time (and hence converges to a saddle point).

Main contributions. Our major contributions can summarized as follows:

* We prove global convergence of GD for 4-layer matrix factorization under random Gaus-
sian initialization. To the best of our knowledge, this is the first global convergence result
for general deep linear networks under random initialization beyond the NTK regime in Du!
& Hul (2019). This result might provide new insights towards understanding the training
dynamics of general deep neural networks.

* We construct a novel three-stage convergence analysis of gradient descent dynamics, con-
sisting of an alignment stage, a saddle-avoidance stage, and a local convergence stage. We
also develop new techniques to show GD dynamics avoids saddle points and to character-
ize layer matrix eigenvalue changes, which we believe are of independent interest for deep
linear networks analysis.

Challenges and techniques. Our analysis employs the following key techniques:

* Initialization analysis. To guarantee that gradient descent makes progress, it is necessary
to establish a monotonically increasing lower bound for the singular values of the weight
matrices. This, in turn, requires analyzing the smallest singular value of a newly introduced
term (namely W + WWH  where W = W, WsW,W,), at initialization. This analysis uti-
lizes tools from random matrix theory, particularly the concept of the Circular Ensembles.
The detailed proof is given in Appendix

* Regularity condition of each layer. To bridge the initialization with the subsequent training
dynamics, we need to ensure that key matrix properties evolve in a controlled manner even
during the rapid changes in the alignment stage. We prove that despite significant updates,
the weight matrices retain certain spectral properties from their initial state. A delicate
analysis of the smooth evolution of the extreme singular values and the limiting behavior
of the Hermitian term after the regularization term converges is provided in Section
and

» Saddle avoidance. To avoid convergence to a saddle point, it is essential to prevent the
smallest singular values of the weight matrices from decaying to zero, as such decay would
cause the gradient norm to vanish. To this end, we construct a hermitian term providing
lower-bounds for these singular values, along with a skew-hermitian error. During the opti-
mization, the skew-hermitian error is approximately non-increasing, which in turn ensures
that the minimum singular value of the hermitian term is non-decreasing. This mechanism
provides a persistent lower bound, thereby effectively avoiding saddle points.

* Bound of eigenvalue change. Finally, to translate the continuous-time intuition into rigor-
ous guarantees for the discrete gradient descent algorithm, we develop new perturbation
bounds for eigenvalues. In continuous time, the time derivatives of eigenvalues are di-
rectly characterized by the derivatives of the matrix. In discrete time, however, eigenvalue
changes depend on the spectral gap in general, requiring a fine-grained, problem-specific



Under review as a conference paper at ICLR 2026

analysis. Similar challenge are noted in Lemma 3.2 of |[Ye & Dul (2021)). We address this
issue in Lemma[28|and 29]in Appendix

These techniques form a cohesive proof strategy: the initialization analysis provides a favorable
starting point; the regularity analysis ensures controlled dynamics throughout training; the saddle
avoidance mechanism guarantees persistent progress; and the discrete-time perturbation bounds rig-
orously translate these insights into a full global convergence proof.

2 RELATED WORKS

For two-layer matrix factorization, the global convergence of symmetric case has been established
under various settings (Jain et al., 2017; |L1 et al., 2019; |Chen et al., 2019). For asymmetric matrix
factorization case with objective £ = 5||UV ' — 3|3, the following homogeneity issue occurs: the
prediction result remains the same if one layer is multiplied by a positive constant while the other is
divided by the same, introducing significant challenges in convergence analyzing (Lee et al.|(2016),
Proposition 4.11). Tu et al.| (2016) and |Ge et al.| (2017) tackles this problem by manually adding a
regularization term on the objective function. |Du et al.| (2018) discovers that gradient descent auto-
matically balances the magnitudes of layers under small initialization, providing analysis of global
convergence with polynomial time under decayed learning rate, while removing the regularization
term. [Ye & Du|(2021)) extends the convergence analysis to constant learning rate.

Kawaguchi| (2016) analyzes landscape for general DLN, showing there exists saddle points with no
negative eigenvalues of Hessian for depth over three. [Bartlett et al.|(2018) analyzes the dynamic
under identity initialization, proving polynomial convergence with target matrix near initialization
or symmetric positive definite, but such initialization fails to converge when target matrix is sym-
metric and has a negative eigenvalue. |Arora et al.|(2019a) provides global convergence proof under
specific deep linear neural network structures and initialization scheme , requiring the initial loss
to be smaller than the loss of any rank-deficient solution. [Ji & Telgarsky| (2019) conducted the
proof of convergence on general deep neural networks with similar requirements on the initial loss.
Arora et al.| (2019b) simplifies the training dynamics of deep linear neural network into the dynamic
of singular values and singular vectors of product matrix under balanced initialization, providing
theoretical illustration of local convergence when singular vectors are stationary. [Du & Hul (2019)
proves global convergence for wide linear networks under the neural tangent kernel (NTK) regime.
More recent works focus on GD dynamics under (approximately) balanced initialization schemes
(Min et al, [2023) or the 2-layer case (Min et al., 2021} Xiong et al., 2023} Tarmoun et al. [2021).
Chizat et al.|(2024) studies the infinite-width limit of DLN in the mean field regime. However, none
of these results imply a global convergence guarantee for general DLN with N > 2 under random
initialization.

3 PRELIMINARIES

Notations. Denote the complex conjugate of M as M and adjoint of M as M, N as the set
of non-negative integers, and N* as the set of positive integers. For k1 < k2 € N, H?;kg M; =
My, My,—1 -+ Myg,. © ~ N(0,1)c means that the real and imaginary parts are independently

sampled from Gaussian distribution with variance %: R, Sz Sy N(0,1/2). Q ~ U(d,C) or
O(d,R) means @ is drawn from the unique uniform distribution (Haar measure) on the unitary
or orthogonal group, implying its distribution is unitarily/orthogonally invariant. Consider general

N-layer matrix factorization, for simplicity we define the following notations:

j 1 1
Wi, = [ We Wit = [T Wi W= T Wi =Wy, 1 = Wi, 3)
k=N k=j k=N
W is referred to as product matrix. The loss is written by L(W1,--- ,Wn) = Lop; + Ly, Where

2 N-1 2
Lori = 3 IS = Wik Lreg = 3a (S)5" 1855017,
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Algorithmic setup. For the real case (W; € R?*?), GD dynamics is canonical and described

by equation l 2l Under complex field (W; € C¢*%), for simplicity and coherence we define V; =
a7 + gy which is two times of Wirtinger derivative with M: 22 =1 (58 + ias‘LM)' By
following the updating rule of complex neural networks (see Guberman|(2016)), the gradient can be

uniformly represented by

VWJ-£ = VWj Lori + VWj ‘CTE_(]
Vw. Lori = _WﬁL7j+l (Z — W) WﬁIR,j—17 VWjEreg = —aWjAj_l,j + ClAj7j+1Wj,

J

“4)

Under gradient flow, d?f = —Vy, L; under gradient descent, W;(t + 1) = W;(t) — nVw, L(t).

Reduction to diagonal target. Following the simplification process of Section 2.1 in |Ye & Du
(2021), suppose the singular value decomposition of X is ¥ = U X’ VZH , by applying the following
transformation W, + W Vs and Wy + Ug Wy, the dynamics remain the same form, while
the distributions of W; under our initialization schemes remain the same. Hence without loss of
generality, we assume the target matrix is diagonal with real and non-negative entries throughout
our analysis. Detailed analysis is presented in Appendix [A]

For some of the results, we further require target matrix to be an identity matrix scaled by a positive
constant . = o1(X)1, which is equivalent to requiring the singular values of target matrix are
identical.

Balancedness. Following a long line of works (Arora et al.l |2019aib; |Du et al., 2018)), we define
the balance error between layer j and j + 1 as

W = WL Wi je[LN — 1NN

As discussed in Definition 1 of|Arora et al.|(2019a), the weights are approximately balanced (namely
IA; j+1]| 7 are small) throughout the iterations of gradient descent under approximate balancedness
at initialization and small learmng rate. Notice that approximate balancedness holds for small ini-
tialization near origin (small variance for Gaussian initialization).

Specifically, under gradient flow the balanced condition (defined as ||A; j+1]| 7 = 0 or equivalently
Aj i1 = 0,V € [1,N — 1] N N*) holds strictly at arbitrary time under balanced initialization,
which is defined as A ;11 (¢t =0) = O,Vj € [1, N — 1] N N*,

Remark 2. As previously discussed, balance condition holds approximately under small initial-
ization, so such regularization’s affect on the training process is relatively weak, especially when
weight matrices grow larger and be away from origin.

4 TRAINING DYNAMICS UNDER BALANCED GAUSSIAN INITIALIZATION

To exhibit the convergence dynamics clearly, we present the global convergence under the simplified
scenario of balanced Gaussian initialization (formally defined in Section[4.T)) and gradient flow. No-
tice that the adjacent matrices remain balanced due to the non-increasing property of regularization
term (Lemma 23)).

Theorem 2. (Informal) Global convergence bound under balanced Gaussian initialization, gradient
flow. For four-layer matrix factorization under gradient flow, balanced Gaussian initialization with

scaling factor e < O’i/4(2)/p01y(61, ca,d), then for target matrix with identical singular values,
1. For F = R, with probability at least l the loss does not converge to zero.

2. For F = C with high probablllty and for F = R with probability close to , there exists T'(6) =
o, 732 (X)-poly (CQ, d, 01 4(2)/e,In (dng(E))) such that for any 6 > 0, whent > T(0), L(t) < 4.

The formal version is stated in Theorem [36]in the Appendix.
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4.1 BALANCED GAUSSIAN INITIALIZATION

Generally, random Gaussian initialization does not satisfy strict balancedness. To adapt the random
Gaussian initialization to ensure balanced condition, we introduce a balanced Gaussian initialization
scheme for the analysis below. The procedure is defined as follows:

(1) Sample G with entries G;; i1 N0, 1)E, Qk kt15ke[0,N]NN 3 Haar on U(d,C) forF = C (or
O(d,R) for F = R). 5, jeq1,njrn+ € F are arbitrary constants with modulus/absolute value 1.

(2) For scaling factor ¢ € RT, which is a small positive constant, set the weight matrices by:

W, = {Sjer,jHGQfILj 21 ©)

sjEQj,jHGHqu,j 217

Intuitively, Qx4 1;xc[0,n)nn are i.i.d. uniformly distributed unitary/orthogonal matrices. By Corol-
lary [T3]in the Appendix, each matrix is a e-scaled Gaussian random matrix ensemble (but not inde-
pendent of the others), while satisfying balanced condition A; ;1 1(0) = O, Vj € [1, N — 1] N N*.

Theorem 3. Under e-scaled balanced Gaussian initialization with even number of depth 2 | N,
suppose W is W = USNVH where U, V are unitary/orthogonal matrices, ¥, is positive semi-

definite and diagonal, denote s = H;V=1 sj, then:

1. If F = C, with probability 1 — § such that

IZullop < e1(8)Vde, |(U = V)Su |l plizo < 2¢1(8)de

1 @)
Tmin (U + V)Eu)|i=0 > c2(8)1d %/ 2.

2. If F = R, PI(S det(QN,NJrl)det(QOl) = 1) = PI‘(S det(QN’NJrl)det(QOl) =
-1) = % Under Pr(sdet(Qn n+1)det(Qo1) = —1), 0min(U + V)Zu)|i=0; under
Pr(sdet(Qn,n+1) det(Qo1) = 1), with probability 1 — & such that

”Ewlloz) < 01(5)\/a6, [(U = V)EullFli=o < 2¢1(0)de

8
Tmin (U + V)80 |imo > e2(8)"1d~3/2e. ®)

Proof is presented in Appendix

4.2 NON-INCREASING SKEW-HERMITIAN ERROR

As presented in Lemma [24] in the Appendix, the product matrix can be factorized in to the form
of W(t) = U)X ()N V(t)H, where ¥,,(t) is positive semi-definite and diagonal (consequently
real-valued), U and V are unitary/orthogonal matrices, U, V and X, are analytic. For simplicity,
we denote o, ; as the jth diagonal entry of 3J,,, and u;, v; as the jth column of U, V. Under this
representation of product matrix, we obtain a non-increasing skew-hermitian/symmetric term:

Theorem 4. (Informal) Skew-hermitian error term is non-increasing.
Under balanced initialization with product matrix W (t) = U(t)2, ()N V (t)H, for depth N > 2,
ifF = Ror2 | N, and singular values of product matrix at initial W (0) are non-zero and distinct,

then the following skew-hermitian error HEUQ(U -MXy, ||i is non-increasing:

iHZW(U—V)z H2 <0 ©)
dt “llp =

Proof sketch. Proof of the Theoremd|involves technical and lengthy calculations. The two cases of
F = R and under 2 | N are provided separately in Theoremand Theorem For The()rem
the idea is to decompose the derivative of this term into the derivative of o, ; and uj, vj, which have
been characterized by Theorem 3 and Lemma 2 in Arora et al.| (2019b) respectively. This method
is hard to generalize into unbalanced setting. For Theorem this term is directly derived from
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derivative of WyWH, WHW, and W. This approach is straight forward and can be extended to
unbalanced initialization, but encounters difficulty under odd depth 21 N.

Remark 3. This result is under the reduction of target matrix. For general target matrix, suppose
itsSVDis ¥ = Us Y/ VZH , then Theorembecomes:

2
4 HZ’I/Q(UgU—V;IV)EwH <0. (10)
dt F

Explanation of the result. This theorem provides an intrinsic invariant (under initialization close
to origin, this term is already small at initial) of the system. Though the result is accurately derived
under strictly balanced initialization and gradient flow, one may expect similar property to hold
under small initialization and gradient descent.

Moreover, this theorem characterizes when U and V become aligned. The product ma-

. d . .
trix can be expressed as W = > oy jujv]H , while the error can be rewritten as

2 . :
Z;l:l o2, ||[5Y2(uj — v;)|| - Each term o) ju;v!’ of the product matrix can be interpreted as
N

a “feature” of the linear neural network, containing one “value” o,

; and two “directions” u;, v;.
) o H _ d ) H
When the loss converges, each feature converges to ojus juy, ;, where ¥ = ijl ojus, Uy ; 18
a SVD of ¥. This shows that under initialization near origin, once a “value” of the jth feature
increases to a relatively large value (comparing to initialization), the directions of this feature au-

tomatically align with each other (i.e. (uj,v;) =~ 1). Followed by Theoretical illustration part of
Arora et al.[|(2019b)), Section 3, generally the alignment of U, V' leads to convergence.

As shown in the proof sketch, the analysis for odd N encounters difficulty when generalized to the
unbalanced case, thus this intrinsic invariant becomes considerably more challenging to character-
ize. This is why we have developed the convergence proof for the four-layer case rather than the
three-layer architecture.

4.3 NON-DECREASING HERMITIAN MAIN TERM

This section shows the dynamics of the minimum singular value of hermitian main term (U +V)%,,.

The motivation of studying this specific term is that it provides a bound for o1 (2,,), k € [1, N —
1] N N*, especially a tight bound for o ,;,, (X.,) (refer to Lemma :

o (U4 VIm) S ) < YR @ VR IO VBE,
1

1
Smin (U +V)%0) < Omin(Sa) £ 51/0%0n (U +V)Z0) + |U = V) Sul2,.

Notice that the extra term in the upper bound is bounded by the skew-hermitian error term discussed
in the previous section.

Although the evolution of o, ((U + V)X,,) is generally difficult to characterize, we find that in the
special case of X = 01(X)] and N = 4, it exhibits a monotonically increasing pattern before local
convergence:

Theorem S. Dynamics of minimum singular value of hermitian term.

Under balanced initialization with product matrix W (t) = U ()2, )NV (t)H, for target matrix
with identical singular values (reduces to ¥ = 01(X)I) and depth N = 4, the time derivative of the
k" singular value of the hermitian term xy, := 103, (U + V)2,,) is bounded by:

1 1
(204(2) = ot = FIZIB I = VIZulecally) ok = Ta2IZul (@ = V)2 licoll

d
< 2% < 01(2) @IZull, + 1(U = V)Zw)li=oll7) 27
(12)
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Detailed proof is presented in[D.2]

This theorem implies that under small initialization, if all singular values o ((U + V)%,,) are ini-
tially non-zero, they increase monotonically to relatively large values, leading to subsequent local
convergence. However, if any singular value is initialized to zero (which occurs with probability
at least 1/2 for F = R, as shown in Theorem , it remains zero throughout the optimization (see
Corollary, thereby explaining the 1/2 convergence probability in Theorem Numerical simula-
tions under the identity target setting are provided in Figure[T] with additional results and discussions
for non-identity targets shown in Figure

5 CONVERGENCE UNDER RANDOM GAUSSIAN INITIALIZATION

This section presents the proof sketch for Theorem [T} extending our analytical framework in the
previous section to accommodate random Gaussian initialization.

For random Gaussian Initialization with balance regularization term, the balanced condition holds
approximately. Following the methodology in balanced initialization scheme, Section ] we then
characterize the skew-hermitian error term and hermitian main term by ||[W; — W, 'WHWH |2,

and \pnin ((W1 + Wy 'WH W4H) H (W1 + Wy tWH Wf)) respectively.

5.1 RANDOM GAUSSIAN INITIALIZATION

We consider the canonical setting of random Gaussian initialization near origin:

(Wia )i = e N'(0,1)g. (13)

Specifically, we apply Gaussian distribution to generate W1 5 ... y € F*¢ F = R or C element-
wisely and independently. Then the initialization is scaled by a small positive constant ¢ € RT. The
scale of ¢ is determined in the main convergence Theorem I]

Theorem 6. For e-scaled random Gaussian initialization on Wy, y—1 njon+= over F = R or C,
N € N*, the initial product matrix W = H}f: N Wi satisfy the following properties:

1. If F = C, with probability at least 1 — ¢,

. €

Tmin (W + (WWH)1/2) > ep(8, N) - d-(N/ZHD N,

2. If F = R, the determinants det(W) > 0 and det(W) < 0 occur each with probability 1/2. If
det(W) < 0, then opin (W + (WWT)l/g) = 0; if det(W) > 0, then with conditional probabil-
ity at least 1 — 6,

max o (W) < ¢1(8, N)Vde, min oy, (W;) < -
ik k( J) = 1( ) ik k( J) = 01(5, N)\/ﬁ as)
Toin (W + (WWT)l/Q) > (6, N) 1 d-(N/2+ DN

where ¢, (5, N), c2(8, N) are positive constants depending on § and N.

Proof is provided in Appendix

In the convergence proof below, we consider the initialization where (I4) and (I5) holds. We
divide the training dynamics into three stages consisting of an alignment stage t € [0,7}], a
saddle-avoidance stage ¢t € [T1,T1 + T3], and a local convergence stage t € [T%,+00), to an-
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77«:7f/2(2‘4)-‘170ly(c1,cz,d,e/(f}/4

(0] (3/12(2) - poly (cl, co,d, g%/4/6> ) , refer to Theoremandrespectively.
noq

5.2 STAGE 1: ALIGNMENT STAGE

alyze the convergence process clearly. Here 77 = O ( L (2))), T =

During this stage, the weight matrices align with each other under the convergence of the regular-
ization term, while the hermitian main term stays away from origin at the end of this stage.

5.2.1 CONVERGENCE OF REGULARIZATION TERM:

The convergence rate of the regularization term is related to the smallest singular value of weight
matrices:

Theorem 7. (Informal)Convergence rate of the regularization term.

For four-layer matrix factorization, suppose the maximum and minimum singular values of the
weight matrices are bounded by M and § respectively, then the regularization term decays by

Lregt+1) < (1=Q (nad*M™?)) - Lyeg(t) + O(n?a?). (16)

The formal version can be found in Theorem A N-layer version of this Theorem, along with
a generalized loss function under gradient flow is provided in Theorem [26] This shows the im-
portance of bounding the extreme singular values of W}, otherwise the linear convergence of the
regularization term (along with the balancedness) might not be guaranteed.

Theorem 8. (Informal) Under a small learning rate, the change in the maximum and minimum
singular values is approximately independent of the regularization term:

max o (W (¢ + 1)) — max oy (W (1)) < 2nmax oy (W;(t)) max ||V, Lopi () |, + O(n*a?)
1,k 75 J5 J

win o2 (Wt + 1)) — min o (1, (1)) > —2qmin o (W (6) max || Vv, Lori (1), + OGP a?).
Jy Js Js J
o))

Here a is the coefficient of the regularization term.

This Theorem ensures the smooth change of the extreme singular values over short time intervals.
Although the regularization term can induce significant fluctuations in individual singular values
due to its potentially large coefficient, the largest and smallest singular values remain stable. This
theoretical conclusion is corroborated by numerical simulations, as shown in Figure[3] The complete
formal statement can be found in Theorem [31](and Theorem [27]for the continuous-time case) in the
Appendix.

5.2.2 THE LIMIT BEHAVIOR OF THE HERMITIAN MAIN TERM

Typically, the dynamics of the smallest singular value of the hermitian main term W; +
W, *WHWH is involved and does not obtain a non-trivial lower bound during this stage. However
its limit behavior after the convergence of regularization term can be characterized.

To simplify the analysis, ignore the original square loss L,,; and consider gradient flow. For ¢ —
400, regularization term is exactly zero and thus the adjacent matrices are strictly balanced. More-
over, the product matrix does not change through the optimization: W (4o00) = W (0). Then under
this scenario, the limit behavior of the hermitian main term is (W1 + Wyt WHWH )

W W Wi, (W) + (oW ) ).

|t—>+oo -
|t—>+oo

This explains the reason of studying o, (W(O) + (W(0)W(0)7) "/2Y in the initialization sec-
tion. Detailed analysis considering error terms is presented in Corollary
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Remark 4. Note that o, (W1 + W271W3{{ Wf ) is not necessarily lower-bounded by the above
expression minus some error terms during the alignment stage. Instead, it may exhibit oscillations
or a transient decrease, achieving stability only upon convergence of the regularization term. This
behavior is illustrated in Figure[|in the Appendix.

5.3 STAGE 2: SADDLE AVOIDANCE STAGE

Intuitively, this section focuses on generalizing Theorem 4] and [5]into unbalanced case by bounding
the error terms introduced by unbalanceness.

The main technical challenge is to bound the operator norm of the inverse of W5 below infinity,
since both the skew-hermitian term and hermitian main term are characterized by W, ! and hence
need to be well-defined. Under small balance error (equivalently small regularization term) which
is guaranteed by the previous stage, Wy~ !, which is rigorously proved in Lemma

Lemma 9. Skew-hermitian error in saddle avoidance stage, gradient descent. Fort € [Ty, T1 +T5],

W1 = Wy "W W ||, < Beyde. (18)
Lemma 10. The minimum eigenvalue of Hermitian term. Fort = T} + T5,

Tmin (Wi + Wy "WHWI) |i—py 1, > 24014 (3). (19)
Proofs are presented in[H.2]in the Appendix.

5.4 STAGE 3: LocAL CONVERGENCE STAGE

Since both the balanced error and skew-Hermitian error remain small, the minimal singular values
of the weight matrices, after growing to the scale of the target matrix’s, are prevented from decaying.
This guarantees the local convergence.

Theorem 11. (Informal) Local convergence. After the second stage (t > T1 + T5),

L(t) < Lops(Ty + Ty) exp (7770:1)’/ 2(D)(t— T — TQ))

Tmin (Wi (1) + Wa (1) W ()T Wy (t)7) > 28/401/4(3) (20)
Wi (t) — Wa(t) " "W ()" Wa ()|, < 3erde.
Proof is presented in in the Appendix.

6 CONCLUSIONS, LIMITATIONS AND FUTURE WORK

In this work, we establish a polynomial-time global convergence guarantee for gradient descent
applied to four-layer matrix decomposition, under the setting of a target matrix with identical singu-
lar values and small random Gaussian initialization beyond the NTK regime. For complex random
Gaussian initialization, global convergence is ensured with high probability, whereas for real random
Gaussian initialization, it is guaranteed with a probability close to %

The analysis developed in this work reveals intrinsic properties of the training dynamics, such as
the effective behavior of the regularization term, the monotonically increasing lower bound for the
minimum singular value, and the non-increasing nature of the skew-Hermitian error. These findings
might provide deeper insight into the training process of Deep Linear Networks.

We anticipate that this work will stimulate further research on global convergence proofs under
general random initialization for matrix factorization with arbitrary depth and arbitrary - possibly
low-rank - target matrices.

The observed divergence in convergence behavior between real and complex initializations also
reveals a subtle disparity, suggesting that complex initializations may circumvent certain saddle
points that real initializations cannot. This insight might motivate more detailed analysis of the
performance gap between complex and real neural networks.
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REPRODUCIBILITY STATEMENT

All theoretical results stated in this paper are proved in full detail in the Appendix , from Section[A]
to|H} including the proofs of all main-text theorems as well as intermediate lemmas and derivations,
so that a reader can verify each step independently. The numerical illustration in Appendix [} where
we specify the hyper-parameters in that section. Because the experiments are straightforward, we
have not released an implementation.
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A REDUCTION TO DIAGONAL (IDENTICAL) TARGET

For arbitrary ground truth ¥ € F?*9 F = C or R, suppose its singular value decomposition is
¥ =UsY VZH (replace - by - T for the real case, same for the rest of the analysis), we apply the
following transformation:

Wl =WV
W =W, je[2N-1nN* . 1)
Wh =UHWy

Then the balance error can be rewritten as

H H . "
Ay 2 Jwwt - w W G e LN 1NN @)
J,J+ ded 7.]' c {O,N}
A.1 TRAINING DYNAMICS
For gradient flow, the dynamics becomes
dW/ N H 1 Jj—1 "
dt] = H W]é (ZI - H Wé) <H W]g ) +(1W]/-Aj,17j - a;Aj’jJerj{. (23)
k=j+1 k=N k=1

For gradient descent,

N 1 j—1
wit+1)=wie)+n | [ wie)"” (z'— 11 W,zos)) (H W,;u)H) o

k=j+1

+naWi(t) A1 ;(t) — nald; ja (H)W(t).

Both share the same form as the original one (by replacing ¥ with X').

A.2 INITIALIZATION

However, the distributions of W3 and Wy at initialization change correspondingly. To address this
issue, we introduce the following definition:

Definition 1. Input-Output Unitary(Orthogonal)-Invariant initialization.

For a N-layer complex (real) matrix factorization W = H;: ~ W, an initialization is input-output
unitary-invariant (in the complex case) or orthogonal-invariant (in the real case) if the distribution
of W is left unitarily (or orthogonally) invariant and the distribution of W1 is right unitarily (or
orthogonally) invariant. That is, for all U,V € U(d, C) (or O(d,R) in the real case),

Wy & UWy, Wy Z W,V (25)
Remark S. The distribution of W; ;c(1,Njnn+ does not change under transformation 21| if the ini-
tialization is Input-Output Unitary(Orthogonal)-Invariant.

Throughout this work, the initialization schemes discussed (including random Gaussian initializa-
tion and balanced Gaussian initialization) are Input-Output Unitary(Orthogonal)-Invariant. This is
from the left and right invariance under multiplication of unitary/orthogonal matrices.

Thus without loss of generality, the target matrix can be reduced to positive semi-definite diagonal
matrix. Under Input-Output Unitary(Orthogonal)-Invariant initialization discussed in Definition [T}
the initialization on W7 and Wy is not affected by this reduction.

13
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Moreover, if all singular values of X are the same (to rephrase, a unitary/orthogonal matrix scaled
by a constant), the convergence analysis can be reduced to &' = o1 (X)1.

B INITIALIZATION

First and foremost, we introduce the concept of Circular ensembles (Dyson, |1962) along with some
properties.

B.1 LEMMAS FOR GAUSSIAN RANDOM MATRIX ENSEMBLE AND HAAR MEASURE ON
U(d,C) AND O(d,R)

In the following derivations, we denote O(d,R) as the d-dimensional orthogonal group on real
number, and U (d, C) as the d-dimensional unitary group on complex number.

We list the classical conclusions in Linear Algebra without proof:
Lemma 12. The eigenvalues of Orthogonal/Unitary Matrices.

1. Unitary matrices. YU € U(d,C), d € N*, the eigenvalues of U are €12 -4, where 0; € [0, 27).
2. Orthogonal matrices. YO € O(d,R), d € N*, the eigenvalues of O are:

1,eii91.2,~-~ ,m R d=2m+ 1, det(O) =1
_17 eii91,2,,.4 ,m , d=2m =+ 17 det(O) =-1 (26)
o012, m , d=2m, det(0) =1

1, -1,z m1 " q=2m, det(0) = —1
Following the conventions, we call the argument of the eigenvalues as eigenangles.
Definition 2. Circular ensembles. (refer to|Dyson|(1962), |[Forrester(2010))

The circular ensembles are measures on spaces of unitary(or orthogonal, when generalizing from
complex number to real number) matrices.

1. Unitary circular ensemble. The distribution of the unitary circular ensemble (CUE) is the Haar
measure on d-dimensional (complex) unitary group U(d, C).

2. Circular real ensemble. The distribution of the circular real ensemble (CRE) is the Haar measure
on d-dimensional real orthogonal group O(d, R).

Lemma 13. [-point correlation function of CUE(d) and CRE(d).
1. CUE. The 1-point correlation function of CUE(d) is

d
pay,cue(0) = o 27
2. CRE, determinant 1. The 1-point correlation function of CRE(d) under determinant 1 is
1 sin(d — 1)|0|
1(0)=—(d—14 (14— L2) e (- . 28
pcnpanms(®) = 5 (4= 14 (0 e rm oy

Remark 6. [-point correlation function p1(6) can be interpreted as the density of eigenangles at
0 (despite probably existed fixed eigenangles, e.g. 0, ).

Proof. Part 1. CUE.

From (146) of Dyson|(1962) and [Forrester| (2010), the joint probability density function of eigenan-
gles is

. . . 2
pCUE(akJCE[l,d]ﬁN*) o H ’619]’ _ ek |2 _ H ‘61(0]‘70;@) 1l . (29)
1<k<j<d 1<k<j<d

14
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Notice that it is rotation invariant, that is VA0 € [0,27], pcve Ok ke aqnne) = pove((Or +

A0)en,qnn+)- Thus the 1-point correlation function (density of eigenangles at 6) is uniform,

which is 5%

Part 2. CRE.

Below we define z; = cosf;, then p1)(0) = sinb - puy(z), p(Trprep,Non-) =
N 1

(szl ﬁ) POk ke, N)AN-)-

By combining Proposition 5.1.1 and 5.1.2 in |Forrester| (2010) together, suppose with pg(x) a poly-

nomial of degree & which is further more monic (i.e. the coefficient of z* is unity), {px () }ren is
the orthogonal polynomials associated with the weight function ws (),

—+o0
/ pj(@)pr()we(z)dx = (pj, Pr)2 = (P, Pj)20;k- (30)

and the joint probability density function satisfies

N
P(Tk ke, NjAN-) X H (x; — ﬂfk)2 ng(:c). 31

1<k<j<N =1

the 1-point correlation function is

e ~ P
Py () = wa( ); Dy o)’ (32)

Note that the restriction of monic can be ommited since there is a normalization coefficient on the
denominator.

2.1. CRE, determinant 1, d = 2N. From (135) of |Dyson| (1962)), Section 2.9 of |[Forrester| (2010)
and |Girko| (1985)),

PeRE.even.det=1 (Op pepnrne) <[] |cosf; — cos Ok, O rep, vy € [0,7]. (33)
1<k<j<N

By the change of variables,

N
2 1
PCRE,even,det=1(Tk ke[1,N]AN*) X H (zj — ar) H —— (34
i V1—af

1<k<j<N
Here wq(x) = \/1177 From knowledge of orthogonal polynomials ((1.12.3), (4.1.7), [Szeg6
(1939)), Chebyshev polynomials of the first kind T, (x) = cos(n arccos x) associates with wa(z) =
1 .
1—22"
1 ™ J= k=0
| @@= {5, j-k>1 (35)
- 0, j#k
By (32),

15
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1 1 2=
p(l),CRE,even,det:l(x) = ﬁ . (7‘(‘ + ; Z COS2 1/0>
v=1

(36)
1 sin(2N — 1)
= 2N -1+ —————|.
2msinf [ * sin 0 }
1 sin(d — 1)0
P(1),CRE,even,det—1(0) = o d—1+ “end |’ 0 € [0,7]. 37

From symmetry, p(l),CRE,odd,det:l(_g) = P(l),CRE,odd,det:1(9)~

2.2. CRE, determinant 1, d = 2N 4 1. From (137) of Dyson|(1962), Section 2.9 of |[Forrester| (2010)
and |Girko| (1985),

N
PCRE,odd,det=1(0k ke[1,N)AN+) X H |cos 0; — cos 0| H(l—COS 01); Ok ke, non- € [0, 7).
1<k<j<N =1

(38)

By the change of variables,

N
11—z
PerBoddder=1 (Trrepnns) < [ (w5 — o) JIRY r a:i (39)
=1

1<k<j<N
Here wo(z) = ﬁ—ﬁ From knowledge of orthogonal polynomials ((1.12.3), (4.1.7), [Szeg6
(1939)), Chebyshev polynomials of the fourth kind W,,(x) = w 6 = arccos x associates
sin 3
with w (z) = /172
1 .
m, j=k>0
W, (z)Wg(x)ws(z)dx = . (40)
| Wi = {120
By (32),
- 2
-z (1 sin ((n+ 1) 0)
P(1),CRE,odd,det:1($) = m |\ 5 W
v=0 2 (4])
B 1 sin(2N9)
~ 2msin (0) sin @
1 sin(d — 1)0
P(1),CRE,o0dd,det=1(0) = o {d -1- sm@] , 0 €0,n]. 42)
From symmetry, p(l),CRE,odd7det:1(_9) = p(l),CREpdd,det:I('g)'
This completes the proof.
O

Theorem 14. For () sampled from Haar measure on U(d, C) (or O(d,R) if F = R),
1.F=C. Pr(opmin(I +Q) > méd=t) > 1—4.
2F=R Ifd>2 Pr(omm(l+Q) >=Z(d— 1) det(Q) = 1) >1—4.
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Remark 7. For F = R, d = 1, the eigenvalue of Q is det(Q), and thus Pr(opmin(I + Q) >
2 —Aldet(Q) =1) =1, VA € (0,2).

Remark 8. For F = R, Pr(det(Q) = 1) = Pr(det(Q) = —1) = 3. Ifdet(Q) = —1, Q has an
eigenvalue of —1, causing Pr(omin(I + Q)) = 0.

Proof. Consider 0, € (—m, ],

o(I+Q)= \/)\k(QI—i—Q—i—QH) = \/2—|-ewk +1/e¥ = 2cos (9;) )

Omin({ + Q) = mkincos (?) .

The second step is from the fact that Qff = Q! shares the same eigenvectors with (), and corre-
sponding eigenvalues are the reciprocal of the original eigenvalues.

Denote N (06) to be number of eigenvectors in (—m, —7 + §0] U [r — 66, x], 66 € (0, 7). From
Markov inequality,

Pr(omin(I + Q) > 60) > Pr (amm(l + Q) > 2sin 629)

=1—-Pr(N(60) > 1) (44)
>1-E(N(@9)=1-— / p(l)(ﬁ)d&
0e(—m,—m+60]U[r—60,7]
By invoking Lemma T3]
1. ForF =C,
E(N(460)) = . 260 45)
27 ’

By setting 0 = 7dd %, Pr (0in(I + Q) > §0) > 1 — 6.
2. For F = R under determinant 1, for 8’ € [0, 7], p(1)(m — 6') = 5= (d -1+ W).

Ifd =1, p1)(#) = 0 and thus E(N(66)) = 0. For d > 2:

From w <d-1,
Sin

60 560
E(N(60)) = 2/ poy(m— 00 < 2/ 2i -2(d - 1)d6’ = @59. (46)
0 0

™

By setting 60 = Z2(d — 1)1, Pr (0ymin (I + Q) > 66| det(Q) = 1) > 1 — 6.
This completes the proof.

B.2 RANDOM GAUSSIAN INITIALIZATION

In the following, we present the proof for Theorem [6]

Proof. The upper and lower bound for singular values of W}, follow by Corollary 2.3.5 and Theorem
2.7.5 of [Tao/immediately. The main challenge is the minimum singular value of W + (WW#)1/2,

At the beginning, we define a modification of Gaussian random matrix ensemble for simplification:
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W is sampled from (complex or real) Gaussian random matrix ensemble, and if rank(WV) is not
full, sample W from Gaussian random matrix ensemble again until it is full rank.

Since the set of rank (V) not being full is zero measure, the distribution of W shares the same with
the one before modification almost surely, and thus changing Gaussian random matrix ensemble to
modified version does not affect the analysis below essentially.

This modification is for better expression on definition of left and right unitary (orthogonal) matrix
of SVD. For full rank square matrix W = UXVH U and V are not unique, but VU H g (even if the
singular values are non-distinct, or changing the order of diagonal elements of X. This is due to the
uniqueness of polar decomposition W = SQ under full rank, where Q = UVH, § = (WWH)1/2,
) and thus well-defined.

Without changing the result, we analysis the initialization scheme of modified Gaussian random
matrix ensemble instead. Then W is full rank and thus polar decomposition is unique.

1/2

Generally, suppose the right polar decomposition of W is W = (WWH ) Q, then

1/2

W+ (W) = (wwH) 2 (1 + ). @7)

If F = R, Pr(det(W) > 0) = Pr(det(W) < 0) = 3 due to the symmetry of Gaussian random
matrix ensemble. If det(W) = det ((WWH)” 2) det (Q) < 0, det (Q) = —1, then oyin (I +
Q) = 0 and further oy, (W + (WWT)l/Q) —=0.

Consider both F = C and F = R, det(W') > 0 (which indicates det (Q) = 1):
Omin (W + (WWH)l/Q) 2 Omin ((WWH)UQ) Omin (I + Q)
= Umin(W)gmin (I + Q)

N

k=1

(48)

From Theorem 2.7.5 of [Tao, by applying union bound, oy (Wi ke njon-) > ¢; (8, N)d /%€

with high probability 1 — §/2. Then [Hszl crmm(Wk)} > (e (9, N)d*l/Qe)N, and it remains to

find lower bound for o, (I + Q).

go< appl)y results in Theorem it is sufficient to show that @) follows Haar measure on U (d, C) (or
d,R)).

Due to the property of invariance under left and right multiplication of unitary (orthogonal) ma-
trix for Gaussian random matrix ensemble (Section 2.6.2, (2.131), Tao), V fixed Qo € U(d,C)
(or O(d,R) if F = R), W;QZ follows the same distribution as W; while still independent of
Wi kef2,Njnn-=» resulting that WQéJ follows the same distribution as W. Since the right polar de-

composition of WQE is WQH = (WQHQuWH)"* QQll = (WwH)'? (QQH) , we have

dist

QuQ & Q, Vfixed Qo € U(d,C) (or O(d,R) if F = R). (49)

Likewise

dist

QRQo = Q, Vfixed Qo € U(d,C) (or O(d,R) if F = R). (50)

From the fact that the only measure invariant under left (or right) multiplication of arbitrary element
of a compact lie group is Haar measure, () follows Haar measure on U (d, C) (or O(d, R)), and the
proof is completed.

O
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By Theorem [6] for depth N = 4, if F = C then with high probability 1 — § (if F = R then
with probability 1/2, omin (W(O) + (WOw() 2) = 0, and with probability (1 — §)/2 the
following holds), Jc;(6), c2(d) such that

Jik ! ~ c(0)Vd h S
1

B.3 BALANCED GAUSSIAN INITIALIZATION

This section analyzes the balanced Gaussian initialization scheme.

Corollary 15. Under balanced Gaussian initialization scheme @, each matrix Wy, pc1, Njnn+ is @
Gaussian random matrix ensemble scaled by e.

Proof. This is immediately from the property of invariance under left and right multiplication of
unitary (orthogonal) matrix for Gaussian random matrix ensemble (Section 2.6.2, (2.131), Tao).

O

NvH

w

Due to Corollary the product matrix can be expressed as UX
of Theorem

. Then we present the proof

Proof. From (@), W(t=0)=se¥Qnn+1(GHG)N2QH.

Naturally || Xy |lop = € H(GHG)l/QHOP = €| G|
of Tao| directly.

< cl(é)\/&e. Last step is from Corollary 2.3.5

op —

For the other two terms,

Omin ((U + V)Zw”t:o

= PAwmin (U +V)S3,(U + V)
t=0

- \/Amm (Wwmd 4 (W)X 4 WwH) " W (W) T W) | (53
t=0
=€\/>\mm <(Q01 +sQn,n+1) (GEG) (Qo1 + SQN,N+1)H)
S [60'77”71(]"’ SQ(I){lQN,N-l-l)Umin(G)v€O'min(l+ SQ()HIQN,N+1)UWGI(G)] .
And
(U = V)Su| plizo < 2Vde||G]|op. (4)
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Since Qn n+1 and Qo1 are independent and both sampled from Haar measure, then Q5 Qv N1 st
Haar on U(d,C) (or O(d,R) if F = R) as well.

For F = R, since s is independent of Q; jcio,njnn, Pr(sdet(Qn ni1)det(Qo1) = 1) =
Pr(sdet(Qn,n+1) det(Qo1) = —1) = 1 is directly from symmetry of Haar measure.

Then by combining Theorem [14]{and Corollary 2.3.5, Theorem 2.7.5 of |Tao| (with high probability
1 — &', max ([|G|lop, |G Yop) < ¢(6")Vd), the proof is completed.

O
B.4 GENERAL BALANCED INITIALIZATION

This section introduces a property for general balanced and input-output orthogonal-invariant ini-
tialization (refer to Definition|1)) under real field.

Theorem 16. For any real matrix factorization, if the initialization is balanced and input-output

orthogonal-invariant, then the minimum singular value of W + (WWT)l/2 att = 0 is exactly 0
with at least probability 1/2:

Pr (amm (W n (WWT)W) _ 0) >1/2. (55)
Proof. As a direct consequence of Definition [T} W is left and right orthogonal invariant:
W UWV, YU,V € O(d,R). (56)

Suppose the right polar decomposition of W is W = WW T Q, following the same arguments in
the proof (B.2) of Theorem [6]

1/2 dist

W+ (ww )2 = wwh)(1+Q), Q& Haar. 57)

From Theorem Pr(omin(I + Q) = 0) = 1, resulting

Pr (a,,n (W + (wwT)Y 2) - o) > Pr(gymin(l + Q) = 0) = % (58)

This completes the proof.

C BASIC LEMMAS

C.1 CLASSIC MATRIX ANALYSIS CONCLUSIONS

Lemma 17. Let R € F¥*? where F = C or R. Then:
1.I—RR" and I — RYR (or I — RR" and I — R" R if F = R) share the same set of eigenvalues.

2. These eigenvalues are real-valued.

Proof. We prove the complex case, and the real case follows. Suppose the singular value decompo-
sition of R is URERV}%{, then

I—RR" =1 —URSRUY =Ug (I - %) Uf

(59
I—RYR=1-VRELVH = Vg (I -3F) VA

Thus both I — RR™ and I — R™ R are unitarily similar to I — ¥%, which completes the proof. []
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Lemma 18. Given symmetric matrices X, A € F¥*9 where F = C or R, suppose X = ||Al|op] >
O, then

All
X1/2 _ X+A 1/2 || op . (60)
H ( ) op Q(Amln(X) - ||A||0P)1/2
Proof. Directly by Theorem X.3.8 and inequality (X.46) in|Bhatial (1996).
O
Lemma 19. VX, A € F¥? where F = C or R, if X and X + A are both invertible, then
(X+A) "' = (XTT=XTAX ) = XTAXTTAX +A) T (61)
Proof.
a+Arh%X4—X4AvU:XHLW4X—MX*M+AHM+Ar1mm
= X 'AXTIAX +A)7E
O

Lemma 20. Bound of eigenvalues under perturbation.

For unitary (or orthogonal, for real field) d-dimensional matrices U, V, positive semi-definite matrix
S, denote P = (%) S (%)H then the eigenvalues of S are bounded by

2 {Ak (P)+ (554 8 (459"

() +|(559) s (454"

],lgkgd—l
op

Ak (P) < A(S) < (63)

yk=d

op

Proof LetQ =UHV.

Due to Courant-Fischer min-max Theorem, A > B indicates A\x(A) > Ax(B). Then the lower
bound is straight forward:

U+V U+v\7T\ e (U VN (U+VNT
(595 (50 ) - (= (59 (59) s
2
SAk<Slﬂ (HLTQ‘/ 1>‘S”2> (64)
op
U 1% 2
<Ak <51/2 (('”OP—;””W) _7) 51/2> =X\ (S).

For upper bound, by applying Wely inequality,

() (550
(55 (595 (59 ()

2
H
:%M{S+QSQH H(] V>S<U vj

op

(65)
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For arbitrary k, Ay (S + QSQM) > X (S); for k = d, Aq (S + QSQM) > 2X;(S). This com-
pletes the proof.

O

C.2 LEMMAS ON ANALYTIC SINGULAR VALUE DECOMPOSITION OF PRODUCT MATRIX
UNDER BALANCED INITIALIZATION AND GRADIENT FLOW

Lemma 21. Existence of analytic singular value decomposition (ASVD).

Under Section |3 I with gradient flow and balanced initialization, for t € RY U {0}, there exists
analytical singular value decompositions for W; jci njnn-(t) and W (t).

Proof. For F = R, the proof is exactly the same as Lemma 1 in|Arora et al.|(2019b)): real analytic
matrices have ASVD (Theorem 1 in Bunse-Gerstner et al.| (1991/92))), and W, (¢) are analytic then
so does W (t). For complex case, Theorem 1 and 3 in|De Moor & Boyd (1989) gives that complex
analytic matrices (of a real parameter) have ASVD, then the rest of proof follows.

O

Remark 9. For complex field here, the ”analytic” here has no relation with the standard definition
of “complex analytic function’, who has complex parameters and consequently more restrictions
on definition of derivatives.

Throughout the proof for gradient flow (continuous time), we only deal with real-valued parameter
t € RT U {0}, so any "analytic” means real-analytic (for ¥ = C, it means the real and imaginary
part are both real-analytic), not complex-analytic.

Lemma 22. Suppose the analytic singular value decomposition of M(t) exists and is
U)Xy )VE®), M(t) € F¥9 where F = C or R, then the derivative of the k" singular
value is

dO’k(M> - HdM
00 _p (), 0

where wuy, vy, are the k' column vectors of left and right unitary (or orthogonal if F = R) matrices
respectively.

Proof. We prove the case when F = C. For F = R, replace - by - T.

avt
dt

dM  dU

My H | 7y
At dt tUEM g

—yuVe 4 Ud (67)

dt
Then

Uk gt dt
_ dog(M) u dug dvff
= —a + or(M) (3‘%( uy, T + R G Uk

From R (uff 4) = & (L]jy]2) = 0, R (dsg vk) & (1|vk]|*) = 0, the proof is done.

dM dU dX dv
R ( Hl}k) =R (uk 1 E]V[V Vg + Uy UiVHUk + up, UZ]V[ a Uk>
(68)

Remark 10. If M is hermitian, then the R can be omitted.

Remark 11. This generalizes Lemma 2 in|Arora et al.|(2019b)) from real field into complex field by
adding a R on the right side:
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do,.(S)
dt
Lemma 23. Under SectionB|with gradient flow, L,,; is non-increasing.

Fort € [0, +00),

d . _
&»Cori S —2N I?l]€n|0k(Wj)|2(N 1)['ori~

Proof. Naturally we have the derivative of product matrix W (t):

= —N(o2(S))' VN . g (VwLW),uv[)).

(69)

(70)

N
dw
= 2 M [Wﬁmﬂ (B=W)W, 1 +a(Widj_1; - Aj,j+1Wj)} W pi-1
j=1
N
= Wi, W S =W)WEH W,
[T3+1" T, .5+1 [Mrd—1"Tlg:d—1
j=1
N N
+ay W, 81 Wit — a ) Wi, 850 W,
j=1 j=1
N
= Z V[/HLJHM/{{N+1 (Z—W) m/ﬁfw.,lWHM,1 +a(Who1 — AnniiW)
j=1
N
- Z WHLJHWl’ffw.+1 (2 —-W) Wﬁ’RJﬂWHR,j‘_l.
j=1
(71)
Then
d dw
7‘Cori =-R Y- Wa T
: ((=-w5)
N
- R <2 -wy WL, W, 1 (B =) WﬁRVHWHR,j_1>
j=1
N
_ H H
=-> R (<E = WoW, s Wi, g (B = W) WHR,JAWHRJ—1>) (72)
j=1

N
=T Z §R (<Wﬁ1ij+1 (E - W) Wﬁ{Rvj_l’ Wﬁluj"‘l (E - W) Wﬁ{R’j_1>)
j=1

N
2
_ H H
== HWHL,J'H (E-W) WHRJ—lHF :
Pt

From |LXElr > min(L)omin(BRIX |5, omin (Wi 511) = mings |on(W;)|V = and

Omin (Wﬁ{mj_l) > min; |ak(Wj)|j*1, the proof is completed.

Lemma 24. Analytic singular value decomposition of product matrix with positive semi-definite

diagonal matrix.
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Under Section 3| with gradient flow and any bounded (i.e. W jc1 njrn-(t = 0) is bounded) bal-
anced initialization, VN € [2,+00) N N*, the product matrix W (t) can be expressed as:

W(t)=U@®)St)V )", (73)

where: U(t) € F*4, S(t) € R and V (t) € F4*? are analytic functions of t, U(t) and V (t)
are orthogonal matrices, S(t) is diagonal and positive semi-definite (elements on its diagonal may
appear in any order), ¥, (t) == S(t)'/N is well-defined (meaning the real-valued operation S;;
(Si)Y/N is applied to each diagonal element of S(t), resulting in another semi-positive diagonal
matrix) and analytic.

Moreover, if the singular values of product matrix W are non-zero, then throughout the optimization
W remains full rank in finite time.

Proof. From Lemma21] it is left to construct a new ASVD (analytic singular value decomposition)
of W (t) using existed ASVD W (t) = U(t)S(¢t)V (t)* (S(t) is not guaranteed to be positive semi-
definite).

By Lemma | = W] < || = W(t = 0)| . Then the following term is bounded by a constant
forall t € RT U {0}:

[(VIW (1)), ur (H)ve ()| < IVEW (D))l = 5 = W],

(74)
SIE=-Wip <Z-WE=0)g-

By invoking Theorem 3 in|Arora et al.| (2019b) (for complex case, add ), the absolute value of time
derivative of o,.(t) is bounded by:

1-1/N

‘dar(t) (75)

0 < s - wa=ol ¥ (o20)

Thus all o,.(¢) do not change sign for ¢ € RT U {0}. Moreover, if |o,.(¢t = 0)| > 0, the it never
decrease to 0 in finite time.

Then we construct S,,., (t) by flipping the sign of negative diagonal terms, and U, .., (¢) by changing
the sign of corresponding columns of U (t). Now W (t) = Uyeu (t)Snew (t)V () is also an ASVD
of W(t), Upew(t) is analytic and unitary (orthogonal), Sy,e. (t) is analytic, diagonal and positive
semi-definite.

Specially, if for some r, o,.(t) = 0 at time ¢, then it remains zero. Thus, from S, (¢) is analytic,
s0 is X, (). This completes the proof.

O]
C.3 LEMMAS ON REGULARIZATION, GRADIENT FLOW

Lemma 25. Consider optimizing a generalized loss function coupled with a generalized regulariza-
tion term using gradient flow:

1 N-1
1
LOVy, - W) = Lo | [T W5 ] + 1 ajj1lBjj1llEs a1 € RTU{0}.  (76)
j=N Jj=1
Then the regularization terms decays by:
q [Nl N
2
% > ai il Al | = =4 llaj 418,41, — a1 ;W58 115 (77)
j=1 j=1
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Proof.
d
GV = = (Tw, Lon) W+ W (Y, L)

H

H
—2a;j1,;W;Aj1 ;W

+ a0 (B0 W W+ WA 510) }
d H 7%
awﬁ-le'*'l == [ (VWJ'H'CO”') Wi + Wﬁ-l (VWJ+1L0M)

H
+ 2aj4 1,542 Wik g2 Wit

— a1 (B Wi Wit + Wi WA ) } :

Denote Wy, ; = [Ty Wi, Wi,i = Hi:j Wi, W= [y Wi = Wi, 1 = Wi
From property of the loss £,,;,

(Vw, Lori) Wi =W 500 (Vw Lori(W)) Wi, 5 = Wit (Vo Lori) , Vi € [1, N = 1] NN

(79)
Thus we have
A o WA WH 49 WH AL
gz D+t = 205-1WiB-1, W5 + 2054015402 Wita Bji1g+2 Wi (80)
— ;i1 (B0 WW+ W Wi0) + (WW + WL W) Aj i),
dll A7
= = da it (WiA 1 WA 1)
+dajpjratr (Win g Wi A )
—daj ot (WW]/ + WL WA L)
2 2
= ——— | llajj+18;,;41W; — aj—1;W; A1 4[5 (81)
aj,j+1
2
+ lajr1 28 11 +2Wit1 — aj i1 Win1 A il
+a3 5 (180 Wille + (W18 541 l17)
— a5 WA 1% — a5 ol Agr g2 Wil
A1, IWiRj-14llF = Qjq1 j420l85+1,5+2Wi+1llF |-
By taking weighted sum,
d N—1 N
2
T > ai il Al | = =4 llaj 418,501 W, — a1 ;W58 15 (82)
=1 =
O
Below we back to a; j+1 = a € RT U {0}, Vj € [1, N — 1] N N*. Then|[76/becomes
1 1 N—-1
E(Wl, e ;WN) = ﬁori H Wj + Z Z aHAj,j-i-lni"a a € R+ U {O} (83)
j=N j=1

Theorem 26. Suppose for all j € [1,N] N N*, 0,0 (W;) > 6, Omaz(W;) < M. Consider
optimizing [83] using gradient flow, then the convergence rate of the regularization term is lower
bounded:
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2 — 5 P
S 1Al ) < —ta (M) 7 Z TS
— M
Proof. Denote D; = A ;11 W; — W;A;_1 ;. Then
Djjrr = (Dj+WilAjo1 )W (85)
Deducing

14 5l < ||W; 1|| (I1DjllF + 1Aj-1,;

FlIWijllop) < §|ID lF+— IIAj—l,jIIF. (86)
From Ay ; = O, inductively we have

14,4107 <

oq‘,_.
EEIVR
\_/ Il Mk’
N
%\i
\./
o W‘
[S
=
Bl
N———
(3]
IN
| =
N
-
VR
| g

)Z(j_k)> (g ||Dk|%>

(87)
1 )
Z | D |-
-1

—~ |
w\:%
\_/

%\H

The last two step use Cauchy-Schwarz inequality.
From Ay, n+1 = O, following the same procedure we have

1 (M)QJ'_ N

= 1
|AN—jN—jillt < 50— > Dkl (88)
(%) =1 k=g
Summing all terms up, for odd N we have
(N—1)/2
A allE= > (185lF + 1AN—jn—j+ll7)
j=1 j=1

J
Z (IDxl7 + 1 DN 41111 7)
(M
B ) T k=1

(N-1)/2

N-1)/2 /) (M)Qj_l
= (IDell7 + 1 Dna-kllF) D <52(6M)21>
k=1 B
5 <Z Dk||2>

(89)

Jj=k

For even N,
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N—1 N/2—-1
18, 5510F = D7 (185541lF + 1AN—jn—j1lF) + | Anj2.n/241 1 F
j=1 j=1
N/2 1 1 (M 2] ]
< ((52 fu 3 Z ||Dk||2F+||DN+1k||2F)>
Jj=1 (T) k=1
s L 7= 3 1Dkl + 1Dx i)
) =t (90)
N/2— N2 (M)Qj _q
(IDx 15 + [ Dx1-ll) D <5j1>
k=1 Jj=k ( 5 )
%>N L N2
2 2
+ 55 25 (M)z (I Dkl + 1PN 41—k 1)
5 k=1
(M
N1 (Z ||Dk||2>
Thus
25
ZHD 2 = (M)QWJ Z 1A il O
Combine with Lemma 23] then the proof is done.
O
Remark 12. For N = 4, Theorem[26] reduces to
92)

3
d 8a
Sl DI ENPITE ISR S ZHAHHHF
i=1

Theorem 27. Under problem settings in section [3| with gmdlent flow, the change of maximum and
minimum singular values of W;s have bounds that are irrelevant of the regularization term:

d . 2 W
M < Qm%x |ak(WJ)‘ max HijEOTiHOp
7, I 93)

dt
dmin. 1. o2 )
ik OLW) 5 g i o () e [, Lo, -
7 J

dt
)|, argming; ) |0k (W;)| are not unique, the derivatives are

Remark 13. If argmax; ) |on (W,
not well-defined. In these cases, the inequalities become

(4', k") € arg max |og (W;)]

doz, (W
7016 ( ) <2maX|O'k( j)lmaXHijfCoriH ’ )
dt J P (4.k)
5 94
do—k’(Wj’) : -/
—H T2 > —2min |oy (W;)| max | Vw, Lori||, (7', k) € argmln lok(W;)].
dt j:k J ! °op (3,k)

Proof. For simplicity, set Wy = Wy, Wy = Wy.
Denote the analytic singular value decomposition of W (t) to be U D@ VGH  then from Lemma

22] we have
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%ZS{E(@C (=Vw, Lopi + aW;Aj_1 5 — alj ;1 W) (J))
= (" (~ T, Lors) o))
+au? (WW, W+ WL W W — 2W,WW5) o ) 95)
=R (a0 (<Y, Lari) o)
+a [(“Eg)HW WJ+1“1(<) _;’_,U(J) W, 1WH1UI(€])) W) 20k(Wj)3} |

From u{/" Wﬁrlwﬁlu,(c , v,(j)HWj_lefflv,(j) € [min; x 02(W;), max;  o2(W;)], the proof
is completed.

O

Note:

i [Vow, Lo, < o) (0 () 4 maxlon (W)Y 0
J 75

s

C.4 LEMMAS ON EIGENVALUE CHANGE UNDER DISCRETE TIME

Lemma 28. Suppose ¥, S € F4*¢ are positive semi-definite matrices, 0 < a < ¢ HSHO LF=C
or R. Consider S' = (I—|—a(2 SNHSI +a(X—-29)),

)\maw (S )

This generalizes Lemma 3.2 in|Ye & Du(2021)).

in(S) (1 + aAmin(B) = Amin(5)))* + O (® (12112, + 1S135,) 1S lop)

Am 97
Amaz (S) (1 + a(Amaw(2) = Amaa ().

IN IV

Proof. Following the derivations in|Ye & Du|(2021), V3 € (0, 1), rewrite the terms by the following:

S’—ﬂ(IgS)S(IgS>+(1ﬂ) (I+1i"ﬁz)s(1+lfﬁz)

, (98)
[(1—p8)S+BE]S[(1-8)S+ B].

(&%

S B(1-5)

2
The first term has eigenvalues A\;/(S’) = (1 — %)\Z(S)> Ai(S) (note that f(z) = (1 — z)%z is

non-decreasing in [O, 3] s0 Ay (S’) is exactly the i eigenvalue of the first term when 3 > %),
while the second term is bounded by

2 2
(1-0) <I + J"ﬂAmm(zo Amin(9) <X term2 < (1 —f) (I + Jwﬁ)\mw@)) Amaz (S).
99)

By treating the third term as error term and taking 5 = % the proof is completed.
O

Lemma 29. Suppose D,S € F¢*¢ are positive semi-definite matrices, E € F>*¢ F = C or R.
Denote M = S+ D. Consider S' = (I—|— n (aM — M3+ E)) S (I +n (aM — M3+ E)), under

1
< —F—=
TS 16 (M3, +1El0)
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Amin(8') = Amin(S) + 21 (a = 2| Dl|opl|M [lop = 1M [lopAmin () Arpin (S)
=20 (| Ellop + DI I1M Nlop) Amin (S) (100)
+0 ((@®IMZ, + IMI5, + I E12,) 11S]op) -

Proof. Expand the expression of S”:

S"=8S+n(aM+E—DMD)S +nS (aM + E — DMD)
—n(DMS? 4+ S*MD) —nS(MD + DM)S — n(SMS? + S*MS) + 1> Merror

:i(l+477(aM+E—DMD))S(I+417(aM—|—E—DMD))
(101)

1 1
+ (I —4nsDM) S? (I — 4nsM D) + gs (I —4ns(MD + DM))S

1 3 1 1
— S (I —4ns®’M) S (I — 4ns’M) S S S J— o M
+ 452 ( ns ) ( ns ) + (4 2g 452 +77 error
where | M., llop = O ((a®|M |12, + M5, + 1 El1Z,) 1Slop)-

Notice that 35 — L 5% — 1,93 has eigenvalues A/ (S) = 2X;(S) — £A2(S) — 22 A3(9), so by
taking s = 2[|5||op> Air (S”) is exactly the i*" eigenvalue of S'.

This further gives

1 2
/\min(S/) > 1 (1 +4n (a/\m’i'n(M) - ||EHOP - ||D||3p||M||Ol))) Amin (S)
1 1
+ (- 43| Dlopl| M [lop)* Nopin (S) + 15 (1= 8ns[Mllop|[ Dllop) Ain ()
L s 21000) N (8) 5 (BAin(9) = 20 (8) = 2N (9)
482 op min 4 min 2g mn 482 man

+ 772 ||Mé’r"l‘o’r‘||op
> Amin(S) + 21 (aAmin(M) = 2| Dllop | Ml opAmin (S) = 1M |lopArin () Amin (S)

- 277 (”E”OP + ||DHL27p||M||0P) )\mzn(S) + 772 ||Mérror||op :
(102)

From A\pyin (M) > Apin (S), the proof is completed.

O
C.5 LEMMAS ON REGULARIZATION, GRADIENT DESCENT
Theorem 30. Suppose for all j € [1,4] N N*, 6,50 (W;(t)) > 6, Omaa(W;(t)) < M, then the

convergence rate of the regularization term is lower bounded by:

8 nadt

+n%0 <a2M4L‘T6g(t) + acmg(t)Mﬁﬁm(t)>

+ 0 (aMlQEOM(t)2 + a3M4£T€g(t)2) .

(103)
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Proof.
Ajir(t+1) = A (t) = 20aW; () A1 ; (W, ()7
+ 20aWi 1 ()" Aji j 2 ()W (t)

—nad; j11(t) (Wi (OW; ()7 + Wi ()W, (1)) (104)
*?761( GOW()T + Wi ()T Wi (1) A ;+1()
n? [Vw, L) Vw, L) = Vi, LT Vw,,, L(1)] .
From
[Vw, L0 o < VW, Lori@®)|| o + [V, Lreg (D] o

=0 (M?’\/ﬁm(t) +M acTeg(t))
18,41 +1) = Ajj1 (Bl p = O <77M2 0Lyeg () +0? ||V, L)} )

=0 <nM2 aLyeg(t) + n? MO Lopi(t) + T]QaM2£mg(t))

(105)
We have
3
’Creg(t + 1) reg Z Js J+1 t + 1 Aj,jJrl(t)» Aj’j+1(t)>
j=1
3
+ad A t+1) = Ay @)
j=1
4
= —dna® Y |18 (OW; (1) = Wi(0) A 1515
j=1
(106)

+0 (772 aLlreg(t) (aMQE,«eg (t) + MGEOM(t))>

+0 (n2a2M4£reg(t) + 774aM12,CO”( ) +n a3M4L‘T€9< )2)

4
= —dna® > 18,1 (OWi (1) = WA ;0]
j=1

+ %0 <a2M4£mg(t) +\/@Lreg () MOL i (t ))
+n*0 (aMlQEOM-(t)2 + a3M4£reg (t)g) .

Follow previous analysis in continuous case,

1 3
2 &

Z 14,511 (OW5(t) = Wi () A1 (D > 3152 Z 1A i1 ()% 107)

)= =1

Then the proof is done.
O

Theorem 31. The maximum and minimum singular values of W;s are irrelevant of the regulariza-
tion term.
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U o in, e 0 (W, (1)
< 1 min; g ok (W)
nder N m (18‘1 max; , o (W;(t))’ 3man||VWj Eom‘(t)H ’
op

3.k Jik op

max of (W (¢ + 1)) — max o (W; (1)) < 2nmax o (W; () max || Vv, Lors (1)
+n°0 (Hijcon(t)Hi,, +a? m%xa;z(vvj(t)))
Js

min o (Wi(t +1)) - mikﬂU;ﬁ(Wj(t)) > —2nminoy,(W;(t)) max [V, Lori (1)
VILd Js 75 J

(108)

op

120 <||VW7.£0M(t)||ip +a? %xgg(wj(t))> .

Proof. For simplicity, set Wy = Wy, W5 = Wy.
Generally,

W;(t+ D)Wt + D)7 = W) W;(6)" —nWi(6)Vw, L&) —nVw, LOW; ()"

+ 02V, L(t)Vw, L)

= Wj (t)Wj (t)H - ’I7Wj (t)VWj [,o”‘ (t)H — nVWj Eori (t)Wj (t)H

+ 20aW; ()4 -1,; (Wi ()T = naW; ()W ()T A j41(2)

—nald; ;1 (OW;(OW; (07 +0*Vw, L)V, L(t)"

1

3
1
3

1
+ 3 (W;(t) = 30Vw, Lori(t)) (Wi(t) = 3nVw, Lori(t))
+ 02V, L)V, LT = 30>V, Lori (£) Vi, Lori(t)?
— 3P W; () A 1 ()W)

= 37a” A 1 (W ()W (6) T A 541 ().

W () (T + 3nad;—1,5(1))" W, ()" (109)
+ ([ — 377&Aj)j+1(t)) Wj (t)Wj (t)H (I — 37’](1Aj7j+1(t))

H

Notice that W](t) (I —+ 37](1Aj,17j (t))2 Wj (t)H and (I —+ 377aAj71,j (t)) Wj (t)HW] (t) (I —+ 37](1Aj,1’j (t))
shares the same eigenvalues. Then from Lemma [28] the maximum and minimum singular values of
W;(t + 1) satisfy
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02 0a(Wj(t +1)) < ’

02100 (Wi (£)) [14 30 (0200 (Wy_1(£)) — 0200 (W (1)))]
02100 (W5 (0) [14 30 (0200 (Wy1(8)) = 0200 (W ()]

+ 5 [omas (W5 (0)) + 31 vajﬁm(t)Hopr

+ 7]20 (HVWjﬁori(t) Hi + a2 H}%X O'g(Wj (t)))

= U?naac(w ( )) [1 + 377a ( maa:(Wj-‘rl(t)) + Ufznax(Wj—l(t)) - ZGznazc(Wj(t)))]

+

'—‘W\*—‘w\}—l

+2n0maw HVW orz( )HOPJV‘UQO (Hijcori@)Hip‘f'az II;%XU]?(WJ(Q))
Fin (W3t + 1) 2 202 (W5 (0)) [+ 310 (550 (W51 (0)) — 020 (W (1))
+ 30 (W5 (0)) [ 300 (02,00 (Wi 1(6)) — 0% (W (0)]?
1

45 [omin(W5(0) = 30|V L0,

+ 7720 (HVWJ- Lori(t) Hi +a? H’J}%X ag(Wj(t))>

= Ufnzn(W ( )) [1 + 3770’ ( mzn(Wj+1(t)) + O-zun(ijl(t)) - 2072n7,n(Wj (t)))}

2
= 20 (W5(0) [V, Lors®)], + 120 (vaj,cm(t)uop +a? nﬁxag(wj@))) .
(110)
By taking maximum and minimum over j € [1,4] N N* (for < m, the first
J> k J

term of R.H.S can be upper bounded by max; x, o2 (W;(t)) or lower bounded by min; ; o2 (W;(t))
respectively), the proof is completed.

O
D DYNAMICS UNDER BALANCED INITIALIZATION
This section analyzes the training dynamics under balanced initialization.
At the beginning, We derive some properties from Lemma[24] Under balanced condition,
_ H
! ] N—j+1
H
Wi, Wi, = | T s H Wi | = (WNWy)
k=N
H a1
! N—j+1
H H -
WHRijHR7j = H Wk H Wk Wl Wl) '
—J k:j
Consider j = 1 and j = N, then
Wywi = (wwh)YN — sz
Wi = ) K (112)

YN 2yl

ww = (WHw)
Suppose the non-negative ASVD of product matrix is W = ULN V| then
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d d
7 (U UM = I (Wawi) =svel v +usiivief —aus2Vu#
d H H _ NyrH H Ny-H 2Ny H
o (VEIvH) = " (Wiw,) =velufs + 2Husivi —ove2Ny (113)
dW al 2(j—1)77H 2(N—j) v H 3N-2y/H
= Ushutsy N IvHE - NUSIN Y
j=1

. . N . .
The dynamics of o, := 0, ,. is presented in .

D.1 SKEW-HERMITIAN ERROR

In this section, we prove Theorem below:
Theorem 32. The skew-symmetric error is non-increasing.

For F = R, under balanced Gaussian initialization, suppose the ASVD of product matrix is W (t) =
U)X )NV ()T, furthermore assume that the singular values of the product matrix W (0) are
distinct and different from zero at initialization (refer to Lemma 2 in/Arora et al.|(2019b)).

Denote 0,y j = (Z4) 5, U = V20U, V! = 12V, then

||21/2(U V), ||F:—QZU B2 o

)| ~23 0l g =gl

,] wk (0’1]1\)]7;2 _0111\)’,;2) ;T T 2 (114)
_Z 2 Uj Uk T U5 U
k#j i T T
<0.
Proof. By
do, ) + (k)
dtﬂzaqf’f( e Al —O—{UVJ). (115)
By Lemma 2 in|Arora et al.|(2019b),
% =U(F o My), My)kr= <v,’€,u;>ag’k+<uk,vj>a 7202N(5 . (116)
a V(F ® _]\4\/)7 (MV)jk: = <u;€,v§> 0',57;c + <'Uk, ]> 0'57]- — ij\géjk
Here (a, b) := b"a follows the standard definition of (complex) inner product. Then
vty du’ dv
T SVAUS = (FTOMy)UTSY £ UTSV(F O My)
2: 0844 T
dUdtU i—(tj EU+UTE%{ =(FToM;)U'SU+U"SU(F @ My) (117)

dvHy"  qv'’ dv
il 2V+VT2E =(FToM)) VISV +VISV(F o My).

For each diagonal entry,
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d,, ,_ (dUHy

=3 e [ () o 2 () (0] 2
k] Uw,j gw,k
d,, ,_ (duHy
dt<“j’“j>—< ar i
1 (118)
=D 5 [(wh ) (o ui) ol + (vhuf) (uf ) o]
k] Uw] O-w7k
d dv'Hy!
dt<v;,v;>( i)
_Z <Uk7 u) (v, k) oy + (i, v5) (V5 vk ) ol
k#j “”J
which further gives
*H“y‘—”jH
= 25; — [ 2 (10 e+ ek )I7)
ki (119)
+ (k) (ut, uk>+<v;,u;><v37vz>>]
+2 P} T; - [ o) (g ) o (Qo ) (g wi) = (o v3) (0550
k#j w
For the L.H.S. of (TT4),
S = vz = ' 2d 2
EH( -V wHF_ZHuj_ JH dt wj+zgwjdt Hu o JH
_Zawa uj, v5) <UJ’UJ>_2U )Hu _vJH (120)
+5 (ZGWJdt ||u _UJH +Zgw kdt ”Uk ||2)
The first term can be written by
Zawa uj, V) <Uj’uj>_20u1\)[,j) HUS’_U;HQ
—Zow( T o o T T o Tt T T T )

—Zawj( ;-T ’4—|—1/Tu'») —QZU ||u —’UJH

For the second term,
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1 d
> Zaw]dt e = w5l* + D2 02 s It — vkl
k

Ly bt ()
= — - ks Yj

U, Uy

jik ik T ~ Tk ’ J (122)
=2 37 ol ([ o)+ [ o))

J.k.jF#k
123 ol (o) (u i) o (o) (vh05)

Jik,j#k

Notice that

2
—Z%x‘<¢%)4§:ﬂﬂ@mﬁﬂw@m
J.k.i#k
= — 2205,[73‘ . (U;TV/V/T’U/; + ’U;TU/UITU;) (123)
J
=— QZUIIXJ . (u;TZu; + v;TEU;) ,
J

and

T T T T T T T T
E agj (u; u;u; v+ vl ul u’ +u vl v+ ok v u’-)

FERER B A Uil Yy T YU Uy
+2 Z g (W 05) (i) + o) (v, )
k. g#k
. HéN T s a (124)
zzzaw,j-éﬁ(uj (vu"+vv ) )
Jik
:2205)”]. . (u;TZvj —|—v;-TZuj) .
J
By combining the results above, L.H.S. = R.H.S. This completes the proof.
O

For even depth 2 | N, we have a similar result written in matrix form:

Theorem 33. If 2 | N, the singular values of the product matrix W (0) are different from zero at
initialization, then

a2 -vis, = —asw st —zferw - vist

N/2—1
ot | Y sus¥ (Ufsv - visy) s -AyH (125)
j=1
<0.
We present another approach of proof which takes the inverse of some terms. This approach adapts

to the skew-hermitian term in unbalanced initialization, where the proof of Theorem@in does not
hold.

To prove the theorem, we introduce the following lemma.
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Lemma 34. If2 | N, X, is full rank at initialization, then Vk = 0,1, -- , N/2 we have

(UxV)22k(U £ v)H

&~

Ma-

|:U22j 1)UHEVEN+2k 2JUH+UEN+2(J I)VHEU22]€ j)UH
1

VERISDYHSySY -2y H 4yl g sy sk )y ]

<.
I

+

N/2+k (126)

[Us20-Dyf sty i g ys2i-Dy sy sy

H_
fivg

N/2—k
T Y Uy Ay E Gy gy -]

—2k(U £ V)27 L y)H

Proof. VI € N we have

l
d , d ‘
— (Us2yH)y =N 2oyt (= (u2uf) | us2t-auH
gy (00) = e (G k) o
l = (127)
Z -0yt (svslut yushvist —ous2NuH) us2t-DuH.

l
(‘ft VEAVHY) = Z -y H (i(vzﬁvﬂ)vziﬂ—ﬂvf’

B (128)
!
=> VvevH (susivi 4 veUT st —ovs2NvH) vty
j=1
From Lemma24) ULV ~2*U7H is invertible at arbitrary time ¢ € [0, +00), thus

d ~1[d -1

- sz(N72k)UH> — _ UZNﬁQkUH el UEN*QICUH UE']V*Q](:UH

4 (vs; o [ s emeen ™

_ (UE;(N—Qk)UH) [(‘;t (UEN 2kUH):| (Uz;(N—Qk)UH) :

which further gives
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d
5 (UZ5VH)
d d
_ —(N—=2k)77H Ny, H —(N—2k)77H Ny,H
_[dt (UEw U )} usyvit+usy U [dt (Usiv )]

S (UE;W—%)UH) [;t (Uzjj—%UH)] (Us2hyH)
d (130)
Us, Wt — (usivH
T ai UZV)
N/2+k N/2—k
= Y s hufnys ey g N gnit Dy A gn -y
j=1 j=1

—2kUR2NFR=DyH

Combine (127)), (128) and (T30) together, then the proof is completed.

Now we present the proof of Theorem [33]

Proof. Denote Q = UMYXV, calculate the L.H.S. of (125) by setting k = 1 in Lemma[34}

sz — ?
ai|[= v -vim,
:%tr (Z(U -)Z2(U - )H)
=—2tr (S*(U - V)N (U - V)¥) —2tx (S(U = V)22V (U — V) H)
N/2—1
2R | tr | Y SUSY (UMY - VHsU) s vH (131)
j=1
2

w

2
=2 HE(U - V)zfﬂv/?HF ) HEW(U —v)z¥

F
N/2—1

2R | tr| > BY(Q-QM)TY ¥R

Jj=1

To analyze the last term,

N/2—-1

Rt | Y 2¥(@-Q"sy Q"
j=1
N/2—-1

=R [ Y 0% () Qun — Qun)ol ¥ (£0)Qrun
m,n j=1
N/2-1 (132)

=53 X RN S Qun +1@unl — 2R(Qin Q)

m,n j=1
N/2-1

Z%Z\an—@f > o (S () | 2 0.

m,n =1

Thus for arbitrary > > O we have
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a2 - v, = —2ffow - v 2o -viz],

N/2—-1
=Y Q@ = Qo | YD 0H(Su)ol T (S) (133)
m,n j=1
<0.
which completes the proof.
O
D.2 HERMITIAN MAIN TERM
This section proves Theorem [3]
Proof. Consider
d 2
dt<U + V)22 (U +V)H
=SU+V)ENU+VE + U+ V)ENU+V)ES -2 +V)S2N(U +V)H
N/2—1
+ > [UsY (Ufsv - vIsu) sl v L vel (vIsU - ufsv) s 2ot
j=1
(134)

Denote P = (UHQ/)E"” ,Q = (Uf‘;)zw . Then PH1Q = -Q P, %2 = PP+ QHQ.

From ABCH — CBA" = 1 [(A— C)B(A+ C)" — (A+ C)B(A — C)"] for arbitrary A, B,C
we have

d
G PP = TPRy P 4 PRy PHS — 2Py 2 pr
N/2—-1
+ Z 22] 2 QHEP PHEQ) ZN 27— 2PH (135)

— Pzif 2 (Q"sp - PPEQ) 2l 272" .

Suppose the k" eigenvalue and eigenvector of PP are x3 and & respectively, PHE, = zpnp,
then

4, sk( PPH> &

= 2{'S Py P PHg, — 2 [ PTY 2 PHg,

(136)
N/2—-1
+260 | >0 QR (QYEP - PHRQ) S PP &
j=1
We focus on N = 4, ¥ = 01(X)I. Then
d
dtxk = 201 (2)& PX5, Pe, — 267 PX5, PP + 401 ()] QQT PP, (137)

=201 (D) PY2 PP gy, — 261 PSS PP g, + 4oy (D)2 QQ &
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For the second term:

ApyS pig, =P (PP 4+ QTQ) 22 (PAP +Q7Q) P,
k w k w
= ap & PY2 PH &, + 22036 PY2 QT QPY, + 7 PQY QELQ7 QPP ¢,

< &l PY3, P e + 223 |Q15, 15013, + 2R11Q5, 15w 12,
(138)

From Theorem[33} [|Qlloy < Q]I < [Q(¢ = 0)]| . Then

d
% 2 (201(2) = 23) G PR PG — 203 QUG 1T 15, — 2R QUG 1w 15,

1 1
> (201(2) -y - 5H2wllip\|((U - V)Ew)lt_o||%> z) — TGI%HZwIIgpII((U ~V)Zu)le=oll -

(139)
The lower bound is proved.
For the upper bound,
d
G < 201D 3, + 401 (D)} |QIS, (140)
This completes the proof.
O
Corollary 35. If for some k, 01,(U + V)Xy)|t=0 = 0, then o, (U + V)3,,) = 0 for finite time

t € [0, 400).

Proof. Denote x;, = 504((U+V)Z,,). By Lemma IZE=Wllr < ||E=W(0)||r. Then ||Zy||op
is bounded:

1/N 1/N
IZullop = IW NN < (ISllop + 15 = Wllop)'™ < (IZlop + IE = W)

" (141)
< (IEllop + 115 = W(O) 1 £) " -
Then from Theorem 3] there exists some C' € (0, +00) such that
d
7% < 01(®) 2IBulls, + (U = V)=o) 2% < Ca. (142)
Giving
23(t) < 27(0)e! = 0. (143)
This completes the proof.
O

D.3 CONVERGENCE PROOF

This section states the global convergence guarantee under balanced Gaussian initialization, with
gradient flow.

Theorem 36. Global convergence bound under balanced Gaussian initialization, gradient flow.

For four-layer matrix factorization under gradient flow, balanced Gaussian initialization with scal-
a4 (%)
46% c2d?9/8”

ing factor € < then for target matrix with identical singular values,
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1. For F = R, with probability at least % the loss does not converge to zero. Specifically,

L(t) > ~oi(X), Yt € [0, +00). (144)

l\D\’—‘

2. For F = C with high probability and for F = R with probability close to %, there exists T'(§) =

od” 1 Iy (da%(z)) such that for any § > 0, whent > T'(0), L(t) < 6
o1(2)e? 3/2(2) B ’ y 4 ’ .

Remark 14. The first part of this Theorem can be generalized to general (bounded) balanced ini-
tialization.

Proof. For the first conclus1on by Theorem[3|and Corollary[35] for F = R, i, (U + V)E,,) = 0
with probability at least 1. Consequently o, (U 4+ V)E5) = 0.
Suppose at time ¢, for some unit vector y, (U + V)X y(¢) = 0. Then

I =Wlp =llor(E =UZIV | = [lon(D)V - U] ||
> o1 (S)WV = USY lop > |[(01(S)V — US| (145)
= H(Ul(Z)V"’ VE;Y)Z/H = H(m(z) + Eg)yH > 01(%).

For the second part:

From Lemma |2 =Wl < ||Z —W(0)||p < 2V/do;(X). Thus for any time ¢,

1/4 1/N
1Zwllop = WL < UIZllop + 1 = Wllop)"* < (IZ]lop + 15 — WII£)"

1/4 1/8 _1/4 (146)
< (IZllop + 1= = W(O)|[r) " < V2d50,7(S).

From Theorem for F = C with high probability (while for F = R with probability close to %),

1/4

2t =0) > 557 (U = V)Sullplizo < 2c1de. Thus by taking e < ;%G for ¢ such that
1

2 (t) = 2x(0),

d 5
&xi (201(2) - (40?(19/4 + 80%0%(129/4) e2ai/2(2) — xé) xE > <401(E) — )z}
(147)
This indicates that all 23, monotonically increase to 01/ YD) inTy = 01‘(12) cxk(0)72 = ;féf;,
and never decrease to below 01/ () fort > Ty.
By Theorem [20} 055 (X ) > x. Then combine with Lemrna
Loni(t) < Lops(0)e=8minEuT)(t-T1) < 452 (5)e=801 " (E)(E-T1), (148)
Thus it takes at most £ = T + e & ) In (dofé(z)) to reach §-convergence.
1
O

E NOTATIONS AND PRELIMINARIES UNDER THE DEPTH OF FOUR,
UNBALANCED

To tackle the unbalanced initialization with depth N = 4, we make the following notations and
derive some basic properties.
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Below we denote R = W, 'WJ, W] = RWH, W = W,WsWoWy, My = WHW,, M; =

W1W1H, Ma1234 = W2W1W1HW{I—W3HWIIW4W3 M| = W{W’H, en = 25’:1 ||A“+1H%
Then:

W =W/H MW, (149)
RRY = Wy 'WHEW,WH = =1 — Wy ' AgsW 1, (150)
RORF = Wi ' WoWi Wyt =T+ W AWy !, (151)

Marogs = ((WZHWQ)2 - (Wgwgf)Q) FWH AW + Wa W

1
= 5 (D3 (WETWs + WoWT) + (W' W5 + W) Ay) (152)
+W31—IA34W3+W2A12W2}I7
M{ — My = Wy ' MayasaWy =1 (153)
Deducing that

1 1
R < 14— Assllop < 41+ ————— : 154
|| ||op — \/ + U?n,in(WQ) H 23” p = \/ + minj’k U]%(W]) (AN ( )

1 1
IR, < 4/1+ 5 - 1A2llop < 4 [T+ 57 -en, (155)
Op mzn(W?)) ming; g Uk(Wj)
1 1

I—RRY|| < —— |[Agslley < ————— -en, 156
f Hop = o2 (W) [A2s]lop < ming , 02(W;) ea (156)

1 1
I-RIRATY < . |A . 157
| Iy = o2, (Ws) |A23lor < ming z o2 (W;) & 57

1Marzsall,, < (IW2ll2, + 1Wsl2,) 1A825]l0p + W12, 1 Asallop + [Wal2, | Arz]lop
< VBmax o (Wj)ea, (158)
J»
max; i, o (W) max; o2 (W)
M - M < i LA A VP st S A A VAP 15
([ M7 1lop V6 - ) V6 - mlnjkak(W)eA (159)
Applying Lemma
1

I-RER| <—— Al < ————— - en, 160
f Hop = o2 (W) [A2s]lop < ming . 02(W) ea (160)

1
I - RH-IR™! A . 161
|| ||op — Umzn(W3) || 23”0[) = minj’k O']%(W) EA ( )

F SKEW-HERMITIAN ERROR TERM AND HERMITIAN MAIN TERM FOR
FOUR-LAYER MATRIX DECOMPOSITION

In this section, we construct skew-hermitian error term and hermitian main term to prepare for the
convergence proof, under four-layer setting with scaled identical target matrix ¥ = o (X)I.
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F.1 SKEW-HERMITIAN ERROR TERM
The skew-hermitian error term is defined by ||W; — W/ H; To address the dynamics:

F.1.1 GRADIENT FLOW

Consider ¥ = 01 (X)1. We study |WW; — W] H% From the derivative of inverse,

Wyt dw.
d dj =-wy! d;W2 = —W[(Z - W)WHEW; T —aA Wyt + aWy A,
dR  dwy! W W_ldwgf
dt — dt 3 20 dt
=-RW/E-WWIR+ W (£ -WH)w,
—aA2R + 2aW5 P Aoz WH — aRA3y,
dwy dW{l HyrH —1dW:{I H Hde
= 'w.
" W W Wy =W Wy

= -W{(S - W)WHIW] + W, (£ - W) WHRFR™'W]
+ RREWIWo Wy (£ — WH) — a1 W] + 2aW5 ' Ags W 7.

From R(tr(PQ)) = 0if P = P? and Q = —Q*, we have

R (tr ((W{WlH — WWHY W (W — W{)H))

= L (v = wawgty (ot — gy
Thus

d d(Ww, — W/
1 Wy — W1/H2F = 2% (tr <(1dt1)(W1 - W{)H>>

— 2R tr( MyW{(S = W) + W(S — W)WHW,
—Wi(B - WWHRIIR=IW] — RRE MW (X — WH)
—alyy (W) — W) — 2aWy  Ags Wo W] (W7 — W{)H) )
= —20, (D)t (W1 = W)™ 2 (W1 = W)))
— o (WIW = wawi™) (wiw - wawi) ")
— tr (M (M + M) My (Wr = W) (Wr = W)™
— tr (M (M — My) My (W] + W) (Wy = W)™
+ 2tr ([= M| My My + My My M)W, (W7 — W{)H)

+2R (¢t

/—\/‘\/\

+ 28 (tr ([(1 = RR™) Wi Wawi (2 = W] (W, = wi)™))
— 2aR (tr (A W) (W — W{)H))
— 4aR (tr (W L Aoy Wa W (W — W{)H)) .
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Note: —M{M2M1 +M1M2M{ = [(Ml — M{) M2 (M1 + M{) — (M1 + M{) Mg (M1 — M{)]

1
2

F.1.2 GRADIENT DESCENT

From Lemma[T9]

[Walt+ 1)1 = Wa(t)~!

—n [=WiE)(Z = W)W (t)TWa(t) ™ — alqa()Wa(t) ™' + aWa(t) " Ags(t)] ||

167)
< [(1+ ea®) W) ) 1WA lallE = W + Vacat) W, ]
Wt + D)7 oV £ -
Under [|W; (¢ + D)llop = OIW; (1) o). ea(®) [|Wa(t)1[[2, = O(1),
Wt +1) = Wi ()
= [=WI(8)( = W)W ()W)
+WAi () (= WE)") W) R&P T R(t) W (t)
+ROR)IWo ()T W ()W (t) (S — W(t)H)
(168)

— alp (W (t) + 2aW5 ' (1) Az ()W (1)W1 ()] || -
=20 (|, m W50l 12 = WO +aca 0 [Wa(0) 1],

Wi - ([Walt+ 1),y - Vo L(t )
jenax W5 ()l - W2t + 1) lop jemnax Vw, ()IIF>

Finally giving
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WAt +1) = Wi (t + Dl — Wi () = Wi 0]l
=R (tr ([(Wa(t +1) = WH(t+ 1)) + (Wi () = Wi ()]
W+ 1) = Wi+ 1) = W () - wim)") )

I
|

[
B

q
o
—

™
-

o+

=

/N

—

Wa(t) = Wi(e)" Ma(t) (Wi(t) — W{(1)))

—ntr (Ma(t) (M]( (Wi

—ntr (Ma(t) (M (1) = Ma (£)) Ma(t) (W] (8) + Wa () (W () — ()"

2t (=M (6)Ma ()M (£) + Ma (6) Mo () M3 ()] W1 (1) (Wa ) = W1(1) ") (169)
+onR (tr ([W1 (6)(3 = WETYWat) (R R(t) — T) Wa(t)H] (Wi (t) - W{(t))H))
+onR (tr ([(1 — ROOYR()M) Wa () FWa ()W (£) (S — W(6)H)] (Wa () — W{(t))H))
—2mant (tr (Baa(t) (WA (1) = W) (W) =~ W1 (1))

—ana® (1 (W5 (0) Aas ()W (W] (1) (W1 (1) — W1(1) "))
+1°0 ([[m}x IW5(0)] IS = W(E)IF + aea(t) HWz(t)_lHop}

5 -1
. W (t AWo(t + 1 .
je[rf}?])rng* W5 )HO” IWa(t+1) |op)

F.2 SKEW-HERMITIAN ERROR TERM
F.2.1 GRADIENT FLOW

For gradient flow, we study the k' singular value of W; + W], or equivalently
Ak ((W1 +wWH" (W + W{)) = o7 (Wy + W{). To address the dynamics:

Suppose the left and right singular vector of W7 + W/ corresponding to o (t) = o (W1 + W7) (%)
are 1y, () and X, (t) respectively, (W1 + W1) xi = oxne. nff (W1 + W) = o |xall = [lmell =
1. Then from Lemma[22]

d d
S (™ v wp)) = (dt (W + W)™ (W + W{)) X

d
=2 (XkH Wy +wH (dt (W1 + W{)) X/c) ,

(170)

where
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d
7 M+ W) = MoW{(Z — W) — W{(Z - W)WHW,
+ Wi (2 - WHOYWHERETIRTIW] + RRY MWy (2 — WH)
—alAq2 (W1 + Wll) + 2aW51A23WQW{

= My (W + W) S+ (WisW{ — wiswi) W]

My + M! M, — M!
— M, (121M2 (W1 + W) + %]\@ (W1 — W1/)> a7

+ (M{ MMy — My My M) Wy

—Wi(E - WHYWH (I — RFIRY) Wy
— (I = RR™) MWy (2 — WH)

—al (Wi + W) + 2aWy t Ags Wo W

Consider arbitrary y € F?. Notice that (W SW{# — W{SW{7) is a skew-hermitian matrix:
By + W) (Wiswi? — wiswi{) wix)

R®(
R (M (W +WHHE (WAswiH —wiswi) Wix)
=R (XwWH (WiEW — Wisw{) Wiy) (172)
R (
R (

)
=

W (Waswi — wiswi) wix)
T (W + WHH (=WAsWi? + WsW{) (W — WY)x).

From ¥ = 0¢(X)1,

—WSWIH 4 WISWH = 0y(S) (W1 + W) (W1 — WD +01(S) (M) — M), (173)

Likewise,

R (QXH(W1 + WH (M My My — My Mo M) Wix)

(174)
=R (X (W1 + W)? (M{ MMy — My Mo M) (W] — W) x) -

Thus

ot = 201 (Sl Mame + 01 (S)oRl! (W — W)™ (W, — W) xe
+ 01 (B)arR (nf (M — My) (Wy — W) xz)
— ol My(My + M) Many, — 0 R (! Ma(My — M7) Ma(Wy — W1)xx)
+ o R (nf! (M{ MMy — My Mo M) (W] — Wh) x) a75)
— 203 R (N WA (S = W YWy (RTR — T) W xi)
— 203 R (! (I — RRY) MoW1 (2 — WH)xy)
— 2a0%R (n,fAmnk) + daoi R (n,fW{lAgg,Wng’Xk) .

F.2.2 GRADIENT DESCENT

For gradient descent, we study A, ((Wl + W) Wy + Wl’)) =02, (Wi + WY). To address
the dynamics:
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(Wi(t+1)+W(t+1))
=W (t) + W{(t)

+1 | o1(X) Ma(t) — My(t)

+n (M (8) Mo (t
+no1(X) (Wa(t

where the error term is bounded by

M (t) + Mi(t)
2

My (t) = My (8) Mo (t) M (t)) Wi (t)

Wi = WiOWi()) Wi(t) +nEa(t),

M2(t)] (WA (t) + Wi(t)) (176)

)
)

1E1(2) max [[W; (0[5, [W1(t) = Wi ()], [M1(8) = M(#)],,

<
lop < 2 je[1,4]nN*

+ (1RO R = 1], + |1 - ROR® p)je[rp%*||Wj<t>uzp||2—w<t>uop

+aeA(t)(W1(t)+W1’(t)|| +2||R(®) ||, [|W2(2) 1H°pje[11n?]}r{1N* Wj(t)||§p>

00 ([ e 19501, 17 = WL + aca) [,

max W @) |2 - ||W t+ 1) Yoy max Vw. L(t .
je[l,?]mN* J( )||0p H 2( ) H D je[l,?]mN* | W, ( )”F)
(177)

Follow the tricks in Lemma[28]

A (Wi +1) + W+ 1) (Wt + 1) + Wt + 1))

M (t) + Mi(t)

> A <<W1 (1) + Wi(e)" (I T [m(z)Mz(t) YA M2<t>]) (Wa(t) + W{(t)))

0l Ba(t)lop + 120 (|(Wale + 1) + Wit + 1) = (Wa(t) + WI@)I2, )
(178)

where

HEQ(t)”Op = Omin (Wl(t + 1) + Wll(t —+ 1))

1B () lop + W) 12, (1M1 () + Mt [|M1(8) — M (8], W () — W{(t)llop] :
(179)

G CONVERGENCE UNDER GRADIENT FLOW, STAGED ANALYSIS

In order to present the proof more clearly, we state the complete proof of convergence under Random
Gaussian Initialization [B-2]and gradient flow, before tackling gradient descent.

At the beginning we assume (51)) holds. (For the complex case, it holds with high probability 1 — §;
for the real case, it holds with probability (1 — 4). )

G.1 STAGE 1: ALIGNMENT STAGE

o/
In this section, we set € < \(ﬁ), a > 25¢3%cyd' 30 (X)b, where b > 24 In(4c1d) + In co.

Without loss of generality, c; > 2, ¢ > 5.
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Theorem 37. AtT) = m, the following conclusions hold:
, €
Tmin W1+ Wi)|,_p, > W
2 13/2 2 a
eA(Tl) S 2\/§Cld / € exp <_320%002d1301(2))

(180)
max o (W (T1))] < (1+272)er Ve

Js
€

min o (W;(T1))| = (1 - 2_17)m-

This section proves the theorem above by following Lemmas and Corollaries.

Lemma 38. Maximum and minimum singular value bound of weight matrices in alignment stage.

1
Fort € [07 m}

C1 \/&E

€
min o (W;) > < '
K(W;) = T V1 —4cldeto (D)t

3.k evd

(181)

—16¢3d% %301 (D)t max or(W;)
Js

Proof. Fort > 0 such that max; j o (W;) < 2¢1V/de < O’i/4(2),

max [V, Lorill,, < max fow (W;)P («(z) + m%x|ak<wj>4) < 201(%) max oy (W)

7R

s

(182)
By invoking Theorem [27]
d . 2 .
%%(WJ) < 4m2}cX|0k(Wj)|4U1(E)
A« 52 : (183)
dming 73 (W) > —4min |oy(W;)| max |o, (W;) 201 ().
dt Jik Jsk
By solving the differential inequality,
maxak|W-| < max; g O’k|WJ(0)| < Cl\/ae te -0 3
s T T dor (D) maxyr ox W 0)F ¢~ 1T —dddeo (D) L 16cideon(Y)
(184)
€ 1
i w;)| > —16¢id* 2o (D), t € |0, —— 55— | - 185
rg{lknm( il = c1vd &1 o1 (X)t, 166%d2620'1(2)_ (185)
This completes the proof.
O

Notice that

max oy (W;(t < Th))| < 1 Vde < (1+27*)erVde
75

Y& [
Voo see (186)

1 € €
min loy(W;Et<T))|>(1- —— - >(1-2"1")—.
sinlon(Wy(e < ) > (1 g ) =2 > (-2
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Corollary 39. Balanced term error in alignment stage.

Fort € [0,T1],
ae?
ea(t) < 2V3c2d* 2 exp (—6d3t> . (187)
‘1
Specially, att =T,
2 13/2 2 a —31 —14,—1 ;-29/2 2
ea(Ty) < 2\/§cld/ €” exp (326%002011301(2)> <+V3.2 c; ey d 122, (188)
Proof. By simply combining Theorem 26]and Lemma [38]
O
Corollary 40. Main term at the end of alignment stage.
Att =1,
, €
Omin (Wl + Wl)lt:Tl > 720?62(19/2. (189)
Proof. For simplicity, denote Ay (t) = X (t) — X (0) for arbitrary X. Note: Axn = A
Att =11,
Ty 4
180 T on = | [ 3 [Wi1,001 W1, a6 (= WD) Wy ()W, 500 0
-t o
T, 4
< / S W, (W, 2 () (2 = WED W, W, )|
j=1
T 4 9
<[, s vel,) | T e, | a
0 =1 kE[1,4]NN*, kj
T 6
g/ 4201 (%) - ((1 +272) clx/&e) dt’
0
1
<8 (14+27") o (D)1 = (1+27'%) chgcgldqe‘l.
(190)
Thus
1
A (Tl = | 5 (V) + W)™ Aw(T) + ur (1) (W(T) + W)
op
< (IW @)l + WO, ) 1w (T,
9114 _ 1 4 1,5
<[1+ (22 daet - jawm)),, = (1+277)- sertetd e,
(191)

From Corollary[39]
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|y wawan)? - wy )|
= HWI(TI)HW2(T1)HMA1234(T1)W2(T1)W1(Tl)Hop
<[ W) Wa(T) ™|, M ar2aa(T0) o, W (T) WA (T, (192)
< ((1 +2721) cl\/&e)4 V6 ((1 +2721) cl\/ge>2 cea(T))
<VB(L + 27 ) ePen (T)) < 2-%e; by 10a-H,
Thus

H (W1(T1)HW2(T1)HW2(T1)W1(Tl))2 — W (To)"W (Tp)

op

< | W (@) W () W) WA(T)) = W)W+ A (T, (193)
<(142719). %cf‘lc;ld*ses.

From LemmalT8]

HWl(T1>HW2(T1)HW2<T1>W1<T1> — (W(To) W (Ty))

op

H (Wi (T EWo (1) E W (T )W (Tl))2 — W(To) "W (Tp)

op

2, o (W (T W (T0) = | (VT3 W T W (T WA (1) = W ()W ()

op
(1 + 2716) A 50;46271617568

B 8 1 4 1
2 (Jva) — (142716) - Lepteytd—5es

By (B2),

<0.27c; *d73€t.

(194)

Tmin (W1 (Ty) W (T0) T W (T) Wi (Ty) + W (Th) ™)
>0 (W (o)W (1)) + W(0)")
- W e m) W W) - (W)W | - aw(@)l,  a9s)
>eytd et — 027y td et — (1+271%) icl—gcgld”e‘*
>0.72c5 'd 73,

which further gives

Tmin (W1 + Wll)‘t:Tl
=Omin ((Wl(T1)HW2(T1)HW2(T1))_1 (W (T0) W (T0) T W (TH) W (Th) + W(TI)H)>

3
- (man,k |0k-1(Wj(T1))|) FTmin (Wl(Tl)HW2(T1)HWQ(Tl)Wl(Tl) + W(Tl)H)

€
>
T 2¢}c0d?/?
(196)
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G.2 STAGE 2: SADDLE AVOIDANCE STAGE

In this stage, we further assume a > 32¢20cyd' 30 () (5 In 016(2)> + 28 Ind + 23In(4c1) + 7ln 02>,

3 € < 1 .
while i) S B de From Lemma|[25|and Theorem

.

2 73/2 2 a
eA(t S [T]7+OO)) S eA(Tl) S 2\/§Cld / € exXp <_320%062d130-1(2:)>

<V3. 274561—2162—7d7269/8€70.1*5/4(Z).

197

1/4
Moreover, a > 32¢30cod*3 01 ()b, where b—Inb > 31n (‘716(2)> 4232 Ind+371n(2c1)+61In co.
Thus

aen(t € [Ty, +0)) < aea(Ty) < 2°V3cPcyd*/?€%01 (2) exp(—(b — In b))

(198)
<3 27316;15C;5d7187/86501/4(2)'
Theorem 41. ArT) + 15, Tz = Bff&%g; , the following conclusions hold:
Wi (Ty + To) — Wi(Ty + To)|| p < 3cyde
' " (199)

Omin (W1 + W)(T1 +Tz) = 20y ().
Lemma 42. Bound of operator norms throughout the optimization process.

Fort € [0, +00),

IS = W(t)lop < =~ W(H)|r < 1.01Vdo1 ()
W lop < [WlF < 3Vdo1 (%) (200)
max [|W;|op < max [|W]|r < vV2dY301/4().
J J

Proof. Fort € [0,T}], the result is obvious from Theorem and Lemma
For ¢ € (T}, +00): from Lemma[23]

1= = WH)lop < 15 =W H)l|r <[ =WO)r <[I]p +[IWO)|r < V2dor(S). (201
Giving

W @)llop < W@l < 1E = WDl +IZ]r < 3Vdoy(S). (202)

For the last inequality, prove by contradiction.

Suppose max; | W;l|op > \@dl/gai/‘l(E), then by invoking Corollary ,
ea(t) <ea(Ty) < V327 My 10d729/2¢2 < 27 max HWjHip. (203)
J
Thus for t > 17,
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HW“an = HWWHHop = ||W4W3W2W1W{IW2HW;IW4HHOP
> |WawfT|| — [[WaWsWa o WEWIWHE |
= [[WaWWs Mg W Wy W W[ — [[WaWs WaWa! Aas W W,

- HW4A34 (Wswid)? WfHOP — |Wa W W A W W W[~

Wy (WaWit)® agawift

op

4
> (max IW;12, — 38A) — 6ea max [|[W; S, > 15Vdo, ().
J J

(204)
which contradicts inequality (202)). This completes the proof.
O
Lemma 43. Bound of HW{1 ||Op, HW:{1 ||Op, and relevant terms.
Fort € [T17T1 + TQ],
ma ([|W5 (0], (757 (1)],,) < 128683/ 0y (), (205)

2
op’

2

max (eA(t)||W;1(t)y| eA(t)Hng(t)HOp> < V3278 % 3 d 83034 (S). (206)

Proof. We begin with the time derivative of W, ' and W5 '

dIIr*l
G = TRWIE - W)W —ali, Wy 4 aly Agy
(207)

dwy!
dij = Wy WHES - WYWHRATY — aAps Wit + aWy ' Ay,

From % M|, < H %M ||Op (this in equality is from triangular inequality and standard calculus

op —

analysis),

d _ _

& ||W2 IHOP S ||RHop ||W4Hop HE - W”op ||W11_IW2 1||Op

| +a’||A12||op||W271Hop+aHW271||op ||A23H0P (208)

T W5 |, < W5 Wil 1= = W, (Wil IR,

+al|Axsll,, HW3_1||OP +a HW3_1||OP [Azall,, -

From Lemma 2] and
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1
Rl < 14— |Agslls
|| op\/ 0.2 (Wz) || 23” P

min

1
I = 1+ iy 1ol

min

Iwiws |, = JIWE W= I WE AW g0,

<\ 1realwi'

It wi |, = \JIws W=l - Wyt A

<1 reslwE 2,

Further we have

op —

d
W, < 2v2 (1 ea [ W53, ) /567 (9) + Vaaea W57,

(210)
d _ _ -
T W35 1”% <2V/2 (1 +ea |[W; 1||(2,,,> 362 (2) + V2aen W5 1||Op.
Combine with (T97) and (198)), for ¢ > T} such that (Z03) holds,
d _ d _
o (G 1795,y 3 19957, )
@11)

<2V2(1+ V327 d B0/ (8) 4+ 27226 0y 5 o))
<2V2(1+27)d"%07/ (%),

-1 —1 1 c1vVd
From Theorem 7] max (|[Wo(T0) |, IWa(T)l,,) < sty < wsfie
then the proof of the first inequality is completed via integration during the time interval [Ty, 71 +75).
The second inequality follows immediately.

O

Remark 15. This Lemma verifies that W, . 31 are bounded (consequently W 3 are full rank), then
R is well defined throughout this stage. For t > T + Tb, further analysis shows that the minimum

singular values of Wy and W are lower bounded by Q(U}M(Z)).
Lemma 44. Skew-hermitian error.

Fort € [Tl,Tl + TQ],

||W1 - WIIHF S 3Cld€. (212)

Proof. From section [F.1.1]

52



Under review as a conference paper at ICLR 2026

S — W = 20 (D (W1 — W)™ My (W~ W)

— oD (WIW = wawi) (wiw - wawi) ")

—tr <M2 M} + My) My (W, — W) (W; — W{)H)

“tr (M2 — My) My (W] + W) (W — W{)H>
+2tr ( ~ MMMy + My Mo MW, (W — W{)H) (213)
+ 23%(
+ 2R (tr [(T = RR™) WHW, W, (2 — WH)] (W — W{)H))
- 2a§R( r (A W) (W — )H))
(w:

~ 4aR ( LNy Wa W] (W — W{)H)) .

([W1 (8 = WHYW, (RER — 1) WH] (W, — W{)H)>
(

Note: —M{Mng —‘y—MlMQM{ = % [(Ml - M{) M2 (Ml + M{) — (Ml + M{) M2 (Ml — M{)]
From Lemma fort € [T, T + T3],

max (|[R7R ~ 1|, I - REY|,,) < ea [W5[,

(214)
<V3. 273181—962—3d7115/8€301—3/4(2)

)

< 6. maxj, kot (W;)

[ My — Mi]|,, < e
Hor Tin(W2) 215)
<27 %y 3d 113/8630'1_1/4(2),
M, + M 1 V6 max; . o2(W))
My — ——— SHAHHO 4'*ijl—JWH < |1+ i LA A& P4 eA
H 2l P2 ' 2 02 (W2) 216)
< 272801_902_3617113/8630'1_1/4(E).
Consequently:
R, < \/1 +ea HW;luip <14V3-27327953d 115/83 0734 (w), 217)
Will,, < IW{llp < V2d501/ (D) |IR],, < (1+27%) V2d 50}/ (%), (218)
My + M] My + M]
H 1 1 < ||M2||op + HM2 _ % < (1 + 2729) 2d1/40}/2(2)7 (219)
op op

M Mo My — My My Myll,, < ||My — M| | M| || My + M|

(220)
< (1+ 2729) 272501—962—3d7109/8630f/4(2)'

By combining all results above, for ¢ € [T7,T; + T5] such that ||V, — W{|| » < 3c¢1de holds,
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d
g M= Wil <-0-0-0
+ a1 1] = Ml 12 llop (W31l + Wil ) W2 = W
+ 2 || =My MMy + My Mo M|, (W g [Wh = WAl
o 2ma |W5 3,2 = Wil (| B7R = 1], + |[1 = RE"||,, ) Wy = Wi

+ 2aea [Wr — Will7

+daea [Wa |, W2l F Wil W1 — Wil
< 2—220;8653d—25/26401(2)

+ 272101—802—361725/26401 (%)

+ 2*24cf8053d*25/26401 (%)

+ 2—2601—1362—561—171/8670%/4(E)

+ 271861—862—3d725/26401 (%)

S 2—1701_8C2_3d_25/2€40'1(2).
221)

From Theorem[37] at ¢ = T1,

Wi(Ty) = Wi(T) p < Wi (To)llp + [WI(T)lp < [W2(T)lle + [Wa(T0)l| g [1R(T2) [lop

< (1+2732)2Vd- (1+272Y) e1Vde < (14 27%) 2¢1de.
(222)

Thus |y — W1’||; < \/[(1 +2-20) 2¢yde]® 4 2-17¢7 8¢5 3 d=25/2¢4 51 (S)(t — T1) , when both

t € [Ty, Ty + To] and |Wy — W{||% < 3cide hold. Then

Wy (Ty + To) — W{(Ty + To) |5

g\/ [(142720) 2¢1de]” + 2= 177 8y 3d—25/2€4 0y ()T (223)

g\/[(l +2720) 2¢,de]” + 27 12¢7 2¢5 1A= T/2€2 < 3eyde.

which completes the proof.

Corollary 45. The minimum eigenvalue of Hermitian term.

. . . 1/4
For any o,(W1 + W{)(T1) > W, it takes at most time Ty to increase to 23/401/ ().

Proof. We analyze the dynamics of Ay ((Wl +wH" Wy + W{)) = o2. The definition of n; (t)
and x(t) follows section The dynamics can be expressed as below:
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;tak = 201(2)01%7751\42771@ + UI(E)UI%XICH (W — W{)H (Wh — W1) xx
+o1(R)arR (ni (M7 — My) (Wy — WY) xi)
— o Ma(My + M7) Manyg — o3 R (ni! Ma(My — My) Ma(W1 — W) xx)
+ 0w (nff (M{ MMy — My My M) (W — W) x) (224)
— 204 R (nff Wi (Z = WH YWy (RP R — T) Wi xz)
— 204 R (nf (I — RRT) MyW, (S — WH)y)
— 2a0%R (anlgnk) + dao, R (U£W2_1A23W2W1/Xk) .

From HMQ—MI%Mi . < 272861—902—3d—113/8€301—1/4(E) and H% ) <
(1+272) 241107 /(2),
My + M M, + M|
nsznk>n,f( ! )nk_HMz_ 12 1
op
My, + M B
>l ( ! 1>77k 928937~ 113/83 1/4(2)
M +M My + M
il Mo (My + Mi) Moy, < njf ( ! 1> (M; + M) (121> -
My + M| || My + M, M, 4 M
+2HM2— 12 1 12 1 <|M2||OP+H121 )
op op op
M+ My My + M|
<ni! (121> (My + M) <121>
+ (1 + 2—28) 2_240;9053d_109/8630?/4(2),
(225)

By Lemma W1 = Will,, < [[Wh = Wi{l|lp < 3cide,
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d
—op > 201(S)opnf Mang + 0

dt
- Jl(E)O—k ||M1 - Ml”op HWl - W{Hop
— oini Ma(M; + M{) Moy, — oy max IW;llop 1My = M|, W1 — WA,
— o [|M{ Mo My — My Mo M|l [[W] — Wil
— 20 max W 3, |12 = W, , (IR R = 1], + |1 - RR™||,,)
- QaeAak — daepoy HW2_1|| max||W s ol Rllop
My + M| ; _
2o (s (538 g g o
— o3 [Wh = Wi, - 27 FTey g Pd 11¥/5 307 (3
My + M My + My ~28) 9249 .3 j—
— ok [ W1 = WH|l,,, - 27 P er ey Pd 108} (3
— o Wy — Wl/H()p . (1 + 2—29) 2_25cfgcg3d_109/8630f/4(E)
— 0 - 2725 1—9 —3d727/2 3 1(2)
_ o297, 15 —sd—187/8 5 1/4(2) .9-22, 9 —Bd 27/2,3 o1(2)
M, + M{ My + M
> 20 |on(D) (—=—) - (—=—2) |m
2 2
—op-(1+271) 2722793722301 (D) — 02 - 27 B¢ ¢y 2d 1830, (D).
(226)
under Ok 2 W,
d M + M M+ M)\?
—o? > 20 |o1(D) [ — M) (2at e — 27801 (X)o7}, (227)
dt 2 2
Denote P = M , Q= Wi Wl . Notice that
My + M] 1
PP +QQ" = ———+ P!'n = o, (228)
M, + M 1
s (121) e =i (PP +QQ™) mi > S0, (229)

7\ 3 /
' (Ml;er> me =i (PPY +QQ") (Ml;er> (PPH +QQ™)

1 M, + Mj M, + M/
= EUWE (12> e+ ne QQY (121> QQ

- ia}é‘nf o (H )« () oo

D) 2
1 My +M M, + Mj 1
() . H (20,%”@@,, - ||Q||3p) ~
op
(230)

_16 2
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Notice [|Qlop = 3 [|[W1 — W{||p < Se1de < 0y - Bcfead/2, e < WU%“(E%

d 1 My + M| M, + M/ 1
ot 2202 | (00 = ottt (F 2 ) e M2 (Gt + e
— 2785 (X)o7}
1 1 M, + M 1 —
> sop (01(8) = o | =208 [ ———|| Q2 ( 50 + IQIE, ) =27 P01 (D)ax
2 16 2 |, 2
1 1 ) )
> 50,%01(2) - 3—202 —81(1427°) C%chdd3/4€20%/2(2)0;§ — 27184 (%)0y
3 1
> oton®) - Lot

(231)

This indicates that for o} € [ 23/ 401/ 4(2)} , 0} 1s monotonically increasing. By stan-

€
2651“ cad?/27
dard calculus, it takes at most time At (O'k > 23/ 4Ui/ 4(2)) < T, for oy, to increase from at least

to 23/451/4(2):

— €
2cfcadd/?

/2‘1/0152) (3 ) 1

At (O’k > 23/40i/4(2)) <

2c«}c;d9/2
4 ”152) <3 1 -1
= al(Z)Ai—Aﬁ) d\g
/Meim 8 32
1 (232)
4.4/ 91(E) 1
= (3 1
g/ (801(Z)Ak—401(2)>\k> A

And for t € [Tl + At <ak. > 23/4Ji/4(2)) , Ty +T2i|, oy, does not decrease to less than

23/451/4(2) if t < Ty + Tb. This is from the continuity of o and the time derivative of o at
o = 23/4Ui/4(2), t < Ty + Ty is positive:

d 1 4
P >~y (D) - (23/4(;}/4(2)) > 0. (233)
dt ox=23/401/* () t<Ty+Ts 8
O
G.3 STAGE 3: LOCAL CONVERGENCE STAGE
In this stage, we analysis the time to reach d-convergence, that is
T(6) = irtlf{ﬁ(t) <4} (234)

Lemma 46. o,,;, (W1 + W) is lower bounded, while the skew-hermitian error is upper bounded.

Fort > T; 4+ 15,
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Omin (W1 + W) (1) = 2% 401/4(5) (235)
Wy — Wil < 3erde.

Proof. (233) holds at ¢ = Ty + T». Since both L.H.S. change continuously, it left to prove that the
derivatives at the critical points (to be specific, ¢ > T5 such that [|[W; — W{||p|,_,, = 3cide or

o (W1 + WY)|,_,, = 2%/*01(X)) are positive/negative. (If such time does not exist, then the proof
is done. )

From

1
Toin (W) + O (W) > 3 Amin (W1 + WD Wy + WD+ (Wy = W) (W — W)
1
> 50-7277,%71 (Wl + W1,> )
(236)
and
For t > T} + T5 such as (233) holds,
1 14
Umin(WQ) > Umin(Wl) —eA > —F=0 (E) (238)

V2

Then by following almost the same arguments as Lemma [44] and [43]

d
I = WG < =201 (D) (W2 = W)™ o2, (Wa) (W2 = W) ) =0 =0

+ 2—1701780273d—25/26401(2) (239)
< =t 2 () [Wh = W[5 + 27 ey By B2 ey (3),

d 1
&ﬁa%+wozaﬁm+w@m@y§fmm+w®. (240)

| w

Suppose for some t1,t2 > Ty + T such that [|[W1 — Wi[|p|,_,, = 3cide, o (W1 + WJ)
23/401 (%), then

|t:t2

d 2
&le_WlIHF <0
1 =h (241)
d*U/% (W + W7) > 0.
¢ t=ts
This completes the proof.
O

Theorem 47. Global convergence bound.

For four-layer matrix factorization under gradient flow, with random Gaussian initialization with
1/4
o/ (%)

Toctogma7s» regularization factor a > 32c¢20¢cod 301 ()b, where b satisfies
1

scaling factor e <

58



Under review as a conference paper at ICLR 2026

1/4
o)) 281
b>5In <01()> + =5 Ind + 23In(der) + Thcy
€
(242)
1/4
o)) | 303
b—1lnb>3In (”1<)> + 55 Ind +37In(2¢1) + G Incs.
€

Then for target matrix with identical singular values, there exists following T'(5), such that for any
6 > 0, (1) with high probability over the complex initialization (2) with probability close to % over
the real initialization, when t > T'(0), L(t) < 6.

T(6) <Ti +Ts + 07 **(Z)In (da%(z))

)
1 32c8c2d? —3/2 do? (%)
= )1
32cHc2d 020, (%) + o1 (D)e2 oy 77 (X)In 5 (243)
6.2 19 1 2 b
_0 cesd . In do?(X) .
o(X)e 52 (y) 5
Proof. Following the derivations in Lemma [46]
minoy (W,)(t > Ty +Tp) > —=o/4(5). (244)
ik V2
By Lemma[23|and A2}
Lon®) < Lor(Ti + T2)exp (8 in o (W) (¢ > T3 + To)l*(t = Ty~ 7))
< Lori(0) exp (—8 min oy (W) (t > T1 + To)|°(t = T1 — T2)> (245)
Js
< 0.52d0%(3) exp (—af/Q(Z)(t T T2)> .
For regularization term, by invoking Theorem [26] 37|and Lemma[42]
4a ming i, |og(W;)(t > Ty + To)[*
Lreg(t) < Lyeg(Ty + T e — 4 (t-T - T
o)< LT+ T s (- T G
4a min Nt > T, + Ty)|*
< ESQA(Tl + T5) exp <CLHHHJ’IC |0k(WJ)( > 1;_ 2)| (t—=T1 — T2)>
4 3 max; i [ (W;)] (246)
a 4amin-k|ok(W-)(t>T1 +T2)|4
< —ex(T —— = J (t-Ty - T
s gea()exp ( 3 max; ; |ox(W;)2 (t=T—To)
< 27763012075 26T (S exp (—160?002d51/40§’/2(2)(t -1 - Tg)) .
By taking logarithm on the summation of these two inequalities, the proof is completed.
O

H CONVERGENCE UNDER GRADIENT DESCENT, STAGED ANALYSIS

This section states the complete proof of convergence under Random Gaussian Initialization[B.2]

At the beginning we still assume (5T)) holds. (For the complex case, it holds with high probability
1 — & for the real case, it holds with probability (1 — §). )
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Theorem 48. Global convergence bound under random Gaussian initialization, gradient descent.
For four-layer matrix factorization under gradient descent, random Gaussian initialization with

)

scaling factor e < B do IS

regularization factor a > 32¢30cod 3 a1 (X)b, where b satisfies

€

1/4
by 281
b > max (5 In (Ul()> + 5 Ind + 231n(4¢y) + Tlneca, 16 ln(2clcgd)>
247)
1/4
by 303
b—mb23m<“()>+8hm+3ﬂm%g+6m@.
€

Then for target matrix with identical singular values, there exists following learning rate n and
convergence time T(0,n), such that for any § > 0, (1) with high probability over the complex
initialization (2) with probability close to 1 over the real initialization, when t > T(6), L(t) < 6.

n= O(min (a_20f4d_26_201(2),
ac;560514d—301/4680;9/2(Z)’ a_lcf44c§10d_219/4e40f3/2(Z),

0;27059d—355/8690;15/4(E)7 a—10;21057(1—273/8670;9/4(2))) o

2
T(,n) <Ti+To+n 'o; (%) In <d016(2))

Sc3d? 1 do?(X)
=0 12 + In ( L ) .
(7701(2)52 noi’/Z(Z) 0

The following section completes the proof.

H.1 STAGE 1: ALIGNMENT STAGE
a4 (®)
401\/3 ’
O (ﬂ) , with appropriate small constant. Without loss of generality, c¢; > 2, co > c(f.

a2cid2e?

In this section, we set € <

a > 25c¢29¢cyd" 30 (X)b, where b > 24 In(4cyd) + Incy. n =

Theorem 49. At Ty = the following conclusions hold:

1
32ci%c2d0€¢20 (Z)n’

€

Omin (W1 + Wll)|t:T1 > W

ea(Ty) < 2\/30‘11d364e*2b +n0 (a=1citdBeba (X))
(249)
e o (W ()] < (1+ 22y Ve

7,

ip s (W5 (12)| > (1 = 277) =

This section proves the theorem above by following Lemmas and Corollaries.

J

Lemma 50. Maximum and minimum singular value bound of weight matrices in alignment stage.

1
Fort € [07 32c%d2e201(2)77}’

€

Vde
—163d* %301 (S t, max o (W;) < a .
caivd ! (%) Jik w(W3) < V1 —4ctde2o; (D)t

(250)

in O’k(Wj) Z
7.k

Proof. Fort > 0 such that max; j, o (W;) < 2¢1Vde < %U}M(E),
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3
[Vt Lor, < maxlon(95)F (o1(9) + max o)1) < 5 e o )P ().
J o gk J.k 2 4k
251)

By invoking Corollary , for t > 0 such that min; 5, o, (W;(t)) > IR

max o (W (t + 1)) — max o (W (¢)) < 31 max ok (W; (1) [*o1(2)

7,k 7,k
+ 7]20 ( (ecl\[ >

<4nmax|ak( St o1(%)

rg{iglai(Wj(Hl)) rgl,lkn%(W (£)) = —=3nmin ok (W; ()| max |ox (W, iO)Poi(2)
+ 770 (a2 (ecl \/Zi) >

> 20 (o (W ¢ + )] + i (0%, 0)])

~max oy (W (¢ )Po1(D).

(252)
By solving the differential inequality,
W d 3
max o |W;(t)| < maxjkak| ) < 1Vde ,te [0,22
J.k V1 —401(X) max; , ok |[W;(0)2nt ~ /1 —4c3de2o, (X)nt 16cide?o1(X)n
(253)
€ 1
i W;(t)| > —= — 1663d%*Ea1 (S)nt, t € |0, sog—ra | - 254
fg{lknwk( () = ovd cid”e’ o (X)nt, t € ' 323 d2e201 (D) (254)
This completes the proof.
O

Notice that

< < < (1427 Vde
sk S
8ei’ea (255)

min on (W3 < ) > (1= o) = > (=21

Corollary 51. Balanced term error in alignment stage.
ea(Ty) < V3-273%c Mey 1d=29/262, (256)

Proof. By simply combining Theorem [30]and Lemma 50} denote M = max; i ¢<1, (W} (1)),

61



Under review as a conference paper at ICLR 2026

2
Loeg(t+1) < ( 2.509”?%) Lreg(t) + 120 <a2M4£7.eg(t) + a[:wg(t)M(;Lori(t))

+ 020 (AM 2L (£)2 + a3 M Loy (1)?)

2nae?
< (1 T ) Lyeg(t) + 170 (aM®Lori(t))

2
< (1 - 2na€ ) Lreg(t) + 1770 (actd’e®o7 (),

A3
(257)
giving
_ 2nae?
Lreg(t) < Lreg(0)e 47" 400 (cld3Sa2(x)). (258)
Lreg(Th) < 3acid®e*e™ + 10 (c}*d®foi (), (259)
Ere T _ _ — _
ea(Ty) =2 Lreg(Th) < V3273 Moyt dm29/2e2, (260)
a
O
Corollary 52. Main term at the end of alignment stage.
Att =17,
/ €
Omin (Wl + W1)|t:T1 Z W (261)
Proof. Denote Ax(t) = X(t) — X (0) for arbitrary X.
Att =11,
T —1
1AW (T)llop < || D 1 Z W, 541 ()W, o (@) (S = WE) W1 ()W, 5 ()
=0 op
T —1 5
2N 0 L W, ()2
it 3 O s, IVw 6O - s, VSN,
6 8
<nTy - 601(X) - ((1 + 2721) clx/ge) + 172T10 <a2d (cl\/ge> )
6
<nTy -801(2) - (14272 Vi)
1
§(1+2—18) 401 c2ld 74
(262)
Thus
1
A (Tl = | 3 [V + (0D A1) + (1) (W (13) + W(0)]
op
1
< (142717 icl_4c2_1d_568.
(263)
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From Corollary [51]

H (Wi (T0) W (T T W (Ty) W (T)) — W (T) F W (T)

op

<[ W)W (T) |, 1M ar2aa(T) |, W (T WA (T, (264)
§27120;8C;16d723/268.

Thus

H (T W, Tl)HWQ(Tl)Wl(Tl)) — W(To)"W(Ty)

op

< H T1)HW2(T1)HW2(T1)W1(T1)) - W(Tl)HW(Tl)Hop + 1 Awaw (T1)l,,  (265)
<(1+2719%). %c{4c§1d_568.

From Lemmal[T8]

HW1(T1)HW2(T1)HW2(T1)W1(T1) - (W(TO)HW(TO))1/2

op

H (Wi (T EWo (1) E W (T )W (Tl))2 — W(To) "W (Tp)

op

<
2\/Amm (W (To) W (Ty)) = || (WA (T) W (T3 W (1) WA (T1))? = W (T) W (Ty)

op
(14+2716). Lot td5es

- 8
2\/ () —(r29) detetase

< 0.27c; 'd=3€t.

(266)
By (B.2),
Tmin (W1 (Ty) W (T0) " W (T) W1 (Ty) + W (T1) ™)
>0 (W@ W(T)'"* + W(0)")
(267)

~ [ Wy rwa ) s wa ) - (Wt )|

- ||AW(T1)||op
op
>0.72c, 'd 734,

which further gives

Omin (Wl + Wll)‘t:Tl
=0 min ((Wl(T1)HW2(T1)HW2(T1))71 (Wi(T) ! Wo(T) W (T) WA (Th) + W(Tl)H))

! 3.0 ) H H H
Z( (W(Tl))|) man (Wl(Tl) W2(T1) WQ(Tl)Wl(T1)+W(T1) )

max; i |0
- ¢
T2} cad?/?”
(268)
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H.2 STAGE 2: SADDLE AVOIDANCE STAGE

1/4
(5 In ("16(2)> + ZBlind + 23In(4c1) + 7In 62). Meanwhile,

In this stage, we further assume a >  32¢2%cd30y(X)b, where b >

e < L
o1/H () = 32cfead®TE

From Theorem , forn =0 (acl_5602_ Mg=301/484 " o/ 2(2)) with appropriate small constant,

ea(Ty) < 2\/30‘11d364e*2b +n0 (a=1cttd8ebo? (X))

(269)
< 2—4461—2162—7d—269/8670;5/4(Z).

1/4
Moreover, b — Inb > 3In (UIE(E)) + %lnd + 37In(2¢1) 4+ 6lncy.  Thus for n =

@) (a‘1cf44c2_10d_219/4e40173/2(Z)) with appropriate small constant,

aea(Ty) < 2\/3 21014 2d29e4 02 (X)) exp(—2(b — Inb)) + nO (act*ddeba? (X))

(270)
< 2—300;15055d—187/8650i/4(E)_
Theorem 53. AtT7 + 15, Ty = siﬁgiz the following conclusions hold:
Wl T1 + TQ) — W/(Tl + T2 S 3Cld6
WA ( 1 N e @7

Tomin (W1 + W) (T1 + T) > 28401748,

Lemma 54. L,,; is approximately non-increasing.

Fort € [0,400), suppose ||Wie1,njan- (t)Hop < M, then
'Cori(t + 1) - ﬁori(t) < —2nN mikn |Uk(Wj (t))|2(N_1)£ori(t)
7

+ 120 (M8 (M4 n ﬁm.(t)) Loni(t) + aM*\/Lor (t)ﬁreg(t)) 272)
+ 00 (M Li(1)? + a®MBL,cy (1)) .

Proof. Following the continuous case (71), the change of product matrix satisfy

N
W+ 1) = WD) 1> Wi, s (OWEL, i (0 (5~ W(0) Wi, (0 Wiy, 1 (6
j=1
2 2 ()12
=0 (_max [V, L0} _max W02, )
(273)
Then
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Loni(t+1) = Lors(t) = —R <<2 _ Wit 1; WO ) - W(t)>>

= =0 ) Wi, 1 (07 (5 = WD) Wig,, 510"

2 2 . . 2
( Lori(t) je[r{}%)r(wN* Vi, L(1) HF>
max

jenax ori ()| ) (274)

4
( .Jerlnit])r(wN* £ t>HF>
(M

N 1n|0k( ( ))|2 (N-— 1)£om( )

+ 7720 8 (M4 + [/orz( )) Eorz t + aM4 \/ orz £7‘eq )
+ 00 (M Lri(1)? + a®MBL1cy(1)?) .

O

Below we further assume 7 = O (min (01_27(:2_9d’355/86901_15/4(2) ailcl_2102_7d’273/86701_9/4(E)))

)

with appropriate small constant.
Lemma 55. Bound of operator norms.

Fort € [Tl,Tl + TQ],

12— W(©H)|r <1.01Vdoy (D)
ea(t) <1.O1-27 e 21, Tq=209/875, 5/ (x)
aca(t) SLOL-27%¢; ey *d 1578601/ (x) (275)
IWllop < IW|r <3Vdo1 (%)
max (I op < max [W; | » <v2d"/%01"*(3).

Proof. We first prove that if the first three inequalities hold at some time ¢, then the rest follows.
Then we prove the first three by mathematical induction.

1. For some ¢, it the first two hold, then

W @)llop < IW@)llr < 1E =W Dlr + 2] r < 3Vdoy (). (276)

For the last inequality, prove by contradiction. (Omit ¢ here)

Suppose max; [|W;||op > v/2d"/85,/*(S), then
ea(t) < 1.01ea(T1) < 27" max |W;][2,. (277)
J
Thus for t > 17,
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W2, = HW4W3W2W1W1HW2HW3HWfHop
> |Wawi|| = ([WaWsWad oW WIWE |
— | WaWa Das Wo W W WI|| = |[WaWs Wo W5 Ags W W]
- HW4A34 (W3W;{{)2 Wf”gp - ||W4W3W3{{A34W3W§IWIIHOP -

Wy (W W) Aga !

op

4
> (max HWj”?)p - 3€A> — 6ea max ||Wj||(6)p > 15Vdoy (D),
J J

(278)
which contradicts inequality (276).
2. Mathematical induction.
Fort =11,
IZ = W(T)F < IE1r + IW(T)F < (1+27%) Vo (%) (279)

Suppose for t' € [T, t] (Ih < t < Tb), the first two properties hold. Denote M = max; ||W,(t’ €
[T1,t])|lop- By invoking Lemma [54]and[30} at ¢ + 1,

Lot +1) = Lopi(T1) + 72t = T1)O (M* (M + \/Lri(T1) ) Lori(T1) + aM*/Lori(T1) £reg (Th) )
+ 0t —T1)O (M Loyi(T1)? + a® MB L,y (T1)?)

= Lopi(T1) + 1*To0 (%01 (2)* + do1 (2)*(aea(Th))?) < 1.012Vdoy (%).
(280)

Note that £,,; = %e%. Undern = O (min (01—2702—9(17355/8690,1—15/4(E)’ a7101—2102—7d7273/8€701—9/4(2)))
with appropriate small constant,

Lreg(t +1) < Loey(Th) + 0 (t — T1)O <a2M4/:,neg (t) + aﬁ,«eg(t)MGL‘,m.i(t))
+ 0t —T1)0 (aM Ly (1)? + a®M*L1ey ()?)

< ACreg (Tl) + 772T2O < a‘creg(t)MG‘Cori(t)) + 774T20 (aM12£ori(t)2)

12 _5 2 2
< min (a . [2—4461—2162—7d—269/8670_1 0/4(2)} , 1 . {2—3001—1562—5d—187/8€50%/4(Z)}
a
(281)
This completes the proof.
O
Lemma 56. Bound of HW2_1 ||Op and relevant term.
Fort € [Tl,Tl + T2],
(W5 (@], < 128¢5c3d™ /5 201/ (3), (282)
eal(t) HW;l(t)Hip < 1.01-2730c 95 3q15/83573/4 (%), (283)

Proof. We begin with the update of W, ! From Lemma
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(W5t (t+1) — Wy '(b)
—n [~ROWa(t)T (S = W)W ()T Wa(t) ™" — alpo () Wa(t) ™ + aWa(t) " Ags(t)] ||
<P W (t) "2 Wt + 1) Hop I Vw, £(2)12,

op
(284)
By triangular inequality,

15 = W ()l [[W1 () Wat)

lop

[Walt+ 07, — [Wa® 7, < 7R, IWa) .,
+T]CL||A12 ||OI)HW2 1H0p+17a||W2 lHopHAQB( )Hop

+0? [ Wa(O) 5 IWa(t + D)7 lop Vi L3,
(285)

From

1
[Rllop < 4/1+ s - 1Aasllo
P J?nm(WQ) v

wirws,, = IWE v Ew [, = e i s < 1 eea 95 2,
(286)

Further we have

72t + )7, = 7207, < 220 (L+ea(®) [ W), ) 4o (2)

o, op
+V2naena(t) HW2(t)_1Hop
+ 720 (W2 (&) M5 IWat + 1) Hlop Vi £LB)]13,) -
(287)
Combine with Lemma([53] for ¢ > T} such that (282) holds,
[t + 1), = [[Wa(t) |

op

<2V2(1 4 1.01 - 2730 nd% /864 () 4+ 2722nc; %c; 2 d 55/ 4301/ (%)

5 (288)
170 (el /50017 ()
<2V2(1 4 27 20)nd?/ 357/ (%).
From Theorem max <HW2(T1)_1H [ws (), ) < s S T

then the proof of the first inequality is completed via integration during the time interval [Ty, T} +75).
The second inequality follows immediately.

O

Remark 16. This Lemma verifies that VV2 3 are bounded (consequently W 5 are full rank), then
R is well defined throughout this stage. For t > Ty + Ty, further analysis shows that the minimum

singular values of W and W are lower bounded by Qo v/ E).

Now we begin the proof of Lemma[9]and[T0]
Proof for Lemma[9}
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Proof. From Lemmal[56] for ¢ € [T, Ty + T3],

max (|[R¥R - 1|, , RAL,,) < ea W5,
(289)

< 1.01-2730¢ 9530 115/834573/4 (%)

)

max; oz (W;)
My — M < V6 - AeA
My — M|, o2 (W) (290)

§2_2761 S =34~ 113/86301—1/4(2),

My + M 1 V6 max; a2 (W;)
M, + M SN LY M s L AN VA
5, < Well, + 5104 - ton < |14 2200 [ o

<928, 9 *Sd 113/8 3 171/4(2).

-

Consequently:

IR, < /1+ea [Wat[2, <1+1.01 2736 %2115/ ¥/ (), (292)

Wil < IWillp < V2d'50 (D) ||RI|,, < (1+1.01-2731) V2d' 50/ (8)),  (293)

My + My

My + My
2 2

< (1+27%)2d%012(D),  (294)

op

<M, + HM -

op
M MMy — My My M|, < [[My — M| || M| [| My + M|

(295)
< (1 + 2—29) 272561_962_3d7109/8630%/4(2)-

By combining all results above, for t € [T, T; + 15 — 1] such that ||W; — W{||z < 3cide holds,

IWa(t+1) — Wit + 1)1 7 — Wi () — Wi (@)I[5
< = 2001 ()0 pmin(W2)? W1 (t) — W] t)”F
M2 (8) L I (8) = Ma(8)] o IV Dllop (IWH D)L + 1WA (1)) IW(E) = WD)l
+2 || = M5 (1) Mo (£) My (£) + My (8) Mo ()M (8) ], W3 ()| o [IW1 () — WA (1)
2mmax Wy (013,15 = WOl (|RO7RE ~ 1|, + |1 = RORO™,, ) Wi (t) = Wi(©)]

+2naea(t) Wi (t) — Wi ()%
+anaena(t) [|[Wa ()|, IW2 (Ol r W1 (@), [Wi(t) = Wi (#)]|

Hlop

2
2 —1
+n*0 ([jeffl?)éw W)l 5 = W ()| + aea(t) |[Wa(t) ||op}

max  [W5015, - [Wale+ 1)

jell,4]NN=

< — 2001 (2)Tmin (W) [[W1(£) — Wi ()15 + 27 e Sy *d =25 26ty (2).
(296)

From Theorem[9] at t = T7,
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W(T) = Wi(T) [ p < [WA(TD) e + W1(T)] p < IWA(TD)llF + [Wa(T) | g [1R(T3) [lop

< (1+27%%) 2c1de.
(297)

Thus ||W1(t) — Wl’(t)H; < \/[(1 +2-20) 2¢,de)? + 2-17¢; ey 3 d—25/2¢4 0y (S)1(t — T1), when
both t € [Ty, Ty + Tb] and || Wy (t) — W (t)||% < 3c1de hold. Then

W (Ty 4 Ta) — W(Ty + To) |3 < \/[(1 +2720)2¢1de)® + 217 8ey 3d—25/2eh 0y (D)0 Ty

< \/[(1 +2720) 2¢yde]® + 2-12¢72¢5 Td=T/2€2 < 3eyde,

(298)
which completes the proof.
O
Proof for Lemma[IQt
Proof. We analyze the dynamics of A ((W1 +whHT (wy + W{)) =02, .
From HM2 _ Ml+M{ < 2728093 118/835 /4 (8 and HM%M{ <
op op

(14 2729) 24"/40]/*(%), define

E(t) = 01(%) (Mg(t) _ AWW) _ (Mg(t) <M1(t)+M{(t)> My(t) — (Ml(t)HW{(t))f‘

2 9 9
(299)
Then
1B |op < 27%er ¢ 3d™ 1333074 (8) + (14 272) 27205 2d 1083074 (1) (300)
< (1 Loy 2728) 2’2401_902_3d*109/853a:1)’/4(2)_
By Lemmal?l, W1 = Will,, < [[W1—Wj|lp < 3cide, and under i (t) > T
O’min(t + 1)2 2 )\mln (Wnew(t)HWnew(t)) — 271801(E)Umin(t)4’ (301)

where

(Wi (t) + Wi(t))-
(302)

o) (00 _ (34001 M1<t>>3 \ B

Whew(t) = (I +n

Denote P = YWl g — WiWi Notice that PPH + QQH = M1 Then by invoking
Lemma 29| (omit ¢ here) the first term becomes
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)\mm (Wwanew) = )\min (Wnevagw)
= Dunin (47 [01(2) (PP +QQ™) — (PP +QQ")’ + E| ) PP
(140 ]e1(®) (PP +QQ") - (PP +QQ")’ + E)))

op 4

M + M;
2

> 07in + 87 (m(2> —2(1Ql12,

2], (%)
2 o \ 4

M1+M/ U?nin

-8 (IEllopHIQllﬁp #1 ) (4
op
M+ M |> || M+ M |° M + M|

+770 | |1 (2)? || ——— —— +IE, ) | —5— :

2 o 2 o 2 op

(303)

Notice [|Qlop = L [W1 = W{||» < 3erde < oy, - Bctead /2, e < 1 1/4(%2), then under

325 cpdo375 01

€
Tmin(t) > 28 cyd/2°

_ A 1
O'min(t + 1)2 > O'min(t)2 + (2 t— 81(1 +2 4)2 1[)>7]01(E)0min(t)4 - 7770'min(t)8-

32
(304)

Notice that ,,;,, (t) is bounded by O (dl/ 81 / 4(2)) . By taking reciprocal,

1 - 1 N (271 = 81(1 + 27271001 (2)Tpmin (t)* — 25M0Tmin (1)
Umi”(t + 1)2 B O'mm(t)Q O'mm(t)[l + (2_1 - 81(1 + 2_4)2_10)770'1(E)U’min(t)G - énamin(t)lo
1 3 1

Y S X)— 0 min (¥ 4-
O'rnin(t)2 * 8770—1( ) 32770 ( )

IN

(305)

1

1 1
- <T
Tn® | 7w =0~ Geagiamy? | <2

This indicates that 7, (t) takes at most time At’ =

to increase to 23/ 40% / (%), and never decrease to less than 23/ 40} / 4(E) afterwards (in ¢ € [11 +
at', Ta)).

O
H.3 STAGE 3: LOCAL CONVERGENCE STAGE
In this stage, we analysis the time to reach d-convergence, that is
T(6) = iItlf{ﬁ(t) <4} (306)

Theorem 57. Local convergence.

Fort € [Ty + T3, +00),
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Lori(t) < Loni(T1 + T) exp (—no?*(2)(t = Ty — 1))

Lreg(t) < lyegexp (—not *(2)(t = Ty — ) 307,

in (Wi (1) + W{(1)) > 2°/%07/4 (%)
[W1(t) = Wi(t)||p < 3cide,

where  Lowi(Ty  + T3) = % - doi(D), and g =

2 2
max( (1 01-92-44¢ 21 —7d 269/8 .7 1—5/4(2))> 7i(1.01_24,001—1502—5d7187/86501/4(Z)> >

Proof. Prove by induction.

At t = T5 these properties holds.

Suppose at some time ¢t € [T, 00) they holds, then follow the same arguments in Lemma
max; [[W; (1) op < v2d'/P01/(2).

To address the bound of H W2_1 ||Op,

() + Wi(t)

< SCldg/SU}M(E)e

HMl(ﬂ—Ml@) < Wi(t) = Wi ()]l

2 2
op op
M (t) + M (t My (t) — M (¢
HMg(t) _ M) £ M () 5 i®) < A2 (t)]lop + Hl 5 i® < 16c1d”20/*(D)e
op op

My (t) + M|
Umzn W2 \/ mzn M2 \/ min 12()> - 1661d9/80&/4(2)6

/
. \/m (W ) - 16eirrsall i) ol )

Similarly, min; 4 (o(W; (1)) > 5oz 01’ ().

Then following the derivations in Lemma 9] and [I0]

I+ 1) = W+ D)% < (1= 2001 (D)0min (Wa)?) (W (1) — WH O + 27 Tnes S5 *d =2 ea, (2)

< (1= n0t*(®) IM (1) = WOl + 27 e S 2 a5/ 2%01 (5) < 3erde
1 1 3 1 1
< +2n01(8) = o5 N0min(t)! < g
Omin (Wl(t —+ 1) + Wll(t —+ 1))2 O'min(t)2 8 32 wm (23/40&/4(2) 2
(309)
Then by Theorem [54]and [30]

Eori (t + 1) S ‘Cori(t) - 23/4770'?/2 (Z)EOTI(t)
1320 (s [ 015, (195002, + 3/ ZorE) ) L0 + s [0y Zori) ()
J J
10 (ma I 0)1 25 Lors0)2+ [ 0) 13, 10007
J

< (1= n0*(2) Lon(t).
(310)
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1
Lreg(t+1) < (1 — 3nad1/4gi/2(z)> “Lyeg(t) + n20 <a2M4LTeg(t) + aﬁTeg(t)MG,cm(t))
+ 00 (aM " Loyi(t)? + a®> M*Lyeg()?)

1
< (1 - 4nad—1/4ai/2(z)> Lreg(t) < (1 - nad—1/4a§’/2(2)) Lreg ().
(311)
This completes the proof.
O

By Combining the three-stage results, the global convergence guarantee of Theorem [48]is proved.

I NUMERICAL SIMULATIONS

Through out this section, we consider numerical simulations under four-layer matrix factorization
on square matrices with dimension of 5.

I.1 SADDLE AVOIDANCE DYNAMICS UNDER BALANCE INITIALIZATION

This section presents numerical simulations of the saddle avoidance stage under balanced initializa-
tion. In this experiment, ¢ = 0.05, n = 0.1, £,,(0) = € - diag(1,0.8,0.6,0.5,0.9).

We set the target matrix to X = I in Figureand to ¥ = diag(2.00,1.55,1.10,0.65, 0.20) in Figure
Each pair of solid and dashed lines of the same color represents the logarithms of the k-th singular
value of Ly and that of (U + V), respectively.

These figures clearly exhibit the following properties:

* 01 (2(U + V)Sw ) provides a tight lower bound for oy, (Syy), verifying the conclusion of
Lemma

* The eigen-gap of the target matrix introduces non-smoothness and non-monotonicity into
the original lower bound for singular values of the product matrix, leading to segmented
rather than global smoothness and monotonicity. This explains why the dynamics are easier
to analyze when the target matrix is the identity.

* The 1/2 probability of converging to a saddle point under real balanced initialization is a
general phenomenon, even if the target matrix is not identity. However, in the setting of
Figure initializations with det(U V) = 1 fail to converge, which contrasts with the
identity target case.

1.2 ALIGNMENT DYNAMICS UNDER BALANCE REGULARIZATION TERM

This section exhibits the dynamics of weight matrices under regularization term. The original square
loss L,; is omitted. Here a = 1, ¢ = 1, n = 0.001.

Figure [3] illustrates the conclusion of Theorem 27] and [31] Clearly the maximum among all the
singular values are non-increasing while the minimum is non-decreasing.

Figure E] illustrates the dynamics of main term o, (W1 + VV2_1VI/'3H Wf ). For real initializa-
tion with det(W(0)) < 0, Gpin(W1 + Wy 'WHWH) decays to 0 at a linear rate, while for
det(W(0)) > 0 and complex initialization it stays at a small value after some oscillation.
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Figure 1: Dynamics of singular values (log scale) for an identity target matrix. From left to right, up
to down: real initialization with det(U T V') = 1, det(U T V) = —1, and complex initialization.

J LLM USAGE DECLARATION

In the preparation of this paper, large language models (LLMs) served only as an auxiliary tool
for enhancing writing clarity, checking grammar, and assisting in the drafting and debugging of
simulation code. These tasks were performed under the authors’ complete oversight. The central
scientific ideas, theoretical results, and research contributions are entirely the work of the authors.
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up to down: real initialization with det(U ' V') = 1, det(U ' V') = —1, and complex initialization.
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Figure 3: Dynamics of extreme singular values (log scale) for four weight matrices.
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Figure 4: Dynamics of the minimum singular value of hermitian main term W; + W2_1W3fq wH

(log scale). From left to right, up to down: real initialization with det(W) > 0, det(W) < 0, and
complex initialization.
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