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ABSTRACT

Gradient descent dynamics on the deep matrix factorization problem is extensively
studied as a simplified theoretical model for deep neural networks. Although
the convergence theory for two-layer matrix factorization is well-established, no
global convergence guarantee for general deep matrix factorization under random
initialization has been established to date. To address this gap, we provide a
polynomial-time global convergence guarantee for randomly initialized gradient
descent on four-layer matrix factorization, given certain conditions on the tar-
get matrix and a standard balanced regularization term. Our analysis employs
new techniques to show saddle-avoidance properties of gradient decent dynamics,
and extends previous theories to characterize the change in eigenvalues of layer
weights.

1 INTRODUCTION

This paper investigates matrix factorization, a fundamental non-convex optimization problem, which
in its canonical form seeks to optimize the following objective:

1
LW, W) = 5 W Wi = Sl + Loeg(Wr ., W), (1

where W; € F4*4 denotes the j™ layer weight matrix, 3 € F¢*? denotes the target matrix and L,cq
is a (optional) regularizer, d € N* is the size of matrices which can be arbitrary positive integers (for
d = 1itreduces to scalars). Here F € {C, R} as we consider both real and complex matrices in this
paper. Following a long line of works (Arora et al.,|2019a; Jiang et al., 2023} |Ye & Dul 2021} |Chou
et al.| 2024)), we aim to understand the dynamics of gradient descent (GD) on this problem:

j=1,.. .,N : Wj(t+ 1) = Wj(t) —anj,C(Wl(t), .. .,WN(t)), 2)

where 17 € R is the learning rate.

While global convergence guarantee for the case of two-layer matrix factorization (N = 2) is well
studied (Du et al., [2018}|Ye & Dul 2021} Jiang et al., 2023), the deep matrix factorization problem,
i.e.,the N > 2 case is less explored. While the model representation power is independent of depth
N, the deep matrix factorization problem is naturally motivated by the goal of understanding benefits
of depth in deep learning (see, e.g., |Arora et al|(2019b))). A long line of previous works (Hardt &
Ma, 2016} |Arora et al., [2019bfa; Wang & Jacotl 2023)) studies this regime as it directly captures
Deep Linear Networks (DLN), the simplest type of deep neural networks. However, a general
global convergence guarantee is still missing. Therefore, the following open research question can
be naturally asked:

Can we prove global convergence of GD for matrix factorization problem ([I) with N > 2 layers?

In this paper, we take a positive step towards answering the question above. Specifically, we consider
4-layer matrix factorization (N = 4) with the standard balancing regularization term (see Park et al.
(2017);|Ge et al.| (2017); Zheng & Lafferty|(2016)) as

3
1 1 2
LW, Wo, Wy, Wa) = o [[WaWsWa Wi — 2%+ 1% > W =Wl Wil |

Jj=1
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where WjH denotes the Hermitian transpose of W; and a € R is a hyperparameter. We consider
both real (F = R) and complex (F = C) setting with random Gaussian initialization and prove
global convergence of gradient descent. Our main result can be summarized as follows:

Theorem 1 (Main theorem, informal). Consider four-layer matrix factorization for target matrix X
with identical singular values o1 > 0, under gradient descent and random Gaussian initialization

with small scaling factor ¢ K 0’}/ 4, then with sufficient small learning rate n and large regular-
ization factor a, (1) with high probability 1 — § over the complex initialization and complex ¥, or
(2) with probability %(1 — 0) over the real initialization and real ., loss function L(t) < €cony for

t > T(€cony,n) =0~ Loy e 2poly (1/6,d) + O (n_10f3/2 In (da%/econv)),for any €cony > 0.
The formal version of Theorem [I]is stated in Theorem [#7]in Appendix, where we specify the poly-
nomial degrees for €, a,n, T'(€conv, 7). Below we provide a simple example to illustrate the result.

Example for tightness. We show the convergence rate is nearly tight by the toy example of

d = 1, where all the weight matrices degenerate into scalars. Consider identical initialization
g g

wj.jci)(t = 0) = € and gradient flow, then all w; remain identical and the dynamics become

d;”tj = (o1 — w;l)wj By solving the differential equation, it takes time © (01_ 16*2) for product

weight w = wyw3wyw to increase from e* to O(c; ), then time © (of 321 (03/ econv)) to reach

local convergence. Theorem|[I]exactly reduces to this result when the dimension d = 1. Calculation
details are provided in Appendix

For further explanation on the exponents of o1 in € and T'(€cony, 1), please refer to Appendix

Remark 1. A natural question is why the convergence guarantee in the real case holds only with
probability close to % but not 1. For the other % probability, Theorem |2| presents a special case -
considering gradient flow under the strict balance condition (which can be viewed as the limit as
a — +00), showing that the optimization process does not converge to a global minimum in finite

time (and hence converges to a saddle point).
Main contributions. Our major contributions can summarized as follows:

* We prove global convergence of GD for 4-layer matrix factorization under random Gaus-
sian initialization. To the best of our knowledge, this is the first global convergence result
for general deep linear networks under random initialization beyond the NTK regime in|Du
& Hul (2019). This result helps provide new insights towards understanding the training
dynamics of general deep neural networks.

* We construct a novel three-stage convergence analysis of gradient descent dynamics, con-
sisting of an alignment stage, a saddle-avoidance stage, and a local convergence stage. We
also develop new techniques to show GD dynamics avoids saddle points and to character-
ize layer matrix eigenvalue changes, which we believe are of independent interest for deep
linear networks analysis.

Challenges and techniques. Our analysis employs the following key techniques:

* Initialization analysis. To guarantee that gradient descent makes progress, it is necessary
to establish a monotonically increasing lower bound for the singular values of the weight
matrices. This, in turn, requires analyzing the smallest singular value of a newly introduced
term (namely W + (WWH )1/ 2, where W = W,W3W, W), at initialization. This analysis
utilizes tools from random matrix theory, particularly the concept of Circular Ensembles.
The detailed proof is given in Appendix

* Regularity condition of each layer. To bridge the initialization with the subsequent training
dynamics, we need to ensure that key matrix properties evolve in a controlled manner even
during the rapid changes in the alignment stage. We prove that despite significant updates,
the weight matrices retain certain spectral properties from their initial state. A delicate
analysis of the smooth evolution of the extreme singular values and the behavior of the
Hermitian term after the regularization term converges is provided in Section [5.2.1] and
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» Saddle avoidance. To avoid convergence to a saddle point, it is essential to prevent the
smallest singular values of the weight matrices from decaying to zero, as such decay would
cause the gradient norm to vanish. To this end, we construct a hermitian term providing
lower-bounds for these singular values, along with a skew-hermitian error. During the opti-
mization, the skew-hermitian error is approximately non-increasing, which in turn ensures
that the minimum singular value of the hermitian term is non-decreasing. This mechanism
provides a persistent lower bound, thereby effectively avoiding saddle points.

* Bound of eigenvalue change. Finally, to translate the continuous-time intuition into rigor-
ous guarantees for the discrete gradient descent algorithm, we develop new perturbation
bounds for eigenvalues. In continuous time, the time derivatives of eigenvalues are di-
rectly characterized by the derivatives of the matrix. In discrete time, however, eigenvalue
changes depend on the spectral gap in general, requiring a fine-grained, problem-specific
analysis. Similar challenge are noted in Lemma 3.2 of |[Ye & Dul (2021)). We address this
issue in Lemma [19)and [20]in Appendix [D.2]

These techniques form a cohesive proof strategy: the initialization analysis provides a favorable
starting point; the regularity analysis ensures controlled dynamics throughout training; the saddle
avoidance mechanism guarantees persistent progress; and the discrete-time perturbation bounds rig-
orously translate these insights into a full global convergence proof.

Paper Roadmap. Section [3|introduces basic notations. To provide a intuitive framework of the
convergence analysis, we first establish the result under a special initialization (namely balanced
Gaussian initialization) and gradient flow in Sectionf4] then generalize the proof strategy into general
random Gaussian initialization and gradient descent in Section [5] which consists of three stages.
Some of our supporting theorems can be applied to more general setting of target matrix 3 and
depth IV, where we specify in Table[T|below (identical means the singular values are the same):

Theorem Initialization Depth N | Target

Thm[3} balanced Gaussian initialization balanced Gaussian | > 2 -

Thm|6f random Gaussian initialization random Gaussian > 2 -

Thm M} bounded skew-Hermitian error balanced Gaussian | > 2 arbitrary

Thm[5} increasing rate of main term balanced Gaussian | 4 identical
convergence rate of regularization term Lyeg | - il arbitrary

Thm |8} max/min singular value changes under L, | - >2 arbitrary

Table 1: Summary of the supporting theorems and their assumptions.

2 RELATED WORKS

For two-layer matrix factorization, the global convergence of symmetric case has been established
under various settings (Jain et al.| 2017} [Li et al., 2019; |Chen et al.|, [2019). For asymmetric matrix
factorization case with objective £ = 1[[UV" — X%, the following homogeneity issue occurs:
the prediction result remains the same if one layer is multiplied by a positive constant while the
other is divided by the same, introducing significant challenges in convergence analyzing (Lee et al.
(2016)), Proposition 4.11). [Tu et al.| (2016)) and |Ge et al.| (2017) tackles this problem by manually
adding a regularization term on the objective function. |Du et al.| (2018) discovers that gradient de-
scent automatically balances the magnitudes of layers under small initialization, providing analysis
of global convergence with polynomial time under decayed learning rate, while removing the regu-
larization term. [Ye & Du| (2021) extends the convergence analysis to constant learning rate. \Wang
et al.|(2022) demonstrates the convergence for constant large learning rates and exhibits that the op-
timization converges to a approximately balanced optimum. Xu et al.|(2024)) adopts an unbalanced
initialization, under which they proved that NAG achieves an accelerated convergence rate.

Kawaguchi| (2016) analyzes landscape for general DLN, showing there exists saddle points with no
negative eigenvalues of Hessian for depth over three. Bartlett et al.| (2018]) analyzes the dynamic
under identity initialization, proving polynomial convergence with target matrix near initialization

!'This can be generalized to arbitrary N > 2. An arbitrary N version for gradient flow is provided in
Theorem 28]in the Appendix.
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or symmetric positive definite, but such initialization fails to converge when target matrix is sym-
metric and has a negative eigenvalue. |Arora et al.|(2019a) provides global convergence proof under
specific deep linear neural network structures and initialization scheme, requiring the initial loss to
be smaller than the loss of any rank-deficient solution. Ji & Telgarsky| (2019) conducted the proof
of convergence on general deep neural networks with similar requirements on the initial loss. |Arora;
et al.| (2019b) simplifies the training dynamics of deep linear neural network into the dynamic of
singular values and singular vectors of product matrix under balanced initialization, providing the-
oretical illustration of local convergence when singular vectors are stationary. |[Nguegnang et al.
(2024) proves that for general depth linear networks, under appropriate gradient scheduling and ini-
tialization the optimization converges to a critical point. Du & Hu|(2019) proves global convergence
for wide linear networks under the neural tangent kernel (NTK) regime. More recent works focus
on GD dynamics under (approximately) balanced initialization schemes (Min et al.l 2023)) or the
2-layer case (Min et al., 2021} [Xiong et al., 2023} [Tarmoun et al.,2021)). |[Chizat et al.|(2024) studies
the infinite-width limit of DLN in the mean field regime. However, none of these results imply a
global convergence guarantee for general DLN with N > 2 under random initialization.

3 PRELIMINARIES

Notation. Denote the complex conjugate of M as M and adjoint of M as M*, N as the set of
non-negative integers, and N* as the set of positive integers. o () denotes the k" largest singu-
lar value of the matrix. For k; < ks € N, H?I:@ M; = Mg, My,—1---My,. x ~ N(0,1)¢c
means that the real and imaginary parts are independently sampled from Gaussian distribution with
variance §: Rz, Sz Ny N(0,1/2). Q ~ U(d,C) or O(d,R) means @ is drawn from the unique
uniform distribution (Haar measure) on the unitary or orthogonal group, implying its distribution is
unitarily/orthogonally invariant.

Consider general N-layer matrix factorization, for simplicity we define the following notations:

j 1 1
Wi, 5= 11 We Wrts = [T We, W= [ Wa = W1, 0 = W, 3)
k=N k=3 k=N
W,WH - wH W, je{l,2,--- , N1}
A . gy 1+l y &y 5 4
J,3+1 {ded ,j c {O,N} ( )
W is referred to as product matrix. The loss is written by L(W7,--- ,Wx) = Loy + Lyeg, Where

2 N-1 2
Lo = FIZ =Wk Lreg = 10 (05" 18550113

Algorithmic setup.  For the real case (W, € R*4) GD dynamics is canonical and described

by equation [2| Under complex field (W, € C?*4), for simplicity and coherence we define V,; =
swar + 5, which is two times of Wirtinger derivative with M: % =1 (587 + iagM)‘ By
following the updating rule of complex neural networks (see Guberman|(2016))), the gradient can be

uniformly represented by

VWjE = ij Lori + VWj Ereg‘

4)
Vw, Lo = =W, i1 (B = W)W i1, Vv, Leeg = —aWjA 1 + alj W,
Under gradient flow, % = —Vw, L; under gradient descent, W;(t + 1) = W;(t) — nVw, L(t).

Reduction to diagonal target. Following the simplification process of Section 2.1 in |Ye & Du
(2021), suppose the singular value decomposition of ¥ is ¥ = Ux, %'V, by applying the following
transformation Wy < W31 Vs and Wy <« Ug W, the dynamics remain the same form, while
the distributions of W; under our initialization schemes remain the same. Hence without loss of
generality, we assume the target matrix is diagonal with real and non-negative entries throughout
our analysis. Detailed analysis is presented in Appendix [B]
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For some of the results, we further require target matrix to be an identity matrix scaled by a positive
constant ¥ = o1(3)1, which is equivalent to requiring that the singular values of target matrix are
identical.

Balancedness. Following a long line of works (Arora et al [2019a;b; [Du et al.| |2018)), we define
the balance difference between layer j and j + 1 as A; ;11 (refer to[d). As discussed in Definition
1 of |Arora et al|(2019a), the weights are approximately balanced (namely ||A; ;41| F are small)
throughout the iterations of gradient descent under approximate balancedness at initialization and
small learning rate. Notice that approximate balancedness holds for small initialization near origin
(small variance for Gaussian initialization).

Specifically, under gradient flow the balanced condition (defined as ||A; j11(t)||r = 0 or equiv-
alently A; ;i 11(t) = O,Vj € {1,2,---, N — 1}) holds strictly at arbitrary time under balanced
initialization, which is defined as A; ;11 (t =0) = O, Vj € {1,2,--- ,N — 1}

Remark 2. As previously discussed, balance condition holds approximately under small initial-
ization, so such regularization’s affect on the training process is relatively weak, especially when
weight matrices grow larger and be away from origin.

4 TRAINING DYNAMICS UNDER BALANCED GAUSSIAN INITIALIZATION

We denote the initialization satisfying strict balancedness as balanced initialization. Generally, strict
balancedness yields a clean form of dynamics, where the dynamic of product matrix W depends on
W itself solely and is irrelevant to layers W1 5 ... n (Arora et al.l2019b). However, random Gaus-
sian initialization does not satisfy strict balancedness. To adapt the random Gaussian initialization to
ensure balanced condition, we introduce a balanced Gaussian initialization scheme for the analysis
below. The procedure is defined as follows:

(1) Sample G with entries G; ES) N0, 1), Qp k41,6€{0,1,- N} ¢ Haar on U(d,C) forF =C
(or O(d,R) for F = R). s, jeq1,2,....n} € I are arbitrary constants with modulus/absolute value 1.

(2) For scaling factor ¢ € RT, which is a small positive constant, set the weight matrices by:
_ Sjer,jJrlGqu j 217
Wj = HAH . (6)
5;€Qjj11GT QL ;.2 | j
Intuitively, Q r+1;kc{0,1,---,~} are ii.d. uniformly distributed unitary/orthogonal matrices. By
Corollary [T3] in the Appendix, each matrix is a e-scaled Gaussian random matrix ensemble (but

not independent of the others), while satisfying balanced condition A;;1:(0) = O, Vj €
{1,2,--- ,N —1}.

To exhibit the convergence dynamics clearly, we present the global convergence under the simplified
scenario of balanced Gaussian initialization and gradient flow. Notice that the adjacent matrices
remain balanced due to the non-increasing property of regularization term (Lemma 26).

Theorem 2. (Informal) Global convergence bound under balanced Gaussian initialization, gradient
flow. For four-layer matrix factorization under gradient flow, balanced Gaussian initialization with

scaling factor € < a} / 4(E) /poly(1/6,d), then for target matrix with identical singular values,
1. For F = R, with probability at least % the loss does not converge to zero.

2. For F = C with high probability at least 1 — § and for F = R with probability at least %(1 —
8), there exists T (€cony) = Ufle_only (1/6,d) + O (0;3/2 In (da%/econv)) , such that for any
€conv > 0, when t > T'(€conv ), L(t) < €convy-

The formal version is stated in Theorem in the Appendix, where we specify the polynomial
degrees of € and T'(egonv,z)-

4.1 BALANCED GAUSSIAN INITIALIZATION

This section establishes the properties for balanced Gaussian initialization.
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Theorem 3. Under e-scaled balanced Gaussian initialization, suppose W is W = U EfX VvH
where U, V' are unitary/orthogonal matrices, ¥, is positive semi-definite and diagonal, denote

5= H;\le sj, then for some f1 = O (3), f4 = O (5):
1. If F = C, at the initialization the following inequalities hold with probability at least 1 — §:

IZwllop < F1(8)Vde, (U = V)Eullrli=o < 2f1(5)de

1 (N
Omin(U + V) ) |t=0 > fé(a) a8 %,

2. If F = R, ar the initialization we have Pr(sdet(Qn n41)det(Qo1) = 1) =

Pr(sdet(Qn,n+1) det(Qo1) = —1) = 3. If the initialization satisfies s det(Qn,n1) det(Qo1) =

—1, then omin((U + V)Zy)|i—o; otherwise s det(Qn n+1)det(Qo1) = 1, then the following in-

equalities hold with probability at least 1 — §:

IZullop < fL(O)Vde, [|(U = V)SullFlizo < 2/1(8)de

®)
Tmin (U + V)Sy) |10 > f5(8) " d %/ 2e.

Proof is presented in Appendix One may question the motivation of analyzing o, (U +

V)Ew)|t=0. We later show that this term acts as a crucial lower bound with a relatively simple

dynamics in Section[4.3]

4.2 NON-INCREASING SKEW-HERMITIAN ERROR

As presented in Lemma [24] in the Appendix, the product matrix can be factorized in to the form
of W(t) = U)X, ()N V(t)H, where 3,,(t) is positive semi-definite and diagonal (consequently
real-valued), U and V' are unitary/orthogonal matrices, U, V' and ¥,, are analytic. For simplicity,
we denote o, ; as the jth diagonal entry of 3J,,, and u;, v; as the jth column of U, V. Under this
representation of product matrix, we obtain a non-increasing Skew-Hermitian/Symmetric term:

Theorem 4. (Informal) Skew-Hermitian error term is non-increasing. Under balanced initialization
with product matrix W (t) = U(t)S, ()N V ()2, for depth N > 2, if the singular values of the
product matrix at initial W (0) are non-zero and distinct, then the following skew-Hermitian error

||21/2(U — V)EwHi, is non-increasing:

iHEW(U V)s H2 <0 ©)
dt “lIlp =

Proof sketch. Proof of the Theorem[d|involves technical and lengthy calculations. The formal version
is stated in Theorem while a special version for even N is separately discussed in Theorem
For the proof of Theorem[31] the idea is to decompose the derivative of this term into the derivative of
Ow,j and uj, v;, which have been characterized by Theorem 3 and Lemma 2 in Arora et al.|(2019b))
respectively. This method is hard to generalize into imbalanced setting. For Theorem[32] this term
is directly derived from derivative of WyWE, WHW, and W. This approach is straight forward
and can be extended to imbalanced initialization, but encounters difficulty under odd depth 2 t N.

Remark 3. This result is established under the reduction to target matrix (refer to Section 3| and
Appendix@). For general target matrix, suppose its SVD is ¥ = Us Y’ VEH , then Theorembecomes:

2
4 HE’l/Q(UgU—VfV)Ew <0. (10)
dt F
Explanation of the result. This theorem provides an intrinsic non-increasing term of general deep
matrix factorization. (Under initialization close to origin, this term is already small at initial. )
Although the result is accurately derived under strictly balanced initialization and gradient flow, one
may expect similar property to hold under small initialization and gradient descent.

Moreover, this theorem characterizes when U and V become aligned. The product ma-

. d . .
trix can be expressed as W = Y. ol jUj'U]I-{ , while the error can be rewritten as
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2 . :
Z?:l o2 |52 (u; — v;)|| - Each term o) ;u;vf of the product matrix can be interpreted as

N

a “feature” of the linear neural network, containing one “value” o)

; and two “directions” u;, v;.

. ul N . wl
When the loss converges, each feature converges to ojux jus; ;, where ¥ = 3., 0jus, jus) ; is

a SVD of ¥. This shows that under initialization near origin, once a “value” of the jth feature
increases to a relatively large value (comparing to initialization), the directions of this feature au-
tomatically align with each other (i.e. (uj,v;) ~ 1). Followed by Theoretical illustration part of
Arora et al.| (2019b), Section 3, generally the alignment of U, V' leads to convergence.

As shown in the proof sketch, the analysis for odd N encounters difficulty when generalized to the
imbalanced case, thus this intrinsic non-increasing term becomes considerably more challenging to
characterize. This is why we have developed the convergence proof for the four-layer case rather
than the three-layer architecture.

4.3 NON-DECREASING HERMITIAN MAIN TERM

This section shows the dynamics of the minimum singular value of Hermitian main term (U+V)%,,.

The motivation of studying this specific term is that it provides both lower and upper bounds for
0x(Zw), k € {1,2,--- | N — 1}, especially tight bounds for oin(2,,) (refer to Lemma [18):

L (U V)S0) € 0u(80) < Yo (0 + VIB) 1 10— V) Bl

Smin (U +V)%0) < Omin(S) < 31/0%00 (U +V)Z0) + U = V) D2,

min

(1)

Notice that the extra term in the upper bound is bounded by the skew-Hermitian error term discussed
in the previous section.

Although the evolution of o, (U + V)X,,) is difficult to characterize in general, we find that in the
special case of ¥ = ¢1(X)I and N = 4, it exhibits a monotonically increasing pattern before local
convergence:

Theorem 5. Dynamics of minimum singular value of Hermitian term. Under balanced initialization
with product matrix W (t) = U(t)S,,(t)NV (t)H, for target matrix with identical singular values
(reduces to Y, = 01(X)1) and depth N = 4, the time derivative of the k*" singular value of the
Hermitian term xy, := 50, ((U + V)X,,) is bounded by:

1 1
(2018 ot = SIS @ = VIED il ) 2k = 521l I — VIZa)lcoll

d
= &xﬁ < o1(2) 2B 5, + (U = V)Sw)li=ollF) 23
(12)

Detailed proof is presented in

Discussion on 1/2 failure probability. This theorem implies that under small initialization, if all
singular values o ((U+V)X,,) are initially non-zero, they increase monotonically to relatively large
values, leading to subsequent local convergence. However, if any singular value is initialized to zero
(which occurs with probability at least 1/2 for F = R, as shown in Theorem , it remains zero
throughout the optimization (see Corollary , thereby explaining the 1/2 convergence probability
in Theorem 2] Numerical simulations under the identity target setting are provided in Figure

Discussion on target matrix with spectral gaps (singular values are different from each other).
We also conduct additional simulations for non-identical targets (i.e. non-zero spectral gaps) in
Figure 2} which we do not cover in Theorem E} From these results, we exhibit that while the lower
bounds constructed in equation (TT)) still hold under general target matrix with spectral gap, they
suffer from sudden change when one singular value converges, so the monotonicity in Theorem [3]
does not hold anymore. More detailed discussions are presented in Appendix
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A short note on incremental learning. Although the proof of incremental learning is beyond the
scope of this work, we do have a brief theoretical explanation for this behavior exhibited in Figure
by exploiting Theorem [5]and equation (IT)). Detailed discussion is presented in the Appendix

5 CONVERGENCE UNDER RANDOM GAUSSIAN INITIALIZATION
This section presents the proof sketch for Theorem |1} extending our analytical framework in the
previous section to accommodate random Gaussian initialization.

We divide the training dynamics into three stages: alignment stage ¢t € [0,7}), saddle-avoidance
stage t € [T1,T1 + T»), and local convergence stage t € [T, +00). Here 77 = W .

poly ' (1/6,d), Ty, = W - poly (1/6,d) (9 is failure probability in Theorem , refer
to Theorem [8] and [52] respectively. Following the method in Section @ we then character-
ize the skew-Hermitian error term and Hermitian main term by ||[W; — W, 'WH W/ |2, and

Amin ((W1 + W2_1W3HWf)H (W1 + W2_1W3HWf)) respectively.

5.1 RANDOM GAUSSIAN INITIALIZATION

We consider the canonical setting of random Gaussian initialization near origin:

(W1,2,... ,N)ij 1'1\51 € - N(O7 1)]}:. (13)

Specifically, we apply Gaussian distribution to generate Wi ... xy € F¢*4 F = R or C element-
wisely and independently. Then the initialization is scaled by a small positive constant ¢ € RT. The
scale of € is determined in the main convergence Theorem

Theorem 6. For e-scaled random Gaussian initialization on Wy, rcq12,... ny over F = R or C,
N € N*,

1. If F = C, at the initialization the following inequalities hold with probability at least 1 — §:
€
max o, (W;) < f1(0, N \/Ee, minop(W,) < ————=
T N AN 1)
Tmin (W+ (WWH)1/2) > f(8,N)~1 . g~ (N/2HD N

2. IfF = R, at the initialization we have Pr(det(W) > 0) = Pr(det(W) < 0) = L. If the
initialization satisfies det(W) < 0, then omin (W + (WWT)I/Q) = 0, otherwise det(W) > 0,
then the following inequalities hold with probability at least 1 — § (given det(W) > 0):

: €
Irj;ﬁxcxok(Wj) < f1(8, N)Vde, r?’lknak(Wj) < W s

Omin (W + (WWT)1/2) > fa(é, N)—l . d—(N/2+1)6N7

where f1(6,N) = O (X), 2(6,N) = O ().

Proof is provided in Appendix For N =4, fi = O(3), fo = O (55). The term o (W +
(WWH)1/2) is introduced in Section for the purpose of analyzing the Hermitian main term.

In the convergence proof below, we consider the initialization where (I4) and (I5) holds.
5.2 STAGE l: ALIGNMENT STAGE

During alignment stage, the weight matrices align with each other under the convergence of the
regularization term, while the Hermitian main term stays away from origin at the end of this stage.
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5.2.1 CONVERGENCE OF REGULARIZATION TERM:

The convergence rate of regularization term is lower bounded through the following Theorem:

Theorem 7. (Informal) Convergence rate of the regularization term. For four-layer matrix factor-
ization, suppose the maximum and minimum singular values of the weight matrices are upper and
lower bounded by pimax and pinin respectively, then the regularization term decays by

Lreg(t+1) < (1= Q (apiminbimax)) - Lreg(t) + O(n°a?). (16)

The formal version can be found in Theorem[29] A N-layer version of this Theorem under gradient
flow is provided in Theorem [27]

We can observe that the convergence rate of the regularization term is related to the extreme singular
values of weight matrices, which motivates the following Theorem:

Theorem 8. (Informal) Under a small learning rate, the changes in the maximum and minimum
singular values are approximately independent of the regularization term:

max of (Wt + 1) = max o (W (1)) < 20 maax o (W (1)) max [V, Lon (1),
J

7, 7,
+ O(n*a®).
a7

mlkncrk(W (t+1)) — mlknaﬁ(W (t)) > —2n mmak(W (1) max |Vw, Loxi(t)

» ! HOP

The complete formal statement can be found in Theorem [30| (and Theorem [28| for the continuous-
time case) in the Appendix.

Remark 4. This Theorem ensures the smooth change of the extreme singular values over short time
intervals. Although the regularization term can induce significant fluctuations in individual singular
values due to its potentially large coefficient, the largest and smallest singular values remain stable.
This theoretical conclusion is corroborated by numerical simulations, as shown in Figure[3]

5.2.2 THE BEHAVIOR OF THE HERMITIAN MAIN TERM AT THE END OF ALIGNMENT STAGE

Typlcally, the dynamics of the smallest singular value of the Hermitian main term W; +
Wy W3 W is involved and does not obtain a non-trivial lower bound during this stage. However

its behavior at the end of alignment stage can be characterized by W (0) + (W (0)W (0)#)*/2:

The Hermitian main term can be written by (W + Wy 'WHWH)] =1y, = (W 'wstwh)| 1y
(W + W4W3Wfo){tZTI. Att =Ty, WWsWHWH ~ (WWH)/2 due to the approximate
balancedness. During the alignment stage, the product remains approximately unchanged: W (t =
Ty) ~ W(t = 0). For the singular values of W, 3 3,40 at t = 0 they are bounded through Theorem

[l then Theorem [ ensures the changes durin the alignment stage are small. Together we obtam a
lower bound for omin (W1 + Wy "W W/ )i:Tl Detailed analysis is presented in Corollary

Remark 5. Note that opmin (W1 + W2_1W3fq Wf ) is not necessarily lower-bounded by the above
expression minus some error terms during the alignment stage. Instead, it may exhibit oscillations
or a transient decrease, achieving stability only upon convergence of the regularization term. This
behavior is illustrated in Figure|6|in the Appendix.

5.3 STAGE 2: SADDLE AVOIDANCE STAGE

After alignment stage, the Hermitian main term is guaranteed to be away from zero while the skew-
Hermitian error is upper bounded. During the saddle avoidance stage ¢t € [T1,7Ty + T3), the Her-

mitian main term oy, (W7 + W5 'WHWH) increases to at least 2%/ 40}/ 4(%), while the skew-

Hermitian error is upper bounded by O(1 || Wy - Wy YWHWH||  (t = Ty). Former statements

I
are presented in Lemma[57and [56| respectlvely

Intuitively, these results generalize Theorem [5]and ] into imbalanced case respectively by bounding
the error terms introduced by imbalancedness. To adapt these results into discrete time, new pertur-
bation bound for eigenvalues is discussed in Lemma Another technical challenge is to bound
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the operator norm of the inverse of W, below infinity. Under small balance difference (equivalently
small regularization term) which is guaranteed by the previous stage, this is rigorously proved in
Lemmal[33l

5.4 STAGE 3: LOCAL CONVERGENCE STAGE

In the local convergence stage, both the balanced error and skew-Hermitian error remain small, the
minimal singular values of the weight matrices, after growing to the scale of the target matrix’s, are
prevented from decaying. This guarantees the local convergence.

Theorem 9. (Informal) Local convergence. After the second stage (t > T + T5),

L(t) < Low(Ty +Ts) exp (—no—f/Q(Z)(t T — Tg)) . (18)

Proof is presented in[[.3in the Appendix.

6 CONCLUSIONS, LIMITATIONS AND FUTURE WORK

In this work, we establish a polynomial-time global convergence guarantee for gradient descent
applied to four-layer matrix decomposition, under the setting of a target matrix with identical singu-
lar values and small random Gaussian initialization beyond the NTK regime. For complex random
Gaussian initialization, global convergence is ensured with high probability, whereas for real random
Gaussian initialization, it is guaranteed with a probability close to %

The analysis developed in this work reveals intrinsic properties of the training dynamics, such as
the effective behavior of the regularization term, the monotonically increasing lower bound for the
minimum singular value, and the non-increasing nature of the skew-Hermitian error. These findings
might provide deeper insight into the training process of Deep Linear Networks. Some of our results
are directly generalizable to arbitrary depth N > 2, see Table [I We anticipate that this work
will stimulate further research on global convergence proofs under general random initialization for
matrix factorization with arbitrary depth and arbitrary - possibly low-rank - target matrices.

The observed divergence in convergence behavior between real and complex initializations also
reveals a subtle disparity, suggesting that complex initializations may circumvent certain saddle
points introduced by exact balancedness that real initializations are not capable of. Previous work
have addressed the drawback of exact balancedness on real domain (Xiong et al.| [2023)). This might
motivate more detailed analysis of the performance gap between complex and real neural networks.

REPRODUCIBILITY STATEMENT

All theoretical results stated in this paper are proved in full detail in the Appendix, from Section[B]to
including the proofs of all main-text theorems as well as intermediate lemmas and derivations, so
that a reader can verify each step independently. The numerical illustration in Appendix [K] where
we specify the hyper-parameters in that section. Because the experiments are straightforward, we
have not released an implementation.
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A ORGANIZATION OF THE APPENDIX

This section outlines the organization of the Appendix to facilitate navigation. The core technical
journey, comprising the main convergence proofs, spans from Appendix [B] to [l Following this,
Appendix ]| provides insights into the global convergence rate, and Appendix [K]presents supporting
numerical simulations.

Appendix |Bf completes the proof of Reduction To Diagonal (Identical) Target discussed in Section
[3] so that we can assume target matrix to be diagonal (some cases identical). While subsection [B.T]
proves that the form of dynamics remains the same, claims that the initializations we considers
throughout this paper are invariant under the reduction.

Appendix [C| proves the properties of balanced Gaussian initialization (6) and random Gaussian ini-
tialization (13)) stated in Theorem [3] and [6] respectively. [C.I] states and proves some lemmas on
Circular Ensembles, leading to the proof of Theorem [6]in|C.2] and the proof of Theorem [3]in sub-
section[C.3] Then, [C.4]establishes a general property for any balanced initialization.

Appendix [D|presents fundamental lemmas utilized in subsequent sections:

. collects standard results from classical matrix analysis, including spectral properties
and perturbation bounds.

* [D.2] provides two specific perturbation bounds, which serve as preliminaries for bounding
eigenvalue changes in discrete time.

* [D.3] establishes the existence of analytic singular value decomposition for the general N-
layer matrix factorization under gradient flow. It also derives the time derivatives of the
decomposed matrices, thereby laying the groundwork for the proof of Theorem [2in

* [D.4] analyzes the dynamics with a regularization term under gradient flow. Specifically, it
investigates: 1. the convergence behavior of the regularization term; 2. Upper and lower
bounds for the maximum and minimum singular values of the weight matrices.

The results for gradient flow are then adapted in[D.5|to prove the corresponding theorems
for gradient descent: Theorem[7]and Theorem [§]

Appendix [E] analyzes dynamics under gradient flow with balanced Gaussian initialization. [E.]
proves Theorem || for arbitrary depth NV, while proves Theorem 5] for N = 4 and target matrix
¥ = 01(X)I. By combining these results, formally states and proves Theorem completing
the global convergence proof for balanced Gaussian initialization.

To prepare for generalization of this method on random Gaussian initialization, Appendix [F] further
defines some notations and inequalities, Appendix [G]adapts the terms studied in Theorem [4] and [5]
into imbalanced setting.

Appendixcompletes the proof of global convergence under N = 4, 32 = ¢1(X)[ by dividing the
training dynamics into three stages analyzed in H.2]and [H.3]

Appendix [I| then adapts the proof intuition into gradient descent, completing the proof of Theorem

Appendix [J] provides a discussion of the convergence rate in Theorem [T} details the calculation
of the example after Theorem |[1| verifying the near-tightness of the upper bound. analyzes
the exponent of o1 (X) in the initialization scale and the convergence rate, from both scaling and
dimensional analysis perspectives.

Appendix [K] conducts three simulation experiments. illustrates the saddle avoidance behavior
of both identity and non-identity targets, under complex and real balanced Gaussian initialization.
[K:Z]compares the convergence behavior for different depths under complex balanced Gaussian ini-
tialization. illustrates Theorem [§ and Remark [5] through the simulation with only the balance
regularization term.

14



Under review as a conference paper at ICLR 2026

B REDUCTION TO DIAGONAL (IDENTICAL) TARGET

For arbitrary ground truth ¥ € F?*9 F = C or R, suppose its singular value decomposition is
¥ =UsY VZH (replace - by - for the real case, same for the rest of the analysis), we apply the
following transformation:

Wl = WiV
WJ/ :Wj7j€{2a3a"'7N71} : (19)
Wy =U{Wy

Then the balance difference can be rewritten as

H H .
A 1= WJ/WJI _WJ(+1 W]/'Jrl ,jE{l,Q,"',N—l} (20)
P ot .3 €{0,N}
B.1 TRAINING DYNAMICS
For gradient flow, the dynamics becomes
dw’ N . 1 j—1 o
dtj = H W]é (ZI - H Wé) <H W]é ) + GW]{A]',LJ' - aAj’jJer;. (21)
k=j+1 k=N k=1

For gradient descent,

Wi+ 1) =wit)+q| [ wie"” (E'— II Wé(t)) (H Wé(t)H) (22)

k=j+1

+naWji(t)Aj_1,;(t) — nalj ;o1 (O)Wi(t).

Both share the same form as the original one (by replacing X with X/).

B.2 INITIALIZATION

However, the distributions of W, and W at initialization change correspondingly. To address this
issue, we introduce the following definition:

Definition 1. Input-Output Unitary(Orthogonal)-Invariant initialization.

For a N-layer complex (real) matrix factorization W = H;:N W;, an initialization is input-output
unitary-invariant (in the complex case) or orthogonal-invariant (in the real case) if the distribution
of W is left unitarily (or orthogonally) invariant and the distribution of W1 is right unitarily (or
orthogonally) invariant. That is, for all U,V € U(d, C) (or O(d,R) in the real case),

Wy 2 UWN, Wy < W, V. (23)

Remark 6. The distribution of W, ;je(1.2,... N} does not change under transformation if the
initialization is Input-Output Unitary(Orthogonal)-Invariant.

Throughout this work, the initialization schemes discussed (including random Gaussian initializa-
tion and balanced Gaussian initialization) are Input-Output Unitary(Orthogonal)-Invariant. This is
from the left and right invariance under multiplication of unitary/orthogonal matrices.

Thus without loss of generality, the target matrix can be reduced to positive semi-definite diagonal
matrix. Under Input-Output Unitary(Orthogonal)-Invariant initialization discussed in Definition [T}
the initialization on W7 and Wy is not affected by this reduction.
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Moreover, if all singular values of X are the same (to rephrase, a unitary/orthogonal matrix scaled
by a constant), the convergence analysis can be reduced to &' = o1 (X)1.

C INITIALIZATION

First and foremost, we introduce the concept of Circular ensembles (Dyson, |1962) along with some
properties.

C.1 LEMMAS FOR GAUSSIAN RANDOM MATRIX ENSEMBLE AND HAAR MEASURE ON
U(d,C) AND O(d,R)

In the following derivations, we denote O(d,R) as the d-dimensional orthogonal group on real
number, and U (d, C) as the d-dimensional unitary group on complex number.

We list the classical conclusions in Linear Algebra without proof:
Lemma 10. The eigenvalues of Orthogonal/Unitary Matrices.

1. Unitary matrices. YU € U(d,C), d € N*, the eigenvalues of U are €12 -4, where 0; € [0, 27).
2. Orthogonal matrices. YO € O(d,R), d € N*, the eigenvalues of O are:

1,eii91.2,~-~ ,m R d=2m+ 1, det(O) =1
_17 eii91,2,,.4 m , d = 2m —|— 17 det(O) =-1 (24)
o012, m , d=2m, det(0) =1

1, -1,z m1 " q=2m, det(0) = —1
Following the conventions, we call the argument of the eigenvalues as eigenangles.
Definition 2. Circular ensembles. (refer to|Dyson|(1962), |[Forrester(2010))

The circular ensembles are measures on spaces of unitary(or orthogonal, when generalizing from
complex number to real number) matrices.

1. Unitary circular ensemble. The distribution of the unitary circular ensemble (CUE) is the Haar
measure on d-dimensional (complex) unitary group U(d, C).

2. Circular real ensemble. The distribution of the circular real ensemble (CRE) is the Haar measure
on d-dimensional real orthogonal group O(d, R).

Lemma 11. I-point correlation function of CUE(d) and CRE(d).
1. CUE. The 1-point correlation function of CUE(d) is

d
pay,cue(d) = 7 (25)
2. CRE, determinant 1. The 1-point correlation function of CRE(d) under determinant 1 is
1 sin(d — 1)|6|
1(0)=—(d—14 (-1 "——L2) e (- . 26
ponmanni(®) = - (414 (0 e nm

Remark 7. [-point correlation function p1y(6) can be interpreted as the density of eigenangles at
0 (despite probably existed fixed eigenangles, e.g. 0, ).

Proof. Part 1. CUE.

From (146) of Dyson|(1962) and [Forrester| (2010), the joint probability density function of eigenan-
gles is

. . . 2
pCUE(Hk,ke{l,Z--- ,d}) o H |610_7‘ _ ezek |2 _ H ‘61(0_7’*619) —1| . 27
1<k<j<d 1<k<j<d
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Notice that it is rotation invariant, that is VAf € [0,27], pcuk(0kke(1,2,.-,a}) = Pcue((fx +

A0)eq1,2,.--,ay)- Thus the 1-point correlation function (density of eigenangles at ) is uniform,

which is 5%

Part 2. CRE.

Below we define z; = cos@;, then p)(0) = sind - pay(x), p(Tpre(i2,. k}) =
K 1

(szl ﬁ) P(Gk,ke{m,... ,K})~

By combining Proposition 5.1.1 and 5.1.2 in |Forrester| (2010) together, suppose with pg(x) a poly-
nomial of degree & which is further more monic (i.e. the coefficient of =¥ is unity), {px () }ren is
the orthogonal polynomials associated with the weight function ws (),

“+oco
/ pj(@)pr()we(x)dx = (pj, pr)2 = (Pj,Pj)20; k- (28)

Here ¢; 1, = 1{j = k} is the Kronecker delta function. And the joint probability density function
satisfies

K
P@rreqioxy) <[] (@ —2)? [Jwal). (29)

The 1-point correlation function is

K—-1
P2 ()

. 30
=0 <puapu>2 (30)

Py (x) = wa(z)

Note that the restriction of monic can be omitted since there is a normalization coefficient on the
denominator.

2.1. CRE, determinant 1, d = 2K. From (135) of |Dyson| (1962)), Section 2.9 of |Forrester| (2010)
and Girkol| (1985)),

PCRE,even,det=1 0k kef1,2,--- ,K}) X H |cos 0 — cosOp|*, Oy hero. xy € [0,7). (3D
1<k<j<K

By the change of variables,

K
1
pCRE,even,det:l(mk,k€{1,2,-~ K}) X H (xj - iCk)z H T " (32)

)
1<k<j<K = V91—

Here wy(z) = \/11_7 From knowledge of orthogonal polynomials ((1.12.3), (4.1.7), [Szeg6

(1939)), Chebyshev polynomials of the first kind T, () = cos(n arccos x) associates with wo(z) =
1 .

1—x2"
1 m, j=k=0
/ Tj(x)T(2)we(z)dz =< 5, j=k>1 (33)
- 0, j#k
By (30),
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1 1 2=
p(l),CRE,even,det:l(x) = ﬁ : (7‘(‘ + ; Z COS2 V9>
v=1

(34)
1 sin(2K — 1)6
= 2K—14+ —————|.
2msin 6 [ * sin 6 }
1 sin(d — 1)60
p(l),CRE,cvcn,dct:l(e) = % |:d -1+ (smﬁ)} ; 0 e [O,?T]. (35)

From Symmetry, p(l),CRE,even,detzl(_g) = p(l),CRE,even,det:l(9)~

2.2. CRE, determinant 1, d = 2K + 1. From (137) of Dyson|(1962), Section 2.9 of |[Forrester| (2010)
and |Girko| (1985)),

K
PCRE,odd,det=1 0k, ke{1,2,-- ,K}) X H |cos 0; — cos O] H(l—COS 01), O kef1,2, k1 € [0,7].
1<k<j<K =1

(36)

By the change of variables,

K
1— Xy
PCRE,0dd,det=1(Zk ke{1,2, K}) X H (z; — z1)? H Vig o (37
=1

1<k<j<K
Here wo(z) = ﬁ—ﬁ From knowledge of orthogonal polynomials ((1.12.3), (4.1.7), [Szeg6
(1939)), Chebyshev polynomials of the fourth kind W,,(x) = w 6 = arccos x associates
sin 3
with w (z) = /172
1 .
m, j=k>0
Wi(x)Wi(x)ws(x)dx = ) (38)
| Wi = {120
By (30),
- 2
1-z [1%& sin ((n+ 1) 0)
£(1),CRE,odd,det=1(Z) = 77 | = T an(d)
v=0 2 (39)
B 1 sin(2K0)
27 sin (0) sin 0
@)= L (g1 sn@=D0) (40)
P(1),CRE,odd,det=1 = o sind s , ).
From symmetry, P(1),CRE,odd,det:1(—9) = p(1)7CRE7odd7det:1(9)-
This completes the proof.
O

Theorem 12. For () sampled from Haar measure on U(d, C) (or O(d,R) if F = R),
1.F=C. Pr(owmn(I +Q) >7dd™1) >1—6.
2F=R Ifd>2 Pr(omn(+Q)>Z(d—1)"!det(Q)=1) >1—34.
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Remark 8. For F =
2—Aldet(Q) =1) Ae
Remark 9. For F = R, Pr(det(Q) = 1) =
eigenvalue of —1, causing Pr(omin(I + Q))

:Rd
=1V

1, the eigenvalue of Q is det(Q), and thus Pr(omin(I + Q) >
(0,2).

Pr (det(Q) =—1) = 1 Ifdet(Q) = —1, Q has an

Proof. Consider 0, € (—m, 7],

or(I+Q) = \/)\k(QI +Q+ QM) = \/2 + et + 1/etr = 2 cos (92’“) )
Omin({ + Q) = mkincos (0216) .

The second step is from the fact that Qf = Q! shares the same eigenvectors with (), and corre-
sponding eigenvalues are the reciprocal of the original eigenvalues.

Denote N (06) to be number of eigenvectors in (—m, —7 + §0] U [r — 66, x], 60 € (0, 7). From
Markov inequality,

Pr(omin({ + Q) > 86) > Pr <amin(1 + Q) > 2sin 5;)

=1-Pr(N(06) > 1) (42)
>1-B(N@o) =1- [ p(1) (0)d6.
oe(—m,—m+80]U[r—80,7]
By invoking Lemma|TT]
1. ForF =C,
d
E(N(66)) = ~— - 256. 43)
2

By setting 6 = 70d =, Pr (omin(I + Q) > 60) > 1 — 4.
2. For F = R under determinant 1, for ¢’ € [0, 7], p(1) (7 — 6') = 5= (d -1+ %)
Ifd =1, p1)(#) = 0 and thus E(N(60)) = 0. For d > 2:

Fromw<d—l

sin 6

M&e. (44)
T

™

60 60 1
E(N(60)) = 2/ poy(m— 0)d0 < 2/ o 2d 1) =
0 0

By setting 60 = Z2(d — 1)1, Pr (omin({ + Q) > 60| det(Q) = 1) > 1 — 4.
This completes the proof.

C.2 RANDOM GAUSSIAN INITIALIZATION

In the following, we present the proof for Theorem 6]
For a real/complex Gaussian random matrix of dimension d X d, with probability at least §, the

n 1 .
largest singular value is upper bounded by O ((1 + 1(;)) \/3) (Theorem 4.4.5, |Vershynin

(2018))), while the smallest is lower bounded by 2 ( ) (Theorem 1.1, Tao & Vu| (2009)). (also
refer to Corollary 2.3.5 and Theorem 2.7.5 of Tao|)
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Proof. The upper and lower bound for singular values of W}, follows immediately. The main chal-
lenge is the minimum singular value of W + (WW)1/2,

At the beginning, we define a modification of Gaussian random matrix ensemble for simplification:

W is sampled from (complex or real) Gaussian random matrix ensemble, and if rank (W) is not full,
sample W from Gaussian random matrix ensemble again until it is full rank.

Since the set of rank(W') not being full is zero measure, the distribution of W shares the same with
the one before modification almost surely, and thus changing Gaussian random matrix ensemble to
modified version does not affect the analysis below essentially.

This modification is for better expression on definition of left and right unitary (orthogonal) matrix
of SVD. For full rank square matrix W = USVH U and V are not unique, but VU H s (even if the
singular values are non-distinct, or changing the order of diagonal elements of . This is due to the
uniqueness of polar decomposition W = SQ under full rank, where Q = UVH, § = (WWH)1/2,
) and thus well-defined.

Without changing the result, we analysis the initialization scheme of modified Gaussian random
matrix ensemble instead. Then W is full rank and thus polar decomposition is unique.

Generally, suppose the right polar decomposition of W is W = (WWH ) 1/2 Q, then

1/2 1/2

W+ (WWh)m = (WwH) (I + Q). (45)

If F = R, Pr(det(W) > 0) = Pr(det(W) < 0) = £ due to the symmetry of Gaussian random
matrix ensemble. If det(W) = det ((WWH)1/2> det (Q) < 0, det (Q) = —1, then oyin (I +
Q) = 0 and further oy, (W + (WWT)1/2) =0.

Consider both F = C and F = R, det(W) > 0 (which indicates det (Q) = 1):
Fwin (W + (W) > o (WWH)'?) 0 (1+ Q)
= Umin(W)Umin (I + Q)

N
2 [H o'min(Wk:)‘| Omin (I + Q) .

k=1

(40)

From Theorem 1.1 of Tao & Vu| (2009), by applying union bound, O'min(Wk’ke{l}Q’...7N}) >
fi'(6,N)d=1/%¢ with high probability 1 — §/2, where fi(5,N) = O (%). Then
|:H]kV:1 amin(Wk)} > (f1 (s, N)d_1/2e)N, and it remains to find lower bound for o, (I + Q).

To apply results in Theorem it is sufficient to show that @) follows Haar measure on U (d, C) (or
O(d,R)).

Due to the property of invariance under left and right multiplication of unitary (orthogonal) ma-
trix for Gaussian random matrix ensemble (Section 2.6.2, (2.131), [Tao), V fixed Q¢ € U(d,C)
(or O(d,R) if F = R), W,QZ follows the same distribution as W; while still independent of
Wi kef2,3,- N}, resulting that WQZ follows the same distribution as W. Since the right polar

decomposition of WQ{ is WQU = (WQ{;%)OWH)U2 QL = (WWH)l/2 (QQE) . we have

QoQ £ Q, Vfixed Qy € U(d, C) (or O(d, R) if F = R). 47)

Likewise
QQo £ Q, ¥ fixed Qy € U(d,C) (or O(d,R) if F = R). (48)
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From the fact that the only measure invariant under left (or right) multiplication of arbitrary element
of a compact lie group is Haar measure, () follows Haar measure on U (d, C) (or O(d, R)), and the
proof is completed.

O

if F = (C then with high probability 1 — § (if F = R then
(W )1/2) = 0, and with probability (1 — ¢)/2 the
5(6 ) (%) such that

By Theorem [6] for depth N = 4,
with probability 1/2, omin ( (0) +
following holds), 3f1(6) = O (1), f

max a,(W;(0)) < f1(0)Vde

s

. 1
rg_{lknok(Wj(O)) < m "€ (49)
i (WO + (FOWO)?) 2 s

Consequently,

3
S lIAal}| < VB2V maxof(W;(0) = 2V (50)
=1

t=0
C.3 BALANCED GAUSSIAN INITIALIZATION

This section analyzes the balanced Gaussian initialization scheme.

Corollary 13. Under balanced Gaussian initialization scheme (@) each matrix Wy, re(1,2,... N} IS
a Gaussian random matrix ensemble scaled by e.

Proof. This is immediately from the property of invariance under left and right multiplication of
unitary (orthogonal) matrix for Gaussian random matrix ensemble (Section 2.6.2, (2.131), Tao).

O

Due to Corollary the product matrix can be expressed as UXY V. Then we present the proof
of Theorem [3

Proof. We first consider 2 | N. From (6), W (t = 0) = se¥ Qu,n+1(GTG)N/2QLL.

n( i
Naturally ||, ]lop = eH(GHG)l/QHOP = €lGl,, = O <1+ l(f)) Vde. Last step is from
Theorem 4.4.5 of |Vershynin| (2018)) directly.

For the other two terms,

Omin ((U + V)Zw)‘tzo

=\ hain (U + V)Z2,(U + V)H)
t=0

- \/ i ((WWH) +(WHW)Y 4 (WWH) 2% W 4 (WHW) 2% WH> (51)

t=0

26\/ min ((Qm +sQn,n+1) (GHG) (Qo1 + 3QN,N+1)H)

S [eamin<l + SQgIlQN7N+1)Umin(G)a€Umin(l + SQgLQN,N+1)UmaX(G)] .
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And

(U= V)Eullrli=o0 < 2\/&HGHop' (52)
Since @ n,n+1 and Qo1 are independent and both sampled from Haar measure, then Qfl @NN+1 ~
Haar on U(d, C) (or O(d,R) if F = R) as well.

For F = R, since s is independent of Q; jc(o,1,...,n}, Pr(sdet(Qn ni1)det(Qo1) = 1) =
Pr(sdet(Qn,n+1)det(Qo1) = —1) = 1 is directly from symmetry of Haar measure.

Then by combining Theorem [I2]and Theorem 4.4.5 of [Vershynin| (2018), Theorem 1.1 of [Tao & Vu
(2009) (with high probability 1 — &', max (||G||op, |G lop) < f1(8")Vd, f1(6') = O (%)), the
proof for 2 | N is completed.

For 2 | N, suppose the SVD of G is G = UgZgVl, then W(t = 0) =
seN(QN N1 UcVEN)(GHEG)N/2QE,. Note that since Qn y11 and G are independent, then
QN N+1UcVE ~ Haar, Qn n11UcVA! and Qo are independent. Then the proof for 2 f N
is completed by replacing the Qn n4+1 With QN N1 U(;Vé{ in the derivations.

O

C.4 GENERAL BALANCED INITIALIZATION

This section introduces a property for general balanced and input-output orthogonal-invariant ini-
tialization (refer to Definition[T) under real field.

Theorem 14. For any real matrix factorization, if the initialization is balanced and input-output

orthogonal-invariant, then the minimum singular value of W + (VVVVT)I/2 att = 0 is exactly 0
with at least probability 1/2:

Pr (a (W +ww)Y 2) - 0) > 1/2. (53)
Proof. As a direct consequence of Definition[T] T is left and right orthogonal invariant:

WL UWV, YU, V' € O(d,R). (54)

Suppose the right polar decomposition of W is W = WW T Q, following the same arguments in
the proof (C.2) of Theorem 6]

1/2

W+ (Ww )2 = (wwh) (I +Q), Q ~ Haar. (55)

From Theorem Pr(omin(I + Q) = 0) = 1, resulting
Pr (amin (W + (WWT)'"?) = 0) > Pr(owin(I +Q) = 0) = % (56)

This completes the proof.

D BASIC LEMMAS

D.1 CLASSIC MATRIX ANALYSIS CONCLUSIONS

Lemma 15. Ler R € F%*4 ywhere F = C or R. Then:
1.I1—-RR" and I — RYR (or I — RR" and I — R" R if F = R) share the same set of eigenvalues.
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2. These eigenvalues are real-valued.

Proof. We prove the complex case, and the real case follows. Suppose the singular value decompo-
sition of R is URERVéLI, then
I—RRY" =1 —-UrSRU{ =UR (I - S%) U

(57)
I-RUR=T- VRSV =Vr (I -%%) V.
Thus both I — RR™ and I — R™ R are unitarily similar to I — ¥%,, which completes the proof. []

Lemma 16. Given symmetric matrices X, A € F¥*4 where F = C or R, suppose X = ||Allopl =
O, then

Al
X1/2 _ X—'—A 1/2 || op . 58
R P PWNPS R Ty oY
Proof. Directly by Theorem X.3.8 and inequality (X.46) in Bhatial (1996).
O
Lemma 17. VX, A € F*¢ where F = C or R, if X and X + A are both invertible, then
(X+A) "' = (XTT=XTAX ) =X TTAXTTAX +A)T (59)
Proof.
(X+A) - (X XTAX ) =X X - (X - A)X I (X +A)] (X +A) (©0)
= X 'AXTIAX + AL
O

Lemma 18. Bound of eigenvalues under perturbation.

For unitary (or orthogonal, for real field) d-dimensional matrices U, V, positive semi-definite matrix
S, denote P = (%) S (%)H then the eigenvalues of S are bounded by

2P+ (5 s (597 | rsksa

R P [ L Y

(61)

Proof LetQ =UHV.

Due to Courant-Fischer min-max Theorem, A > B indicates A;(A) > Ax(B). Then the lower
bound is straight forward:

U+V U+v\T\ e (U+VN (U+VNT
w((59) s (50 ) - (= (59 (59) s
2
<k (SW (HU;V I) 51/2> (62)
op
2
<Ak (51/2 (('U”W—;”V”OP) I) 51/2> =M (5).

For upper bound, by applying Wely inequality,

23



Under review as a conference paper at ICLR 2026

()5 (55)") = ((52) s ()
(555 () (1595 ( @H>> [(159) (=2

2
:%)\k(SJrQSQH H U V)s(U )

op

(63)

For arbitrary k, Ay (S + QSQH) > \i (S); for k = d, Aq (S + QSQH) > 2X4(S). This com-
pletes the proof.

O

D.2 LEMMAS ON EIGENVALUE CHANGE UNDER DISCRETE TIME

Lemma 19. Suppose 3, S € F*4 are positive semi-definite matrices, 0 < a < %HSHJI}, F=C
orR. Consider 8" = (I + (X — 5))S(I 4+ a(X - 9)),

>\min (S )

64
/\max (S) ( )

Amin () (1 4+ a(Amin (X) — /\min(S)))2 +0 (0‘2 (quip + ||S||3p) HSHOp)
Amax ($) (1 + ¢(Amax(2) = Amax(S)))?.

IN IV

This generalizes Lemma 3.2 in|Ye & Du(2021)).

Proof. Following the derivations in|Ye & Du/(2021), V3 € (0, 1), rewrite the terms by the following:

s’5<fgs)s(lgs>+( /%(I+1_52)S(I+1_ﬁ2)

a2

*aTj@K1*m5+ﬂm5K1*mS+ﬂm.

(65)

2
The first term has eigenvalues \;/ (S’) = (1 - %)\Z(S)) i () (note that f(x) = (1 — x)%x is

non-decreasing in [0, 3], so A (S’) is exactly the i*" eigenvalue of the first term when 3 > %),
while the second term is bounded by

2
Amx@)) Amax(S).
(66)

- (1+ Amm<z>>2 hin(5) = term2 = (1 9) (1 +

@ «a
1-p5 1-8
By treating the third term as error term and taking 5 = %, the proof is completed.

O

Lemma 20. Suppose D, S € F*? are positive semi-definite matrices, E € F¥*¢ F = C or R.
Denote M = S+ D. Consider S' = (I+ n (aM — M3+ E)) S (I +n (aM — M3+ E)) under

1
< —F—,
TS T6(IIMIE, F1Ellop)

)‘min(S/) > Amin () + 27 (a = 2| Dllopll M [lop = | M || op Amin (S)) )‘ern(S)
_277(“E||0p+||DH p”MHOP) mln(s) (67)
=+ O (<a2||MHop + HM”op + ||E||op> ||S||0P) .
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Proof. Expand the expression of S”:

S'=S+n(aM+E—DMD)S +nS (aM + E — DMD)
—n(DMS? + S?M D) —nS(MD + DM)S — n(SMS? + S?MS) + n* M., ...

= i(I+477(0M+E—DMD))S(I+4n(aM+E—DMD))
(68)

+ 1 (I —4nsDM) S (I — 4nsM D) + 415 (I —4ns (MD + DM)) S
S S

1 3 1 1
— S (I —4ns®M) S (I — 4ns’M) S 58— 8% 83 4P M!
+ 432 ( ns ) ( ns ) + (4 2s 482 error"*
Mrorllop = O (@ M2, + [IM]S, + 1 EI12,) 1S ]lop)-

Notice that 25 — 5L.5? — 1.9 has elgenvalues Air(S7) = 3X;(9) — = A2(S) — 22 A3(S), so by
taking s = 2||S||0p, i (S’ ) is exactly the i‘" eigenvalue of S’

where ||

This further gives

1 2
Amin (87) = 7 (14 41 (@amin (M) = [ Ellop - IDIZ, 1M lop)) ™ Amin (S)
1 1
g (1 - 4773||D||010HM”0;0) mln(S) + Z (1 - 877$||M||01)||DH0P) IIlln(S)
1 3
o (0= 052101y )* Xa )+ (Do) = 5o n(8) = 3 8n(5) )

+ 12 1M ror | op
> Amin (S) + 27 (aAmin(M) = 2] Dllopl| M [|opAmin () = M ]|opAiiin () Amin (S)
=211 ([1Ellop + I DI, M [lop) Amin(S) + 1% [|Mrrorl op -
(69)
From Apin (M) > Amin(S), the proof is completed.
O

D.3 LEMMAS ON ANALYTIC SINGULAR VALUE DECOMPOSITION OF PRODUCT MATRIX
UNDER BALANCED INITIALIZATION AND GRADIENT FLOW

Lemma 21. Existence of analytic singular value decomposition (ASVD).

Under Section [3| with gradient flow and balanced initialization, for t € Rt U {0}, there exists
analytical singular value decompositions for W; jcq1 2.... ny (t) and W (t).

Proof. For F = R, the proof is exactly the same as Lemma 1 in|Arora et al.| (2019b): real analytic
matrices have ASVD (Theorem 1 in Bunse-Gerstner et al.| (1991/92))), and W, (¢) are analytic then
so does W (t). For complex case, Theorem 1 and 3 in[De Moor & Boyd| (1989) gives that complex
analytic matrices (of a real parameter) have ASVD, then the rest of proof follows.

O

Remark 10. For complex field here, the "analytic” here has no relation with the standard defini-
tion of ”complex analytic function”, who has complex parameters and consequently more restric-
tions on definition of derivatives.

Throughout the proof for gradient flow (continuous time), we only deal with real-valued parameter
t € RT U {0}, so any "analytic” means real-analytic (for ¥ = C, it means the real and imaginary
part are both real-analytic), not complex-analytic.
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Lemma 22. Suppose the analytic singular value decomposition of M(t) exists and is
U)Xy )VE®E®), M(t) € F¥9 where F = C or R, then the derivative of the k" singular
value is

dO’k (M) dMm
a (“’“ dt ’“) (70)

where uy, vy, are the k' column vectors of left and right unitary (or orthogonal if F = R) matrices
respectively.

Proof. We prove the case when F = C. For F = R, replace -/ by - T.

avt
dt

dM  dU

d¥
H M y,H
o @ oMV A Uy

(71)

Then

d
_ doy(0) gl g (4
== + o (M) (?R <uk & + R a k) )

From R (uff 4) = & (L]jy]2) = 0, R (dsg vk) & (3|vk]|*) = 0, the proof is done.

dMm dUu dy av#
%(ukHdtvk> —%(ukHd EMVHvk+ukU MVHvk—&—ukHUZME vk>
72)

Remark 11. If M is Hermitian, then the R can be omitted.

Remark 12. This generalizes Lemma 2 in|Arora et al.|(2019b)) from real field into complex field by
adding a R on the right side:

dUT(S)

T —N@2(S) N R (Vi L(W), uv)) . (73)

Lemma 23. Under Section[B|with gradient flow, L is non-increasing.

Fort € [0, +00),

d
—Logi < —2N min oy (W) PV Y Loy (74)
dt Jik

Proof. Naturally we have the derivative of product matrix W (t):
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N
daw
e > W, |:W1£[{L,j+1 (E-W)WH o +a(W;Aj ;- Aj,j+1Wj)} W51

[
[

I
] =

H H
WHL7j+1WHL-,j+1 (E - W) WHRajflwnR*j_l

k‘i.
2!—‘

N
+ay Wi, A1 W1 — @ > WL, 41851 W,

j=1

<
=

I
M=

Wi, s W, i G = W)W W, -1+ a(WAgy — Ay v W)

.
Il
-

I
] =

H H
WHL7j+1WHL:j+1 (E - W) WHR’j*IWHanfll

j=1
(75)
Then
d dw
5, ~ori — — Y- s T 12
il = ((=-w )
N
=" <E -W Z WHLJ"‘IWI]_L[ILJ‘H (E B W) Wﬁ{mj—lWHRvj_1>
j=1
N
== > R (S =W, W (B =)W W) (76)
j=1

N
=S R (W, s C-WIWE W =W )
j=1

N
2
_ b4 H
- Z "WHLaj+1 (E - W> WHR)jleF .
i=1
From ”LXR”F > Umin(L)Umin(R)||X||F’ Omin (WII—L[ILJ-+1) > minj,k |Jk(Wj)|N_j and
Crmin (WIEIIR,J'%) > min; i, |0y (W;)]? 1, the proof is completed.
O

Lemma 24. Analytic singular value decomposition of product matrix with positive semi-definite
diagonal matrix.

Under Section 3| with gradient flow and any bounded (i.e. W; jc(12. ... 7N}(t = 0) is bounded)
balanced initialization, ¥V positive integer N > 2, the product matrix W (t) can be expressed as:

W(t) =U@®)SH)V (6", (717

where: U(t) € F*4, S(t) € R and V (t) € F4*? are analytic functions of t, U(t) and V (t)
are orthogonal matrices, S(t) is diagonal and positive semi-definite (elements on its diagonal may
appear in any order), ., (t) == S(t)'/N is well-defined (meaning the real-valued operation S;;
(Si)Y/N is applied to each diagonal element of S(t), resulting in another semi-positive diagonal
matrix) and analytic.

Moreover, if the singular values of product matrix W are non-zero, then throughout the optimization
W remains full rank in finite time.
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Proof. From Lemma[21] it is left to construct a new ASVD (analytic singular value decomposition)
of W (t) using existed ASVD W (t) = U(t)S(¢t)V (t)* (S(t) is not guaranteed to be positive semi-
definite).

By Lemma |2 = W] <[] = W(t = 0)| . Then the following term is bounded by a constant
forall t € RT U {0}:

[(VIW (1)), ur (D)ve()T)| < IVEW (D)), = 5 = W],

(73)
< ||2_W”F < ||E_W(t: O)”F'

By invoking Theorem 3 in|Arora et al.|(2019b) (for complex case, add ), the absolute value of time
derivative of o.(t) is bounded by:

do,.(t)

1-1/N
dt '

(79)

T

SIS W= 0N (630

Thus all o,.(¢) do not change sign for t € RT U {0}. Moreover, if |o,.(t = 0)| > 0, the it never
decrease to 0 in finite time.

Then we construct Syew (t) by flipping the sign of negative diagonal terms, and Uy, (¢) by changing
the sign of corresponding columns of U (t). Now W (t) = Upey (t)Snew (t)V () is also an ASVD
of W(t), Unew(t) is analytic and unitary (orthogonal), Spew (%) is analytic, diagonal and positive
semi-definite.

Specially, if for some 7, o,.(t) = 0 at time ¢, then it remains zero. Thus, from S,y (¢) is analytic, so
is ¥, (t). This completes the proof.

O

Finally, we generalize Lemma 2 in [Arora et al.| (2019b) into complex field. Here we assume all
matrices are square matrices of dimension d x d.

Lemma 25. Under balanced initialization, assume the singular values of W (t) = U(t)S(t)V ()"
(U, V are unitary, S is real-valued and diagonal) are distinct and different from zero at initialization,
then the derivatives of U, V satisfy

v dv

where Dy;, Dy are diagonal matrices with pure imaginary entries (and thus skew-Hermitian) satis-

fying

N 1/2—1/N
(DU)jj — (Dv)jj = _E (0_]2(5)) / / [(UH(Vwﬁori)V)jj - (VH(VWEori>HU)jj )
(1)
and
My = — [UM(Vw Low)VS + SVH (Vi Log) U] 52)
My = — [VT(VwLow)"US + SUT (Vi Lowi)V] .
Here ® stands for Hadamard (element-wise) product and F is defined by
F {O S (83)
ik = 1 | # k.
(o’i(s))l/N—(J?(S))l/N y J #
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Remark 13. Note that only the difference Dy — Dy is uniquely determined. Adding the same purely
imaginary diagonal matrix to both Dy and Dy leaves the dynamics of W unchanged, correspond-
ing to a shared phase rotation of U and V.

For real matrices, R.H.S. of equation @) is zero, Dy = Dy = O, then this Lemma degenerates
into Lemma 2 of Arora et al.|(2019b).

Proof. We calculate the time derivative of U and the time derivative of V' follows the same way.
Following the derivations in|Arora et al.[(2019b)),
v ., ds  av”?

_ Y e oy (84)
V=U dtS+dt+Sdt V,

dw
Hi
v dt

H H . . .
where UH %’ = f% Uand VH %/ = fdd—‘t/ V' are skew-Hermitian matrices, whose diagonal
entries are therefore purely imaginary. Since S is real, denote I, to be a matrix holding zeros on its

diagonal and ones elsewhere,

R <fd © (UHdWVS—i—SVHdWHU>> _ R (UHdng _ SzUHdU>
a at

dt dt
dw aw dU dU ®

| 77H H _af(H 2 _ q2r7H

J(U dtVS+SV " U) J(U dts S2U dt).

Since U dd—VXVS + SvH ‘{TVX U is Hermitian, its diagonal entries are real, further giving

R (UH%VS + SVH%HU> =9 (fd O] (UH%VS + SVH%—VXHU>>. Combining the real
and imaginary parts gives

. dw aw dU U
H H _H 2 q2prH
I, © (U & VS+ SV T U) U I S —8°U T (86)
Here UH4YY = -3 ;-V:l(SQ)jI_v1 UH(Vy Loyw)V(S%)"%. Then the non-diagonal entries of

UH % follows by the proof of Lemma 2 in|Arora et al.|(2019b).

For the diagonal entries of U %, by taking imaginary part of equation ,

du av du av
a;(S) <(UH) - (VH) > =i <o—j(5) ((UH> — (VH) ))
dt /55 dt /55 dt / dt /5
H
i (UHdWV> 1 (UHdWV> - (VHdW U)
a ). T2 a ). at _
23 23 g

The last step uses the fact that iS(z) = § (z — 2). This deduces that

(87)

dU dv N -
(UHdt)j;(VHdt)jj =5 (@E) T U (TwLa)V); — (VI (VwLon) V)]
(88)

This completes the proof.
O
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D.4 LEMMAS ON REGULARIZATION, GRADIENT FLOW

Lemma 26. Consider optimizing a generalized loss function coupled with a generalized regulariza-
tion term using gradient flow:

1 N-1
1
E(Wh e ,WN) = »Cori l_J[VW] —+ Z E . aj,j+1||Aj7j+1H%, aj’j+1 c R+ U {0} (89)
J= J=

Where Aj ;1 is defined in (EI) Then the regularization terms decays by:

N-1 N

2

% D asinllA el | = =4 llaj 018,005 — a1 ;Wi A 15 - (90)
=1

j=1

Proof.
d

dt J

H
WiW /" = =[ (Vw, Lort) W+ W; (Y, Lowi)
— 2aj_1,joAj_17joH
+aj e (B0 W W+ WWTA; 1) } o1
d H
awﬁ-le+1 = [ (ij+1£0ri) Wit + Wﬁ-l (ij+1£0ri)
+ 2011542 W At 2 Wi

H H
=501 (D5 Wi Wi + Wi Wi A j1a) ] -

Denote Wy, ; = HizN Wi, W5 = H]lczj W, W= H;lczN Wi = Wrp,1 = Wipn-
From property of the loss L,

(Vw, Low) Wi = W 50t (Vw Lon(W)) Wi, 5 = W/ (Vi Lon) , Vi € {1,2,--- N — 1},

(92)
Thus we have
d H H
g i+t = 20515 W 8-, W57 + 201152 Wik g g2 Wi ©3)
= a1 (g0 (WiW]T+ WL W) + (W W+ WL W) Ay )
SN
% = a1t (WA 1 ;Wi A1)
+daj ot (Wi g Wi Aj jia)
—daj jate (W;W/+ W W0)AT L)
2 2
= oo lajj+18;41 W5 —aj—1,; W81 ;% (94)
75J

2
+ a1 5028541, 5402 Wit — aj 51 Wi 18y 501l 7
+a3 o (1850 Wil + Wi 5407)

— a5 WA 1% — a5 ol Ajr e Wi ll7 |-

By taking weighted sum,
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N-1 N
2
T > asinlld il | =—=4> laj 118,00 W5 — a1 ;W58 1% ©35)
j=1 j=1
O
Below we back to a; ;41 =a € RT U{0},Vj € {1,2,--- ,N — 1}. Thenbecomes
1 | N
LV, W) = Lon | [] W5 | + 1 > allA;jalE, a € RTU{0}, (96)
=N j=1
Theorem 27. Suppose for all j € {1,2,

) N}, Orrlin(Wj) 2 Mmin > 0) Orrlax(Wj) S Hmax-
Consider optimizing [96|under gradient flow, then the convergence rate of the regularization term is
lower bounded:

2
< —4q -

N-1
d /’Lz ax /’LQ ir
% > Al T 7T
j=1

N-1 (me)wv/zj

N-—-1
> Al
j=1

-1

o7
Hmin
PFOOf: Denote Dj = Aj,j+1Wj - WjAj—l,j- Then
Ajjr1 = (Dj + WA )W (98)
Deducing

18541 lle < W], (D57 + 141,

1
[FIWillop) < ——

fimax
1D F + %HAJ‘—LJ‘HF-

min

From Ay ; = O, inductively we have

99)

j—k 2(5—k
1A 1] < —— () < L[5 ()Y Dill2
jirlle < —=— (D : IDillr | < —— (D : > IDxlE
/’Lmln k—1 /’Lmln k—1 /’Lmln k=1
2
HMmax
1 (Mmin)

Hmin
-1 J
= 5 D) Z ”Dk”%7
/”Lmin (Hmax) —1 k=1
Hmin

The last two step use Cauchy-Schwarz inequality.

(100)
From Ay ny41 = O, following the same procedure we have
.
1 (#max) J —1 N
Hmin
IAN—jN—j+1llF < — 5 > 1Dl (101)
min ’:""_‘X) —1 k=N—j+1

Summing all terms up, for odd N we have
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-1 (N-1)/2
SAallE= > (18lF + 1AN—jn—jll7)
j=1 j=1
2j
-/ (im,?x> 1
= > (IDel3 + 1 Dxya k13
j=1 Hmin (—Z@X) —1 k=1
2j
N-1)/2 N-n/2 [ (/me) _1
HMmin
= > | UD:F+IDx1-klF) D 3 5
k=1 j=k Himin (l"maX) -1
HMmin
N-1
vo ()
S min ||Dk||2
2 Phax — Hinin (2_:
(102)
For even N,

N-1

N/2—1
18 5411F = D (12510% + 1AN—jn—j41llF) + ANz, n/241 17
j=1 j=1
N/2-1 (zmxfj 1
<> > (ID&l% + [ Dy1xll3)
j=1 ,LLmln (Mmax) 1 k=1
Mmln
N
1 (Nmax) 1N/2
Hmin
+ 5 > (IDell: + IDx41-4l17)
21umin (Hmax) 1
Hmin B k=1
2 (103)
N/2-1 N/2-1 . (umax> 1
Hmin
= Z (HDk”%""_HDN-H—kH%) Z 2 2
k=1 j=k | Hmin (Z“‘?") —1
N
1 (Nn]ax) —1 N/2
Hmin
+5 > (IDklF + IDx41-4l7)
2:u1nin (Hmax)
—1 k=1
Hmin
; N
N () -1
< | Dk |1?
2 [hax — i kzzl
Thus
N
P e
2 max mln
Z;HD]»H 2N T, T le it [ (104)
= (lhnin)
Combine with Lemma[26] then the proof is done.
]

Remark 14. For N = 4, Theorem[27] reduces to
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d 23: 5 8a i, 23: )
T 1851l | € -5 25— 185103 | - (105)
dt j=1 3 N“max + N’min j=1

Theorem 28. Under problem settings in section [3|with gradient flow, the change of maximum and
minimum singular values of W;s have bounds that are irrelevant to the regularization term:

dmax; o2 (W;
M < Qmakx|Ok(Wj)|maX||ij£0ri||
J» J

dt op
dmi 2(17,) (106)
min; i o (W; .
]dt il > —2121]?|Uk(Wj)\mJ§iXHVWj,C0riHOp.

Remark 15. If argmax; p |ox(W;)|, argming; ) |ox(W;)| are not unique, the derivatives are
not well-defined. In these cases, the inequalities become:

dO’%/(Wj/) ./ 12
< QH;%XI%(WJ-)I max IVw, Loxill,, » (1, K') € argr(r;fflak(wj)l
" ’ (107)
do?, (W;:) .
—E > —2r§_{1,€n\rfk(Wj)lm?XHijﬁoriHOp, (J' k') € argg{lknlak(W )l

Proof. For simplicity, set Wy = Wy, W5 = Wy.

Denote the analytic singular value decomposition of W (t) to be UV (g )Z(J ) V)H then from Lemma
22 we have

dakéfvj) =R (“l(cj)H (=Vw, Lori + aW;Aj 15 — alj 12 W) U}gj))
=R (u(j)H (,VW]_ Eori) v,(cj))
+aud" (Ww o W W W Wy — 2w W W) o) (108)
=R (u(j)H (—ijﬁori) v,(cj))
+a [ (u W W + oW W 0) au(W) = 200 (W)

From u{)" Wi, w; ) v,(cj)HWj,lWﬁlv,(cj) € [min; of(W;), max;  o7(W;)], the proof
is completed.

O
Note:
Vo, Lo, < mx o (V)5 (0() 4 maxlon (W)Y ) . 109
D.5 LEMMAS ON REGULARIZATION, GRADIENT DESCENT

Theorem 29. Suppose for all j € {1,2,3,4}, omin(W;(t)) > fimin > 0, Omax(W;(t)) < ftmax
then the convergence rate of the regularization term is lower bounded by:
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8  naut.
Lreo(t+1) < [1—=—28 ). Lot
St >( ) L0

120 (b0 4 aLocg D)) (110
+ 7740 (a’:u‘snzax’cori(t)2 + aglu’;lnaxﬁreg(t)2) .
Proof.
Ajjr(t+1) = Ajja(t) = 20aW; (A1 ;)W ()7
+ 20aWi 1 ()7 Aji jya()W;a (1)
—nad; j11(t) (Wi (OW; ()7 + Wi ()W, (1)) (111)
—na (W;(0)W;(0)" + W1 ()W (1)) u+1()
+ 07 [V, L) Vw, L) = Vw,,, LTV, L(1)] .
From
[Vw, L) o < [[Vw, Loxi ()] o + ([ Vv, Lreg ()| o

18541+ 1) = Aj (D)l = O (anax 0Lres () + 1 ||V, £(1) | >

0 <nu?m @Lreg(8) + 124 Loni(8) + nzaufnaxﬁrega))
(112)
‘We have

Mw

Lyeg(t +1) = Lreg( Ajiri(t+1) = Ajia(t),Aj (1)

7j=1

3
2
+a) 1A +1) =A@
j=1

4
= —dna®» " [|A; i (OW;(E) = WA 150l
Jj=1
+0 (nz aLreg (t) (aftt o Lreg(t) + 1S ax Eori(t))> (113)

+0 (772a2/1fnax£reg (t) + n4aur1n2ax£0rl( ) + n4a3ﬂfnax£reg(t)2)
4

= —4na® > |8, (OW; (1) = Wi A1)

j=1

+ 7720 <a2/‘fnaxﬁreg(t) + aﬁreg(t) ?nax‘cOri(t))

+ 7740 (alu}r?axﬁori(t)Q + aguﬁqaxﬁreg(t)Q) .

Follow previous analysis in continuous case,

4
2 /’Lmll’l
D125 OW; () = Wi (0A; -1, (O] > 32 Z 1A i1 (1) |17 (114)
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Then the proof is done.

Theorem 30. The maximum and minimum singular values of W;s are irrelevant to the regulariza-
tion term.

. in; W (£)
Under n < min 1 min;. 71 (W ,
n= 18a max; i Uﬁ(Wj(t))’ 3maxj||VWj,Cori(t)||op

max o (W (¢ + 1)) — max oy (W (1)) < 2nmax oy (W; () max |V, Lo (1),
J> Js Js J

+ %0 (HW Los®|, +a? n;z}cxag(Wj(t)))

min o3 (Wt + 1)) — min o (W (1)) > —2q min o (W; (6)) maax || Vv, Lows (1)
Js Js Js J ’

(115)

op

+7°0 (HVWJ- £ori(t)||(2)p +a? max oy (W; (t))) :

Proof. For simplicity, set Wy = Wy, W5 = Wy.
Generally,

W(t+ )Wt + D) = W)W, () — Wi (6) Vi, L) = nVw, L)W, ()"

+10*Vw, L)V, L)

= Wj (t)Wj (t)H - ’I7Wj (t)ij £Ori(t)H - nVWj Eori(t)Wj (t)H

+ 20aW;(8) A1 5 (OW;(6) = naW; ()W (0)" Aj 11 (t)

— a1 (OW; (OW; (0 + 7V, £(1) Vi, £(0)"

1

BE]
1
3

+ % (W;(t) — 30V, Loxi(t)) (Wi (t) — 30V, Lori(t))

+ 7V, L) Vw, L™ = 307V, Loxi(t) Vi, Lo (t)"
— 3n2a® W () A 1 ; (t)*W; (1)
= 307 a® A (W ()W ()T Ay (1)

Wi (t) (I + 3nad;_1;(1))* W; ()" (116)
+ 5 (I = 3nad; ;1 () W;0OW; ()" (I = 3nad; j41(t))

H

NOtiCG that W](t) (I —+ 37](1Aj,17j (t))2 Wj (t)H and (I —+ SUQAjfl,j (t)) Wj (t)HW] (t) (I —+ 37](1A]‘,1’j (t))
shares the same eigenvalues. Then from Lemma|[T9] the maximum and minimum singular values of
W;(t + 1) satisfy
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2

T (Wii(t +1)) < %anax(Wj( ) [1+3na (07ax(Wi—1(1) = 0max(W;(1)))]
L2 W 00) [14 310 (2 W2 () — 02 (W (1))
+ % [amax(Wj(t)) +3n HVWJ‘ ﬁOri(t)Hop} 2

+n%0 (vajﬁori(t)nz + a2 Irjyz]xcxag(Wj (t))>

= U?nax(W ( )) [1 + 377(1 ( mmx(Wj-‘rl(t)) + Ufnax(Wj—l(t)) - 2012nax(Wj (t)))]

+ 2770-[‘[1&)( HVW ori )Hop + 7720 (vajﬁori(t)Hip + a2 II;?CX Ug(Wj (t))>
=+ %O-?nin(w (t)) [1 + 3"70’ ( mm(Wj-l-l(t)) - 0'12nin(Wj (t)))]2
1

+ 5 [ W3 (6) = 30|V Lon(0)],

+n*0 (HVWJ- »Cori(t)Hi +a? nﬁx oy (W; (t)))

= o—rgnin(Wj( )) [1 + 3770‘ ( mln(WjJrl(t)) + U?nin(ijl(t)) - 2Ur2nin(Wj (t))):l

= 20w (W (1)) [V, Lon(8)], + 1770 <||ijﬁori(t)Hip+a2 %Mg(wj(t))).
(117)

By taking maximum and minimum over j € {1,2,3,4} (for n < the first term

1
6a max; i 02 (W;(¢))°
of R.H.S can be upper bounded by max; ; o2 (W;(t)) or lower bounded by min; , o2 (W, (t)) re-
spectively), the proof is completed.

O
E DYNAMICS UNDER BALANCED INITIALIZATION
This section analyzes the training dynamics under balanced initialization.
At the beginning, We derive some properties from Lemma[24] Under balanced condition,
_ H
! ] N—j+1
H
Wi, Wi, = | T s H Wi | = (WNWy)
k=N
H (118)
! N—j+1
H H -
Wi s Wil = H Wi | TIwe | = (wifwa) =7
—J k:j
Consider j = 1 and j = N, then
Wywi = (wwh)YN — sz
Wi = ) K (119)

YN 2yl

ww = (WHw)
Suppose the non-negative ASVD of product matrix is W = ULN V| then
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dt (U22 ut) = dt (WNWN) =xveNUf +usivist —eus2NuH
2y H H NrrH H Ny H 2Ny/H
o (vz Vi) = o (W1 Wh) =VESUAY + SHUsivH —ovs2NVy (120)
N
dW = > UsOutgyn NIV - NUsiN 2y e
j=1

The dynamics of o, == Uﬁr is presented in .

E.1 SKEW-HERMITIAN ERROR

This section formally state and prove Theorem {4
Theorem 31. The skew-Hermitian error is non-increasing.
Under balanced Gaussian initialization, for F = C or R, suppose the ASVD of the product matrix is

W(t) = Ut)Xw )NV (t)H, furthermore assume that the singular values of the product matrix at
initialization (W (0)) are distinct and different from zero (refer to Lemma 2 in/Arora et al.|(2019b)).

Denote 0, ; = (L), U = »2y, v = 22y, u; and ’U; are the j'" columns of U’ and V'
respectively, then

d 1/2 2 N 1/2
I =V)Zulp = 23l Hz 2 (ul, — v
J

) S
J

2 121
- ZfN (Ow,js Ow,k) u;Hv;€ - v;-Hu;€ (21
gk
<0,
xzyz(:erzny’% y 7& .
where fn(z,y) = N_2 933—’!/2 ’ is a non-negative real-analytic function on
2 7 Y=
[0, +-00)2.
Proof. By
dow,; Nt [ 05) + (v, uf) N
Qi =0y > — Oy - (122)
From Lemma 23]
dU dVv
dt:U(F(DMU-l-DU),EZV(FGMv-i-DV), (123)
where
(MU)jk = <’U;€,’U,;->(T%7k—l—<’u,;€7’U;->(T,l];éj—20’12}]1,\\;]4(53"]€ (124)
(My)jx = <u§€,v§> Owr T <v§c,u;> Twj = 2045 50] k
Dy v are pure imaginary diagonal matrices defined by
N oN-2
(Du)js = (Dv)js = Fou; [ u)) = (uj,v5)], R(Du) = R(Dv) = O. (125)

Here (a, b) := b a follows the standard definition of (complex) inner product. Then
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vty av” dv
— YV +UPS— n = (F" o M{l — Dy) UMV + U"SV(F ® My + Dvy)

dt  dt
IHy7r! H
dUdtU % EU+UH2(;U (FT o MY — Dy) UTSU + UPSU(F © My + Dy)
1HY/! H
dthV % nV + VszV (F" o M{' = Dy) VISV + VISV(F © My + Dy).
(126)
For each diagonal entry,
d dUIHv/
= (55)
dt ij
__ﬁ N72</ l
=T 5%, UJ’UJ>[<1)J’UJ> <uj,v]>}
1
P yer (o) P L)) 0 + 2 (o) (05 ) 0
- Y w,j w,k
dU/HU/
o > (“%5)
Ujs U dt i
N (127)

=2 gz [ ) (o) + (o 15) (v ) o,

kg O -
+ (v )y u) + (i ) (4, vk)) o]

d , , ,_ (dvEV’
dt<”jv”j>—( & ),

_Z 2 — 2 vk,u]><vj,vk>+<vk, J><uj7vk>)

k#j / wk
+ (ke g><v Uk) + (ks ) v i) o]

Notice that for the second and third equation, Dy;, Dy terms cancel out with each other. This further
gives

d 2
Y-
N yN_
:5‘753'2 [<U§’U;> <UJ’UJ>]2

+ 3 | =2 (o) [P+ (ko))

7 T T Tk (128)
) ) 5 ) )+ () ) ) (i)

+ P [=2 (Coro ) (Vi) + (w0 ) (g v5)

k+#j j w,k:

+ ((vks J><u wp) + (s ) (o 08)) + ((ay 05) (0 v + (vks ) (05 u))] -

For the L.H.S. of (121),
d
G 10 = V0Bl = 3l = o ° o + Z%Jdt [ (129)
j
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The first term can be written by

d
Z_ [ e
—Zawj o)) + (W, uf) — 200 ) [l — o

(130)
/H//H/ /H//H/ /H//H/ yH 4y H
_ZU 7]< L A e A L I B R L R e i A “j)
1 H 1 H 712
720 7]( O u) 7220 ||u UJH
For the second term,
d 2
2 / /
PR ar [ = 5
J
Zo R & +Zowkdt e, =i
_ N oo roI\]2
—;Z%,j [(V ) = (uj, 03]
J (131)
N-2 N-2
J%u,jo—fu,k (U'w,j _Uw,k) ;. ;o2
Z 02 _ o2 |<vk7uj>*<uk’vj>’
jikj#k wg o Twik
2
—2 37 ol (g o)+ [k ) [)
J.k,j#k
+2 ) ol R (g vf) () + (o) (Ui, v5)) -
J.k,j#k
Notice that
2 ) 2 H H |2
[ = (a5 0)]” =4 [i (0 uy))]* = = Ju o = v ™| (132)
2 2 2
ST CA A REP R DI ([CRVATRER AT
J Jok.j#k
2
== Dol (g o) =237 ol (ool 4 of g )
j j
D IATEE R B A RY/R A I NRTAT A Rt (133)
J k#j k#j
2
DI CASTEEATY IEED DL R (i G R
j j
2
=D ol [us g s | =237 ol - (0 4 0 g )
j J

and
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N ' H o, H yH oy H g o0 H o yH y o H
g Ow,j (uj Uity Vj + 05 Uy Uy U ij vy U U505 Uy

J
423 ol R () () + () (o))

J:k,j#k

(134)
=2 Zag,j R (u;H (UU'H + VV’H) v;)
3.k
=23l (w20 40 5.
J
By combining the results above,
d 2
— (U =V 2,
SN =V sl
=_ 22‘7111\[,3‘ . (u;HEu; + ngZv;) + 220517»3‘ . (u;HZv;- + ’U}qu;)
J J
QZU ‘u —U7H
2 2 N—2 N—2
Tw,j%w,k (Uw,j ~ Owk ) ot o JH o, H
- o2  — o2 Uj Uk 7Y Z Uy VTl Y
Jk,i#k wig Cwk j
N 1/2
——2 3ol =2 (- )| R
J
2
H H
_ZfN (Cuw,js Owk) (U V), — V) uj,
Jsk
(135)
This completes the proof.
O

For even depth 2 | N, we have a similar result written in matrix form:

Theorem 32. If 2 | N, the singular values of the product matrix W (0) are different from zero at
initialization, then

2 2
3 I v =2l - visf, -l - vt
dt - .
N/2—-1
2Rt | Y sus¥ (Ufsv - visy) s -AvH (136)
j=1
<0.

We present another approach of proof which takes the inverse of some terms. This approach adapts

to the skew-Hermitian term in imbalanced initialization, where the proof of Theorem[31]in does not
hold.

To prove the theorem, we introduce the following lemma.
Lemma 33. If2 | N, X, is full rank at initialization, then Vk = 0,1,--- . N/2 we have
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(U+V)22k(U £ v)H

&~

[Uzz(g 1)UHEVZN+2k QJUH+UEN+2(J 1)VH2UZ2(1< NyH

Mw

1
+ VSOV RNy 4 G- Dy py y2keiy |

<.
Il

(137)
|:U22] 1)UHEVEN+2k 2]VH+VZ2(j 1)VHEU2N+216 QJUH:I

w

|: 22(] 1+k) VHEUEN 2jVH+V22j 1+k)UHEVZN 2]UH:|

55
]:
N/2—
—2k(U + V)R2WH=1) (7 4 V) H

Proof. V1 € N we have

d .
— (UsZu™) Z Uiyt <dt (UZﬁ)UH)> UsA=nyt
(138)
Us20-Oyt (svsluf 4+ usivist —ous2Nyt) us2i-auh,

|
_MN & -

<
Il
-

l
d o d B
g (vEvi) =y v v (dt (VE%UVH)) V2= yH
~ (139)
V2U-UyH (sUsNvE L veNUHSH oy s2NyH) yy2i-iyH,

-

<
Il
N

From Lemma[24) UV =2*UH is invertible at arbitrary time ¢ € [0, +00), thus

% (UE;(N72]€)UH> — (UzgfmcUH)*l |:§1t (UE,L]UV2kUH):| (UzgfﬂcUH)*l

_ (UEw(N 2k)UH> [ccllt (ngkuH)] (UZ;(N72I€)UH) :

(140)

which further gives

d

at

d d
(N—2k)77H Ny H —(N—2k);rH | 4

[dt(UE U )}UEU}V +US; U [dt(

_ (UZ;(N_%)UH> [(;it

(UsZhvH)
UZﬁVHﬂ
(szj—%UH)] (UsFvi)
(141)
d
—(N—=2k)77H Ny H
+U%, U {dt (U3 Vv )}

N/2+k N/2—k
= Z Us20-DyHpysNt2k-iyH Z Us2+i-Dy g H e N-2jy H
Jj=1 j=1
—2kUR2NFh=Dy H
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Combine (I38), (139) and (T41) together, then the proof is completed.

O
Now we present the proof of Theorem 32}
Proof. Denote Q = UH XV, calculate the L.H.S. of (136)) by setting & = 1 in Lemma
d 2
Slsvrw—v sz
dt H ( ) F
d
=4t (U -V)z2(U-V)")
=—2tr (XU = V)EJ(U = WV)H) —2tr (U = V)E2N(U — V)H)
N/2-1
2R [tr| Y SUSY (UPSV - VHRU) SV (142)
j=1
2 2
=2 HE(U - V)zfX/QH —2 HZUZ(U - V)Z{ZH
F F
N/2-1
—2R |t [ Y EH(Q-QT)nN QY
j=1
To analyze the last term,
N/2—-1
Rt | Y ¥ @-QMzy Q"
Jj=1
N/2—1
=R Z Z o (B0)(Qumn = Qrm)3 (X)) Qnn
m,n j=1
(143)
] N/2—-1
j —2j 2 2
=530 3 AH SN (20 (1Qunl + 1Qunl — 2R @ Q)
m,n 7j=1
] N/2-1
2 . o
:iz‘an _Qnm’ Z U?g(zw)aé\[ 2'7(211)) > 0.
m,n j=1
Thus for arbitrary ¥ > O we have
4 =2 -v)s H2 = 2|5 - V)EN/2H2 —2||z2 - V)ENH2
dt “lr v llp Yllp
N/2—1
=@ = Qunl* | X oH @ U
m,n j=1
<0.
which completes the proof.
O

E.2 HERMITIAN MAIN TERM

This section proves Theorem [5]
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Proof. Consider

d
i —(U+WVX2 (U +V)H
=SU+V)ENU+VE + U+ VENU+V)ES —2U + V)22NU +V)H
N/2-1
+ Y [Us¥ (UTsv - vISU) SN EVE vl (Vs - vt sv) sl P uf
j=1

(145)
Denote P = WH)2w g — W=V)¥w Tpey pHQ = QP P, 32 = PHP +QHQ.

From ABCH —CBA" =} [(A— C)B(A+ C)" — (A+ C)B(A — C)*] for arbitrary A, B,C
we have

%PPH =xpyN-2pH 4 pyN-2pHy, _ gpy2N-2pH
N/2—1
+ Z [Qx% 2 (QYsP — PPxQ) xN-2%-2pH (146)

— Pzﬁg 2(Q"=p — PPyQ) =i —22QM].

Suppose the k" eigenvalue and eigenvector of PP are x3 and & respectively, PHE, = zpnp,

then
d
ETAd =& ( PPH) &k

=26 SPR) 2 Pg, — 26 PEIN 2P,

(147)
N/2—-1
+260 | >0 Qs (QYEP - PHRQ) S Y PT | &
j=1
We focuson N =4, ¥ = 01(X)I. Then
d
0 = 200 (D)€L PYL PG — 267 PXG PY ey + 401 (D)6 QQ PP (148)

= 201(D)&x PX3,PYE, — 261 PES P ek + 401 (2)276 QQM &

For the second term:

7 Pss PP = ¢ P (PP P+ QYQ) 2 (PP P+ QMQ) PP,
= o PY2 PR g, + 203 PY2 QP QP ¢, + ¢ PQTQRLQP QP ¢,
< ap &l PYL PP e, + 223 |QI2, 150 12, + 22 |Qla, 12 wllZ,

(149)
From Theorem 32} |Q|lop < [|Q||F < |Q(t = 0)|| . Then
d
T x> (201(%) — ) & PSLPY &, — 2201 Q1I2, 115w 12, — 22 l1Qll5, 15012,
1
> (301) = 2t = JIB @ ~ VISallcallt) 2~ kISl (O = VIZuleoll
(150)
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The lower bound is proved.

For the upper bound,
d
G < 200(D)a}Zull?, + 401 (D)2} QI - (151)

This completes the proof.
O

Corollary 34. If for some k, 01,(U + V)Ey)|t=0 = 0, then o,(U + V)2,,) = 0 for finite time
t € [0, +o0).

Proof. Denote zj, = 505, ((U+V)%,,). By Lemma IE—Wllr < ||E=W(0)||r. Then ||Zy||op
is bounded:

Zwllop = WY < (1Sllop + 15 = Wlop) ™ < (12 llop + 15 = W)Y

(152)
1/N
< (I8llop + 15 = W(O)2)""™
Then from Theorem [3] there exists some C' € (0, +00) such that
d
7% < 01(®) 2IBulls, + (U = V)=o) 2k < Ca. (153)
Giving
22 (t) < 22(0)eft = 0. (154)
This completes the proof.
O

E.3 CONVERGENCE PROOF

This section states the global convergence guarantee under balanced Gaussian initialization, with
gradient flow. Below we omit the confidence level 6 in f1(6) = O () and f§(6) = O (55) for
simplicity.

Theorem 35. Global convergence bound under balanced Gaussian initialization, gradient flow.

For four-layer matrix factorization under gradient flow, balanced Gaussian initialization with scal-
1/4
o' (%)

ing factor € < TP then for target matrix with identical singular values,
1J2

1. For F = R, with probability at least % the loss does not converge to zero. Specifically,

L(t) > ~o%(%), Vt € [0, +00). (155)

N =

2. For F = C with high probability and for F = R with probability close to %, there exists
’2
T(ccony) = 165°d? n . 1, (daf(E)), such that for any €cony > 0, when t > T(€cony),

o1(2)e? ”f/2(2) €conv
L(t) < €convy-

Remark 16. The first part of this Theorem can be generalized to general (bounded) balanced ini-
tialization.

Proof. For the first conclusion, by Theorem 3|and Corollary[34] for F = R, 0in (U + V)E,,) =0
with probability at least % Consequently o, (U + V) ) = 0.
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Suppose at time ¢, for some unit vector y, (U + V)X y(¢) = 0. Then

IS =Wlr = llor(E) = USYV T |p = lon(Z)V = US|
> lou(B)WV = UY |lop = [(a1(B)V —USY )y (156)
= [(a1(Z)V +VEDy[| = [|(01(Z) + =N)y|| > 01().

For the second part:

From Lemma |2 =Wl <||Z - W(0)||r < 2V/do;(X). Thus for any time ¢,

N
Zullop = W < (1Sllop + 11T = Wlop)"* < (IZllop + 15 = Wie)"
1/4 1/8 _1/4 (157)
< (IZllop + 1= = W(O)|[r) " < V2d50,7(S).

From Theorem 3| for F = C with high probability (while for F = R with probability close to %),

1/4
24(t=0) > 57575 |(U — V)Sul| pli-o < 2fade. Thus by taking € < %)
2

W’ for ¢ such that
zp(t) = z(0),

d 5
ot > (201(9) = (42 + 81 70) 017 (5) — o} ) wf > (al(z> o) ai.

dt 4
(158)
12 48
This indicates that all x; monotonically increase to a}/ YY) in Ty = Ul‘(lz) cx2(0)72 = (17?{22)(::,
and never decrease to below 0’% / 4(2) fort > Ti.
By Theorem |18} oin (X4) > 2. Then combine with Lemma
Lon(t) € Lon(0)e 8o GuTET) < go2(53)e=801*(B)(=T) (159)
Thus it takes at most ¢t = 17 + 5 3/12(2) In (d:’%(z)> to reach €.,y -convergence.
o3 conv
O

F NOTATIONS AND PRELIMINARIES UNDER THE DEPTH OF FOUR,
IMBALANCED

To tackle the imbalanced initialization with depth N = 4, we make the following notations and
derive some basic properties.

Below we denote R = W, 'WH, W] = RWH, W = W,WsWoWy, My = WHW,, M, =

W1W1H, Mat934 = W2W1W1HW2HfW3HWfW4W3 M| = W{W’H, eA = Zle ||Ai,i+1\|%-
Then:

W = WH MW, (160)
RRY = Wy 'WHAW,WH= =T — Wy ' AgsaWH 1 (161)
RIRIY = wHYWoawW AW, = T+ W AWt (162)
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Mazss = (WE'Wa)" = (WsWi')?) + Will Aga Wi + Walio Wy
1
=5 (Aos (WiTWs + WaWyT) + (W5 Ws + WalW3T) Ags) (163)
+ W AgaWs + WoA oWy,

M| — My = Wy " Majo3, WL (164)
Deducing that
1Rl < 4[1+ —— - [ Aasllop < 1+ ———— (165)
o =\ T oz W) 1T = A T ming o2 ()
IR, < 1 o alop < 1 e, 166)
or Tonin(W3) P min; ; op (Wy) 77

1= BRI, < | Aggllop € ————— e, (167)

P onin(We) min; o (W;)
|[I-R'RFY| < ¥~||A23||0 <1, (168)

o= o (W) P~ ming y, o} (W)

IMar2sall,, < (W22, + Wsll2,) 182s]lop + W32, [ Asallop + [W2l2, | A12]lop

op —

< Vomaxai(W))ea, (169
Js
2 2
max;  op(W;) max;  op (W)
M — M <AV —DETRNTI o <N DR TR TS 170
|| 1 1Hop = \f O—ﬁqin(WQ) EA > \[ minj}k Jz(Wj) €A ( )
Applying Lemma|15}

|1 - R7R[, < e NAgsllop € ——— e, (171)

7 onm(W2) "7 min . o} (W)
1T RFRY| <t Agllop € —————en. (172)

= onim(Ws) " miny, o (W)

G SKEW-HERMITIAN ERROR TERM AND HERMITIAN MAIN TERM FOR
FOUR-LAYER MATRIX DECOMPOSITION

In this section, we construct skew-Hermitian error term and Hermitian main term to prepare for the
convergence proof, under four-layer setting with scaled identical target matrix ¥ = 01 (X)I.

G.1 SKEW-HERMITIAN ERROR TERM

The skew-Hermitian error term is defined by ||W; — W/ ||fF To address the dynamics:
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G.1.1 GRADIENT FLOW

Consider ¥ = 01(X)I. We study |W; — W] Hi, From the derivative of inverse,

dwy ! L AW,

=W —22Wt = —W(E - WWEWY — aA oWyt + aWy Ao,
dr AWyt 4 AWt
@ a T g

= —RW(E-W)WR+W; (E-W")W,
—aA 2R + 2aW5 P Aoz W — aRA3y,
awy  dwy! AW
dt —  dt W dt
=W/ -WYWHIW, + W1 (E-w)WHRI T RTIWY
+ RRYWIWoWy (£ — WH) — a1 W] + 2aW5 ' Ags W W7

1ch

WHEWH +w,

From R(tr(PQ)) = 0if P = P” and Q = —Q*, we have

R (b (WWl —wawiy wi - ™))
1
== e (vt = waw) (vt = ww) ).
Thus

g =i =2 (o (S )

dt
— 2% tr( MyW,(S = W) + WS — W)YWHW!
— Wi (- WIOWHRAZIRTIW] — RRE MW, (X — WH)

—alyy (Wy — W) — 2aWy ' Ags Wa W] (W; — W{)H) )
= 20, (S)tr ((W1 — W) My (W — W{))

— i (D)tr ((W1W1 — W W) (W — W1W1’H)H)
“tr (M2 M + My) M (W, — W) (W — W{)H>
— tr (Mo (M] = M) My (W] + Wa) (W = W)™
+2tr ([—M1M2M1 M Mo MW (W — W{)H)
+oR (tr ([Wl(E — wWHYW, (RFR — 1) WH] (Wy — W{)H))
+ 2 (b ([(1 - RRT) WEWwy (5 = W] (v - w)"))
— 2R (tr (A12 (W — W) (W, — W{)H))
(

— 4aR (tr Wi Ags W W/ (W — W{)H)> .

Note: —M{MQMl +M1M2M{ = % [(Ml — M{) M2 (M1 + M{) - (Ml + M{) M2 (M1 —

47
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G.1.2 GRADIENT DESCENT

From Lemma[T7]

[Wa(t+ 1)~ = Wa(t)™
-7 [—Wl’(t)(Z — W(t))Wl (t)HWQ(t)_l — aAlg(t)Wg(t)_l + GWQ(t)_lAgg(t)] HF
2 (178)
<n? [(1+ea® [Wa ) [2,) IWA(B)lop IS = WD) + V2aea(®) [Wa(t) ]|,
AWt + 1) Hlop I Vwa L) -

2 =o(),

-
op

Under |[W;(t 4+ 1)[op = O(||W;(t)]lop) ealt ||W2

Wit +1) — Wi(t)
—n [=WI(B)(E — W)W (t) Wi(t)
FWL(E) (X = W))W R(HTI R W (#)
+RO)R() W ()T W ()W (t) (8 = W(t)T)
— ala ()W (t) + 2aW, " (£) Ags (£) Wa () W7 (¢ ]HF (179)

=0 (| _max | 1W5(0)1,, 15 = Wole + aca) [Wa(6) 1],

2 -1
i(t . t+1 op L(t .
s WSO, W+ D oy s [V, L0l )

Finally giving

Wt + 1) = Wi+ D)5 = Wi () = Wi @)
=R (tr (Wit + 1) = Wit + 1)) + (W1 (t) = Wi(2))]

WA+ 1) = W+ 1) = (Wi () = wie)]™))
= — 2o (D)t (W) = W) Mat) (Wi () - Wi (¢ >>)

—no1 (D)t (WOW 0 = WaWi0) (W{OW2 ()" = mowio)")

—ntr (Ma(t) (M{(8) + Ma(1)) Ma(t) (Wi () = Wi (1) (Wa (1) = Wi ()"

e (Ma () (M3 (1) = My () Ma(8) (W1 (1) + Wi () (Wa (t) = WH(2)")

2t ([—M{<t>M2<t>M1<t>+M1<t>M2<t>M{<t>}W(t)( 1) = wie)") (180)
w20 (o ([Wa(8)(S = WOT)Wa(t) (RO RE) — 1) Wa®)™] (W (t) - Wi (1)) )
w2 (tr ([(1 = REOR®™) Wa(t) W) W1 (6)(S = W(O))] (Wa(t) - W)™
—2mai (tr (Aa(t) (WA (e) = W) (W () - wi@)"))

—ana® (1 (W5 (8) Aas ()W (W] (6) (W1 (1) — Wi(2) "))
+1720 ([ max W (0),, 12 = WD)+ aea () HWz(t)lHo,,]

me (W50, - [Walt + 1>1||op) .

J€e{1,2,3,4}
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G.2 SKEW-HERMITIAN ERROR TERM
G.2.1 GRADIENT FLOW

For gradient flow, we study the k'* singular value of Wj; + W{, or equivalently
Ak ((Wl +whH" wy + Wl’)) = o7 (W1 + WY). To address the dynamics:

Suppose the left and right singular vector of W3 4+ W/ corresponding to o (t) = o (W1 + WY) (t)

are )y, (t) and x,(t) respectively, (W1 + WY) xix = oxni, nft (W1 + W1) = orxe, Ixel = ]l =
1. Then from Lemma

d ) d
T (™ v wp)) = (dt (W + W)™ (W + W{)) X
(181)

d
= 2R (ka (W +wp)” ( o W+ W{)) xk) ,
where

d

FrAUAS Wi) = MyWH{(X = W) = Wi(Z — W)W{ Wy

+Wi(S - WOYWHRIIR=IW] + RRT MW, (2 — W)
—al (W + Wll) + QCLWQ_lAggWQW{

= My (W) + W) S+ (Wi SWiT — wisw/) W,

2 2
+ (M{ Mo My — My Mo M) Wy

- WS - whHw (1 - RPTRTY) Wy
— (I = RR™) MWy (2 — WH)

— alyo (Wi + W) 4 2aWy t Ags W W,

M, + M! M, — M|
— M, <1+1M2 (W + Wll) + #Mg (Wy — W{)) (182)

Consider arbitrary y € F?. Notice that (W SW{# — W{SW{) is a skew-Hermitian matrix:

R (2x" (W + W) (W swi — wisw) Wix)

R (M (W + W) (WAswiH —wiswi) Wix)

=R (MW (s — wiswT) W) (183)
R (
R (

)
>

W (Waswi — wiswi) wix)
X (W + WHH (=WAsWiH + WisSWH) (W — W))x).

From ¥ = 01(X)1,

—WlEWl’H + W{ZWlH =01(3) (W1 + W) (W — W{)H +01(3) (M] — My). (184)
Likewise,
R (2x7 (Wh + W) (M{MyMy — My My M) WiX) (185)
=R (X (W1 + W) (M{ MMy — My Mo M) (W] — W) x) -
Thus
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ot = 201 (Sl Mame + 01 (SoRl! (W~ W)™ (W, ~ W) xe
+ 01(S)orR (! (M — My) (Wi — WY) xx)
— ok Ma(My + M) Mani — o4 R (i Ma(My — M7) My (Wy — W) xx)
+ o R (M| My My — My My M) (W] — W1) xx) (186)
— 203 R (N WA (S = WHYWy (RTR — T) W xi)
— 203 R (! (I — RRY) MoW1 (2 — WH)xy,)
— 2a0%R (anlgnk) + dao, R (n,ﬁIngAgg,Wng'xk) .

G.2.2 GRADIENT DESCENT

For gradient descent, we study Apmin ((Wl +w oy + Wl’)) =
the dynamics:

(W1 4+ WY). To address

IIlll’l

(Wi(t+1) +W(t+1))
=Wy (t) + Wi(t)

+n |:O'1(E)M2(t) — Mg(t)Ml(t);WMQ(t)] (W1 (t) + W1(t)) (187)
+n (M7 (t) Mo () My (t) — My (t) Mo () My (t) Wi(t)

) 1
+101(3) (WiOWL ()T = Wi (OWi()T) Wi(1) + (1),

where the error term is bounded by

1
1Ex®)llop < 5 _max W5 (E Mop W) = W), M1(2) = M (D),

+ (IR re) - 1, +HI—R(t)R(t)HHOP)je{n;g>;4}ij<t>||2puz—w<t>||op

-1 2
+aea(®) (W10 + WOl + 21RO, W), _max W01,
-1
w10 (| s | IW5 Ol 15 = WO Le + aca) [0,
Wi )12 - [Walt + 1) |op - L(t :
IS O1, - Wale + 1)y s 9, L0 )
(188)

Follow the tricks in Lemma[T9]

Amin ((W1 t+ 1)+ W+ 1) Wit +1)+ Wt + 1)))

My (t) + My

mm<w1 )4 W) (Hn[al@)Mg(t)Mz(t) (t)MZ(”D <W1<t>+vv{<t)>>

0l Ba(t)lop + 120 (|(Walt + 1) + Wit + 1) = (Wa(t) + WI@)IZ, )
(189)

where
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[ E2(t)lop = Tmin (W (t + 1) + Wi(t + 1))

B @) llop + W2 ()5, 1M.(8) + ML)y, | M () = M (E)loy, [W2(E) = W (D), | -
(190)

H CONVERGENCE UNDER GRADIENT FLOW, STAGED ANALYSIS

In order to present the proof more clearly, we state the complete proof of convergence under Random
Gaussian Initialization [C.2]and gradient flow, before tackling gradient descent.

At the beginning we assume ([@9) holds. (For the complex case, it holds with high probability 1 — ¢;
for the real case, it holds with probability £ (1—4). ) We omit the confidence level & in f1(6) = O(%)

and f>(8) = O(35) for simplicity.

H.1 STAGE 1: ALIGNMENT STAGE

oM (2)
21V’

Without loss of generality, f1 > 2, and for simplicity we can further relax f; appearing in the lower
bounds to f2 > f{ (now f2 = O (55)).

Theorem 36. Ar'T} =

In this section, we set € < a > 25 f#0 fod'301 ()b, where b > 24 In(4f1d) + In fo.

m, the following conclusions hold:

€
> -
T 2f} fod¥/?

T <9 2 13/2 2 _ a
ea(Ty) < 2V3f7d* e exp( 32f7° f2d301 (%)

Omin (Wl + Wll)‘t:Tl

(191)
max |0 (W;(Th))| < (1+272) f1Vde

VLS

min o (W, (T2)| = (1 =27 =,

This section proves the theorem above by following Lemmas and Corollaries.

Lemma 37. Maximum and minimum singular value bound of weight matrices in alignment stage.

1
Fort e [O,m ,

d
- 16fi?'d3/2e301(2)t7 max o (W) < fiVde

. 192
fivd g.k T V1 —4fpdeta (D)t (192

in O’k(Wj) >
7.k

Proof. Fort > 0 such that max; o (W;) < 21V de < 01/4(2),
, < maxlon V) (92() -+ el (V)1 ) < 200(5) el (09
Js s Js

[V, Lon
[V

(193)
By invoking Theorem 28]
d ) 2(W.
%‘71«(3) < 4m%}€X ok (W) 201 ()
7 (194)

dmin, 2 .
dming o3 (W5) —4min o (W;)| max |or (W;) P01 (S).
at ik P
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By solving the differential inequality,

| 16/7d301 (%)
(195)

. . d
mac oy [ W] < e 0l 0) SR L
J:k V1 — 401 () max; ok [W;(0)]2 -t ~ /1 —4dfideo (D)t
€ o o 1
i W) > —16f3d%2S0 (D), t € [0, ——— | -
rg{kPIUk( il = i fid? e (D), t € 16, (5 |

This completes the proof.

Notice that

max oy (W; (¢ < T1))| < ﬁiﬁi < (1427 fiVde
Js 1— —L
8fi2f2

. 1 € B €
r21]€n|ak(Wj(t <T))| > <1 - 2f110f2> >(1-2 17)7

Corollary 38. Balanced term error in alignment stage.

Fort € [0,T1],

2
ea(t) < 2v3f2d%/ % exp (— ac t> .

673
rd

Specially, att = T,

T < 2 2 13/2,2 _ a < .9—31p—14 p—17-29/
eally) < 2VARE exp (- gyt ) < VB

Proof. By simply combining Theorem [27|and Lemma

Corollary 39. Main term at the end of alignment stage.
Att =T,

€
Omin (W1 + W{)|t:T1 2 W'

(196)

(197)

.f1\/(7 N fivd

(198)

22, (199)

(200)

Proof. For simplicity, denote Ay (t) = X (t) — X (0) for arbitrary X. Note: Axn = A

Att =17,
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T 4
[Aw (T1)lop = ‘ /0 Z {WHL»Hl(t/)WHmH(t/)H (Z-w(t")) Wlf[IR,jfl(t/)WHR»j—l(t/)} dt’

op

T1 4
< [ S W (W) (2 = WD W, (Wi, (0] 0
j=1
T, 4 )
<[, wen,) [ T e, ) a
0 j=1 ke{1,2,3,4), k#j
T1 6
g/ 4-201(%) - ((1 +2721) flx/&e) dt’
0
<8 (1+2718) fidPCo (D)1 = (1+2718) - ifl‘sf{ld”e‘*.
(201)

Thus

8w (T, = |5 [V 4 W) Aur(T) + B (1) (W(T) + W (0)]

op

< (IW@D) oy + W Ol ) 1AW (D),

1
< [1 +(1+ 2*21)4] R (| Aw (T, = (1+271) - ST f A7
(202)
From Corollary 38]

H (Wi ()W () T W (T)) Wi (Th)) — W(Tl)HW(Tl)Hop
= HWI(TI)HWQ(TI)HMA1234(T1)WQ(TI)WI (Tl)Hop
< |[W(T) "W (T) |, 1M ar2sa ()|, W (T WA (T, (203)

< ((1 +27%) fl\/a€>4 V6 ((1 +2721) flx/&)Q “ea(Th)
S\/é(l 42718 S BSen (T)) < 2—28ff8f;16d—23/2€8.

Thus

H (T W, Tl)HWQ(T1)W1(T1)) — W (Ty)" W (Tp)

op

< || (W@ W2 W (T WA (1)) = W) W)+ | Awaw (T, (204

_ 1oy, -
<(1+2 16)'§f1 iy tdToe

From Lemmal|T6]
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W (@) Wa (1) W () WA () = (W (1) W (1))

op

| (W2 () W (1) W () WA (T1))* = W (To) W (Ty)

op

<
2\/Amm (W (T) "W (Ty)) — | (Wi (T1) T Wa(T3) W (T WA (T1)° — W (To) WY (Ty)

op

(1+2719) 3 fi Mfy d o€
8
2\/ (75) —(@+2719) 4ty ld e

By (C2).

< <0.27f5 td 3.

(205)

Tmin (W1 (T0) T Wo (T0) Wy (T) Wi (Th) + W(Ty)™)
>0 min ((W(TO)HW(TO))1/2 + W(O)H)
= W) W) W)W ) — (W) W) |~ aw (@l o)
>fy td7 et = 0.27f; e — (14271 - iffsfz‘ld”e“
>0.72f, td =3,

which further gives

Omin (Wl + W]f)'t:Tl
N ((Wl(Tl)HWQ(T1)HW2(T1))_1 (W (T) W (T0) "W (Ty) Wi (Th) + W(Tl)H))

3
= (man,k |Uk1(Wj(T1))|> < omin (Wa(T0)" W (T2) T Wa(T) Wi (Th) + W (T1)")

€
>
- 2fir)’f2d9/2
207)

H.2 STAGE 2: SADDLE AVOIDANCE STAGE

€

In this stage, we further assume a > 32f2 fod'301(2) (5 In 0’1“@)) + 2L Ind +23In(4f;) + 7n f. >
) el 1 2 1 B 1 2 |

while a}/Z(Z) < 32f{’fid53/8‘ From Lemmaand Theorem ,
a
ea(t € [T1,+00)) < ea(Ty) < 2V3f2d%/?€% exp <_32f120f2d1301(2)> 208)

<V3. 2745f1721f;7d7269/86701—5/4(2)'

1/4 i
Moreover, a > 32f2" fod*3 01 ()b, where b—Inb > 31n (‘716(2)> +38 Ind+371In(2f1)+61n f>.
Thus

aen(t € [Ty, +00)) < aea(Ty) < 28V3f2 f,d*/26%0, (L) exp(—(b — In b))

(209)
<V3. 2—31f1—15f2—5d—187/8€50.i/4(Z).
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_ 32fPf3d° : : .
Theorem 40. At 17 + 15, Ty = YOI the following conclusions hold.:

||W1(T1 + Tg) — W{(Tl + T2)||F S 3f1d€

Omin(W1 + Wi)(T1 + T3) > 23/4&/4(2)-
Lemma 41. Bound of operator norms throughout the optimization process.

(210)

Fort € [0, +00),

IS = W(t)lop < |= —= W(H)|r < 1.01Vdo1 ()
W lop < [W]lp < 3Vdoy () @11
max [|W;|op < max [|W;]|r < vV2dY301/4().
J J

Proof. Fort € [0,Ty], the result is obvious from Theorem [36]and Lemma 37}
For t € (T}, +0o0): from Lemmal[23]
1E=W@)lop < [E=WH)llr < |5 =WO)|r < [Z]r+[WO)|r < V2o (). (212)
Giving
W (®)llop < IW D) r < 1= =WEHF + [ElF < 3Vdor(S). (213)

For the last inequality, prove by contradiction.

Suppose max; [|W;||op > v/2d"/85,/* (), then by invoking Corollary 38|
ea(t) <ea(Ty) < V3-2710 [ f;10d4729262 < 27" max [ W2, (214)
j
Thus for ¢ > T,
W, = WA = W

> |Wawif|| = [[WaWsWah o WE W W
= [[WaWWs Mg W Wy W W[ — [[WaWs WaWs! Aas WTWT|

- HW4A34 (W3W§q)2 WfHOP - HW4W3W3{JA34W3W?{IWEHOP -

Wy (WaWidt)® agawift

op

4
> (max W12, — 36A> — 6ea max [|[W; S, > 15Vdo1 (D).
j J

215)
which contradicts inequality (213)). This completes the proof.
O
Lemma 42. Bound of HW{1 ||Op, W?fl ||Op, and relevant terms.
Fort € [T17T1 + TQ],
max (W5 @), [Wa'(0)],,) < 12878 a7/ 2014 (), (216)
_ 2 _ 2 31,0 p—3 1115 _
max (eA(t) WL @), ealt) ||W; 1(t)Hop) < V3.9 30 f8gm115/8 35734 sy (217)
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Proof. We begin with the time derivative of W, ' and W5 "

dIIr—l
G = TRWIE - W)W, — alio Wy 4 aly  Agy
(218)

=
dvgj = Wy WHES - WYWHRITY — aAps Wit + aWy ' Agy.
From & || M||,, < ||$M Hop (this in equality is from triangular inequality and standard calculus
analysis),
d _ _
a ||W2 IHOp S ||RHop ||W4Hop HE - W”op ||WiHW2 1||Op
d +a‘||A12||opHWQ_1Hop+aHW2_1HOp ||A23H0P (219)
W3, < W5 W, 15 = Wi, WAl 121,
+al| Aol (W5, + a [ W5, 1Asall,,
From Lemma #T]and
1
[Rll,, < 4/1+ o2 (Wa) [ A2sllop
_ 1
R
[ ws L, = W= Wi, = W7 ws g
<\ Lrealwi ',
[ws Wi, =/ Iws WEwaw =, = i - ws |
<\ 1+ealWi,
Further we have
d =
En ||W2—1H0p <22 (1 +en ||W2—1||jp> d0/8gf/4(2) +V2aen HW2—1||OP o)
d =
I ||W3_l”op <22 (1 +en ||W3—1||jp> P304 () + V2aen ||W3—1||Op.
Combine with (208) and (209), for ¢t > T} such that ZI6) holds,
d _ d _
o (G 1795y 3 19957,
(222)

<2V2(1 + V3 270y A (R) + 272 0 £ AP A g P (8)
<2V2(1 +2720)d 307/ (5).

-1 -1 1 f1vd
From Theorem 36} max ([|Wa(71)~! |, [Wa(T)![l,,) < smmiwsmon < olalie.
then the proof of the first inequality is completed via integration during the time interval [T7, 77 +715).
The second inequality follows immediately.

O
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Remark 17. This Lemma verifies that VV2 5 are bounded (consequently Wy 5 are full rank), then
R is well defined throughout this stage. Fort > Ty + Ty, further analysis shows that the minimum

singular values of Wo and W are lower bounded by Qo 1/4(2)).

Lemma 43. Skew-Hermitian error.

Fort € [Tl,Tl + TQ],

W1 — Wi[lp < 3fide. (223)

Proof. From section[G.1.1]

d
I = WiIlE = —200 (D)t (W2 = W)™ Mz (W1 = W)
— o1 (D)tr ((W1W1 — W WY (W - W1W1’H)H)
. (M2 (M + My) My (Wy = W) (W, — 7)™

—tr (Mo (ML — My) My (W + W1) (W — W{)H)
+ 2tr ([=M] My M, + My My M)W, (W — W{)H) (224)

(
2 (o (932 W () 0 ) )

[
— 2R (tr (Alz (Wy — Wy) (W — Wf)H))
(W

1 Aoy WoW! (Wy — W) ))

Note: —M{M2M1 +M1M2M{ = % [(Ml — M{) M2 (M1 + M{) — (M1 —+ M{) M2 (M1 — M{)]
From Lemma2] for ¢ € [T1, T + T2),

—112
max (HRHR_IHop’ op) <ea HW2 1Hop (225)
<V3. 2—31f1—9f2—3d—115/8630;3/4(2),

max; oz (W;)
My — M|, < V6 —5= K
|| 1 1 ||op mln (WQ) A (226)

< 2_27f1 9f2 30— 113/8630_1—1/4(2)’

My + M 1 , V6 max;  o2(W;)
My — —— <A, + = |M1 — M 1+ — I en
H o= T S 1+ a2, - D .
< 2_28f1_9f2_3d_113/8630;1/4(2),
Consequently:
IR, < \/1 +ea HW{lHip <143 273279 3 115/885 78/ (3, (228)
Wil < Wil < V2d7301/* (D) ||RI|,, < (1 +27%) v2d/301/*(2), (229)
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My + M

My + Mj
2 2

< (1+272)2440%(%),  (230)

op

< [[M2]l,, + HMQ -

op
| MMy My — My Mo M|, < ||[My — M| || Me]| | My + M|

op —

(231)
< (1 + 2—29) 2_25ff9f53d_109/8630f/4(Z).

By combining all results above, for ¢ € [T, T} + 1] such that ||V, — W/ || » < 3fide holds,

d
3 W =Wl <—0-0-0
+ M)l 1] = M, 10z llop (W71l + Wil ) W2 = W
+ 2 || =M MMy + My Mo M|, (W7 W1 — WH|
+2max W52 01% = W]e (HRHR — 1|, + 1~ RRHHop> W1 — Wil g

+ 2aea [Wy — Will7

+daea Wy, W2l e W3, W1 = Wil
< 2—22f1—8f2—3d—25/2€401(2)

421 ff8f§3d_25/2e401(2)

+ 2—24ff8f{3d—25/2€401 (%)

+ 2—26f1—13f2—5d—171/8€70.i/4(Z)

+ 2_18ff8f§3d_25/2e401(2)

< 2717f178f273d725/2640_1 ().
(232)

From Theorem 36} at ¢ = T7,

IWA(T1) = Wi(T) | p < IWH(T) e + WD)l < WD) F + [IWa(T0) | [1R(T1)llop

< (1+2732)2vd- (1+272Y) fivde < (1+272°) 2f1de.
(233)

Thus ||W, — W]||5 < \/[(1 +2-20)2f de)? + 2717 £78 £73d—25/2¢451 (2)(t — T1) , when both
t € [Ty, Ty + To) and |Wy — WJ||%. < 3f1de hold. Then

WL (T3 + To) — W{(Ty + To) | 7

g\/[(1 +2-20)2f1de]® + 2717 f78 57 3d=25/ 2640y ()T (234)

g\/[(l +2-20)2f 1 de]® + 2712 f72 f71d-T/262 < 3 de.

which completes the proof.

Corollary 44. The minimum eigenvalue of Hermitian term.

For any o, (W1 + W{)(T1) > it takes at most time Ty to increase to 23/4ai/4(2).

R
2T

Proof. We analyze the dynamics of Ay ((Wl +wH" Wy + W{)) = o2. The definition of n; (t)
and x(t) follows section The dynamics can be expressed as below:
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;tak = 201(2)01%7751\42771@ + UI(E)UI%XICH (W — W{)H (Wh — W1) xx
+o1(R)arR (ni (M7 — My) (Wy — WY) xi)
— o Ma(My + M7) Manyg — o3 R (ni! Ma(My — My) Ma(W1 — W) xx)
+ 0w (nff (M{ MMy — My My M) (W — W) x) (235)
— 204 R (nff Wi (Z = WH YWy (RP R — T) Wi xz)
— 204 R (nf (I — RRT) MyW, (S — WH)y)
— 2a0%R (anlgnk) + dao, R (U£W2_1A23W2W1/Xk) .

From HMQ—Ml%M{ " < 2728f1—9f2—3d—113/86301—1/4(E) and H% ; <
(1+272) 241107 /(2),
My + M M, + M|
nsznk>n,f( ! )nk_HMz_ 12 1
op
My + M _ B B
>l ( 1 1>77k 9289 131~ 13/8 .3, 1/4(2)
M +M My + M
il Mo (My + Mj) Moy, < nf( ! 1> (M; + M) (121> -
+2HM2— 1 : 1 1 : 1 <|M2||OP+H121 )
op op op
M+ My My + M|
<ni! (121> (My + M) <121>
+ (1 + 2—28) 2_24ff9f§3d_109/8630f/4(Z).
(236)

By Lemma W1 = Will,, < [[Wh—Wi|p < 3fide,
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d
—op > 201(S)opnf Mang + 0

de
— a1 (X)oy |My = M|, Wy — Wi,
— oini Ma(M; + M{) Moy, — oy max IW;llop 1My = M|, W1 — WA,
— o [|M{ Mo My — My Mo M|l [[W] — Wil
3 H H
~ 205 max W 3, |12 = W, (||R R-1I||, +||I - RR ||Op)
— 2aeacf — dacaon [ Wy, max [ |2, | Rl
M, + M _
> 201(2)0% (771? (1;1> Ne — 2—28ff9f;3d—113/86301 1/4(E)>
— o [Wa = W, - 2727 £ f3 21380 ()

My + M| M,y + M] _ ol g e .
ot () e (PG e (1427 2 g )
= ok [Wh = WH|l,,, - 272 f0 f 2R ()

— o Wy — Wl/H()p . (1 + 2—29) 2_25ff9f{3d_109/8630f/4(2)
— o - 2725f1_9f2_3d727/26301(2)
-y 2—29f;15f55d—187/8650i/4(2) o 2—22f1—9f2—3d—27/26301(2)
M, + Mj My + M\?
> 200! 01(2)( 12 1)—( 12 1) Mk
— o - (1 + 271) 2722f1_9f2_3d727/2630'1(2) _ O']% 3 2723f1_9f2_3d7109/8630'1(Z).
237)
under Ok 2 W,
d M + M| My + M\?
—oi > 208 |o1(2) L) LA e — 27801 (X)o7}, (238)
dt 2 2
Denote P = W1+W1/ Q= ngW{. Notice that
M M! 1
PP +QQM = = Py = o, (239)
My + M 1
i (121) e =i (PP +QQ™) mi > S0, (240)

7\ 3 /
i (Ml;er> me=ni (PP +QQ") (Ml;Ml> (PP 4+ QQ™) .

1 M, + M/ M, + M/
= Egﬁﬁf (21> e+ 18 QR (21 QQ .

+ ia}é‘nf [QQH (Ml ;Ml) + (Ml ;M1> QQH} M

1 M, + M| M, + M/
< —ghnH 1 1 1
_160k77k( D) Nk + 5

1
(3o, + 1al,).
017 (241)
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) 1/4
Notice |Qlop = 5 W1 — WH ||z < 2 fide < oy, - 31 f2d™/?, € < Wq/ (),

d 1 My + M| M, + M/ 1
ot 2202 | (00 = ottt (F 2 ) e M2 (Gt + e
— 2785 (X)o7}
1 1 M, + M/ 1 _
> sop | 01(X) = —oi ) =208 [ —5—|| IQI%, ( 507 + Q2 ) =27 Fo1(2)oy
2 16 2 op 2
1 1 5 5
> 50,%01(2) - 3—202 —81 (1 + 27") f110f22d"3/4e201/2(2)0ﬁ — 2785 (X))}
3 1
> oton®) - Lot

(242)

This indicates that for o, € [ 23/ 401/ 4(2)} , 0} 1s monotonically increasing. By stan-

€
27207

dard calculus, it takes at most time At (O'k > 23/ 4Ui/ 4(2)) < T, for o}, to increase from at least

1/4
W to 23/40'1/ (E)

2.4/ A2 (3

At (ak > 23/40}/4(2)) <

2772097
4.,/7”152) 3 , 1, -1
= g(jl(z))\k ﬁ)\k d)\k

4ff;§d9

o1 (%)

VI 3 , 1
8

4f?;§d9

-1
<s|(—5 o 4. Z) T D)< T
= \aff i 2 e

And for t € [Tl + At <ak. > 23/4Ji/4(2)) , Ty +T2i|, oy, does not decrease to less than

(243)

<

23/461/4(S) if t < Ty + Ty. This is from the continuity of o and the time derivative of o at
o = 23/4Ui/4(2), t < Ty + Ty is positive:

d 1 4
P >~y (D) - (23/4(;}/4(2)) > 0. (244)
L Tt R
O
H.3 STAGE 3: LOCAL CONVERGENCE STAGE
In this stage, we analysis the time to reach €. -convergence, that is
T (€conv) = irtlf{ﬁ(t) < €conv }- (245)

Lemma 45. o,i, (W1 + W) is lower bounded, while the skew-Hermitian error is upper bounded.

Fort > T 4+ 15,
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Tmin (W1 + W7) (1) > 2¢/161/4(2) (246)
W1 — Wiz < 3fide.

Proof. (246) holds at ¢t = T + T5. Since both L.H.S. change continuously, it left to prove that
the derivatives at these thresholds (to be specific, ¢ > T, such that ||W; — W/{||p|,_,, = 3fide or

o (W1 + WY)|,_,, = 2%/*01(X)) are positive/negative. (If such time does not exist, then the proof
is done. )

From

1
Tmin(W1) + 0o (W) > 3 Amin (W1 + W)W + WHH + Wy = W)Wy — w)*)
1 (247)
> 50'12nin (Wl + Wll) )
and
O—min(W{) S Umin(Wl) + ||W1 - WI/HF . (248)
For t > Ty + T5 such as (246) holds,
Ounin(W2) > Gin(W1) — €5 > =0t/ 4(3). (249)
V2
Then by following almost the same arguments as Lemma [43]and 4]
d
=W = Wil < 200 (®)tr (W2 = W)™ 02, (Wa) (W1 = W) ) =0 =0
+ 2—17f1—8f2—3d—25/2€40_1(2) (250)
2 17 =8 p—3
< o) [Wh = Wil +27 1755 22 e (),
d 3 1
&o—i (W + W) > gai (W1 + WY) o1 (8) — 3302 (Wh +W7). (251)
Suppose for some t1,t2 > Ty + T such that ||Wy — Wi||p|,_, = 3fide, op (W1 +Wi)|,_,, =
23/451 (%), then
d 2
SIw-wil - <o
4 =h (252)
aa,% (W +WY) > 0.
t=to
This completes the proof.
O

Theorem 46. Global convergence bound.

For four-layer matrix factorization under gradient flow, with random Gaussian initialization with
1/4 -
(5) regularization factor a > 32f3° foad 3o (X)b, where b satisfies

91

scaling factor € < 323 f2d53/5”
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1/4
5 281
b>5In <"1()> + =5 Ind + 23In(4f1) + Tin fo
€
(253)
1/4
> 303
b—1Inb>3n (Ul()> + o5 Ind + 37In(2f1) + 61n fo.
€

Then for target matrix with identical singular values, there exists following T (€cony ), such that for
any €conv > 0, (1) with high probability over the complex initialization (2) with probability close to
% over the real initialization, when t > T (€conv), L(t) < €conv-

_ 2 )
T(econv) <Ti+T1T5+ 0 3/2(E> In (dal()>

6COl’lV

_ 1 20 f3d° | a0 do? (%)
= R LdEn ) T o) T (B

Co(HBE 1y (1)
=0 (Ul(z)ez - Uf/2(2) : €conv ) )

Proof. Following the derivations in Lemma 43|

(254)

6COIlV

. 1 a4
win ok (W)(t > T +To) > ﬁol/ (). (255)

By Lemma[23|and {1}
Loslt) < Lon(Ti + To) exp (-8 n (W) > Ty + T Ti - )
Js
S Eori(o) exp (—8 mlkn |U}€(Wj)(t > T1 + T2)|6(t - T1 — TQ)) (256)
75
< 0.52d0%(3) exp (—af/z(Z)(t T T2)> .

For regularization term, by invoking Theorem [27} [36]and Lemma4T]

da min;  [or (W) (¢ > Th + T)|*
3 max; i |or (W;)|?

da min; g [ox(W;)(t > T + T)*
3 max; i ok (W;)[?

Lreg(t) < Lreg(Th + T2) exp ( (t—Ty — T2)>

a

4

IN

€2A(T1 + TQ) exp < . (t — Tl — TQ))
257)
47aminj,k |0k(Wj)(t >1T) + T2)|4 .

a o
— T — t—"T, =T
f“1”m< 3 max ok (W;)P t-h 20

<270 27T 20T () exp (—16 FR fod® 102 () (8 - Ty — Tg)) :

IN

By taking logarithm on the summation of these two inequalities, the proof is completed.

I CONVERGENCE UNDER GRADIENT DESCENT, STAGED ANALYSIS

This section states the complete proof of convergence under Random Gaussian Initialization [C.2]

At the beginning we still assume (@9) holds. (For the complex case, it holds with high probability
1 — & for the real case, it holds with probability (1 — §). )
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Theorem 47. Global convergence bound under random Gaussian initialization, gradient descent.
For four-layer matrix factorization under gradient descent, random Gaussian initialization with

1/4
scaling factor e < 32‘;},)?%, regularization factor a > 32f3° fod'3o1(X)b, where b satisfies
1

1/4
b > max (5 In ("16(2)) + % Ind + 23In(4f,) + 7ln fo, 161n(2f1f2d)>
(258)

1/4

5 303

b—1Inb>3In ("1()> + 55 Ind + 37In(2f1) + 61n fo.
€

Then for target matrix with identical singular values, there exists following learning rate n and
convergence time T (€conv, 1), Such that for any €.ony > 0, (1) with high probability over the complex
initialization (2) with probability close to % over the real initialization, when t > T(€conv, 1),
L(t) < €conv-

n= O(min (a72f1_4d7267201(2),
af1—56f2—14d7301/4680_1—9/2(E)’ a’lfl_44f2_10d’219/4e401_3/2(E),

ST (), T T o () ) ) (259)
- do?(Z
T(6C0nva77> <Ty+T+ 77_10'1 3/2(2) In (Ul()>

€conv
6 £2 19 2
-0 Jif3d -+ 3/12 In <d01(2)) )
no1 (2)6 noy (Z) €conv

The following section completes the proof.

1.1 STAGE 1: ALIGNMENT STAGE

. . a1/t (®) 5420 £ 713 4
In this section, we set € < 41f i@ > 20 f{9 fad'3o1 (X)b, where b > 2*In(4f1d) + In fo.
1

n=0 (112‘}14%), with appropriate small constant. Without loss of generality, f; > 2, fo > 9.

Theorem 48. At Ty = the following conclusions hold:

1
32f1% f2d0e201 (X))’

, €
Omin (W1 + W1)|t:T1 > W

ea(Th) < 2,/3fid3ete= + 70 (a= fAdSSo}(S))
max o5 (W;(Th)] < (1+2721) foV/de
Js

mino (W;(11)] > (1 - 2*”>ﬁ.

This section proves the theorem above by following Lemmas and Corollaries.

(260)

Lemma 49. Maximum and minimum singular value bound of weight matrices in alignment stage.

1
Fort € [O,m )

0 8o d
iknok(Wj) > —16f3d% 2301 (2)t, max oy, (W;) < f1de

€
. 261
T AVd g:k T V1 —Afideto (D)t (01

J
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Proof. Fort > 0 such that max; j, o3 (W;) < 2f1V/de < %U}M(E),

. 3 .
[V, Lo, < max o0V (2(5) 4 ma lon (W,)1*) < 3 maon(095)Pon (),
J o J.k j.k 2 4k
(262)

By invoking Corollary (30} for ¢ > 0 such that min, x o (W, (t)) > —5~,
8 3 J 2f1v4d

max o (W (¢ +1) = maxof (W;(1)) < 3ymax|ow(W; ()[04 (T)

J.k Js
+ 7720 ( (Efl )

SMH}g}I%( St o1(%)

muin o (W) (¢ + 1) — wain o3 (1 (1)) > ~3ymin|ox (W) () max o (W, () o (5)
+7%0 (a2 (efl\/g)(S)

> 21 (i o0 (0 + 1)+ min o (1730 )

max o (W; (1)) P (2).

(263)
By solving the differential inequality,
W 3
max0k|W ‘ < maxjk0k| ( )‘ < fl\/>6 |:0722
Jk \/1 —401(X) max; 1, o |W;(0)|2nt \/1 —Afidelo,(X)nt 16 fide?a1(2)n
(264)
€ 1
i Wi (t))] > —16f3d% 201 (St t € |0, —— | . 265
r?’lknlak( ]( ))‘ = fl\/a Ji €’ o1(X)n 32f{1d2€201(2)7) (265)
This completes the proof.
O

Notice that

fl\/;le —21
max oy, (W (t < Th))| € —==—== < (1 +27*") fiVde
K
’ Vi T (266)

. 1 € B €
minlon (W3¢ < )] > (1= g ) =2 > (-2 )

Corollary 50. Balanced term error in alignment stage.

ea(Th) < V3. 2’31f1_14f2_1d’29/262. (267)

Proof. By simply combining Theorem [29]and Lemma[49] denote M = max; i ¢<1, (W} (1)),
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nae

75 d3> + Lreg(t) + 170 <a2M4£reg(t) + 1/ @Lreg () MO Loy (t ))
(aM12[’0r1( ) + a3M4£reg( ) )

Lreg(t+1) < (1—2509

IN

2nae
: ( i ) Lreg(t) +1°0 (afid ot (X)),
(268)
giving
_ 2nae?
Lies(t) < Lrog(0)e 17 450 (fHa* ot (2)). (269)
Lreg(Th) < 3afid®e*e™" + 0O (f1*d®®oi (%)), (270)
Ere T — - — —_
ea(Ty) =2 Lres(T1) < VB2 gm20/2¢2 (271)
a
O
Corollary 51. Main term at the end of alignment stage.
Att =17,
Omin (W1 + W1)|,_p, > (272)

- 2f3f d9/2"

Proof. Denote Ax(t) = X(t) — X (0) for arbitrary X.

Att =11,
T1 1
lAw(T)llop < || > 1 ZWHL S (OW, a0 (S = W) WE ()W, 5 (F)
t'=0 op
T1 1 9
2 ! . (4112
30 ( max |V, £ _ma W5 (2 >||op)
6 8
Ty -601(5) - (1427 fivlde) +9°Ti0 <a2d (2Ve) >
6
<nTi - 801(%) - ((1 + 2_21) fl\/ae>
< (1427 %f;sfgld%‘*.
(273)
Thus
1
A (Tl = |3 [V + (0D A1)+ wr (1) (W (13) + W(0)]
op
14,0,
< (U271 SR,
(274)
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From Corollary 50}

H (Wi (T0) W (T T W (Ty) W (T)) — W (T) F W (T)

op

<[ W)W (T) |, 1M ar2aa(T) |, W (T WA (T, 275

§2712f178f2716d723/268’

Thus

H (1) W (T HWQ(Tl)Wl(Tl)) — W(To)"W(Tp)

op

< | @) W) wamwa (1) - W)W+ lAwew (Tl @76)
<(14271)- §ff4f5 KU
From Lemmal[T6]

HW1 (T T W (Ty) F W (T1) Wy (Th) — (W(TO)HW(TO))1/2

op

H (Wi (T EWo (1) E W (T )W (Tl))2 — W(To) "W (Tp)

op

<
2\/Amin (W (T0) W (T0)) — || (W (1) P Wal(T)H Wa (T WA (T2))° = W (To) W (Th)

op
(1 + 2716) . %ff4f271d7568

- 8
¢ _ R
2 (5m) — 2 b ase

<0.27f; td=3e,

277)
By (C2),
Fmin (Wi (1) W (T0) "W (TO)WA(Th) + W (T1) ™)
> 0in (W (1) W (T5)) ' + W (0)")
(278)

~ [y W wamwa ) - (W) |

- ||AW(T1)||op
op
>0.72f, td 73,

which further gives

Omin (Wl + W1/)|t:T1
=Omin ((Wl(Tl)HWZ(Tl)HW2(T1))71 (Wl(Tl)HW2(T1)HW2(T1)W1(T1) + W(Tl)H))

1 3
Z ( (W(Tl))|> * Omin (Wl(Tl)HWQ(Tl)HWQ(Tl)Wl(Tl) —+ W(Tl)H)

max; i |0
->_ ¢
“2f7 fad®/? (279)
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1.2 STAGE 2: SADDLE AVOIDANCE STAGE

In this stage, we further assume a > 32120 fod301(X)b, where b >
1/4
(5 In (”1 6(2)) +2LInd + 23In(4f,) + 7ln f2>. Meanwhile,

€ < 1
ot/(2) = BT

From Theorem , forn =0 (a F50 514 q301 /4859 2(2)) with appropriate small constant,

ea(Ty) < 2\/3ffd3e4e—2b +n0 (a= 1 fl4dB3ebo? (%))

(280)
< 2—44f;21f;7d—269/8670;5/4(E).

1/4 PR
Moreover, b — Inb > 3In (‘716(2)> + %lnd + 37In(2f1) + 6ln fy. Thus for n =

@) (a_lff44f§10d_219/4e40;3/2(Z‘)) with appropriate small constant,

aea(T1) < 2,/3 - 201 290 (S) exp(~2(b — Inb)) + 10 (af 1 debrd ()

(281)
< 2—30f1—15f2—5d—187/8650%/4(2).
Theorem 52. At T + 15, 15 = ‘:’}i{ ?(ggz , the following conclusions hold:
Wi (Ty + To) — W{(Ty + T < 3f1de
WA (Th ) —Wi(Th N e 1 082)

Umin(Wl + Wl/)(Tl + T2) Z 23/40’}/4(2)'

Lemma 53. L,,; is approximately non-increasing.

Fort € [0,400), suppose |[Wie(12,... 7N}(t)Hop < M, then
Loi(t+1) — Lai(t) < _277Nmikn |Jk(Wj(t))|2(N_1)£ori(t)
7,

+ 7]20 (MS <M4 + Lori(ﬂ) ‘Cori (t) + (ZM4 V £ori(t)£rcg(t)) (283)
+ 1720 (M Logi (1) + a2 M Lrog ()?) .

Proof. Following the continuous case (73), the change of product matrix satisfy

N
W+ 1) = W)~ 13 WL s (OWEL i (07 (5 = W) Wi 2 (97 Wy ()
j=1
—n2 2 (1)|I2
=0 (_mwx [V, £l _max W OI2,).

(284)
Then
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Lot +1) — Lon(t) = —R <<2 _ Wi+ 1; WO 1) - W(t)>)

= > (Wi, B (2 = W) Wiy, 07|

j=1
2
n°0 ( M? Eori(t)~j6g{3§74}||ijﬁ(t>\\p>
. 285
0 (3% _max [V Losto)] ) 285)
4
( v 9w ]

N 1Il|0'k( ( ))|2 (N-— 1)£0r1( )

+ 7720 (M8 (M4 + LOI‘]( )) £0r1 t + aM4 \/ or1 Ereg )
+ 00 (M Loy (£)? + > MBL,1eg (1))

O

Below we further assume 7 = O (min (f1_27f2_9d7355/86901_15/4(Z), a’lfl_21f2_7d*273/86701_9/4(E)))
with appropriate small constant.
Lemma 54. Bound of operator norms.

Fort € [Tl,Tl + TQ],

I — W ()| <1.01Vdoy ()
en(t) 101274 72 £ Tq=209/8¢7 5 75/4 (x)
aea(t) <1.01- 2730f1_15f2_5d7187/865(7%/4(Z) (286)
IWlop < [WlF <3Vdor (%)
max [Wj op < max [Wj [ r <v2d!/%01/4(2).

Proof. We first prove that if the first three inequalities hold at some time ¢, then the rest follows.
Then we prove the first three by mathematical induction.

1. For some ¢, it the first two hold, then

W @)llop < IW@)llr < 1E =W Dlr + 2] F < 3Vdoy (). (287)

For the last inequality, prove by contradiction. (Omit ¢ here)

Suppose max; [|W;||op > v/2d"/85,/*(S), then
ea(t) < 1.01ea(T1) < 27" max |W;][2,. (288)
J
Thus for t > 17,
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W2, = [WaWsWoW i WEWST W Wit ||
> waw ||, = [WawsWo W' Wit wi|
[ WaWs Aoy W WS WEW| [ WaWsWo W Ags W WL |
- HW4A34 (WswiT)? Wf”op — WA W WA Asa W W W[~

Wy (W W) Aga !

op

4
> (max HWj”?)p - 3€A> — 6ea max ||Wj||(6)p > 15Vdoy (D),
J J

(289)
which contradicts inequality (287).
2. Mathematical induction.
Fort =11,
1= = W(T)r < ISllr + [WT)lF < (1+27%) Vdou (D). (290)

Suppose for t' € [T, t] (Ih < t < Tb), the first two properties hold. Denote M = max; ||W,(t’ €
[T1,t])|lop- By invoking Lemma[53|and 29} at ¢ + 1,

Cori(t + 1) = ‘Cori(Tl) + 772(t - Tl)O (MS <M4 + »Cori(Tl)) ‘Cori(Tl) + aM4\/K(T1)£reg(T1))
0t = T1)O (M Lowi(T1)? + a> M5 Lreg(T1)?)

= Lowi(T1) + 17?120 (d*01(2)* + do1 (2)*(aea(T1))?) < 1.012Vdoy (%).
(291)

Note that Lo,; = $e%. Undern = O (min (fl_27f2_9d7355/86901_15/4(Z), a’lfl_21f2_7d7273/86701_9/4(Z)))
with appropriate small constant,

Lreg(t +1) < Lyeg(Ty) + 1 (t — T1)O <a2M4/.:reg(t) + aﬁreg(t)Mﬁﬁori(t))

+ 0t — T1)O (aM Loy (1) + a® M* Lyeg()?)

—~

< Ereg(Tl) + 772T20 ( a/Jreg (t)MGCOri (t)) + ’174T20 aMlQEOTi(t)2)

12 44 21 e g -5 2 1 [_30,-15 p—5 4 2
< min (a~ {2 44 p21 g7 g=269/87 - /4(2)} o {2 30 £15 5 187/86501/4(2)} ) .
(292)
This completes the proof.
O
Lemma 55. Bound of HW2_1 ||Op and relevant term.
Fort € [Tl,Tl + T2],
W5 @], < 128fF fFd77/ P20y (), (293)
ea(t) [[W5 (1)]|7, < 1.01- 270 70 2= 18/8 36 784 (), (294)

Proof. We begin with the update of W5 ! From Lemma
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W5t +1) = Wy ' (t)
—n [=REOW()T (S = W () Wr ()" Wa(t) ™" — alpa()Wa(t) ™' + aWa(t) ™ Ags(t)] ||

op
<?[Wa () 2 W2t + 1) Hlop IV, L(B)IZ,
(295)
By triangular inequality,
Watt + 1), — IW2®) ], < 71RO, IWa®)ll 15—~ W, W) Wat) ),

+77a||A12 Mo [ W20, + 0 [ W27, 1850

+ P [[Wa () M2 W2t + 1) op I Vi L3,
(296)

From

1
Rl < /14+———=" A2l
” ”‘”"\/ oy Bl

wiws,, = I, = e W an vy < frees s,
297)

Further we have

[Wa(t + 1)—1Hop — ||Wa(t) < 2v2n (1 Tea(t) HW2(t>—1ij) d5/80f/4(2)
+ V2naea (t) |[Wa(t) .,

+ 170 ([Wa(O) T2 IWa(t + 1) Hlopl Vi LO)IIZ,) -
@

i
op —

98)
Combine with Lemma([54] for ¢ > T} such that (293) holds,

[Wa(t+ )7, = W) 71,
<2V2(1 + 1.01 - 2730 nd® 803/ 4(2) 4+ 2722 70 £ 3d /43 51/ (3)
720 <f118f26d245/8€760.%7/4(2)>

<2V2(1 + 2720 nd?/ 3534 (%),

(299)

From Theorem max <HW2(T1)—1HOP7| (Ty) 1“ ) < Inln,k|0'k(w T = (lflgl/i)e,

then the proof of the first inequality is completed via integration during the time interval [17, 77 +75)].
The second inequality follows immediately.

O
Remark 18. This Lemma verifies that W, . 31 are bounded (consequently W 5 are full rank), then

R is well defined throughout this stage. For t > T + Tb, further analysis shows that the minimum
singular values of W and W are lower bounded by Qo 1/4(2)).

Lemma 56. Skew-Hermitian error in saddle avoidance stage, gradient descent. Fort € [Ty,Ty +
1),

|[Wh — Wy ' W W[ . < 3fide. (300)

I
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Proof. From Lemma|[55] for ¢ € [Ty, Ty + T3],

max (||R1R—1]],,. ) ealwst2,

(301)
<1.01- 2*30f1_9f2_3d*115/86301_3/4(Z),

max; ; op(W;)
M, — M < V6 - AeA
My — M, o2 (W) (302)

< 2727]"1 9f2 30 113/8630_1—1/4(2)’

My + M 1 V6 max;  o2(W))
My — ——— <A —||My — M 1 Misasianis’ Nl ANAR 22
H ? 2 op B || 12H0P + 2 || ' 1H0P N + 2 m1n<W2) ca (303)
< 2728f179f273d7113/8630_1—1/4(E).
Consequently:
IR, < \/1 +en ||W;1|y§p <141.01-273 79530 115/8e3 573/ (), (304)

Wil < IWillp < V2d'50 (D) ||RI|,, < (1+1.01-2731) v2d'/50/ (%), (305)

M, + M

M, + M
2 2

< (1+27%)2dY%62(8),  (306)

op

<M, + HM -

op
| My Ma My — My Mo M|, < |[My — M| || M| | My + M|l

(307)
< (1 + 2—29) 2*25f1_9f2_3d’109/8630f/4(E).

By combining all results above, for t € [T, T; + 15 — 1] such that ||W; — W{||z < 3 fide holds,

IWa(t+1) — Wit + 1)1 — Wi () — Wi (@[5
< — 2001 (2)omin(W2)? | W1 (t) — Wll(t)”
M2 (8) L I (E) = My (8)] o IM2Dllop (IWH D] + W (1)) IW(E) = WD)l
+20 || = M5 (1) My (£) My (£) + My (8) Mo ()M (8),, W3 ()| 2 W2 () — WA (8)]]
2mmax W (013,15 - WOl (|RO7RE ~ 1], + |1 = RORO™,, ) Wi (t) = Wi(©)]

+2naea(t) Wi (t) — Wi @)%
+anaena(t) [|[Wa ()|, IW2 (@Ol r W1 ()], [Wi(t) = Wi (#)]|

lop

2
+170 ([ s | W00, 12 = WO le +aca (0 [Wa(o) ],

5 -1
W (t NIWo(t+ 1 o
je{ql,géA} W5 ( )”op [Wa( )l p>

< — 2004 (£)omin(Wa)? [Wi(£) = Wi ()5 + 27 T 8 fy 2d 722t (2). 108
(308)

From Theorem[48] at t = T7,
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W (Ty) = Wi(T) p < [Wa(To)llp + [WIH(T) | p < [W2(T)lle + [Wa (Tl g [1R(T) o

< (1+427%) 2f1de.
(309)

Thus || Wy (£) — W{(t)]|% < \/ 142-20)2f,de]® + 2717 78 f;73d—25/2€4 01 (2)(t — T}), when
both t € [Tl,Tl + TQ] and ||W1( ) ( )HF < 3f1d6 hold. Then

WA (T1 + Tz) — Wi(Ty + T)|[ < \/[(1 +2720)2f1de]® + 2717 78 57325 2k ()T

< (1 +2-2)2f1def + 212 f72 (71722 < 3fude,

(310)
which completes the proof.

O

Lemma 57. The minimum eigenvalue of Hermitian term. Fort = T} + T5,
Tmin (W1 + Wy 'WEWIY |i=gy ym, > 29/401/4(5). (311)

Proof. We analyze the dynamics of Apip ((W1 + WO (W 4+ W/ )) =0
From HM2 _ Ml%M{ < 2—28f;9f;3d—113/8€30;1/4(Z) and HMl%M{ <

op op

(14 2729) 24"/40]/*(%), define

2
(312)

Bt) = on(E) (MQ(t) _ Mi(h) +M{(t)> - (MQ(t) (Mﬂt)—;M{(t)) Ma(t) — (Ml(t) + M(t

|E(0)lop < 27287015 2 SN + (142728 272 0 5810507 ()

< (1 +9o74 4 2728) 2724f1—9f2—3d7109/8630£1’>/4(2)'
(313)

By Lemma Wy = Will,, < Wi = Willp < 3fide, and under owmin(t) > 577725

Umin(t + 1)2 2 )\min (Wnew(t)HWnew(t)) - 2_1801<E)0min(t)4u (314)

where

) (A0 1250 (Ml(t);rM{(t))S LB

WneW(t) = (I +n

(315)

Denote P = WI;W Q = le Notice that PPH + QQ¥ = M%M{ Then by invoking
Lemma 20| (omit ¢ here) the first term becomes

73
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)\min (WI{ZWWnCW) = )\min (WnchV,{iW)
— Din ((I +n [01(2) (PPH 4+ QQM) — (PPH +QQ™")* + ED ppH

(140 ]o1(®) (PP +QQ") - (PP +QQ")’ + E]))

M1+M/ 01211111 ?
> 02, 4 80 <ol<z>—2||cz||3p M )(4)
op
s ()
2 ||, \ 4
M1+M/ UIQI]iIl
~ s <||E||op+ Qi | ) (Z2m)
op
My + M |[* || My + M| My + M|
oo ((meo [ L2 4 [P g ) [R50 )
op op op

(316)
Notice [Qllop = 3 W1 = Wil < 3 frde < o4 - 3fi fod"V/2, € < ooy’ (5), then under
Urnin(t) > W,

1

Omin(t +1)2 > omin(H)? 4+ (271 = 81(1 4+ 27271001 (X) opmin (£)* — 3—2namin(t)8. (317)
Notice that oy (t) is bounded by O (dl/ 851/ 4(2)). By taking reciprocal,
1 U S (271 = 81(1 +27*)27 )01 (X)omin (£)* — 3570 min (t)®
Omin(t+1)2 = omin(t)?  omin(#)* + (271 = 81(1 4+ 274)2710) 001 (X) opin ()6 — %namin(t)m
1 3 1
< —F S Y)— = min (€ 4~
S ooz Tt ()~ ggnomin(®)
(318)
P, i . r_ 1 1 _ 1
This indicates that o, (¢) takes at most time At' = Toor () | 7 (=072 (23/401/4(2))2 <Ty

to increase to 23/401/*(%), and never decrease to less than 2%/4¢1/* (%) afterwards (in t € [T} +
A, Ts)).

O]
1.3 STAGE 3: LOCAL CONVERGENCE STAGE
In this stage, we analysis the time to reach €.y -convergence, that is
T(econvv 77) = lItlf{,C(t) < 6c0nv}~ (319)

Theorem 58. Local convergence.

Fort € [Ty + Ty, +00),
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Eori(t) S £ori(T1 + T2) exXp ( 770'?/2(2)(75 - Tl - TQ))

Lreg(t) < lreg exp <7770f/ ()t —Th — TQ)) 320
Tmin (Wi () + WH(1)) > 22/107/4 ()
[W1(t) = Wi(t)]| p < 3fide,

where  Lon(Ty  + Th) = % - do?(%), and  lieg =

2 2
min (Z (1.01 ) 2744f1721f57d—269/8670;5/4(2))) : ﬁ (1.01 ) 2—30f;15f275d—187/8650i/4(2)> )

Proof. Prove by induction.

At t = T5 these properties holds.

Suppose at some time ¢t € [T, +00) they holds, then follow the same arguments in Lemma
max; [[W; (1) op < v2d'/Po1(2).

To address the bound of H W2_1 ||Op,

HM1(75) — Mi(t) () + Wi(t)

< 8f1d9/80i/4(2)6

< [Wa () = Wi,

2 2
op op
M (t) + M (t My (t) — M (¢
HMg(t) _ M) £ M () 5 i®) < Ao (t)]lop + Hl 5 i®) < 16£,d%851/*(D)e
op op

My ( M (¢
Umln W2 \/ IIllIl M2 \/ min 1 ; ( )> - 16f1d9/80'i/4<2)6

/
- \/"?nin <W) —16A1d%50y " (D)e > Zrz01 /().

Similarly, min; 4 (o(W; (1)) > 5oz 01’ ().

Then following the derivations in Lemma [56|and [57]

Wyt +1) = Wi+ D15 < (1= 2001 (S)omn(Wa)?) Wi (1) = W (0|5 + 27 T fr £ 0 d 20y (5)

< (1m0t 2 (D)) Wi ) = W15 + 2708 f 27201 (2) < 3f1de
1 1 3 1 1
< + 0oy (8) = —=nomin () < ————..
T (W(t+1) + W(E+1))7 7 omin(®)? 7 8707 32 (25/201/43))”

(322)
Then by Theorem [53]and [29]

Losi(t+1) < Lo(t) — 200" (8) Lowi (1)
#1720 (max 013, (1 195012, + /2o ) Lon() + ama W50 3,/ Zon) 6 )
110 (W05 (1) + 0 W5 )y o0

< (1= n0?*(2) Lot
(323)
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1
Lreg(t+1) < <1 — 377ad1/40i/2(2)) Lreg(t) + 1)20 <a2M4£reg(t) + /aLreg(t )M Lori(t ))
+n*0 (aMl?cori ()% + a® M* Lreg(t)?)

< (1 4nad Yigl? (o )) Lreg(t) < (1= nad V1033 (2)) - Lreg(t).
(324)
This completes the proof.
O

By Combining the three-stage results, the global convergence guarantee of Theorem[d7]is proved.

J  EXPLANATION OF MAIN RESULT

This section expands the discussion of main convergence result Theorem 7]

J.1 PROOF OF EXAMPLE FOR TIGHTNESS

This section completes the proof of Example below Theorem [I]for tightness analysis.

Firstly, since all w; are initialized to the same value, from the property of balancedness all w; remain
identical through the optimization.

= (01 — wj)w?,
(1-v)o 1
1/4
T(w; = (1=} = | o
€ i/
1—y
—3/2 1
= —d
e /6/01/4 (1 —a*)as o

2-1/4 -

1—
_ —3/2 (325)
71 |:/€/(Tl/4 (1 71‘4 dx—i_/g\ 1/4 (1 71’4 dx]
2 1/4 1 'Y 1
© —dz | +6 dx)
/0.1/4 T 2 1/4 1—=x
_ 0173/2 [ ( 1/2/6 ) 1/’y }

By setting 7 through €conv = 3[1 — (1 = 7)*]%0%, v = O(€conv/0?). Then it takes T'(L < €cony) =
[@ (o7’ ?)+0 ( —3/2 1n(1/7))} This completes the proof of tightness.

—3/2

J.2  ILLUSTRATION FOR THE EXPONENT OF ¢ IN INITIALIZATION SCALE AND
CONVERGENCE TIME

We consider arbitrary N-layer matrix factorization under gradient flow setting(gradient descent fol-
lows the same argument). Then for fixed condition number « = 01(X)/04(X), the requirements
for initialization scale € 0% / N(E) while the training time scales by o [N/ N(E).

Suppose the target matrix is scaled by a positive real constant A € R™, then the new dynamics
becomes
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j+1

d 1
&Wj:<kngk> A=) | I W |- (326)

k=j—1

By setting W/ = AV/NW;, ' = A72(0V=1/N (correspondingly the initialization scale ¢’ = AM/Ve),
then the dynamics becomes the form of

d Jj+1 1
Wi = (H W,Q) -wH I wi|- (327)
k=N

k=j—1

Then W} (t') shares exactly the same dynamics with W;(t) before scaling . Thus for fixed conditional
number x = 01(X)/04(X) (for Theorem[l]and 2] = = 1) or to say, relative size of target singular
values, the initialization scale € a}/N(Z), convergence time 7" an(Nfl)/N(Z). For N = 4,
T x o7 ?(2);for N =2, T o o7 (2).

Remark 19. This is intuitively similar to dimensional analysis, which is a powerful technique used
to understand the relationships between different physical quantities by analyzing their dimensions
and units. For example, when calculating the resonant period of a simple pendulum with mass
m, pendulum length | and gravitational acceleration g, by analyzing the units of target quantity
(Tpendutum] = TT = [m]*[)P[g]” ([-] denotes its dimension) along with variables [m] = M?,
(] = LY, [g] = L*T 2. (Here L is length, T is time, M is mass. ) Then by solving the coefficients,

a=0,08=-1/2,v=1/2 we have Tpenquium X \/1/g.
In our problem setting, if we view the dimension of the largest singular value of % to
be a unit (conditional number is dimensionless), then [Loi] = [3]|X — H}:N W% =

@ |40 2 ~ I (o774 @)|[7] = lor(DI, s0 07 (W is dimen-

sionless, W; has dimension [o1(X)]'/N, then the initialization scale € o Ui/ N(Z). For the training

time, &W; = (THEN Wi ) (5 = W) (TThzyoy Wa ), then [55] = (07 "VN (D)), the training

time is proportional to JIQ(N_l)/N(E)-

K NUMERICAL SIMULATIONS

Through out this section, we consider numerical simulations under four-layer matrix factorization
on square matrices with dimension of 5.

K.1 SADDLE AVOIDANCE DYNAMICS UNDER BALANCE INITIALIZATION

This section presents numerical simulations of the saddle avoidance stage under balanced initializa-
tion. In this experiment, ¢ = 0.05, n = 0.1, £,,(0) = € - diag(1,0.8,0.6,0.5,0.9).

We set the target matrix to 3 = [ in Figure([T]and to & = diag(2.00, 1.55,1.10,0.65, 0.20) in Figure
Each pair of solid and dashed lines of the same color represents the logarithms of the k** singular
value of Xy and that of %(U +V)Ew , respectively. (Here U, V, 3, are defined by SVD of product

matrix W: W = UXNVT, or -# for complex domain. ) Considering the numerical precision and
for appropriate visualization, all values plotted are truncated at a small value. (Here the singular
values are truncated at 1le — 5 so the logarithms are truncated at around —11.5. )

These figures clearly exhibit the following properties:

* 0% (2(U + V)Sw ) provides a tight lower bound for oy, (), verifying the conclusion of
LemmalTg]

* The spectral gap of the target matrix introduces non-smoothness and non-monotonicity into
the original lower bound for singular values of the product matrix, leading to segmented
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log_singular values

rather than global smoothness and monotonicity. This explains why the dynamics are easier
to analyze when the target matrix is the identity.

The 1/2 failure probability of converging to a saddle point under real balanced initialization
is a general phenomenon, even if the target matrix is not identity. This illustrates that the
exact balancedness in real domain may hinder the convergence in matrix factorization,
which is also discussed in [Xiong et al. (2024). For the complex initialization, such 1/2
failure probability of convergence does not occur. This indicates that the complex domain
does not suffer from the drawbacks of exact balancedness at least under our framework,
and thus merits further theoretical investigation.

It is also interesting to notice that in the setting of Figure 2] initializations with
det(UTV) = 1 fail to converge but det(U V) = —1 converges, which contrasts with
the identity target case (but still with a 1/2 probability).

The incremental learning of singular values. Through Figure [T| and Figure 2] we observe
the incremental learning of singular values: the model learns features (here the singular
values of target matrix) one by one. While we cannot explain why the larger singular
values of target matrix converges at first then the smaller ones in Figure 2] and the proof of
incremental learning itself is beyond the scope of this work, we still provide an explanation
of Figure [T under the scheme of balanced Gaussian initialization, gradient flow.

Equation provides both upper and lower bound for the k' singular value of product
matrix o (W) = o{(2,) by the term o, (U + V)X,,), while Theorem demonstrates
that the increasing rate of this term is accurately bounded and approximately independent of
other components k' # k. By invoking conclusions in random matrix theory, we may prove
the gap of singular values at initialization, which leads to the explanation of incremental
learning. This method can be applied to general random initialization under gradient flow.
For gradient descent, more perturbation techniques are required.
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Figure 1: Dynamics of singular values (log scale) for an identity target matrix. From left to right, up
to down: real initialization with det(U V') = 1, det(U " V) = —1, and complex initialization.
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Figure 2: Dynamics of singular values (log scale) for a non-identity target matrix. From left to right,
up to down: real initialization with det(U "V) = 1, det(U " V') = —1, and complex initialization.

K.2 CONVERGENCE RATE OF DIFFERENT DEPTHS

This section presents examples showing the convergence rate of different depths. Specifically,
we vary the depth from 2 to 6 under complex balanced Gaussian initialization, with other hyper-
parameters fixed as e = 0.05, n = 0.1, ¥,,(0) = € - diag(1,0.8,0.6,0.5,0.9), ¥ = I. The plots
of loss curves and singular values (with dashed line lower bounds which is the same in [KI) are
presented in Figure 3]

From the experimental results we exhibit that:

* Generally, deeper IV takes more iterations to converge.

* For deeper N the network stays at saddle for more time relative to local convergence phase,
which is shown by the sharper change in the decrease of loss and the increase of singular
values.

* For depth N > 5 the lower bound term o (U + V)X,,) still suffers from sudden change
when one singular value converges. Furthermore, the monotonicity of this term may not
hold anymore, see Figure [ for result on real domain.

K.3 ALIGNMENT DYNAMICS UNDER BALANCE REGULARIZATION TERM

This section exhibits the dynamics of weight matrices under regularization term. The original square
loss Ly is omitted. Here a = 1, ¢ = 1, n = 0.001.

Figure [3] illustrates the conclusion of Theorem [28] and 30} Clearly the maximum among all the
singular values are non-increasing while the minimum is non-decreasing.
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Figure 3: Dynamics of losses and log scale singular values for identity target matrix, under complex
initialization, with depth from 2 to 6. Figures on the left are loss curves, the right ones are logarithms
of singular values.
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Figure 4: Dynamics of singular values (log scale) for identity target matrix, under real initialization,
depth 5, det(UTV) = 1.
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Figure 5: Dynamics of extreme singular values (log scale) for four weight matrices.
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Figure E] illustrates the dynamics of main term o, (W1 + Wy 1W§I Wf ). For real initialization
with det (W (0)) < 0, Guin(W14+W5 *WHWH) decays to 0 at a linear rate, while for det (17 (0)) >

0 and complex initialization it stays at a small value after some oscillation.
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Figure 6: Dynamics of the minimum singular value of Hermitian main term W, + Wy 'WH W[
(log scale). From left to right, up to down: real initialization with det(W') > 0, det(W) < 0, and

complex initialization.
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L LLM USAGE DECLARATION

In the preparation of this paper, large language models (LLMs) served only as an auxiliary tool
for enhancing writing clarity, checking grammar, and assisting in the drafting and debugging of
simulation code. These tasks were performed under the authors’ complete oversight. The central
scientific ideas, theoretical results, and research contributions are entirely the work of the authors.
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