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ABSTRACT

Gradient descent dynamics on the deep matrix factorization problem is extensively
studied as a simplified theoretical model for deep neural networks. Although
the convergence theory for two-layer matrix factorization is well-established, no
global convergence guarantee for general deep matrix factorization under random
initialization has been established to date. To address this gap, we provide a
polynomial-time global convergence guarantee for randomly initialized gradient
descent on four-layer matrix factorization, given certain conditions on the tar-
get matrix and a standard balanced regularization term. Our analysis employs
new techniques to show saddle-avoidance properties of gradient decent dynamics,
and extends previous theories to characterize the change in eigenvalues of layer
weights.

1 INTRODUCTION

This paper investigates matrix factorization, a fundamental non-convex optimization problem, which
in its canonical form seeks to optimize the following objective:

L(W1, . . . ,WN ) :=
1

2
∥WN · · ·W1 − Σ∥2F + Lreg(W1, . . . ,WN ), (1)

where Wj ∈ Fd×d denotes the jth layer weight matrix, Σ ∈ Fd×d denotes the target matrix and Lreg

is a (optional) regularizer, d ∈ N∗ is the size of matrices which can be arbitrary positive integers (for
d = 1 it reduces to scalars). Here F ∈ {C,R} as we consider both real and complex matrices in this
paper. Following a long line of works (Arora et al., 2019a; Jiang et al., 2023; Ye & Du, 2021; Chou
et al., 2024), we aim to understand the dynamics of gradient descent (GD) on this problem:

j = 1, . . . , N : Wj(t+ 1) = Wj(t)− η∇Wj
L(W1(t), . . . ,WN (t)), (2)

where η ∈ R+ is the learning rate.

While global convergence guarantee for the case of two-layer matrix factorization (N = 2) is well
studied (Du et al., 2018; Ye & Du, 2021; Jiang et al., 2023), the deep matrix factorization problem,
i.e., the N > 2 case is less explored. While the model representation power is independent of depth
N , the deep matrix factorization problem is naturally motivated by the goal of understanding benefits
of depth in deep learning (see, e.g., Arora et al. (2019b)). A long line of previous works (Hardt &
Ma, 2016; Arora et al., 2019b;a; Wang & Jacot, 2023) studies this regime as it directly captures
Deep Linear Networks (DLN), the simplest type of deep neural networks. However, a general
global convergence guarantee is still missing. Therefore, the following open research question can
be naturally asked:

Can we prove global convergence of GD for matrix factorization problem (1) with N > 2 layers?

In this paper, we take a positive step towards answering the question above. Specifically, we consider
4-layer matrix factorization (N = 4) with the standard balancing regularization term (see Park et al.
(2017); Ge et al. (2017); Zheng & Lafferty (2016)) as

L(W1,W2,W3,W4) :=
1

2
∥W4W3W2W1 − Σ∥2F +

1

4
a

 3∑
j=1

∥∥WjW
H
j −WH

j+1Wj+1

∥∥2
F

 ,

1
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where WH
j denotes the Hermitian transpose of Wj and a ∈ R+ is a hyperparameter. We consider

both real (F = R) and complex (F = C) setting with random Gaussian initialization and prove
global convergence of gradient descent. Our main result can be summarized as follows:

Theorem 1 (Main theorem, informal). Consider four-layer matrix factorization for target matrix Σ
with identical singular values σ1 > 0, under gradient descent and random Gaussian initialization
with small scaling factor ϵ ≪ σ

1/4
1 , then with sufficient small learning rate η and large regular-

ization factor a, (1) with high probability 1 − δ over the complex initialization and complex Σ, or
(2) with probability 1

2 (1 − δ) over the real initialization and real Σ, loss function L(t) ≤ ϵconv for

t > T (ϵconv, η) = η−1σ−1
1 ϵ−2poly (1/δ, d) +O

(
η−1σ

−3/2
1 ln

(
dσ2

1/ϵconv
))

, for any ϵconv > 0.

The formal version of Theorem 1 is stated in Theorem 47 in Appendix, where we specify the poly-
nomial degrees for ϵ, a, η, T (ϵconv, η). Below we provide a simple example to illustrate the result.

Example for tightness. We show the convergence rate is nearly tight by the toy example of
d = 1, where all the weight matrices degenerate into scalars. Consider identical initialization
wj:j∈[4](t = 0) = ϵ and gradient flow, then all wj remain identical and the dynamics become
dwj

dt = (σ1 − w4
j )w

3
j . By solving the differential equation, it takes time Θ

(
σ−1
1 ϵ−2

)
for product

weight w := w4w3w2w1 to increase from ϵ4 to Θ(σ1), then time Θ
(
σ
−3/2
1 ln

(
σ2
1/ϵconv

))
to reach

local convergence. Theorem 1 exactly reduces to this result when the dimension d = 1. Calculation
details are provided in Appendix J.1.

For further explanation on the exponents of σ1 in ϵ and T (ϵconv, η), please refer to Appendix J.2.

Remark 1. A natural question is why the convergence guarantee in the real case holds only with
probability close to 1

2 , but not 1. For the other 1
2 probability, Theorem 2 presents a special case -

considering gradient flow under the strict balance condition (which can be viewed as the limit as
a → +∞), showing that the optimization process does not converge to a global minimum in finite
time (and hence converges to a saddle point).

Main contributions. Our major contributions can summarized as follows:

• We prove global convergence of GD for 4-layer matrix factorization under random Gaus-
sian initialization. To the best of our knowledge, this is the first global convergence result
for general deep linear networks under random initialization beyond the NTK regime in Du
& Hu (2019). This result helps provide new insights towards understanding the training
dynamics of general deep neural networks.

• We construct a novel three-stage convergence analysis of gradient descent dynamics, con-
sisting of an alignment stage, a saddle-avoidance stage, and a local convergence stage. We
also develop new techniques to show GD dynamics avoids saddle points and to character-
ize layer matrix eigenvalue changes, which we believe are of independent interest for deep
linear networks analysis.

Challenges and techniques. Our analysis employs the following key techniques:

• Initialization analysis. To guarantee that gradient descent makes progress, it is necessary
to establish a monotonically increasing lower bound for the singular values of the weight
matrices. This, in turn, requires analyzing the smallest singular value of a newly introduced
term (namely W+(WWH)1/2, where W = W4W3W2W1), at initialization. This analysis
utilizes tools from random matrix theory, particularly the concept of Circular Ensembles.
The detailed proof is given in Appendix C.

• Regularity condition of each layer. To bridge the initialization with the subsequent training
dynamics, we need to ensure that key matrix properties evolve in a controlled manner even
during the rapid changes in the alignment stage. We prove that despite significant updates,
the weight matrices retain certain spectral properties from their initial state. A delicate
analysis of the smooth evolution of the extreme singular values and the behavior of the
Hermitian term after the regularization term converges is provided in Section 5.2.1 and
5.2.2.
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• Saddle avoidance. To avoid convergence to a saddle point, it is essential to prevent the
smallest singular values of the weight matrices from decaying to zero, as such decay would
cause the gradient norm to vanish. To this end, we construct a hermitian term providing
lower-bounds for these singular values, along with a skew-hermitian error. During the opti-
mization, the skew-hermitian error is approximately non-increasing, which in turn ensures
that the minimum singular value of the hermitian term is non-decreasing. This mechanism
provides a persistent lower bound, thereby effectively avoiding saddle points.

• Bound of eigenvalue change. Finally, to translate the continuous-time intuition into rigor-
ous guarantees for the discrete gradient descent algorithm, we develop new perturbation
bounds for eigenvalues. In continuous time, the time derivatives of eigenvalues are di-
rectly characterized by the derivatives of the matrix. In discrete time, however, eigenvalue
changes depend on the spectral gap in general, requiring a fine-grained, problem-specific
analysis. Similar challenge are noted in Lemma 3.2 of Ye & Du (2021). We address this
issue in Lemma 19 and 20 in Appendix D.2.

These techniques form a cohesive proof strategy: the initialization analysis provides a favorable
starting point; the regularity analysis ensures controlled dynamics throughout training; the saddle
avoidance mechanism guarantees persistent progress; and the discrete-time perturbation bounds rig-
orously translate these insights into a full global convergence proof.

Paper Roadmap. Section 3 introduces basic notations. To provide a intuitive framework of the
convergence analysis, we first establish the result under a special initialization (namely balanced
Gaussian initialization) and gradient flow in Section 4, then generalize the proof strategy into general
random Gaussian initialization and gradient descent in Section 5, which consists of three stages.
Some of our supporting theorems can be applied to more general setting of target matrix Σ and
depth N , where we specify in Table 1 below (identical means the singular values are the same):

Theorem Initialization Depth N Target
Thm 3: balanced Gaussian initialization balanced Gaussian ≥ 2 -
Thm 6: random Gaussian initialization random Gaussian ≥ 2 -
Thm 4: bounded skew-Hermitian error balanced Gaussian ≥ 2 arbitrary
Thm 5: increasing rate of main term balanced Gaussian 4 identical
Thm 7: convergence rate of regularization term Lreg - 41 arbitrary
Thm 8: max/min singular value changes under Lreg - ≥ 2 arbitrary

Table 1: Summary of the supporting theorems and their assumptions.

2 RELATED WORKS

For two-layer matrix factorization, the global convergence of symmetric case has been established
under various settings (Jain et al., 2017; Li et al., 2019; Chen et al., 2019). For asymmetric matrix
factorization case with objective L = 1

2∥UV ⊤ − Σ∥2F , the following homogeneity issue occurs:
the prediction result remains the same if one layer is multiplied by a positive constant while the
other is divided by the same, introducing significant challenges in convergence analyzing (Lee et al.
(2016), Proposition 4.11). Tu et al. (2016) and Ge et al. (2017) tackles this problem by manually
adding a regularization term on the objective function. Du et al. (2018) discovers that gradient de-
scent automatically balances the magnitudes of layers under small initialization, providing analysis
of global convergence with polynomial time under decayed learning rate, while removing the regu-
larization term. Ye & Du (2021) extends the convergence analysis to constant learning rate. Wang
et al. (2022) demonstrates the convergence for constant large learning rates and exhibits that the op-
timization converges to a approximately balanced optimum. Xu et al. (2024) adopts an unbalanced
initialization, under which they proved that NAG achieves an accelerated convergence rate.

Kawaguchi (2016) analyzes landscape for general DLN, showing there exists saddle points with no
negative eigenvalues of Hessian for depth over three. Bartlett et al. (2018) analyzes the dynamic
under identity initialization, proving polynomial convergence with target matrix near initialization

1This can be generalized to arbitrary N ≥ 2. An arbitrary N version for gradient flow is provided in
Theorem 28 in the Appendix.
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or symmetric positive definite, but such initialization fails to converge when target matrix is sym-
metric and has a negative eigenvalue. Arora et al. (2019a) provides global convergence proof under
specific deep linear neural network structures and initialization scheme, requiring the initial loss to
be smaller than the loss of any rank-deficient solution. Ji & Telgarsky (2019) conducted the proof
of convergence on general deep neural networks with similar requirements on the initial loss. Arora
et al. (2019b) simplifies the training dynamics of deep linear neural network into the dynamic of
singular values and singular vectors of product matrix under balanced initialization, providing the-
oretical illustration of local convergence when singular vectors are stationary. Nguegnang et al.
(2024) proves that for general depth linear networks, under appropriate gradient scheduling and ini-
tialization the optimization converges to a critical point. Du & Hu (2019) proves global convergence
for wide linear networks under the neural tangent kernel (NTK) regime. More recent works focus
on GD dynamics under (approximately) balanced initialization schemes (Min et al., 2023) or the
2-layer case (Min et al., 2021; Xiong et al., 2023; Tarmoun et al., 2021). Chizat et al. (2024) studies
the infinite-width limit of DLN in the mean field regime. However, none of these results imply a
global convergence guarantee for general DLN with N > 2 under random initialization.

3 PRELIMINARIES

Notation. Denote the complex conjugate of M as M̄ and adjoint of M as MH , N as the set of
non-negative integers, and N∗ as the set of positive integers. σk(·) denotes the kth largest singu-
lar value of the matrix. For k1 < k2 ∈ N,

∏k1

j=k2
Mj = Mk2

Mk2−1 · · ·Mk1
. x ∼ N (0, 1)C

means that the real and imaginary parts are independently sampled from Gaussian distribution with
variance 1

2 : ℜx,ℑx i.i.d.∼ N (0, 1/2). Q ∼ U(d,C) or O(d,R) means Q is drawn from the unique
uniform distribution (Haar measure) on the unitary or orthogonal group, implying its distribution is
unitarily/orthogonally invariant.

Consider general N -layer matrix factorization, for simplicity we define the following notations:

W∏
L,j :=

j∏
k=N

Wk, W∏
R,j :=

1∏
k=j

Wk, W :=

1∏
k=N

Wk = W∏
L,1 = W∏

R,N , (3)

∆j,j+1 :=

{
WjW

H
j −WH

j+1Wj+1 , j ∈ {1, 2, · · · , N − 1}
Od×d , j ∈ {0, N} . (4)

W is referred to as product matrix. The loss is written by L(W1, · · · ,WN ) = Lori + Lreg, where

Lori =
1
2 ∥Σ−W∥2F , Lreg = 1

4a
(∑N−1

j=1 ∥∆j,j+1∥2F
)

.

Algorithmic setup. For the real case (Wj ∈ Rd×d), GD dynamics is canonical and described
by equation 2. Under complex field (Wj ∈ Cd×d), for simplicity and coherence we define ∇M =

∂
∂ℜM + i ∂

∂ℑM , which is two times of Wirtinger derivative with M̄ : ∂
∂M̄

= 1
2

(
∂

∂ℜM + i ∂
∂ℑM

)
. By

following the updating rule of complex neural networks (see Guberman (2016)), the gradient can be
uniformly represented by

∇Wj
L = ∇Wj

Lori +∇Wj
Lreg

∇Wj
Lori = −WH∏

L,j+1 (Σ−W )WH∏
R,j−1, ∇Wj

Lreg = −aWj∆j−1,j + a∆j,j+1Wj ,
(5)

Under gradient flow, dWj

dt = −∇WjL; under gradient descent, Wj(t+ 1) = Wj(t)− η∇WjL(t).
Reduction to diagonal target. Following the simplification process of Section 2.1 in Ye & Du
(2021), suppose the singular value decomposition of Σ is Σ = UΣΣ

′V H
Σ , by applying the following

transformation W1 ← W1VΣ and WN ← UH
Σ WN , the dynamics remain the same form, while

the distributions of Wj under our initialization schemes remain the same. Hence without loss of
generality, we assume the target matrix is diagonal with real and non-negative entries throughout
our analysis. Detailed analysis is presented in Appendix B.

4
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For some of the results, we further require target matrix to be an identity matrix scaled by a positive
constant Σ = σ1(Σ)I , which is equivalent to requiring that the singular values of target matrix are
identical.

Balancedness. Following a long line of works (Arora et al., 2019a;b; Du et al., 2018), we define
the balance difference between layer j and j + 1 as ∆j,j+1 (refer to 4). As discussed in Definition
1 of Arora et al. (2019a), the weights are approximately balanced (namely ∥∆j,j+1∥F are small)
throughout the iterations of gradient descent under approximate balancedness at initialization and
small learning rate. Notice that approximate balancedness holds for small initialization near origin
(small variance for Gaussian initialization).

Specifically, under gradient flow the balanced condition (defined as ∥∆j,j+1(t)∥F ≡ 0 or equiv-
alently ∆j,j+1(t) ≡ O, ∀j ∈ {1, 2, · · · , N − 1}) holds strictly at arbitrary time under balanced
initialization, which is defined as ∆j,j+1(t = 0) ≡ O, ∀j ∈ {1, 2, · · · , N − 1}.
Remark 2. As previously discussed, balance condition holds approximately under small initial-
ization, so such regularization’s affect on the training process is relatively weak, especially when
weight matrices grow larger and be away from origin.

4 TRAINING DYNAMICS UNDER BALANCED GAUSSIAN INITIALIZATION

We denote the initialization satisfying strict balancedness as balanced initialization. Generally, strict
balancedness yields a clean form of dynamics, where the dynamic of product matrix W depends on
W itself solely and is irrelevant to layers W1,2,··· ,N (Arora et al., 2019b). However, random Gaus-
sian initialization does not satisfy strict balancedness. To adapt the random Gaussian initialization to
ensure balanced condition, we introduce a balanced Gaussian initialization scheme for the analysis
below. The procedure is defined as follows:

(1) Sample G with entries Gij
i.i.d.∼ N (0, 1)F, Qk,k+1;k∈{0,1,··· ,N}

i.i.d.∼ Haar on U(d,C) for F = C
(or O(d,R) for F = R). sj,j∈{1,2,··· ,N} ∈ F are arbitrary constants with modulus/absolute value 1.

(2) For scaling factor ϵ ∈ R+, which is a small positive constant, set the weight matrices by:

Wj =

{
sjϵQj,j+1GQH

j−1,j , 2 ∤ j
sjϵQj,j+1G

HQH
j−1,j , 2 | j . (6)

Intuitively, Qk,k+1;k∈{0,1,··· ,N} are i.i.d. uniformly distributed unitary/orthogonal matrices. By
Corollary 13 in the Appendix, each matrix is a ϵ-scaled Gaussian random matrix ensemble (but
not independent of the others), while satisfying balanced condition ∆j,j+1(0) = O, ∀j ∈
{1, 2, · · · , N − 1}.
To exhibit the convergence dynamics clearly, we present the global convergence under the simplified
scenario of balanced Gaussian initialization and gradient flow. Notice that the adjacent matrices
remain balanced due to the non-increasing property of regularization term (Lemma 26).
Theorem 2. (Informal) Global convergence bound under balanced Gaussian initialization, gradient
flow. For four-layer matrix factorization under gradient flow, balanced Gaussian initialization with
scaling factor ϵ ≤ σ

1/4
1 (Σ)/poly(1/δ, d), then for target matrix with identical singular values,

1. For F = R, with probability at least 1
2 the loss does not converge to zero.

2. For F = C with high probability at least 1 − δ and for F = R with probability at least 1
2 (1 −

δ), there exists T (ϵconv) = σ−1
1 ϵ−2poly (1/δ, d) + O

(
σ
−3/2
1 ln

(
dσ2

1/ϵconv
))

, such that for any

ϵconv > 0, when t > T (ϵconv), L(t) < ϵconv.

The formal version is stated in Theorem 35 in the Appendix, where we specify the polynomial
degrees of ϵ and T (ϵconv,η).

4.1 BALANCED GAUSSIAN INITIALIZATION

This section establishes the properties for balanced Gaussian initialization.

5
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Theorem 3. Under ϵ-scaled balanced Gaussian initialization, suppose W is W = UΣN
w V H ,

where U , V are unitary/orthogonal matrices, Σw is positive semi-definite and diagonal, denote
s :=

∏N
j=1 sj , then for some f1 = O

(
1
δ

)
, f ′

2 = O
(

1
δ2

)
:

1. If F = C, at the initialization the following inequalities hold with probability at least 1− δ:

∥Σw∥op ≤ f1(δ)
√
dϵ, ∥(U − V )Σw∥F |t=0 ≤ 2f1(δ)dϵ

σmin((U + V )Σw)|t=0 ≥ f ′
2(δ)

−1d−3/2ϵ.
(7)

2. If F = R, at the initialization we have Pr(s det(QN,N+1) det(Q01) = 1) =
Pr(s det(QN,N+1) det(Q01) = −1) = 1

2 . If the initialization satisfies s det(QN,N+1) det(Q01) =
−1, then σmin((U + V )Σw)|t=0; otherwise s det(QN,N+1) det(Q01) = 1, then the following in-
equalities hold with probability at least 1− δ:

∥Σw∥op ≤ f1(δ)
√
dϵ, ∥(U − V )Σw∥F |t=0 ≤ 2f1(δ)dϵ

σmin((U + V )Σw)|t=0 ≥ f ′
2(δ)

−1d−3/2ϵ.
(8)

Proof is presented in Appendix C.3. One may question the motivation of analyzing σmin((U +
V )Σw)|t=0. We later show that this term acts as a crucial lower bound with a relatively simple
dynamics in Section 4.3.

4.2 NON-INCREASING SKEW-HERMITIAN ERROR

As presented in Lemma 24 in the Appendix, the product matrix can be factorized in to the form
of W (t) = U(t)Σw(t)

NV (t)H , where Σw(t) is positive semi-definite and diagonal (consequently
real-valued), U and V are unitary/orthogonal matrices, U , V and Σw are analytic. For simplicity,
we denote σw,j as the jth diagonal entry of Σw, and uj , vj as the jth column of U , V . Under this
representation of product matrix, we obtain a non-increasing Skew-Hermitian/Symmetric term:
Theorem 4. (Informal) Skew-Hermitian error term is non-increasing. Under balanced initialization
with product matrix W (t) = U(t)Σw(t)

NV (t)H , for depth N ≥ 2, if the singular values of the
product matrix at initial W (0) are non-zero and distinct, then the following skew-Hermitian error∥∥Σ1/2(U − V )Σw

∥∥2
F

is non-increasing:

d

dt

∥∥∥Σ1/2(U − V )Σw

∥∥∥2
F
≤ 0. (9)

Proof sketch. Proof of the Theorem 4 involves technical and lengthy calculations. The formal version
is stated in Theorem 31, while a special version for even N is separately discussed in Theorem 32.
For the proof of Theorem 31, the idea is to decompose the derivative of this term into the derivative of
σw,j and uj , vj , which have been characterized by Theorem 3 and Lemma 2 in Arora et al. (2019b)
respectively. This method is hard to generalize into imbalanced setting. For Theorem 32, this term
is directly derived from derivative of WNWH

N , WH
1 W1 and W . This approach is straight forward

and can be extended to imbalanced initialization, but encounters difficulty under odd depth 2 ∤ N .

Remark 3. This result is established under the reduction to target matrix (refer to Section 3 and
Appendix B). For general target matrix, suppose its SVD is Σ = UΣΣ

′V H
Σ , then Theorem 4 becomes:

d

dt

∥∥∥Σ′1/2(UH
Σ U − V H

Σ V )Σw

∥∥∥2
F
≤ 0. (10)

Explanation of the result. This theorem provides an intrinsic non-increasing term of general deep
matrix factorization. (Under initialization close to origin, this term is already small at initial. )
Although the result is accurately derived under strictly balanced initialization and gradient flow, one
may expect similar property to hold under small initialization and gradient descent.

Moreover, this theorem characterizes when U and V become aligned. The product ma-
trix can be expressed as W =

∑d
i=1 σ

N
w,jujv

H
j , while the error can be rewritten as

6
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∑d
j=1 σ

2
w,j

∥∥Σ1/2(uj − vj)
∥∥2
F

. Each term σN
w,jujv

H
j of the product matrix can be interpreted as

a “feature” of the linear neural network, containing one “value” σN
w,j and two “directions” uj , vj .

When the loss converges, each feature converges to σjuΣ,ju
H
Σ,j , where Σ =

∑d
j=1 σjuΣ,ju

H
Σ,j is

a SVD of Σ. This shows that under initialization near origin, once a “value” of the jth feature
increases to a relatively large value (comparing to initialization), the directions of this feature au-
tomatically align with each other (i.e. ⟨uj , vj⟩ ≈ 1). Followed by Theoretical illustration part of
Arora et al. (2019b), Section 3, generally the alignment of U , V leads to convergence.

As shown in the proof sketch, the analysis for odd N encounters difficulty when generalized to the
imbalanced case, thus this intrinsic non-increasing term becomes considerably more challenging to
characterize. This is why we have developed the convergence proof for the four-layer case rather
than the three-layer architecture.

4.3 NON-DECREASING HERMITIAN MAIN TERM

This section shows the dynamics of the minimum singular value of Hermitian main term (U+V )Σw.

The motivation of studying this specific term is that it provides both lower and upper bounds for
σk(Σw), k ∈ {1, 2, · · · , N − 1}, especially tight bounds for σmin(Σw) (refer to Lemma 18):

1

2
σk ((U + V )Σw) ≤ σk(Σw) ≤

√
2

2

√
σ2
k ((U + V )Σw) + ∥(U − V ) Σw∥2op

1

2
σmin ((U + V )Σw) ≤ σmin(Σw) ≤

1

2

√
σ2
min ((U + V )Σw) + ∥(U − V ) Σw∥2op.

(11)

Notice that the extra term in the upper bound is bounded by the skew-Hermitian error term discussed
in the previous section.

Although the evolution of σk((U + V )Σw) is difficult to characterize in general, we find that in the
special case of Σ = σ1(Σ)I and N = 4, it exhibits a monotonically increasing pattern before local
convergence:

Theorem 5. Dynamics of minimum singular value of Hermitian term. Under balanced initialization
with product matrix W (t) = U(t)Σw(t)

NV (t)H , for target matrix with identical singular values
(reduces to Σ = σ1(Σ)I) and depth N = 4, the time derivative of the kth singular value of the
Hermitian term xk := 1

2σk((U + V )Σw) is bounded by:

(
2σ1(Σ)− x4

k −
1

2
∥Σw∥2op∥((U − V )Σw)|t=0∥2F

)
x4
k −

1

16
x2
k∥Σw∥2op∥((U − V )Σw)|t=0∥4F

≤ d

dt
x2
k ≤ σ1(Σ)

(
2∥Σw∥2op + ∥((U − V )Σw)|t=0∥2F

)
x2
k.

(12)

Detailed proof is presented in E.2.

Discussion on 1/2 failure probability. This theorem implies that under small initialization, if all
singular values σk((U+V )Σw) are initially non-zero, they increase monotonically to relatively large
values, leading to subsequent local convergence. However, if any singular value is initialized to zero
(which occurs with probability at least 1/2 for F = R, as shown in Theorem 3), it remains zero
throughout the optimization (see Corollary 34), thereby explaining the 1/2 convergence probability
in Theorem 2. Numerical simulations under the identity target setting are provided in Figure 1.

Discussion on target matrix with spectral gaps (singular values are different from each other).
We also conduct additional simulations for non-identical targets (i.e. non-zero spectral gaps) in
Figure 2, which we do not cover in Theorem 5. From these results, we exhibit that while the lower
bounds constructed in equation (11) still hold under general target matrix with spectral gap, they
suffer from sudden change when one singular value converges, so the monotonicity in Theorem 5
does not hold anymore. More detailed discussions are presented in Appendix K.1.
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A short note on incremental learning. Although the proof of incremental learning is beyond the
scope of this work, we do have a brief theoretical explanation for this behavior exhibited in Figure 1
by exploiting Theorem 5 and equation (11). Detailed discussion is presented in the Appendix K.1.

5 CONVERGENCE UNDER RANDOM GAUSSIAN INITIALIZATION

This section presents the proof sketch for Theorem 1, extending our analytical framework in the
previous section to accommodate random Gaussian initialization.

We divide the training dynamics into three stages: alignment stage t ∈ [0, T1), saddle-avoidance
stage t ∈ [T1, T1 + T2), and local convergence stage t ∈ [T2,+∞). Here T1 = 1

ησ1(Σ)ϵ2 ·
poly−1 (1/δ, d), T2 = 1

ησ1(Σ)ϵ2 · poly (1/δ, d) (δ is failure probability in Theorem 1), refer
to Theorem 48 and 52 respectively. Following the method in Section 4, we then character-
ize the skew-Hermitian error term and Hermitian main term by ∥W1 − W−1

2 WH
3 WH

4 ∥2F and

λmin

((
W1 +W−1

2 WH
3 WH

4

)H (
W1 +W−1

2 WH
3 WH

4

))
respectively.

5.1 RANDOM GAUSSIAN INITIALIZATION

We consider the canonical setting of random Gaussian initialization near origin:

(W1,2,··· ,N )ij
i.i.d.∼ ϵ · N (0, 1)F. (13)

Specifically, we apply Gaussian distribution to generate W1,2,··· ,N ∈ Fd×d, F = R or C element-
wisely and independently. Then the initialization is scaled by a small positive constant ϵ ∈ R+. The
scale of ϵ is determined in the main convergence Theorem 1.
Theorem 6. For ϵ-scaled random Gaussian initialization on Wk,k∈{1,2,··· ,N} over F = R or C,
N ∈ N∗,

1. If F = C, at the initialization the following inequalities hold with probability at least 1− δ:

max
j,k

σk(Wj) ≤ f1(δ,N)
√
dϵ, min

j,k
σk(Wj) ≤

ϵ

f1(δ,N)
√
d

σmin

(
W +

(
WWH

)1/2) ≥ f2(δ,N)−1 · d−(N/2+1)ϵN .

(14)

2. If F = R, at the initialization we have Pr(det(W ) > 0) = Pr(det(W ) < 0) = 1
2 . If the

initialization satisfies det(W ) < 0, then σmin

(
W +

(
WW⊤)1/2) = 0; otherwise det(W ) > 0,

then the following inequalities hold with probability at least 1− δ (given det(W ) > 0):

max
j,k

σk(Wj) ≤ f1(δ,N)
√
dϵ, min

j,k
σk(Wj) ≤

ϵ

f1(δ,N)
√
d

σmin

(
W +

(
WW⊤)1/2) ≥ f2(δ,N)−1 · d−(N/2+1)ϵN ,

(15)

where f1(δ,N) = O
(
N
δ

)
, f2(δ,N) = O

(
NN

δN+1

)
.

Proof is provided in Appendix C.2. For N = 4, f1 = O
(
1
δ

)
, f2 = O

(
1
δ5

)
. The term σmin(W +

(WWH)1/2) is introduced in Section 5.2.2 for the purpose of analyzing the Hermitian main term.

In the convergence proof below, we consider the initialization where (14) and (15) holds.

5.2 STAGE 1: ALIGNMENT STAGE

During alignment stage, the weight matrices align with each other under the convergence of the
regularization term, while the Hermitian main term stays away from origin at the end of this stage.

8
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5.2.1 CONVERGENCE OF REGULARIZATION TERM:

The convergence rate of regularization term is lower bounded through the following Theorem:
Theorem 7. (Informal) Convergence rate of the regularization term. For four-layer matrix factor-
ization, suppose the maximum and minimum singular values of the weight matrices are upper and
lower bounded by µmax and µmin respectively, then the regularization term decays by

Lreg(t+ 1) ≤
(
1− Ω

(
ηaµ4

minµ
−2
max

))
· Lreg(t) +O(η2a2). (16)

The formal version can be found in Theorem 29. A N -layer version of this Theorem under gradient
flow is provided in Theorem 27.

We can observe that the convergence rate of the regularization term is related to the extreme singular
values of weight matrices, which motivates the following Theorem:
Theorem 8. (Informal) Under a small learning rate, the changes in the maximum and minimum
singular values are approximately independent of the regularization term:

max
j,k

σ2
k(Wj(t+ 1))−max

j,k
σ2
k(Wj(t)) ≤ 2ηmax

j,k
σk(Wj(t))max

j

∥∥∇WjLori(t)
∥∥
op

+O(η2a2)

min
j,k

σ2
k(Wj(t+ 1))−min

j,k
σ2
k(Wj(t)) ≥ −2ηmin

j,k
σk(Wj(t))max

j

∥∥∇Wj
Lori(t)

∥∥
op

+O(η2a2).

(17)

The complete formal statement can be found in Theorem 30 (and Theorem 28 for the continuous-
time case) in the Appendix.
Remark 4. This Theorem ensures the smooth change of the extreme singular values over short time
intervals. Although the regularization term can induce significant fluctuations in individual singular
values due to its potentially large coefficient, the largest and smallest singular values remain stable.
This theoretical conclusion is corroborated by numerical simulations, as shown in Figure 5.

5.2.2 THE BEHAVIOR OF THE HERMITIAN MAIN TERM AT THE END OF ALIGNMENT STAGE

Typically, the dynamics of the smallest singular value of the Hermitian main term W1 +
W−1

2 WH
3 WH

4 is involved and does not obtain a non-trivial lower bound during this stage. However
its behavior at the end of alignment stage can be characterized by W (0) + (W (0)W (0)H)1/2:

The Hermitian main term can be written by (W1 +W−1
2 WH

3 WH
4 )
∣∣
t=T1

=
(
W−1

2 W−1
3 W−1

4 )
∣∣
t=T1
·

(W +W4W3W
H
3 WH

4 )
∣∣
t=T1

. At t = T1, W4W3W
H
3 WH

4 ≈ (WWH)1/2 due to the approximate
balancedness. During the alignment stage, the product remains approximately unchanged: W (t =
T1) ≈ W (t = 0). For the singular values of W−1

2,3,4, at t = 0 they are bounded through Theorem
6, then Theorem 8 ensures the changes during the alignment stage are small. Together we obtain a
lower bound for σmin (W1 +W−1

2 WH
3 WH

4 )
∣∣
t=T1

. Detailed analysis is presented in Corollary 51.

Remark 5. Note that σmin

(
W1 +W−1

2 WH
3 WH

4

)
is not necessarily lower-bounded by the above

expression minus some error terms during the alignment stage. Instead, it may exhibit oscillations
or a transient decrease, achieving stability only upon convergence of the regularization term. This
behavior is illustrated in Figure 6 in the Appendix.

5.3 STAGE 2: SADDLE AVOIDANCE STAGE

After alignment stage, the Hermitian main term is guaranteed to be away from zero while the skew-
Hermitian error is upper bounded. During the saddle avoidance stage t ∈ [T1, T1 + T2), the Her-
mitian main term σmin

(
W1 +W−1

2 WH
3 WH

4

)
increases to at least 23/4σ1/4

1 (Σ), while the skew-
Hermitian error is upper bounded by O(1) ·

∥∥W1 −W−1
2 WH

3 WH
4

∥∥
F
(t = T1). Former statements

are presented in Lemma 57 and 56 respectively.

Intuitively, these results generalize Theorem 5 and 4 into imbalanced case respectively by bounding
the error terms introduced by imbalancedness. To adapt these results into discrete time, new pertur-
bation bound for eigenvalues is discussed in Lemma 19. Another technical challenge is to bound

9
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the operator norm of the inverse of W2 below infinity. Under small balance difference (equivalently
small regularization term) which is guaranteed by the previous stage, this is rigorously proved in
Lemma 55.

5.4 STAGE 3: LOCAL CONVERGENCE STAGE

In the local convergence stage, both the balanced error and skew-Hermitian error remain small, the
minimal singular values of the weight matrices, after growing to the scale of the target matrix’s, are
prevented from decaying. This guarantees the local convergence.

Theorem 9. (Informal) Local convergence. After the second stage (t ≥ T1 + T2),

L(t) ≤ Lori(T1 + T2) exp
(
−ησ3/2

1 (Σ)(t− T1 − T2)
)
. (18)

Proof is presented in I.3 in the Appendix.

6 CONCLUSIONS, LIMITATIONS AND FUTURE WORK

In this work, we establish a polynomial-time global convergence guarantee for gradient descent
applied to four-layer matrix decomposition, under the setting of a target matrix with identical singu-
lar values and small random Gaussian initialization beyond the NTK regime. For complex random
Gaussian initialization, global convergence is ensured with high probability, whereas for real random
Gaussian initialization, it is guaranteed with a probability close to 1

2 .

The analysis developed in this work reveals intrinsic properties of the training dynamics, such as
the effective behavior of the regularization term, the monotonically increasing lower bound for the
minimum singular value, and the non-increasing nature of the skew-Hermitian error. These findings
might provide deeper insight into the training process of Deep Linear Networks. Some of our results
are directly generalizable to arbitrary depth N ≥ 2, see Table 1. We anticipate that this work
will stimulate further research on global convergence proofs under general random initialization for
matrix factorization with arbitrary depth and arbitrary - possibly low-rank - target matrices.

The observed divergence in convergence behavior between real and complex initializations also
reveals a subtle disparity, suggesting that complex initializations may circumvent certain saddle
points introduced by exact balancedness that real initializations are not capable of. Previous work
have addressed the drawback of exact balancedness on real domain (Xiong et al., 2023). This might
motivate more detailed analysis of the performance gap between complex and real neural networks.

REPRODUCIBILITY STATEMENT

All theoretical results stated in this paper are proved in full detail in the Appendix, from Section B to
I, including the proofs of all main-text theorems as well as intermediate lemmas and derivations, so
that a reader can verify each step independently. The numerical illustration in Appendix K, where
we specify the hyper-parameters in that section. Because the experiments are straightforward, we
have not released an implementation.
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G. Szegő. Orthogonal Polynomials. American Mathematical Society colloquium publications.
American mathematical society, 1939. URL https://books.google.com/books?id=
w755xgEACAAJ.

T. Tao. Topics in Random Matrix Theory. Graduate studies in mathematics. American Mathemat-
ical Soc. ISBN 9780821885079. URL https://books.google.com/books?id=Hjq_
JHLNPT0C.

Terence Tao and Van Vu. Random matrices: The distribution of the smallest singular values, 2009.
URL https://arxiv.org/abs/0903.0614.

Salma Tarmoun, Guilherme Franca, Benjamin D Haeffele, and Rene Vidal. Understanding the
dynamics of gradient flow in overparameterized linear models. In International Conference on
Machine Learning, pp. 10153–10161. PMLR, 2021.

Stephen Tu, Ross Boczar, Max Simchowitz, Mahdi Soltanolkotabi, and Benjamin Recht. Low-rank
solutions of linear matrix equations via procrustes flow, 2016. URL https://arxiv.org/
abs/1507.03566.

Roman Vershynin. Random Matrices, pp. 70–97. Cambridge Series in Statistical and Probabilistic
Mathematics. Cambridge University Press, 2018.

Yuqing Wang, Minshuo Chen, Tuo Zhao, and Molei Tao. Large learning rate tames homogeneity:
Convergence and balancing effect, 2022. URL https://arxiv.org/abs/2110.03677.

Zihan Wang and Arthur Jacot. Implicit bias of sgd in l {2}-regularized linear dnns: One-way jumps
from high to low rank. arXiv preprint arXiv:2305.16038, 2023.

Nuoya Xiong, Lijun Ding, and Simon S Du. How over-parameterization slows down gradi-
ent descent in matrix sensing: The curses of symmetry and initialization. arXiv preprint
arXiv:2310.01769, 2023.

Nuoya Xiong, Lijun Ding, and Simon Du. How over-parameterization slows down gra-
dient descent in matrix sensing: The curses of symmetry and initialization. In
B. Kim, Y. Yue, S. Chaudhuri, K. Fragkiadaki, M. Khan, and Y. Sun (eds.), In-
ternational Conference on Representation Learning, volume 2024, pp. 24311–24367,
2024. URL https://proceedings.iclr.cc/paper_files/paper/2024/file/
6a13cffb5ec4128324f64a186785215b-Paper-Conference.pdf.

12

https://arxiv.org/abs/1602.04915
https://arxiv.org/abs/1712.09203
https://arxiv.org/abs/1712.09203
https://doi.org/10.1186/s13662-023-03797-x
https://doi.org/10.1186/s13662-023-03797-x
https://books.google.com/books?id=w755xgEACAAJ
https://books.google.com/books?id=w755xgEACAAJ
https://books.google.com/books?id=Hjq_JHLNPT0C
https://books.google.com/books?id=Hjq_JHLNPT0C
https://arxiv.org/abs/0903.0614
https://arxiv.org/abs/1507.03566
https://arxiv.org/abs/1507.03566
https://arxiv.org/abs/2110.03677
https://proceedings.iclr.cc/paper_files/paper/2024/file/6a13cffb5ec4128324f64a186785215b-Paper-Conference.pdf
https://proceedings.iclr.cc/paper_files/paper/2024/file/6a13cffb5ec4128324f64a186785215b-Paper-Conference.pdf


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zhenghao Xu, Yuqing Wang, Tuo Zhao, Rachel Ward, and Molei Tao. Provable acceleration of
nesterov’s accelerated gradient for rectangular matrix factorization and linear neural networks,
2024. URL https://arxiv.org/abs/2410.09640.

Tian Ye and Simon S. Du. Global convergence of gradient descent for asymmetric low-rank matrix
factorization, 2021. URL https://arxiv.org/abs/2106.14289.

Qinqing Zheng and John Lafferty. Convergence analysis for rectangular matrix completion using
burer-monteiro factorization and gradient descent. arXiv preprint arXiv:1605.07051, 2016.

13

https://arxiv.org/abs/2410.09640
https://arxiv.org/abs/2106.14289


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A ORGANIZATION OF THE APPENDIX

This section outlines the organization of the Appendix to facilitate navigation. The core technical
journey, comprising the main convergence proofs, spans from Appendix B to I. Following this,
Appendix J provides insights into the global convergence rate, and Appendix K presents supporting
numerical simulations.

Appendix B completes the proof of Reduction To Diagonal (Identical) Target discussed in Section
3 so that we can assume target matrix to be diagonal (some cases identical). While subsection B.1
proves that the form of dynamics remains the same, B.2 claims that the initializations we considers
throughout this paper are invariant under the reduction.

Appendix C proves the properties of balanced Gaussian initialization (6) and random Gaussian ini-
tialization (13) stated in Theorem 3 and 6, respectively. C.1 states and proves some lemmas on
Circular Ensembles, leading to the proof of Theorem 6 in C.2 and the proof of Theorem 3 in sub-
section C.3. Then, C.4 establishes a general property for any balanced initialization.

Appendix D presents fundamental lemmas utilized in subsequent sections:

• D.1 collects standard results from classical matrix analysis, including spectral properties
and perturbation bounds.

• D.2 provides two specific perturbation bounds, which serve as preliminaries for bounding
eigenvalue changes in discrete time.

• D.3 establishes the existence of analytic singular value decomposition for the general N -
layer matrix factorization under gradient flow. It also derives the time derivatives of the
decomposed matrices, thereby laying the groundwork for the proof of Theorem 2 in E.

• D.4 analyzes the dynamics with a regularization term under gradient flow. Specifically, it
investigates: 1. the convergence behavior of the regularization term; 2. Upper and lower
bounds for the maximum and minimum singular values of the weight matrices.
The results for gradient flow are then adapted in D.5 to prove the corresponding theorems
for gradient descent: Theorem 7 and Theorem 8.

Appendix E analyzes dynamics under gradient flow with balanced Gaussian initialization. E.1
proves Theorem 4 for arbitrary depth N , while E.2 proves Theorem 5 for N = 4 and target matrix
Σ = σ1(Σ)I . By combining these results, E.3 formally states and proves Theorem 2, completing
the global convergence proof for balanced Gaussian initialization.

To prepare for generalization of this method on random Gaussian initialization, Appendix F further
defines some notations and inequalities, Appendix G adapts the terms studied in Theorem 4 and 5
into imbalanced setting.

Appendix H completes the proof of global convergence under N = 4, Σ = σ1(Σ)I by dividing the
training dynamics into three stages analyzed in H.1, H.2 and H.3.

Appendix I then adapts the proof intuition into gradient descent, completing the proof of Theorem
1.

Appendix J provides a discussion of the convergence rate in Theorem 1. J.1 details the calculation
of the example after Theorem 1, verifying the near-tightness of the upper bound. J.2 analyzes
the exponent of σ1(Σ) in the initialization scale and the convergence rate, from both scaling and
dimensional analysis perspectives.

Appendix K conducts three simulation experiments. K.1 illustrates the saddle avoidance behavior
of both identity and non-identity targets, under complex and real balanced Gaussian initialization.
K.2 compares the convergence behavior for different depths under complex balanced Gaussian ini-
tialization. K.3 illustrates Theorem 8 and Remark 5 through the simulation with only the balance
regularization term.
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B REDUCTION TO DIAGONAL (IDENTICAL) TARGET

For arbitrary ground truth Σ ∈ Fd×d, F = C or R, suppose its singular value decomposition is
Σ = UΣΣ

′V H
Σ (replace ·H by ·⊤ for the real case, same for the rest of the analysis), we apply the

following transformation:


W ′

1 = W1VΣ

W ′
j = Wj , j ∈ {2, 3, · · · , N − 1}

W ′
N = UH

Σ WN

. (19)

Then the balance difference can be rewritten as

∆j,j+1 =

{
W ′

jW
′
j
H −W ′

j+1
H
W ′

j+1 , j ∈ {1, 2, · · · , N − 1}
Od×d , j ∈ {0, N}

. (20)

B.1 TRAINING DYNAMICS

For gradient flow, the dynamics becomes

dW ′
j

dt
=

 N∏
k=j+1

W ′
k
H

(Σ′ −
1∏

k=N

W ′
k

)(
j−1∏
k=1

W ′
k
H

)
+ aW ′

j∆j−1,j − a∆j,j+1W
′
j . (21)

For gradient descent,

W ′
j(t+ 1) = W ′

j(t) + η

 N∏
k=j+1

W ′
k(t)

H

(Σ′ −
1∏

k=N

W ′
k(t)

)(
j−1∏
k=1

W ′
k(t)

H

)
+ ηaW ′

j(t)∆j−1,j(t)− ηa∆j,j+1(t)W
′
j(t).

(22)

Both share the same form as the original one (by replacing Σ with Σ′).

B.2 INITIALIZATION

However, the distributions of W1 and WN at initialization change correspondingly. To address this
issue, we introduce the following definition:
Definition 1. Input-Output Unitary(Orthogonal)-Invariant initialization.

For a N -layer complex (real) matrix factorization W =
∏1

j=N Wj , an initialization is input-output
unitary-invariant (in the complex case) or orthogonal-invariant (in the real case) if the distribution
of WN is left unitarily (or orthogonally) invariant and the distribution of W1 is right unitarily (or
orthogonally) invariant. That is, for all U, V ∈ U(d,C) (or O(d,R) in the real case),

WN
d
= UWN , W1

d
= W1V. (23)

Remark 6. The distribution of Wj,j∈{1,2,··· ,N} does not change under transformation 19 if the
initialization is Input-Output Unitary(Orthogonal)-Invariant.

Throughout this work, the initialization schemes discussed (including random Gaussian initializa-
tion and balanced Gaussian initialization) are Input-Output Unitary(Orthogonal)-Invariant. This is
from the left and right invariance under multiplication of unitary/orthogonal matrices.

Thus without loss of generality, the target matrix can be reduced to positive semi-definite diagonal
matrix. Under Input-Output Unitary(Orthogonal)-Invariant initialization discussed in Definition 1,
the initialization on W1 and WN is not affected by this reduction.
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Moreover, if all singular values of Σ are the same (to rephrase, a unitary/orthogonal matrix scaled
by a constant), the convergence analysis can be reduced to Σ′ = σ1(Σ)I .

C INITIALIZATION

First and foremost, we introduce the concept of Circular ensembles (Dyson, 1962) along with some
properties.

C.1 LEMMAS FOR GAUSSIAN RANDOM MATRIX ENSEMBLE AND HAAR MEASURE ON
U(d,C) AND O(d,R)

In the following derivations, we denote O(d,R) as the d-dimensional orthogonal group on real
number, and U(d,C) as the d-dimensional unitary group on complex number.

We list the classical conclusions in Linear Algebra without proof:
Lemma 10. The eigenvalues of Orthogonal/Unitary Matrices.

1. Unitary matrices. ∀U ∈ U(d,C), d ∈ N∗, the eigenvalues of U are eiθ1,2,··· ,d , where θi ∈ [0, 2π).

2. Orthogonal matrices. ∀O ∈ O(d,R), d ∈ N∗, the eigenvalues of O are:


1, e±iθ1,2,··· ,m , d = 2m+ 1, det(O) = 1

−1, e±iθ1,2,··· ,m , d = 2m+ 1, det(O) = −1
e±iθ1,2,··· ,m , d = 2m, det(O) = 1

1,−1, e±iθ1,2,··· ,m−1 , d = 2m, det(O) = −1

. (24)

Following the conventions, we call the argument of the eigenvalues as eigenangles.
Definition 2. Circular ensembles. (refer to Dyson (1962), Forrester (2010))

The circular ensembles are measures on spaces of unitary(or orthogonal, when generalizing from
complex number to real number) matrices.

1. Unitary circular ensemble. The distribution of the unitary circular ensemble (CUE) is the Haar
measure on d-dimensional (complex) unitary group U(d,C).

2. Circular real ensemble. The distribution of the circular real ensemble (CRE) is the Haar measure
on d-dimensional real orthogonal group O(d,R).
Lemma 11. 1-point correlation function of CUE(d) and CRE(d).

1. CUE. The 1-point correlation function of CUE(d) is

ρ(1),CUE(θ) =
d

2π
. (25)

2. CRE, determinant 1. The 1-point correlation function of CRE(d) under determinant 1 is

ρ(1),CRE,det=1(θ) =
1

2π

(
d− 1 + (−1)d sin(d− 1)|θ|

sin |θ|

)
, θ ∈ (−π, π]. (26)

Remark 7. 1-point correlation function ρ(1)(θ) can be interpreted as the density of eigenangles at
θ (despite probably existed fixed eigenangles, e.g. 0, π).

Proof. Part 1. CUE.

From (146) of Dyson (1962) and Forrester (2010), the joint probability density function of eigenan-
gles is

pCUE(θk,k∈{1,2,··· ,d}) ∝
∏

1≤k<j≤d

∣∣eiθj − eiθk
∣∣2 =

∏
1≤k<j≤d

∣∣∣ei(θj−θk) − 1
∣∣∣2 . (27)
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Notice that it is rotation invariant, that is ∀∆θ ∈ [0, 2π], pCUE(θk,k∈{1,2,··· ,d}) = pCUE((θk +
∆θ)k∈{1,2,··· ,d}). Thus the 1-point correlation function (density of eigenangles at θ) is uniform,
which is d

2π .

Part 2. CRE.

Below we define xi = cos θi, then ρ(1)(θ) = sin θ · ρ(1)(x), p(xk,k∈{1,2,··· ,K}) =(∏K
k=1

1√
1−x2

)
p(θk,k∈{1,2,··· ,K}).

By combining Proposition 5.1.1 and 5.1.2 in Forrester (2010) together, suppose with pk(x) a poly-
nomial of degree k which is further more monic (i.e. the coefficient of xk is unity), {pk(x)}k∈N is
the orthogonal polynomials associated with the weight function w2(x),

∫ +∞

−∞
pj(x)pk(x)w2(x)dx =: ⟨pj , pk⟩2 = ⟨pj , pj⟩2δj,k. (28)

Here δj,k = 1{j = k} is the Kronecker delta function. And the joint probability density function
satisfies

p(xk,k∈{1,2,··· ,K}) ∝
∏

1≤k<j≤K

(xj − xk)
2

K∏
l=1

w2(x). (29)

The 1-point correlation function is

ρ(1)(x) = w2(x)

K−1∑
ν=0

p2ν(x)

⟨pν , pν⟩2
. (30)

Note that the restriction of monic can be omitted since there is a normalization coefficient on the
denominator.

2.1. CRE, determinant 1, d = 2K. From (135) of Dyson (1962), Section 2.9 of Forrester (2010)
and Girko (1985),

pCRE,even,det=1(θk,k∈{1,2,··· ,K}) ∝
∏

1≤k<j≤K

|cos θj − cos θk|2 , θk,k∈{1,2,··· ,K} ∈ [0, π]. (31)

By the change of variables,

pCRE,even,det=1(xk,k∈{1,2,··· ,K}) ∝
∏

1≤k<j≤K

(xj − xk)
2

K∏
l=1

1√
1− x2

l

. (32)

Here w2(x) = 1√
1−x2

. From knowledge of orthogonal polynomials ((1.12.3), (4.1.7), Szegő
(1939)), Chebyshev polynomials of the first kind Tn(x) = cos(n arccosx) associates with w2(x) =

1√
1−x2

:

∫ 1

−1

Tj(x)Tk(x)w2(x)dx =


π, j = k = 0
π
2 , j = k ≥ 1

0, j ̸= k

. (33)

By (30),

17
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ρ(1),CRE,even,det=1(x) =
1√

1− x2
·

(
1

π
+

2

π

K−1∑
ν=1

cos2 νθ

)

=
1

2π sin θ

[
2K − 1 +

sin(2K − 1)θ

sin θ

]
.

(34)

ρ(1),CRE,even,det=1(θ) =
1

2π

[
d− 1 +

sin(d− 1)θ

sin θ

]
, θ ∈ [0, π]. (35)

From symmetry, ρ(1),CRE,even,det=1(−θ) = ρ(1),CRE,even,det=1(θ).

2.2. CRE, determinant 1, d = 2K+1. From (137) of Dyson (1962), Section 2.9 of Forrester (2010)
and Girko (1985),

pCRE,odd,det=1(θk,k∈{1,2,··· ,K}) ∝
∏

1≤k<j≤K

|cos θj − cos θk|2
K∏
l=1

(1−cos θl), θk,k∈{1,2,··· ,K} ∈ [0, π].

(36)

By the change of variables,

pCRE,odd,det=1(xk,k∈{1,2,··· ,K}) ∝
∏

1≤k<j≤K

(xj − xk)
2

K∏
l=1

√
1− xl

1 + xl
. (37)

Here w2(x) =
√

1−x
1+x . From knowledge of orthogonal polynomials ((1.12.3), (4.1.7), Szegő

(1939)), Chebyshev polynomials of the fourth kind Wn(x) =
sin((n+ 1

2 )θ)
sin( θ

2 )
, θ = arccosx associates

with w2(x) =
√

1−x
1+x :

∫ 1

−1

Wj(x)Wk(x)w2(x)dx =

{
π, j = k ≥ 0

0, j ̸= k
. (38)

By (30),

ρ(1),CRE,odd,det=1(x) =

√
1− x

1 + x
·

 1

π

K−1∑
ν=0

(
sin
((
n+ 1

2

)
θ
)

sin
(
θ
2

) )2


=
1

2π sin (θ)

[
2K − sin(2Kθ)

sin θ

]
.

(39)

ρ(1),CRE,odd,det=1(θ) =
1

2π

[
d− 1− sin(d− 1)θ

sin θ

]
, θ ∈ [0, π]. (40)

From symmetry, ρ(1),CRE,odd,det=1(−θ) = ρ(1),CRE,odd,det=1(θ).

This completes the proof.

Theorem 12. For Q sampled from Haar measure on U(d,C) (or O(d,R) if F = R),

1. F = C. Pr(σmin(I +Q) ≥ πδd−1) ≥ 1− δ.

2. F = R. If d ≥ 2, Pr
(
σmin(I +Q) ≥ πδ

2 (d− 1)−1| det(Q) = 1
)
≥ 1− δ.
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Remark 8. For F = R, d = 1, the eigenvalue of Q is det(Q), and thus Pr(σmin(I + Q) ≥
2−∆| det(Q) = 1) = 1, ∀∆ ∈ (0, 2).
Remark 9. For F = R, Pr(det(Q) = 1) = Pr(det(Q) = −1) = 1

2 . If det(Q) = −1, Q has an
eigenvalue of −1, causing Pr(σmin(I +Q)) = 0.

Proof. Consider θk ∈ (−π, π],

σk(I +Q) =
√

λk(2I +Q+QH) =
√
2 + eiθk + 1/eiθk = 2 cos

(
θk
2

)
σmin(I +Q) = min

k
cos

(
θk
2

)
.

(41)

The second step is from the fact that QH = Q−1 shares the same eigenvectors with Q, and corre-
sponding eigenvalues are the reciprocal of the original eigenvalues.

Denote N(δθ) to be number of eigenvectors in (−π,−π + δθ] ∪ [π − δθ, π], δθ ∈ (0, π). From
Markov inequality,

Pr (σmin(I +Q) ≥ δθ) ≥ Pr

(
σmin(I +Q) ≥ 2 sin

δθ

2

)
= 1− Pr(N(δθ) ≥ 1)

≥ 1− E(N(δθ)) = 1−
∫
θ∈(−π,−π+δθ]∪[π−δθ,π]

ρ(1)(θ)dθ.

(42)

By invoking Lemma 11,

1. For F = C,

E(N(δθ)) =
d

2π
· 2δθ. (43)

By setting δθ = πδd−1, Pr (σmin(I +Q) ≥ δθ) ≥ 1− δ.

2. For F = R under determinant 1, for θ′ ∈ [0, π], ρ(1)(π − θ′) = 1
2π

(
d− 1 + sin(d−1)θ′

sin θ′

)
.

If d = 1, ρ(1)(θ) ≡ 0 and thus E(N(δθ)) = 0. For d ≥ 2:

From sin(d−1)θ
sin θ ≤ d− 1,

E(N(δθ)) = 2

∫ δθ

0

ρ(1)(π − θ′)dθ′ ≤ 2

∫ δθ

0

1

2π
· 2(d− 1)dθ′ =

2(d− 1)

π
δθ. (44)

By setting δθ = πδ
2 (d− 1)−1, Pr (σmin(I +Q) ≥ δθ| det(Q) = 1) ≥ 1− δ.

This completes the proof.

C.2 RANDOM GAUSSIAN INITIALIZATION

In the following, we present the proof for Theorem 6.

For a real/complex Gaussian random matrix of dimension d × d, with probability at least δ, the

largest singular value is upper bounded by O

((
1 +

√
ln( 1

δ )
d

)√
d

)
(Theorem 4.4.5, Vershynin

(2018)), while the smallest is lower bounded by Ω
(

δ√
d

)
(Theorem 1.1, Tao & Vu (2009)). (also

refer to Corollary 2.3.5 and Theorem 2.7.5 of Tao )
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Proof. The upper and lower bound for singular values of Wk follows immediately. The main chal-
lenge is the minimum singular value of W + (WWH)1/2.

At the beginning, we define a modification of Gaussian random matrix ensemble for simplification:

W is sampled from (complex or real) Gaussian random matrix ensemble, and if rank(W ) is not full,
sample W from Gaussian random matrix ensemble again until it is full rank.

Since the set of rank(W ) not being full is zero measure, the distribution of W shares the same with
the one before modification almost surely, and thus changing Gaussian random matrix ensemble to
modified version does not affect the analysis below essentially.

This modification is for better expression on definition of left and right unitary (orthogonal) matrix
of SVD. For full rank square matrix W = UΣV H , U and V are not unique, but V UH is (even if the
singular values are non-distinct, or changing the order of diagonal elements of Σ. This is due to the
uniqueness of polar decomposition W = SQ under full rank, where Q = UV H , S = (WWH)1/2.
) and thus well-defined.

Without changing the result, we analysis the initialization scheme of modified Gaussian random
matrix ensemble instead. Then W is full rank and thus polar decomposition is unique.

Generally, suppose the right polar decomposition of W is W =
(
WWH

)1/2
Q, then

W +
(
WWH

)1/2
=
(
WWH

)1/2
(I +Q). (45)

If F = R, Pr(det(W ) > 0) = Pr(det(W ) < 0) = 1
2 due to the symmetry of Gaussian random

matrix ensemble. If det(W ) = det
((

WWH
)1/2)

det (Q) < 0, det (Q) = −1, then σmin(I +

Q) = 0 and further σmin

(
W +

(
WW⊤)1/2) = 0.

Consider both F = C and F = R, det(W ) > 0 (which indicates det (Q) = 1):

σmin

(
W +

(
WWH

)1/2) ≥ σmin

((
WWH

)1/2)
σmin (I +Q)

= σmin(W )σmin (I +Q)

≥

[
N∏

k=1

σmin(Wk)

]
σmin (I +Q) .

(46)

From Theorem 1.1 of Tao & Vu (2009), by applying union bound, σmin(Wk,k∈{1,2,··· ,N}) >

f−1
1 (δ,N)d−1/2ϵ with high probability 1 − δ/2, where f1(δ,N) = O

(
N
δ

)
. Then[∏N

k=1 σmin(Wk)
]
≥
(
f−1
1 (δ,N)d−1/2ϵ

)N
, and it remains to find lower bound for σmin (I +Q).

To apply results in Theorem 12, it is sufficient to show that Q follows Haar measure on U(d,C) (or
O(d,R)).

Due to the property of invariance under left and right multiplication of unitary (orthogonal) ma-
trix for Gaussian random matrix ensemble (Section 2.6.2, (2.131), Tao), ∀ fixed Q0 ∈ U(d,C)
(or O(d,R) if F = R), W1Q

H
0 follows the same distribution as W1 while still independent of

Wk,k∈{2,3,··· ,N}, resulting that WQH
0 follows the same distribution as W . Since the right polar

decomposition of WQH
0 is WQH

0 =
(
WQH

0 Q0W
H
)1/2

QQH
0 =

(
WWH

)1/2 (
QQH

0

)
, we have

Q0Q
d
= Q, ∀ fixed Q0 ∈ U(d,C) (or O(d,R) if F = R). (47)

Likewise

QQ0
d
= Q, ∀ fixed Q0 ∈ U(d,C) (or O(d,R) if F = R). (48)
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From the fact that the only measure invariant under left (or right) multiplication of arbitrary element
of a compact lie group is Haar measure, Q follows Haar measure on U(d,C) (or O(d,R)), and the
proof is completed.

By Theorem 6, for depth N = 4, if F = C then with high probability 1 − δ (if F = R then
with probability 1/2, σmin

(
W (0) +

(
W (0)W (0)⊤

)1/2)
= 0, and with probability (1 − δ)/2 the

following holds), ∃f1(δ) = O
(
1
δ

)
, f2(δ) = O( 1

δ5 ) such that

max
j,k

σk(Wj(0)) ≤ f1(δ)
√
dϵ

min
j,k

σk(Wj(0)) ≤
1

f1(δ)
√
d
· ϵ

σmin

(
W (0) +

(
W (0)W (0)H

)1/2) ≥ 1

f2(δ)d3
· ϵ4.

(49)

Consequently,

e∆(0) :=

√√√√ 3∑
i=1

∥∆i,i+1∥2F

∣∣∣∣∣∣
t=0

≤
√
3 · 2
√
d ·max

j,k
σ2
k(Wj(0)) = 2

√
3f2

1 (δ)d
3/2ϵ2. (50)

C.3 BALANCED GAUSSIAN INITIALIZATION

This section analyzes the balanced Gaussian initialization scheme.

Corollary 13. Under balanced Gaussian initialization scheme (6), each matrix Wk,k∈{1,2,··· ,N} is
a Gaussian random matrix ensemble scaled by ϵ.

Proof. This is immediately from the property of invariance under left and right multiplication of
unitary (orthogonal) matrix for Gaussian random matrix ensemble (Section 2.6.2, (2.131), Tao).

Due to Corollary 24, the product matrix can be expressed as UΣN
w V H . Then we present the proof

of Theorem 3.

Proof. We first consider 2 | N . From (6), W (t = 0) = sϵNQN,N+1(G
HG)N/2QH

01.

Naturally ∥Σw∥op = ϵ
∥∥(GHG)1/2

∥∥
op

= ϵ ∥G∥op = O

(
1 +

√
ln( 1

δ )
d

)√
dϵ. Last step is from

Theorem 4.4.5 of Vershynin (2018) directly.

For the other two terms,

σmin ((U + V )Σw)|t=0

=
√

λmin ((U + V )Σ2
w(U + V )H)

∣∣∣∣
t=0

=

√
λmin

(
(WWH)

1
N + (WHW )

1
N + (WWH)

−N−2
2N W + (WHW )

−N−2
2N WH

)∣∣∣∣∣
t=0

=ϵ

√
λmin

(
(Q01 + sQN,N+1) (GHG) (Q01 + sQN,N+1)

H
)

∈
[
ϵσmin(I + sQH

01QN,N+1)σmin(G), ϵσmin(I + sQH
01QN,N+1)σmax(G)

]
.

(51)
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And

∥(U − V )Σw∥F |t=0 ≤ 2
√
dϵ∥G∥op. (52)

Since QN,N+1 and Q01 are independent and both sampled from Haar measure, then QH
01QN,N+1 ∼

Haar on U(d,C) (or O(d,R) if F = R) as well.

For F = R, since s is independent of Qj,j∈{0,1,··· ,N}, Pr(s det(QN,N+1) det(Q01) = 1) =

Pr(s det(QN,N+1) det(Q01) = −1) = 1
2 is directly from symmetry of Haar measure.

Then by combining Theorem 12 and Theorem 4.4.5 of Vershynin (2018), Theorem 1.1 of Tao & Vu
(2009) (with high probability 1 − δ′, max

(
∥G∥op, ∥G−1∥op

)
≤ f1(δ

′)
√
d, f1(δ′) = O

(
1
δ′

)
), the

proof for 2 | N is completed.

For 2 ∤ N , suppose the SVD of G is G = UGΣGV
H
G , then W (t = 0) =

sϵN (QN,N+1UGV
H
G )(GHG)N/2QH

01. Note that since QN,N+1 and G are independent, then
QN,N+1UGV

H
G ∼ Haar, QN,N+1UGV

H
G and Q01 are independent. Then the proof for 2 ∤ N

is completed by replacing the QN,N+1 with QN,N+1UGV
H
G in the derivations.

C.4 GENERAL BALANCED INITIALIZATION

This section introduces a property for general balanced and input-output orthogonal-invariant ini-
tialization (refer to Definition 1) under real field.

Theorem 14. For any real matrix factorization, if the initialization is balanced and input-output
orthogonal-invariant, then the minimum singular value of W +

(
WW⊤)1/2 at t = 0 is exactly 0

with at least probability 1/2:

Pr
(
σmin

(
W +

(
WW⊤)1/2) = 0

)
≥ 1/2. (53)

Proof. As a direct consequence of Definition 1, W is left and right orthogonal invariant:

W
d
= U ′WV ′, ∀U ′, V ′ ∈ O(d,R). (54)

Suppose the right polar decomposition of W is W = WW⊤Q, following the same arguments in
the proof (C.2) of Theorem 6,

W +
(
WW⊤)1/2 =

(
WW⊤)1/2 (I +Q), Q ∼ Haar. (55)

From Theorem 12, Pr(σmin(I +Q) = 0) = 1
2 , resulting

Pr
(
σmin

(
W +

(
WW⊤)1/2) = 0

)
≥ Pr(σmin(I +Q) = 0) =

1

2
. (56)

This completes the proof.

D BASIC LEMMAS

D.1 CLASSIC MATRIX ANALYSIS CONCLUSIONS

Lemma 15. Let R ∈ Fd×d, where F = C or R. Then:

1. I−RRH and I−RHR (or I−RR⊤ and I−R⊤R if F = R) share the same set of eigenvalues.
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2. These eigenvalues are real-valued.

Proof. We prove the complex case, and the real case follows. Suppose the singular value decompo-
sition of R is URΣRV

H
R , then

I −RRH = I − URΣ
2
RU

H
R = UR

(
I − Σ2

R

)
UH
R

I −RHR = I − VRΣ
2
RV

H
R = VR

(
I − Σ2

R

)
V H
R .

(57)

Thus both I −RRH and I −RHR are unitarily similar to I −Σ2
R, which completes the proof.

Lemma 16. Given symmetric matrices X,∆ ∈ Fd×d, where F = C or R, suppose X ≻ ∥∆∥opI ≻
O, then

∥∥∥X1/2 − (X +∆)1/2
∥∥∥
op
≤ ∥∆∥op

2(λmin(X)− ∥∆∥op)1/2
. (58)

Proof. Directly by Theorem X.3.8 and inequality (X.46) in Bhatia (1996).

Lemma 17. ∀X,∆ ∈ Fd×d, where F = C or R, if X and X +∆ are both invertible, then

(X +∆)−1 −
(
X−1 −X−1∆X−1

)
= X−1∆X−1∆(X +∆)−1. (59)

Proof.

(X +∆)−1 −
(
X−1 −X−1∆X−1

)
= X−1

[
X − (X −∆)X−1(X +∆)

]
(X +∆)−1

= X−1∆X−1∆(X +∆)−1.
(60)

Lemma 18. Bound of eigenvalues under perturbation.

For unitary (or orthogonal, for real field) d-dimensional matrices U , V , positive semi-definite matrix
S, denote P :=

(
U+V

2

)
S
(
U+V

2

)H
, then the eigenvalues of S are bounded by

λk (P ) ≤ λk(S) ≤


2

[
λk (P ) +

∥∥∥(U−V
2

)
S
(
U−V

2

)H∥∥∥
op

]
, 1 ≤ k ≤ d− 1

λk (P ) +
∥∥∥(U−V

2

)
S
(
U−V

2

)H∥∥∥
op

, k = d
. (61)

Proof. Let Q = UHV .

Due to Courant-Fischer min-max Theorem, A ⪰ B indicates λk(A) ≥ λk(B). Then the lower
bound is straight forward:

λk

((
U + V

2

)
S

(
U + V

2

)H
)

= λk

(
S1/2

(
U + V

2

)(
U + V

2

)H

S1/2

)

≤λk

(
S1/2

(∥∥∥∥U + V

2

∥∥∥∥2
op

I

)
S1/2

)

≤λk

(
S1/2

((∥U∥op + ∥V ∥op
2

)2

I

)
S1/2

)
= λk (S) .

(62)

For upper bound, by applying Wely inequality,
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λk

((
U + V

2

)
S

(
U + V

2

)H
)

= λk

((
I +Q

2

)
S

(
I +QH

2

))
≥λk

((
I +Q

2

)
S

(
I +QH

2

)
+

(
I −Q

2

)
S

(
I −QH

2

))
−
∥∥∥∥(I −Q

2

)
S

(
I −QH

2

)∥∥∥∥
op

=
1

2
λk

(
S +QSQH

)
−

∥∥∥∥∥
(
U − V

2

)
S

(
U − V

2

)H
∥∥∥∥∥
op

.

(63)

For arbitrary k, λk

(
S +QSQH

)
≥ λk (S); for k = d, λd

(
S +QSQH

)
≥ 2λd (S). This com-

pletes the proof.

D.2 LEMMAS ON EIGENVALUE CHANGE UNDER DISCRETE TIME

Lemma 19. Suppose Σ, S ∈ Fd×d are positive semi-definite matrices, 0 ≤ α ≤ 1
6∥S∥

−1
op , F = C

or R. Consider S′ = (I + α(Σ− S))S(I + α(Σ− S)),

λmin (S
′) ≥ λmin(S)(1 + α(λmin(Σ)− λmin(S)))

2 +O
(
α2
(
∥Σ∥2op + ∥S∥2op

)
∥S∥op

)
λmax (S

′) ≤ λmax(S)(1 + α(λmax(Σ)− λmax(S)))
2.

(64)

This generalizes Lemma 3.2 in Ye & Du (2021).

Proof. Following the derivations in Ye & Du (2021), ∀β ∈ (0, 1), rewrite the terms by the following:

S′ = β

(
I − α

β
S

)
S

(
I − α

β
S

)
+ (1− β)

(
I +

α

1− β
Σ

)
S

(
I +

α

1− β
Σ

)
− α2

β(1− β)
[(1− β)S + βΣ]S [(1− β)S + βΣ] .

(65)

The first term has eigenvalues λi′(S
′) = β

(
1− α

βλi(S)
)2

λi(S) (note that f(x) = (1 − x)2x is

non-decreasing in
[
0, 1

3

]
, so λi′(S

′) is exactly the ith eigenvalue of the first term when β ≥ 1
2 ),

while the second term is bounded by

(1− β)

(
I +

α

1− β
λmin(Σ)

)2

λmin(S) ⪯ term2 ⪯ (1− β)

(
I +

α

1− β
λmax(Σ)

)2

λmax(S).

(66)

By treating the third term as error term and taking β = 1
2 , the proof is completed.

Lemma 20. Suppose D,S ∈ Fd×d are positive semi-definite matrices, E ∈ Fd×d, F = C or R.
Denote M = S+D. Consider S′ =

(
I + η

(
aM −M3 + E

))
S
(
I + η

(
aM −M3 + E

))
, under

η < 1

16(∥M∥3
op+∥E∥op)

,

λmin(S
′) ≥ λmin(S) + 2η (a− 2∥D∥op∥M∥op − ∥M∥opλmin(S))λ

2
min(S)

− 2η
(
∥E∥op + ∥D∥2op∥M∥op

)
λmin(S)

+O
((
a2∥M∥2op + ∥M∥6op + ∥E∥2op

)
∥S∥op

)
.

(67)
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Proof. Expand the expression of S′:

S′ = S + η (aM + E −DMD)S + ηS (aM + E −DMD)

− η(DMS2 + S2MD)− ηS(MD +DM)S − η(SMS2 + S2MS) + η2M ′
error

=
1

4
(I + 4η (aM + E −DMD))S (I + 4η (aM + E −DMD))

+
1

4s
(I − 4ηsDM)S2 (I − 4ηsMD) +

1

4s
S (I − 4ηs (MD +DM))S

+
1

4s2
S
(
I − 4ηs2M

)
S
(
I − 4ηs2M

)
S +

(
3

4
S − 1

2s
S2 − 1

4s2
S3

)
+ η2M ′

error.

(68)

where ∥M ′
error∥op = O

((
a2∥M∥2op + ∥M∥6op + ∥E∥2op

)
∥S∥op

)
.

Notice that 3
4S −

1
2sS

2 − 1
4s2S

3 has eigenvalues λi′(S
′) = 3

4λi(S)− 1
2sλ

2
i (S)− 1

4s2λ
3
i (S), so by

taking s = 2∥S∥op, λi′(S
′) is exactly the ith eigenvalue of S′.

This further gives

λmin(S
′) ≥ 1

4

(
1 + 4η

(
aλmin(M)− ∥E∥op − ∥D∥2op∥M∥op

))2
λmin(S)

+
1

4s
(1− 4ηs∥D∥op∥M∥op)2 λ2

min(S) +
1

4s
(1− 8ηs∥M∥op∥D∥op)λ2

min(S)

+
1

4s2
(
1− 4ηs2∥M∥op

)2
λ3
min(S) +

(
3

4
λmin(S)−

1

2s
λ2
min(S)−

1

4s2
λ3
min(S)

)
+ η2 ∥M ′

error∥op
≥ λmin(S) + 2η

(
aλmin(M)− 2∥D∥op∥M∥opλmin(S)− ∥M∥opλ2

min(S)
)
λmin(S)

− 2η
(
∥E∥op + ∥D∥2op∥M∥op

)
λmin(S) + η2 ∥M ′

error∥op .
(69)

From λmin(M) ≥ λmin(S), the proof is completed.

D.3 LEMMAS ON ANALYTIC SINGULAR VALUE DECOMPOSITION OF PRODUCT MATRIX
UNDER BALANCED INITIALIZATION AND GRADIENT FLOW

Lemma 21. Existence of analytic singular value decomposition (ASVD).

Under Section 3 with gradient flow and balanced initialization, for t ∈ R+ ∪ {0}, there exists
analytical singular value decompositions for Wj,j∈{1,2,··· ,N}(t) and W (t).

Proof. For F = R, the proof is exactly the same as Lemma 1 in Arora et al. (2019b): real analytic
matrices have ASVD (Theorem 1 in Bunse-Gerstner et al. (1991/92)), and Wj(t) are analytic then
so does W (t). For complex case, Theorem 1 and 3 in De Moor & Boyd (1989) gives that complex
analytic matrices (of a real parameter) have ASVD, then the rest of proof follows.

Remark 10. For complex field here, the ”analytic” here has no relation with the standard defini-
tion of ”complex analytic function”, who has complex parameters and consequently more restric-
tions on definition of derivatives.

Throughout the proof for gradient flow (continuous time), we only deal with real-valued parameter
t ∈ R+ ∪ {0}, so any ”analytic” means real-analytic (for F = C, it means the real and imaginary
part are both real-analytic), not complex-analytic.
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Lemma 22. Suppose the analytic singular value decomposition of M(t) exists and is
U(t)ΣM (t)V H(t), M(t) ∈ Fd×d, where F = C or R, then the derivative of the kth singular
value is

dσk(M)

dt
= ℜ

(
uH
k

dM

dt
vk

)
, (70)

where uk, vk are the kth column vectors of left and right unitary (or orthogonal if F = R) matrices
respectively.

Proof. We prove the case when F = C. For F = R, replace ·H by ·⊤.

dM

dt
=

dU

dt
ΣMV H + U

dΣM

dt
V H + UΣM

dV

dt

H

. (71)

Then

ℜ
(
uH
k

dM

dt
vk

)
= ℜ

(
uH
k

dU

dt
ΣMV Hvk + uH

k U
dΣM

dt
V Hvk + uH

k UΣM
dV

dt

H

vk

)

=
dσk(M)

dt
+ σk(M)

(
ℜ
(
uH
k

duk

dt

)
+ ℜ

(
dvHk
dt

vk

))
.

(72)

From ℜ
(
uH
k

duk

dt

)
= d

dt

(
1
2∥uk∥2

)
= 0, ℜ

(
dvH

k

dt vk

)
= d

dt

(
1
2∥vk∥

2
)
= 0, the proof is done.

Remark 11. If M is Hermitian, then the ℜ can be omitted.

Remark 12. This generalizes Lemma 2 in Arora et al. (2019b) from real field into complex field by
adding a ℜ on the right side:

dσr(S)

dt
= −N(σ2

r(S))
1−1/N · ℜ

(〈
∇WL(W ), urv

H
r

〉)
. (73)

Lemma 23. Under Section 3 with gradient flow, Lori is non-increasing.

For t ∈ [0,+∞),

d

dt
Lori ≤ −2N min

j,k
|σk(Wj)|2(N−1)Lori. (74)

Proof. Naturally we have the derivative of product matrix W (t):

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

dW

dt
=

N∑
j=1

W∏
L,j+1

[
WH∏

L,j+1 (Σ−W )WH∏
R,j−1 + a (Wj∆j−1,j −∆j,j+1Wj)

]
W∏

R,j−1

=

N∑
j=1

W∏
L,j+1W

H∏
L,j+1 (Σ−W )WH∏

R,j−1W
∏

R,j−1

+ a

N∑
j=1

W∏
L,j∆j−1,jW∏

R,j−1 − a

N∑
j=1

W∏
L,j+1∆j,j+1W∏

R,j

=

N∑
j=1

W∏
L,j+1W

H∏
L,j+1 (Σ−W )WH∏

R,j−1W
∏

R,j−1 + a (W∆0,1 −∆N,N+1W )

=

N∑
j=1

W∏
L,j+1W

H∏
L,j+1 (Σ−W )WH∏

R,j−1W
∏

R,j−1.

(75)

Then

d

dt
Lori = −ℜ

(〈
Σ−W,

dW

dt

〉)

= −ℜ

〈Σ−W,

N∑
j=1

W∏
L,j+1W

H∏
L,j+1 (Σ−W )WH∏

R,j−1W
∏

R,j−1

〉
= −

N∑
j=1

ℜ
(〈

Σ−W,W∏
L,j+1W

H∏
L,j+1 (Σ−W )WH∏

R,j−1W
∏

R,j−1

〉)

= −
N∑
j=1

ℜ
(〈

WH∏
L,j+1 (Σ−W )WH∏

R,j−1,W
H∏

L,j+1 (Σ−W )WH∏
R,j−1

〉)

= −
N∑
j=1

∥∥∥WH∏
L,j+1 (Σ−W )WH∏

R,j−1

∥∥∥2
F
.

(76)

From ∥LXR∥F ≥ σmin(L)σmin(R)∥X∥F , σmin

(
WH∏

L,j+1

)
≥ minj,k |σk(Wj)|N−j and

σmin

(
WH∏

R,j−1

)
≥ minj,k |σk(Wj)|j−1, the proof is completed.

Lemma 24. Analytic singular value decomposition of product matrix with positive semi-definite
diagonal matrix.

Under Section 3 with gradient flow and any bounded (i.e. Wj,j∈{1,2,··· ,N}(t = 0) is bounded)
balanced initialization, ∀ positive integer N ≥ 2, the product matrix W (t) can be expressed as:

W (t) = U(t)S(t)V (t)H , (77)

where: U(t) ∈ Fd×d, S(t) ∈ Rd×d and V (t) ∈ Fd×d are analytic functions of t, U(t) and V (t)
are orthogonal matrices, S(t) is diagonal and positive semi-definite (elements on its diagonal may
appear in any order), Σw(t) := S(t)1/N is well-defined (meaning the real-valued operation Sii 7→
(Sii)

1/N is applied to each diagonal element of S(t), resulting in another semi-positive diagonal
matrix) and analytic.

Moreover, if the singular values of product matrix W are non-zero, then throughout the optimization
W remains full rank in finite time.
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Proof. From Lemma 21, it is left to construct a new ASVD (analytic singular value decomposition)
of W (t) using existed ASVD W (t) = U(t)S(t)V (t)H (S(t) is not guaranteed to be positive semi-
definite).

By Lemma 23, ∥Σ−W∥F ≤ ∥Σ−W (t = 0)∥F . Then the following term is bounded by a constant
for all t ∈ R+ ∪ {0}:

∣∣〈∇l(W (t)), ur(t)vr(t)
H
〉∣∣ ≤ ∥∇l(W (t))∥op = ∥Σ−W∥op
≤ ∥Σ−W∥F ≤ ∥Σ−W (t = 0)∥F .

(78)

By invoking Theorem 3 in Arora et al. (2019b) (for complex case, add ℜ), the absolute value of time
derivative of σr(t) is bounded by:

∣∣∣∣dσr(t)

dt

∣∣∣∣ ≤ ∥Σ−W (t = 0)∥F ·N
(
σ2
r(t)

)1−1/N
. (79)

Thus all σr(t) do not change sign for t ∈ R+ ∪ {0}. Moreover, if |σr(t = 0)| > 0, the it never
decrease to 0 in finite time.

Then we construct Snew(t) by flipping the sign of negative diagonal terms, and Unew(t) by changing
the sign of corresponding columns of U(t). Now W (t) = Unew(t)Snew(t)V (t)H is also an ASVD
of W (t), Unew(t) is analytic and unitary (orthogonal), Snew(t) is analytic, diagonal and positive
semi-definite.

Specially, if for some r, σr(t) = 0 at time t, then it remains zero. Thus, from Snew(t) is analytic, so
is Σw(t). This completes the proof.

Finally, we generalize Lemma 2 in Arora et al. (2019b) into complex field. Here we assume all
matrices are square matrices of dimension d× d.

Lemma 25. Under balanced initialization, assume the singular values of W (t) = U(t)S(t)V (t)H

(U , V are unitary, S is real-valued and diagonal) are distinct and different from zero at initialization,
then the derivatives of U , V satisfy

dU

dt
= U (F ⊙MU +DU ) ,

dV

dt
= V (F ⊙MV +DV ) , (80)

where DU , DV are diagonal matrices with pure imaginary entries (and thus skew-Hermitian) satis-
fying

(DU )jj − (DV )jj = −
N

2

(
σ2
j (S)

)1/2−1/N
[(
UH(∇WLori)V

)
jj
−
(
V H(∇WLori)

HU
)
jj

]
,

(81)

and

MU = −
[
UH(∇WLori)V S + SV H(∇WLori)

HU
]

MV = −
[
V H(∇WLori)

HUS + SUH(∇WLori)V
]
.

(82)

Here ⊙ stands for Hadamard (element-wise) product and F is defined by

Fjk =

{
0 , j = k

1

(σ2
k(S))

1/N−(σ2
j (S))

1/N , j ̸= k. (83)
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Remark 13. Note that only the difference DU−DV is uniquely determined. Adding the same purely
imaginary diagonal matrix to both DU and DV leaves the dynamics of W unchanged, correspond-
ing to a shared phase rotation of U and V .

For real matrices, R.H.S. of equation (81) is zero, DU = DV = O, then this Lemma degenerates
into Lemma 2 of Arora et al. (2019b).

Proof. We calculate the time derivative of U and the time derivative of V follows the same way.

Following the derivations in Arora et al. (2019b),

UH dW

dt
V = UH dU

dt
S +

dS

dt
+ S

dV

dt

H

V, (84)

where UH dU
dt = −dU

dt

H
U and V H dV

dt = −dV
dt

H
V are skew-Hermitian matrices, whose diagonal

entries are therefore purely imaginary. Since S is real, denote Īd to be a matrix holding zeros on its
diagonal and ones elsewhere,

ℜ

(
Īd ⊙

(
UH dW

dt
V S + SV H dW

dt

H

U

))
= ℜ

(
UH dU

dt
S2 − S2UH dU

dt

)

ℑ

(
UH dW

dt
V S + SV H dW

dt

H

U

)
= ℑ

(
UH dU

dt
S2 − S2UH dU

dt

)
.

(85)

Since UH dW
dt V S + SV H dW

dt

H
U is Hermitian, its diagonal entries are real, further giving

ℑ
(
UH dW

dt V S + SV H dW
dt

H
U
)
= ℑ

(
Īd ⊙

(
UH dW

dt V S + SV H dW
dt

H
U
))

. Combining the real
and imaginary parts gives

Īd ⊙

(
UH dW

dt
V S + SV H dW

dt

H

U

)
= UH dU

dt
S2 − S2UH dU

dt
. (86)

Here UH dW
dt V = −

∑N
j=1(S

2)
j−1
N UH(∇WLori)V (S2)

N−j
N . Then the non-diagonal entries of

UH dU
dt follows by the proof of Lemma 2 in Arora et al. (2019b).

For the diagonal entries of UH dU
dt , by taking imaginary part of equation (84),

σj(S)

((
UH dU

dt

)
jj

−
(
V H dV

dt

)
jj

)
= iℑ

(
σj(S)

((
UH dU

dt

)
jj

−
(
V H dV

dt

)
jj

))

=iℑ
(
UH dW

dt
V

)
jj

=
1

2

(UH dW

dt
V

)
jj

−

(
V H dW

dt

H

U

)
jj

 .

(87)

The last step uses the fact that iℑ(z) = 1
2 (z − z̄). This deduces that

(
UH dU

dt

)
jj

−
(
V H dV

dt

)
jj

= −N

2

(
σ2
j (S)

)1/2−1/N
[(
UH(∇WLori)V

)
jj
−
(
V H(∇WLori)

HU
)
jj

]
.

(88)

This completes the proof.
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D.4 LEMMAS ON REGULARIZATION, GRADIENT FLOW

Lemma 26. Consider optimizing a generalized loss function coupled with a generalized regulariza-
tion term using gradient flow:

L(W1, · · · ,WN ) := Lori

 1∏
j=N

Wj

+
1

4

N−1∑
j=1

aj,j+1∥∆j,j+1∥2F , aj,j+1 ∈ R+ ∪ {0}. (89)

Where ∆j,j+1 is defined in (4). Then the regularization terms decays by:

d

dt

N−1∑
j=1

aj,j+1∥∆j,j+1∥2F

 = −4
N∑
j=1

∥aj,j+1∆j,j+1Wj − aj−1,jWj∆j−1,j∥2F . (90)

Proof.
d

dt
WjW

H
j = −

[ (
∇WjLori

)
WH

j +Wj

(
∇WjLori

)H
− 2aj−1,jWj∆j−1,jW

H
j

+ aj,j+1

(
∆j,j+1WjW

H
j +WjW

H
j ∆j,j+1

) ]
d

dt
WH

j+1Wj+1 = −
[ (
∇Wj+1

Lori

)H
Wj+1 +WH

j+1

(
∇Wj+1

Lori

)
+ 2aj+1,j+2W

H
j+1∆j+1,j+2Wj+1

− aj,j+1

(
∆j,j+1W

H
j+1Wj+1 +WH

j+1Wj+1∆j,j+1

) ]
.

(91)

Denote W∏
L,j :=

∏j
k=N Wk, W∏

R,j :=
∏1

k=j Wk, W :=
∏1

k=N Wk = W∏
L,1 = W∏

R,N .
From property of the loss Lori,

(
∇Wj

Lori

)
WH

j = WH∏
L,j+1 (∇WLori(W ))W∏

R,j = WH
j+1

(
∇Wj+1

Lori

)
, ∀j ∈ {1, 2, · · · , N − 1}.

(92)

Thus we have

d

dt
∆j,j+1 = 2aj−1,jWj∆j−1,jW

H
j + 2aj+1,j+2W

H
j+1∆j+1,j+2Wj+1

− aj,j+1

(
∆j,j+1

(
WjW

H
j +WH

j+1Wj+1

)
+
(
WjW

H
j +WH

j+1Wj+1

)
∆j,j+1

)
,

(93)

d∥∆j,j+1∥2F
dt

= 4aj−1,jtr
(
Wj∆j−1,jW

H
j ∆j,j+1

)
+ 4aj+1,j+2tr

(
Wj+1∆j,j+1W

H
j+1∆j+1,j+2

)
− 4aj,j+1tr

(
(WjW

H
j +WH

j+1Wj+1)∆
2
j,j+1

)
= − 2

aj,j+1

[
∥aj,j+1∆j,j+1Wj − aj−1,jWj∆j−1,j∥2F

+ ∥aj+1,j+2∆j+1,j+2Wj+1 − aj,j+1Wj+1∆j,j+1∥2F
+ a2j,j+1

(
∥∆j,j+1Wj∥2F + ∥Wj+1∆j,j+1∥2F

)
− a2j−1,j∥Wj∆j−1,j∥2F − a2j+1,j+2∥∆j+1,j+2Wj+1∥2F

]
.

(94)

By taking weighted sum,
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d

dt

N−1∑
j=1

aj,j+1∥∆j,j+1∥2F

 = −4
N∑
j=1

∥aj,j+1∆j,j+1Wj − aj−1,jWj∆j−1,j∥2F . (95)

Below we back to aj,j+1 ≡ a ∈ R+ ∪ {0}, ∀j ∈ {1, 2, · · · , N − 1}. Then 89 becomes

L(W1, · · · ,WN ) := Lori

 1∏
j=N

Wj

+
1

4

N−1∑
j=1

a∥∆j,j+1∥2F , a ∈ R+ ∪ {0}. (96)

Theorem 27. Suppose for all j ∈ {1, 2, · · · , N}, σmin(Wj) ≥ µmin > 0, σmax(Wj) ≤ µmax.
Consider optimizing 96 under gradient flow, then the convergence rate of the regularization term is
lower bounded:

d

dt

N−1∑
j=1

∥∆j,j+1∥2F

 ≤ −4a · 2

N − 1

µ2
max − µ2

min(
µmax

µmin

)2⌊N/2⌋
− 1

·

N−1∑
j=1

∥∆j,j+1∥2F

 . (97)

Proof. Denote Dj = ∆j,j+1Wj −Wj∆j−1,j . Then

∆j,j+1 = (Dj +Wj∆j−1,j)W
−1
j . (98)

Deducing

∥∆j,j+1∥F ≤
∥∥W−1

j

∥∥
op

(∥Dj∥F + ∥∆j−1,j∥F ∥Wj∥op) ≤
1

µmin
∥Dj∥F +

µmax

µmin
∥∆j−1,j∥F .

(99)

From ∆0,1 = O, inductively we have

∥∆j,j+1∥2F ≤
1

µ2
min

(
j∑

k=1

(
µmax

µmin

)j−k

∥Dk∥F

)2

≤ 1

µ2
min

(
j∑

k=1

(
µmax

µmin

)2(j−k)
)(

j∑
k=1

∥Dk∥2F

)

=
1

µ2
min

(
µmax

µmin

)2j
− 1(

µmax

µmin

)2
− 1

j∑
k=1

∥Dk∥2F .

(100)

The last two step use Cauchy-Schwarz inequality.

From ∆N,N+1 = O, following the same procedure we have

∥∆N−j,N−j+1∥2F ≤
1

µ2
min

(
µmax

µmin

)2j
− 1(

µmax

µmin

)2
− 1

N∑
k=N−j+1

∥Dk∥2F . (101)

Summing all terms up, for odd N we have
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N−1∑
j=1

∥∆j,j+1∥2F =

(N−1)/2∑
j=1

(
∥∆j,j+1∥2F + ∥∆N−j,N−j+1∥2F

)

≤
(N−1)/2∑

j=1

 1

µ2
min

(
µmax

µmin

)2j
− 1(

µmax

µmin

)2
− 1

j∑
k=1

(
∥Dk∥2F + ∥DN+1−k∥2F

)
=

(N−1)/2∑
k=1

(∥Dk∥2F + ∥DN+1−k∥2F
) (N−1)/2∑

j=k

 1

µ2
min

(
µmax

µmin

)2j
− 1(

µmax

µmin

)2
− 1




≤ N − 1

2

(
µmax

µmin

)N−1

− 1

µ2
max − µ2

min

(
N∑

k=1

∥Dk∥2
)
.

(102)

For even N ,

N−1∑
j=1

∥∆j,j+1∥2F =

N/2−1∑
j=1

(
∥∆j,j+1∥2F + ∥∆N−j,N−j+1∥2F

)
+ ∥∆N/2,N/2+1∥2F

≤
N/2−1∑
j=1

 1

µ2
min

(
µmax

µmin

)2j
− 1(

µmax

µmin

)2
− 1

j∑
k=1

(
∥Dk∥2F + ∥DN+1−k∥2F

)
+

1

2µ2
min

(
µmax

µmin

)N
− 1(

µmax

µmin

)2
− 1

N/2∑
k=1

(
∥Dk∥2F + ∥DN+1−k∥2F

)

=

N/2−1∑
k=1

(∥Dk∥2F + ∥DN+1−k∥2F
)N/2−1∑

j=k

 1

µ2
min

(
µmax

µmin

)2j
− 1(

µmax

µmin

)2
− 1




+
1

2µ2
min

(
µmax

µmin

)N
− 1(

µmax

µmin

)2
− 1

N/2∑
k=1

(
∥Dk∥2F + ∥DN+1−k∥2F

)

≤ N − 1

2

(
µmax

µmin

)N
− 1

µ2
max − µ2

min

(
N∑

k=1

∥Dk∥2
)
.

(103)

Thus

N∑
j=1

∥Dj∥2 ≥
2

N − 1

µ2
max − µ2

min(
µmax

µmin

)2⌊N/2⌋
− 1

N−1∑
i=1

∥∆i,i+1∥2F . (104)

Combine with Lemma 26, then the proof is done.

Remark 14. For N = 4, Theorem 27 reduces to
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d

dt

 3∑
j=1

∥∆j,j+1∥2F

 ≤ −8a

3

µ4
min

µ2
max + µ2

min

·

 3∑
j=1

∥∆j,j+1∥2F

 . (105)

Theorem 28. Under problem settings in section 3 with gradient flow, the change of maximum and
minimum singular values of Wjs have bounds that are irrelevant to the regularization term:

dmaxj,k σ
2
k(Wj)

dt
≤ 2max

j,k
|σk(Wj)|max

j

∥∥∇Wj
Lori

∥∥
op

dminj,k σ
2
k(Wj)

dt
≥ −2min

j,k
|σk(Wj)|max

j

∥∥∇Wj
Lori

∥∥
op

.

(106)

Remark 15. If argmax(j,k) |σk(Wj)|, argmin(j,k) |σk(Wj)| are not unique, the derivatives are
not well-defined. In these cases, the inequalities become:

dσ2
k′(Wj′)

dt
≤ 2max

j,k
|σk(Wj)|max

j

∥∥∇WjLori

∥∥
op

, (j′, k′) ∈ argmax
(j,k)
|σk(Wj)|

dσ2
k′(Wj′)

dt
≥ −2min

j,k
|σk(Wj)|max

j

∥∥∇Wj
Lori

∥∥
op

, (j′, k′) ∈ argmin
(j,k)
|σk(Wj)|.

(107)

Proof. For simplicity, set W0 ≡W1, W5 ≡W4.

Denote the analytic singular value decomposition of Wj(t) to be U (j)Σ
(j)
w V (j)H , then from Lemma

22, we have

dσk(Wj)

dt
= ℜ

(
u
(j)H
k

(
−∇WjLori + aWj∆j−1,j − a∆j,j+1Wj

)
v
(j)
k

)
= ℜ

(
u
(j)H
k

(
−∇Wj

Lori

)
v
(j)
k

)
+ au

(j)H
k

(
WjWj−1W

H
j−1 +WH

j+1Wj+1Wj − 2WjW
H
j Wj

)
v
(j)
k

= ℜ
(
u
(j)H
k

(
−∇Wj

Lori

)
v
(j)
k

)
+ a

[(
u
(j)H
k WH

j+1Wj+1u
(j)
k + v

(j)H
k Wj−1W

H
j−1v

(j)
k

)
σk(Wj)− 2σk(Wj)

3
]
.

(108)

From u
(j)H
k WH

j+1Wj+1u
(j)
k , v

(j)H
k Wj−1W

H
j−1v

(j)
k ∈ [minj,k σ

2
k(Wj),maxj,k σ

2
k(Wj)], the proof

is completed.

Note:

max
j

∥∥∇Wj
Lori

∥∥
op
≤ max

j,k
|σk(Wj)|N−1

(
σ1(Σ) + max

j,k
|σk(Wj)|N

)
. (109)

D.5 LEMMAS ON REGULARIZATION, GRADIENT DESCENT

Theorem 29. Suppose for all j ∈ {1, 2, 3, 4}, σmin(Wj(t)) ≥ µmin > 0, σmax(Wj(t)) ≤ µmax,
then the convergence rate of the regularization term is lower bounded by:
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Lreg(t+ 1) ≤
(
1− 8

3

ηaµ4
min

µ2
max + µ2

min

)
· Lreg(t)

+ η2O

(
a2µ4

maxLreg(t) +
√
aLreg(t)µ

6
maxLori(t)

)
+ η4O

(
aµ12

maxLori(t)
2 + a3µ4

maxLreg(t)
2
)
.

(110)

Proof.
∆j,j+1(t+ 1)−∆j,j+1(t) = 2ηaWj(t)∆j−1,j(t)Wj(t)

H

+ 2ηaWj+1(t)
H∆j+1,j+2(t)Wj+1(t)

− ηa∆j,j+1(t)
(
Wj(t)Wj(t)

H +Wj+1(t)
HWj+1(t)

)
− ηa

(
Wj(t)Wj(t)

H +Wj+1(t)
HWj+1(t)

)
∆j,j+1(t)

+ η2
[
∇Wj

L(t)∇Wj
L(t)H −∇Wj+1

L(t)H∇Wj+1
L(t)

]
.

(111)

From

∥∥∇WjL(t)
∥∥
F
≤
∥∥∇WjLori(t)

∥∥
F
+
∥∥∇WjLreg(t)

∥∥
F

= O

(
µ3
max

√
Lori(t) + µmax

√
aLreg(t)

)
∥∆j,j+1(t+ 1)−∆j,j+1(t)∥F = O

(
ηµ2

max

√
aLreg(t) + η2

∥∥∇WjL(t)
∥∥2
F

)
= O

(
ηµ2

max

√
aLreg(t) + η2µ6

maxLori(t) + η2aµ2
maxLreg(t)

)
.

(112)

We have

Lreg(t+ 1)− Lreg(t) = 2a

3∑
j=1

⟨∆j,j+1(t+ 1)−∆j,j+1(t),∆j,j+1(t)⟩

+ a

3∑
j=1

∥∆j,j+1(t+ 1)−∆j,j+1(t)∥2F

= −4ηa2
4∑

j=1

∥∆j,j+1(t)Wj(t)−Wj(t)∆j−1,j(t)∥2F

+O

(
η2
√
aLreg(t)

(
aµ2

maxLreg(t) + µ6
maxLori(t)

))
+O

(
η2a2µ4

maxLreg(t) + η4aµ12
maxLori(t)

2 + η4a3µ4
maxLreg(t)

2
)

= −4ηa2
4∑

j=1

∥∆j,j+1(t)Wj(t)−Wj(t)∆j−1,j(t)∥2F

+ η2O

(
a2µ4

maxLreg(t) +
√
aLreg(t)µ

6
maxLori(t)

)
+ η4O

(
aµ12

maxLori(t)
2 + a3µ4

maxLreg(t)
2
)
.

(113)

Follow previous analysis in continuous case,

4∑
j=1

∥∆j,j+1(t)Wj(t)−Wj(t)∆j−1,j(t)∥2 ≥
2

3

µ4
min

µ2
max + µ2

min

3∑
i=1

∥∆i,i+1(t)∥2F . (114)
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Then the proof is done.

Theorem 30. The maximum and minimum singular values of Wjs are irrelevant to the regulariza-
tion term.

Under η ≤ min

(
1

18amaxj,k σ2
k(Wj(t))

,
minj,k σk(Wj(t))

3maxj∥∇Wj
Lori(t)∥

op

)
,

max
j,k

σ2
k(Wj(t+ 1))−max

j,k
σ2
k(Wj(t)) ≤ 2ηmax

j,k
σk(Wj(t))max

j

∥∥∇Wj
Lori(t)

∥∥
op

+ η2O

(∥∥∇WjLori(t)
∥∥2
op

+ a2 max
j,k

σ6
k(Wj(t))

)
min
j,k

σ2
k(Wj(t+ 1))−min

j,k
σ2
k(Wj(t)) ≥ −2ηmin

j,k
σk(Wj(t))max

j

∥∥∇Wj
Lori(t)

∥∥
op

+ η2O

(∥∥∇Wj
Lori(t)

∥∥2
op

+ a2 max
j,k

σ6
k(Wj(t))

)
.

(115)

Proof. For simplicity, set W0 ≡W1, W5 ≡W4.

Generally,

Wj(t+ 1)Wj(t+ 1)H = Wj(t)Wj(t)
H − ηWj(t)∇WjL(t)H − η∇WjL(t)Wj(t)

H

+ η2∇Wj
L(t)∇Wj

L(t)H

= Wj(t)Wj(t)
H − ηWj(t)∇Wj

Lori(t)
H − η∇Wj

Lori(t)Wj(t)
H

+ 2ηaWj(t)∆j−1,j(t)Wj(t)
H − ηaWj(t)Wj(t)

H∆j,j+1(t)

− ηa∆j,j+1(t)Wj(t)Wj(t)
H + η2∇Wj

L(t)∇Wj
L(t)H

=
1

3
Wj(t) (I + 3ηa∆j−1,j(t))

2
Wj(t)

H

+
1

3
(I − 3ηa∆j,j+1(t))Wj(t)Wj(t)

H (I − 3ηa∆j,j+1(t))

+
1

3

(
Wj(t)− 3η∇WjLori(t)

) (
Wj(t)− 3η∇WjLori(t)

)H
+ η2∇WjL(t)∇WjL(t)H − 3η2∇WjLori(t)∇WjLori(t)

H

− 3η2a2Wj(t)∆j−1,j(t)
2Wj(t)

H

− 3η2a2∆j,j+1(t)Wj(t)Wj(t)
H∆j,j+1(t).

(116)

Notice that Wj(t) (I + 3ηa∆j−1,j(t))
2
Wj(t)

H and (I + 3ηa∆j−1,j(t))Wj(t)
HWj(t) (I + 3ηa∆j−1,j(t))

shares the same eigenvalues. Then from Lemma 19, the maximum and minimum singular values of
Wj(t+ 1) satisfy
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σ2
max(Wj(t+ 1)) ≤ 1

3
σ2
max(Wj(t))

[
1 + 3ηa

(
σ2
max(Wj−1(t))− σ2

max(Wj(t))
)]2

+
1

3
σ2
max(Wj(t))

[
1 + 3ηa

(
σ2
max(Wj+1(t))− σ2

max(Wj(t))
)]2

+
1

3

[
σmax(Wj(t)) + 3η

∥∥∇Wj
Lori(t)

∥∥
op

]2
+ η2O

(∥∥∇WjLori(t)
∥∥2
op

+ a2 max
j,k

σ6
k(Wj(t))

)
= σ2

max(Wj(t))
[
1 + 3ηa

(
σ2
max(Wj+1(t)) + σ2

max(Wj−1(t))− 2σ2
max(Wj(t))

)]
+ 2ησmax(Wj(t))

∥∥∇Wj
Lori(t)

∥∥
op

+ η2O

(∥∥∇Wj
Lori(t)

∥∥2
op

+ a2 max
j,k

σ6
k(Wj(t))

)
σ2
min(Wj(t+ 1)) ≥ 1

3
σ2
min(Wj(t))

[
1 + 3ηa

(
σ2
min(Wj−1(t))− σ2

min(Wj(t))
)]2

+
1

3
σ2
min(Wj(t))

[
1 + 3ηa

(
σ2
min(Wj+1(t))− σ2

min(Wj(t))
)]2

+
1

3

[
σmin(Wj(t))− 3η

∥∥∇WjLori(t)
∥∥
op

]2
+ η2O

(∥∥∇Wj
Lori(t)

∥∥2
op

+ a2 max
j,k

σ6
k(Wj(t))

)
= σ2

min(Wj(t))
[
1 + 3ηa

(
σ2
min(Wj+1(t)) + σ2

min(Wj−1(t))− 2σ2
min(Wj(t))

)]
− 2ησmin(Wj(t))

∥∥∇Wj
Lori(t)

∥∥
op

+ η2O

(∥∥∇Wj
Lori(t)

∥∥2
op

+ a2 max
j,k

σ6
k(Wj(t))

)
.

(117)

By taking maximum and minimum over j ∈ {1, 2, 3, 4} (for η ≤ 1
6amaxj,k σ2

k(Wj(t))
, the first term

of R.H.S can be upper bounded by maxj,k σ
2
k(Wj(t)) or lower bounded by minj,k σ

2
k(Wj(t)) re-

spectively), the proof is completed.

E DYNAMICS UNDER BALANCED INITIALIZATION

This section analyzes the training dynamics under balanced initialization.

At the beginning, We derive some properties from Lemma 24. Under balanced condition,

W∏
L,jW

H∏
L,j =

(
j∏

k=N

Wk

)(
j∏

k=N

Wk

)H

=
(
WNWH

N

)N−j+1

WH∏
R,jW

∏
R,j =

 1∏
k=j

Wk

H  1∏
k=j

Wk

 =
(
WH

1 W1

)N−j+1
.

(118)

Consider j = 1 and j = N , then

WNWH
N =

(
WWH

)1/N
= UΣ2

wU
H

W1W
H
1 =

(
WHW

)1/N
= V Σ2

wV
H .

(119)

Suppose the non-negative ASVD of product matrix is W = UΣN
w V H , then
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d

dt

(
UΣ2

wU
H
)
=

d

dt

(
WNWH

N

)
= ΣV ΣN

wUH + UΣN
w V HΣH − 2UΣ2N

w UH

d

dt

(
V Σ2

wV
H
)
=

d

dt

(
WH

1 W1

)
= V ΣN

wUHΣ+ ΣHUΣN
w V H − 2V Σ2N

w V H

dW

dt
=

N∑
j=1

UΣ2(j−1)
w UHΣV Σ2(N−j)

w V H −NUΣ3N−2
w V H .

(120)

The dynamics of σr := σN
w,r is presented in (73).

E.1 SKEW-HERMITIAN ERROR

This section formally state and prove Theorem 4.
Theorem 31. The skew-Hermitian error is non-increasing.

Under balanced Gaussian initialization, for F = C or R, suppose the ASVD of the product matrix is
W (t) = U(t)Σw(t)

NV (t)H , furthermore assume that the singular values of the product matrix at
initialization (W (0)) are distinct and different from zero (refer to Lemma 2 in Arora et al. (2019b)).

Denote σw,j = (Σw)jj , U ′ = Σ1/2U , V ′ = Σ1/2V , u′
j and v′j are the jth columns of U ′ and V ′

respectively, then

d

dt
∥Σ1/2(U − V )Σw∥2F = −2

∑
j

σN
w,j ·

∥∥∥Σ1/2
(
u′
j − v′j

)∥∥∥2 − 2
∑
j

σ2N
w,j ·

∥∥u′
j − v′j

∥∥2
−
∑
j,k

fN (σw,j , σw,k)
∣∣∣u′

j
H
v′k − v′j

H
u′
k

∣∣∣2
≤ 0,

(121)

where fN (x, y) =

{
x2y2(xN−2−yN−2)

x2−y2 , y ̸= x
N−2
2 xN , y = x

is a non-negative real-analytic function on

[0,+∞)2.

Proof. By (73)

dσw,j

dt
= σN−1

w,j

( ⟨u′
j , v

′
j⟩+ ⟨v′j , u′

j⟩
2

− σN
w,j

)
. (122)

From Lemma 25,

dU

dt
= U (F ⊙MU +DU ) ,

dV

dt
= V (F ⊙MV +DV ) , (123)

where {
(MU )jk =

〈
v′k, u

′
j

〉
σN
w,k +

〈
u′
k, v

′
j

〉
σN
w,j − 2σ2N

w,jδj,k
(MV )jk =

〈
u′
k, v

′
j

〉
σN
w,k +

〈
v′k, u

′
j

〉
σN
w,j − 2σ2N

w,jδj,k
, (124)

DU,V are pure imaginary diagonal matrices defined by

(DU )jj − (DV )jj =
N

2
σN−2
w,j

[〈
v′j , u

′
j

〉
−
〈
u′
j , v

′
j

〉]
, ℜ(DU ) = ℜ(DV ) = O. (125)

Here ⟨a, b⟩ := bHa follows the standard definition of (complex) inner product. Then
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dU ′HV ′

dt
=

dU

dt

H

ΣV + UHΣ
dV

dt
=
(
FH ⊙MH

U −DU

)
UHΣV + UHΣV (F ⊙MV +DV )

dU ′HU ′

dt
=

dU

dt

H

ΣU + UHΣ
dU

dt
=
(
FH ⊙MH

U −DU

)
UHΣU + UHΣU(F ⊙MU +DU )

dV ′HV ′

dt
=

dV

dt

H

ΣV + V HΣ
dV

dt
=
(
FH ⊙MH

V −DV

)
V HΣV + V HΣV (F ⊙MV +DV ).

(126)

For each diagonal entry,

d

dt

〈
v′j , u

′
j

〉
=

(
dU ′HV ′

dt

)
jj

=− N

2
σN−2
w,j

〈
v′j , u

′
j

〉 [〈
v′j , u

′
j

〉
−
〈
u′
j , v

′
j

〉]
+
∑
k ̸=j

1

σ2
w,j − σ2

w,k

[(∣∣〈u′
j , v

′
k

〉∣∣2 + ∣∣〈u′
k, v

′
j

〉∣∣2)σN
w,j + 2

〈
v′k, u

′
j

〉 〈
v′j , u

′
k

〉
σN
w,k

]
d

dt

〈
u′
j , u

′
j

〉
=

(
dU ′HU ′

dt

)
jj

=
∑
k ̸=j

1

σ2
w,j − σ2

w,k

[(〈
u′
k, v

′
j

〉 〈
u′
j , u

′
k

〉
+
〈
u′
k, u

′
j

〉 〈
v′j , u

′
k

〉)
σN
w,j

+
(〈
v′k, u

′
j

〉 〈
u′
j , u

′
k

〉
+
〈
u′
k, u

′
j

〉 〈
u′
j , v

′
k

〉)
σN
w,k

]
d

dt

〈
v′j , v

′
j

〉
=

(
dV ′HV ′

dt

)
jj

=
∑
k ̸=j

1

σ2
w,j − σ2

w,k

[(〈
v′k, u

′
j

〉 〈
v′j , v

′
k

〉
+
〈
v′k, v

′
j

〉 〈
u′
j , v

′
k

〉)
σN
w,j

+
(〈
u′
k, v

′
j

〉 〈
v′j , v

′
k

〉
+
〈
v′k, v

′
j

〉 〈
v′j , u

′
k

〉)
σN
w,k

]
.

(127)

Notice that for the second and third equation, DU , DV terms cancel out with each other. This further
gives

d

dt

∥∥u′
j − v′j

∥∥2
=
N

2
σN−2
w,j

[〈
v′j , u

′
j

〉
−
〈
u′
j , v

′
j

〉]2
+
∑
k ̸=j

σN
w,j

σ2
w,j − σ2

w,k

·
[
− 2

(∣∣〈u′
j , v

′
k

〉∣∣2 + ∣∣〈u′
k, v

′
j

〉∣∣2)
+
(〈
u′
k, v

′
j

〉 〈
u′
j , u

′
k

〉
+
〈
u′
k, u

′
j

〉 〈
v′j , u

′
k

〉)
+
(〈
v′k, u

′
j

〉 〈
v′j , v

′
k

〉
+
〈
v′k, v

′
j

〉 〈
u′
j , v

′
k

〉) ]
+
∑
k ̸=j

σN
w,k

σ2
w,j − σ2

w,k

·
[
−2
(〈
v′k, u

′
j

〉 〈
v′j , u

′
k

〉
+
〈
u′
j , v

′
k

〉 〈
u′
k, v

′
j

〉)
+
(〈
v′k, u

′
j

〉 〈
u′
j , u

′
k

〉
+
〈
u′
k, u

′
j

〉 〈
u′
j , v

′
k

〉)
+
(〈
u′
k, v

′
j

〉 〈
v′j , v

′
k

〉
+
〈
v′k, v

′
j

〉 〈
v′j , u

′
k

〉)]
.

(128)

For the L.H.S. of (121),

d

dt
∥(U ′ − V ′)Σw∥

2
F =

∑
j

∥∥u′
j − v′j

∥∥2 d

dt
σ2
w,j +

∑
j

σ2
w,j

d

dt

∥∥u′
j − v′j

∥∥2 . (129)
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The first term can be written by

∑
j

∥∥u′
j − v′j

∥∥2 d

dt
σ2
w,j

=
∑
j

σN
w,j

(
⟨u′

j , v
′
j⟩+ ⟨v′j , u′

j⟩ − 2σN
w,j

) ∥∥u′
j − v′j

∥∥2
=
∑
j

σN
w,j

(
u′
j
H
u′
ju

′
j
H
v′j + v′j

H
u′
ju

′
j
H
u′
j + u′

j
H
v′jv

′
j
H
v′j + v′j

H
v′jv

′
j
H
u′
j

)
−
∑
j

σN
w,j

(
u′
j
H
v′j + v′j

H
u′
j

)2
− 2

∑
j

σ2N
w,j ·

∥∥u′
j − v′j

∥∥2 .
(130)

For the second term,

∑
j

σ2
w,j

d

dt

∥∥u′
j − v′j

∥∥2
=
1

2

∑
j

σ2
w,j

d

dt

∥∥u′
j − v′j

∥∥2 +∑
k

σ2
w,k

d

dt
∥u′

k − v′k∥
2


=
N

2

∑
j

σN
w,j

[〈
v′j , u

′
j

〉
−
〈
u′
j , v

′
j

〉]2
−
∑

j,k,j ̸=k

σ2
w,jσ

2
w,k

(
σN−2
w,j − σN−2

w,k

)
σ2
w,j − σ2

w,k

∣∣〈v′k, u′
j

〉
−
〈
u′
k, v

′
j

〉∣∣2
−2

∑
j,k,j ̸=k

σN
w,j ·

(∣∣〈u′
j , v

′
k

〉∣∣2 + ∣∣〈u′
k, v

′
j

〉∣∣2)
+2

∑
j,k,j ̸=k

σN
w,j · ℜ

(〈
u′
k, v

′
j

〉 〈
u′
j , u

′
k

〉
+
〈
u′
j , v

′
k

〉 〈
v′k, v

′
j

〉)
.

(131)

Notice that

[〈
v′j , u

′
j

〉
−
〈
u′
j , v

′
j

〉]2
=4
[
iℑ
(〈
v′j , u

′
j

〉)]2
= −

∣∣∣u′
j
H
v′j − v′j

H
u′
j

∣∣∣2 , (132)

−
∑
j

σN
w,j

(
u′
j
H
v′j + v′j

H
u′
j

)2
− 2

∑
j,k,j ̸=k

σN
w,j

(∣∣〈u′
j , v

′
k

〉∣∣2 + ∣∣〈u′
k, v

′
j

〉∣∣2)
=−

∑
j

σN
w,j

(
u′
j
H
v′j − v′j

H
u′
j

)2
− 2

∑
j

σN
w,j

(
u′
j
H
v′jv

′
j
H
u′
j + v′j

H
u′
ju

′
j
H
v′j

)

−2
∑
j

σN
w,j ·

u′
j
H

∑
k ̸=j

v′kv
′
k
H

u′
j + v′j

H

∑
k ̸=j

u′
ku

′
k
H

 v′j


=−

∑
j

σN
w,j

(
u′
j
H
v′j − v′j

H
u′
j

)2
− 2

∑
j

σN
w,j ·

(
u′
j
H
V ′V ′Hu′

j + v′j
H
U ′U ′Hv′j

)
=
∑
j

σN
w,j

∣∣∣u′
j
H
v′j − v′j

H
u′
j

∣∣∣2 − 2
∑
j

σN
w,j ·

(
u′
j
H
Σu′

j + v′j
H
Σv′j

)
,

(133)

and
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∑
j

σN
w,j

(
u′
j
H
u′
ju

′
j
H
v′j + v′j

H
u′
ju

′
j
H
u′
j + u′

j
H
v′jv

′
j
H
v′j + v′j

H
v′jv

′
j
H
u′
j

)
+2

∑
j,k,j ̸=k

σN
w,j · ℜ

(〈
u′
k, v

′
j

〉 〈
u′
j , u

′
k

〉
+
〈
u′
j , v

′
k

〉 〈
v′k, v

′
j

〉)
=2
∑
j,k

σN
w,j · ℜ

(
u′
j
H
(
UU ′H + V V ′H

)
v′j

)
=2
∑
j

σN
w,j ·

(
u′
j
H
Σv′j + v′j

H
Σu′

j

)
.

(134)

By combining the results above,

d

dt
∥(U ′ − V ′) Σw∥

2
F

=− 2
∑
j

σN
w,j ·

(
u′
j
H
Σu′

j + v′j
H
Σv′j

)
+ 2

∑
j

σN
w,j ·

(
u′
j
H
Σv′j + v′j

H
Σu′

j

)
−2
∑
j

σ2N
w,j ·

∥∥u′
j − v′j

∥∥2
−
∑

j,k,j ̸=k

σ2
w,jσ

2
w,k

(
σN−2
w,j − σN−2

w,k

)
σ2
w,j − σ2

w,k

∣∣∣u′
j
H
v′k − v′j

H
u′
k

∣∣∣2 −∑
j

N − 2

2
σN
w,j

∣∣∣u′
j
H
v′j − v′j

H
u′
j

∣∣∣2
=− 2

∑
j

σN
w,j ·

∥∥∥Σ1/2
(
u′
j − v′j

)∥∥∥2 − 2
∑
j

σ2N
w,j ·

∥∥u′
j − v′j

∥∥2
−
∑
j,k

fN (σw,j , σw,k)
∣∣∣u′

j
H
v′k − v′j

H
u′
k

∣∣∣2 .
(135)

This completes the proof.

For even depth 2 | N , we have a similar result written in matrix form:

Theorem 32. If 2 | N , the singular values of the product matrix W (0) are different from zero at
initialization, then

d

dt

∥∥∥Σ1/2(U − V )Σw

∥∥∥2
F
= −2

∥∥∥Σ(U − V )ΣN/2
w

∥∥∥2
F
− 2

∥∥∥Σ1/2(U − V )ΣN
w

∥∥∥2
F

− 2ℜ

tr

N/2−1∑
j=1

ΣUΣ2j
w

(
UHΣV − V HΣU

)
ΣN−2j

w V H


≤ 0.

(136)

We present another approach of proof which takes the inverse of some terms. This approach adapts
to the skew-Hermitian term in imbalanced initialization, where the proof of Theorem 31 in does not
hold.

To prove the theorem, we introduce the following lemma.

Lemma 33. If 2 | N , Σw is full rank at initialization, then ∀k = 0, 1, · · · , N/2 we have
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d

dt
(U ± V )Σ2k

w (U ± V )H

=

k∑
j=1

[
UΣ2(j−1)

w UHΣV ΣN+2k−2j
w UH + UΣN+2(j−1)

w V HΣUΣ2(k−j)
w UH

+ V Σ2(j−1)
w V HΣUΣN+2k−2j

w V H + V ΣN+2(j−1)
w UHΣV Σ2(k−j)

w V H
]

±
N/2+k∑
j=1

[
UΣ2(j−1)

w UHΣV ΣN+2k−2j
w V H + V Σ2(j−1)

w V HΣUΣN+2k−2j
w UH

]

∓
N/2−k∑
j=1

[
UΣ2(j−1+k)

w V HΣUΣN−2j
w V H + V Σ2(j−1+k)

w UHΣV ΣN−2j
w UH

]
−2k(U ± V )Σ2(N+k−1)

w (U ± V )H .

(137)

Proof. ∀l ∈ N we have

d

dt

(
UΣ2l

wU
H
)
=

l∑
j=1

UΣ2(j−1)
w UH

(
d

dt

(
UΣ2

wU
H
))

UΣ2(l−j)
w UH

=

l∑
j=1

UΣ2(j−1)
w UH

(
ΣV ΣN

wUH + UΣN
w V HΣH − 2UΣ2N

w UH
)
UΣ2(l−j)

w UH .

(138)

d

dt

(
V Σ2l

wV
H
)
=

l∑
j=1

V Σ2(j−1)
w V H

(
d

dt

(
V Σ2

wV
H
))

V Σ2(l−j)
w V H

=

l∑
j=1

V Σ2(j−1)
w V H

(
ΣUΣN

w V H + V ΣN
wUHΣH − 2V Σ2N

w V H
)
V Σ2(l−j)

w V H .

(139)

From Lemma 24, UΣN−2k
w UH is invertible at arbitrary time t ∈ [0,+∞), thus

d

dt

(
UΣ−(N−2k)

w UH
)
= −

(
UΣN−2k

w UH
)−1

[
d

dt

(
UΣN−2k

w UH
)] (

UΣN−2k
w UH

)−1

= −
(
UΣ−(N−2k)

w UH
)[ d

dt

(
UΣN−2k

w UH
)] (

UΣ−(N−2k)
w UH

)
,

(140)

which further gives

d

dt

(
UΣ2k

w V H
)

=

[
d

dt

(
UΣ−(N−2k)

w UH
)]

UΣN
w V H + UΣ−(N−2k)

w UH

[
d

dt

(
UΣN

w V H
)]

=−
(
UΣ−(N−2k)

w UH
)[ d

dt

(
UΣN−2k

w UH
)] (

UΣ2k
w V H

)
+UΣ−(N−2k)

w UH

[
d

dt

(
UΣN

w V H
)]

=

N/2+k∑
j=1

UΣ2(j−1)
w UHΣV ΣN+2(k−j)

w V H +

N/2−k∑
j=1

UΣ2(k+j−1)
w V HΣHUΣN−2j

w V H

−2kUΣ2(N+k−1)
w V H .

(141)
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Combine (138), (139) and (141) together, then the proof is completed.

Now we present the proof of Theorem 32.

Proof. Denote Q = UHΣV , calculate the L.H.S. of (136) by setting k = 1 in Lemma 33:

d

dt

∥∥∥Σ1/2(U − V )Σw

∥∥∥2
F

=
d

dt
tr
(
Σ(U − V )Σ2

w(U − V )H
)

=− 2tr
(
Σ2(U − V )ΣN

w (U − V )H
)
− 2tr

(
Σ(U − V )Σ2N

w (U − V )H
)

−2ℜ

tr

N/2−1∑
j=1

ΣUΣ2j
w

(
UHΣV − V HΣU

)
ΣN−2j

w V H


=− 2

∥∥∥Σ(U − V )ΣN/2
w

∥∥∥2
F
− 2

∥∥∥Σ1/2(U − V )ΣN
w

∥∥∥2
F

−2ℜ

tr

N/2−1∑
j=1

Σ2j
w (Q−QH)ΣN−2j

w QH

 .

(142)

To analyze the last term,

ℜ

tr

N/2−1∑
j=1

Σ2j
w (Q−QH)ΣN−2j

w QH


=ℜ

∑
m,n

N/2−1∑
j=1

σ2j
m (Σw)(Qmn −Qnm)σN−2j

n (Σw)Qmn


=
1

2

∑
m,n

N/2−1∑
j=1

σ2j
m (Σw)σ

N−2j
n (Σw)(|Qmn|2 + |Qnm|2 − 2ℜ(QmnQnm))


=
1

2

∑
m,n

∣∣Qmn −Qnm

∣∣2N/2−1∑
j=1

σ2j
m (Σw)σ

N−2j
n (Σw)

 ≥ 0.

(143)

Thus for arbitrary Σ ≻ O we have

d

dt

∥∥∥Σ1/2(U − V )Σw

∥∥∥2
F
= −2

∥∥∥Σ(U − V )ΣN/2
w

∥∥∥2
F
− 2

∥∥∥Σ1/2(U − V )ΣN
w

∥∥∥2
F

−
∑
m,n

∣∣Qmn −Qnm

∣∣2N/2−1∑
j=1

σ2j
m (Σw)σ

N−2j
n (Σw)


≤ 0.

(144)

which completes the proof.

E.2 HERMITIAN MAIN TERM

This section proves Theorem 5.
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Proof. Consider

d

dt
(U + V )Σ2

w(U + V )H

=Σ(U + V )ΣN
w (U + V )H + (U + V )ΣN

w (U + V )HΣ− 2(U + V )Σ2N
w (U + V )H

+

N/2−1∑
j=1

[
UΣ2j

w

(
UHΣV − V HΣU

)
ΣN−2j

w V H + V Σ2j
w

(
V HΣU − UHΣV

)
ΣN−2j

w UH
]
.

(145)

Denote P = (U+V )Σw

2 , Q = (U−V )Σw

2 . Then PHQ = −QHP , Σ2
w = PHP +QHQ.

From ABCH −CBAH = 1
2

[
(A− C)B(A+ C)H − (A+ C)B(A− C)H

]
for arbitrary A,B,C

we have

d

dt
PPH = ΣPΣN−2

w PH + PΣN−2
w PHΣ− 2PΣ2N−2

w PH

+

N/2−1∑
j=1

[
QΣ2j−2

w

(
QHΣP − PHΣQ

)
ΣN−2j−2

w PH

− PΣ2j−2
w

(
QHΣP − PHΣQ

)
ΣN−2j−2

w QH
]
.

(146)

Suppose the kth eigenvalue and eigenvector of PPH are x2
k and ξk respectively, PHξk = xkηk,

then

d

dt
x2
k = ξHk

(
d

dt
PPH

)
ξk

= 2ξHk ΣPΣN−2
w PHξk − 2ξHk PΣ2N−2

w PHξk

+ 2ξHk

N/2−1∑
j=1

QΣ2j−2
w

(
QHΣP − PHΣQ

)
ΣN−2j−2

w P⊤

 ξk.

(147)

We focus on N = 4, Σ = σ1(Σ)I . Then

d

dt
x2
k = 2σ1(Σ)ξ

H
k PΣ2

wP
Hξk − 2ξHk PΣ6

wP
Hξk + 4σ1(Σ)ξ

H
k QQHPPHξk

= 2σ1(Σ)ξ
H
k PΣ2

wP
Hξk − 2ξHk PΣ6

wP
Hξk + 4σ1(Σ)x

2
kξ

H
k QQHξk.

(148)

For the second term:

ξHk PΣ6
wP

Hξk = ξHk P
(
PHP +QHQ

)
Σ2

w

(
PHP +QHQ

)
PHξk

= x4
kξ

H
k PΣ2

wP
Hξk + 2x2

kξ
H
k PΣ2

wQ
HQPHξk + ξHk PQHQΣ2

wQ
HQPHξk

≤ x4
kξ

H
k PΣ2

wP
Hξk + 2x4

k∥Q∥2op∥Σw∥2op + x2
k∥Q∥4op∥Σw∥2op.

(149)

From Theorem 32, ∥Q∥op ≤ ∥Q∥F ≤ ∥Q(t = 0)∥F . Then

d

dt
x2
k ≥

(
2σ1(Σ)− x4

k

)
ξHk PΣ2

wP
Hξk − 2x4

k∥Q∥2op∥Σw∥2op − x2
k∥Q∥4op∥Σw∥2op

≥
(
2σ1(Σ)− x4

k −
1

2
∥Σw∥2op∥((U − V )Σw)|t=0∥2F

)
x4
k −

1

16
x2
k∥Σw∥2op∥((U − V )Σw)|t=0∥4F .

(150)
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The lower bound is proved.

For the upper bound,

d

dt
x2
k ≤ 2σ1(Σ)x

2
k∥Σw∥2op + 4σ1(Σ)x

2
k ∥Q∥

2
op . (151)

This completes the proof.

Corollary 34. If for some k, σk((U + V )Σw)|t=0 = 0, then σk((U + V )Σw) ≡ 0 for finite time
t ∈ [0,+∞).

Proof. Denote xk ≡ 1
2σk((U+V )Σw). By Lemma 23, ∥Σ−W∥F ≤ ∥Σ−W (0)∥F . Then ∥Σw∥op

is bounded:

∥Σw∥op = ∥W∥1/Nop ≤ (∥Σ∥op + ∥Σ−W∥op)1/N ≤ (∥Σ∥op + ∥Σ−W∥F )1/N

≤ (∥Σ∥op + ∥Σ−W (0)∥F )1/N .
(152)

Then from Theorem 5, there exists some C ∈ (0,+∞) such that

d

dt
x2
k ≤ σ1(Σ)

(
2∥Σw∥2op + ∥((U − V )Σw)|t=0∥2F

)
x2
k ≤ Cx2

k. (153)

Giving

x2
k(t) ≤ x2

k(0)e
Ct = 0. (154)

This completes the proof.

E.3 CONVERGENCE PROOF

This section states the global convergence guarantee under balanced Gaussian initialization, with
gradient flow. Below we omit the confidence level δ in f1(δ) = O

(
1
δ

)
and f ′

2(δ) = O
(

1
δ2

)
for

simplicity.

Theorem 35. Global convergence bound under balanced Gaussian initialization, gradient flow.

For four-layer matrix factorization under gradient flow, balanced Gaussian initialization with scal-

ing factor ϵ ≤ σ
1/4
1 (Σ)

4f2
1 f

′
2d

29/8 , then for target matrix with identical singular values,

1. For F = R, with probability at least 1
2 the loss does not converge to zero. Specifically,

L(t) ≥ 1

2
σ2
1(Σ), ∀t ∈ [0,+∞). (155)

2. For F = C with high probability and for F = R with probability close to 1
2 , there exists

T (ϵconv) =
16f ′

2
2d3

σ1(Σ)ϵ2 + 1

8σ
3/2
1 (Σ)

ln
(

dσ2
1(Σ)

ϵconv

)
, such that for any ϵconv > 0, when t > T (ϵconv),

L(t) < ϵconv.

Remark 16. The first part of this Theorem can be generalized to general (bounded) balanced ini-
tialization.

Proof. For the first conclusion, by Theorem 3 and Corollary 34, for F = R, σmin((U + V )Σw) ≡ 0
with probability at least 1

2 . Consequently σmin((U + V )ΣN
w ) ≡ 0.
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Suppose at time t, for some unit vector y, (U + V )ΣN
w y(t) = 0. Then

∥Σ−W∥F = ∥σ1(Σ)I − UΣN
w V ⊤∥F = ∥σ1(Σ)V − UΣN

w ∥F
≥ ∥σ1(Σ)V − UΣN

w ∥op ≥
∥∥(σ1(Σ)V − UΣN

w )y
∥∥

=
∥∥(σ1(Σ)V + V ΣN

w )y
∥∥ =

∥∥(σ1(Σ) + ΣN
w )y

∥∥ ≥ σ1(Σ).

(156)

For the second part:

From Lemma 23, ∥Σ−W∥F ≤ ∥Σ−W (0)∥F < 2
√
dσ1(Σ). Thus for any time t,

∥Σw∥op = ∥W∥1/4op ≤ (∥Σ∥op + ∥Σ−W∥op)1/4 ≤ (∥Σ∥op + ∥Σ−W∥F )1/N

≤ (∥Σ∥op + ∥Σ−W (0)∥F )1/4 ≤
√
2d1/8σ

1/4
1 (Σ).

(157)

From Theorem 3, for F = C with high probability (while for F = R with probability close to 1
2 ),

xk(t = 0) ≥ ϵ
2f ′

2d
3/2 , ∥(U − V )Σw∥F |t=0 ≤ 2f1dϵ. Thus by taking ϵ ≤ σ

1/4
1 (Σ)

4f2
1 f

′
2d

29/8 , for t such that
xk(t) ≥ xk(0),

d

dt
x2
k ≥

(
2σ1(Σ)−

(
4f2

1 d
9/4 + 8f4

1 f
′
2
2
d29/4

)
ϵ2σ

1/2
1 (Σ)− x4

k

)
x4
k ≥

(
5

4
σ1(Σ)− x4

k

)
x4
k.

(158)

This indicates that all xk monotonically increase to σ
1/4
1 (Σ) in T1 = 4

σ1(Σ) · xk(0)
−2 =

16f ′
2
2d3

σ1(Σ)ϵ2 ,

and never decrease to below σ
1/4
1 (Σ) for t > T1.

By Theorem 18, σmin(Σw) ≥ xk. Then combine with Lemma 23,

Lori(t) ≤ Lori(0)e
−8σ6

min(Σw(T1))(t−T1) ≤ dσ2
1(Σ)e

−8σ
3/2
1 (Σ)(t−T1). (159)

Thus it takes at most t = T1 +
1

8σ
3/2
1 (Σ)

ln
(

dσ2
1(Σ)

ϵconv

)
to reach ϵconv-convergence.

F NOTATIONS AND PRELIMINARIES UNDER THE DEPTH OF FOUR,
IMBALANCED

To tackle the imbalanced initialization with depth N = 4, we make the following notations and
derive some basic properties.

Below we denote R = W−1
2 WH

3 , W ′
1 = RWH

4 , W = W4W3W2W1, M2 = WH
2 W2, M1 =

W1W
H
1 , M∆1234 = W2W1W

H
1 WH

2 −WH
3 WH

4 W4W3 M
′
1 = W ′

1W
′H
1 , e∆ =

√∑3
i=1 ∥∆i,i+1∥2F .

Then:

W = W ′H
1 M2W1, (160)

RRH = W−1
2 WH

3 W3W
H−1
2 = I −W−1

2 ∆23W
H−1
2 , (161)

R−1RH−1 = WH−1
3 W2W

H
2 W−1

3 = I +WH−1
3 ∆23W

−1
3 , (162)
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M∆1234 =
((

WH
2 W2

)2 − (W3W
H
3

)2)
+WH

3 ∆34W3 +W2∆12W
H
2

=
1

2

(
∆23

(
WH

3 W3 +W2W
H
2

)
+
(
WH

3 W3 +W2W
H
2

)
∆23

)
+WH

3 ∆34W3 +W2∆12W
H
2 ,

(163)

M ′
1 −M1 = W−1

2 M∆1234W
H−1
2 . (164)

Deducing that

∥R∥op ≤

√
1 +

1

σ2
min(W2)

· ∥∆23∥op ≤

√
1 +

1

minj,k σ2
k(Wj)

· e∆, (165)

∥∥R−1
∥∥
op
≤

√
1 +

1

σ2
min(W3)

· ∥∆23∥op ≤

√
1 +

1

minj,k σ2
k(Wj)

· e∆, (166)

∥∥I −RRH
∥∥
op
≤ 1

σ2
min(W2)

· ∥∆23∥op ≤
1

minj,k σ2
k(Wj)

· e∆, (167)

∥∥I −R−1RH−1
∥∥
op
≤ 1

σ2
min(W3)

· ∥∆23∥op ≤
1

minj,k σ2
k(Wj)

· e∆, (168)

∥M∆1234∥op ≤
(
∥W2∥2op + ∥W3∥2op

)
∥∆23∥op + ∥W3∥2op∥∆34∥op + ∥W2∥2op∥∆12∥op

≤
√
6max

j,k
σ2
k(Wj)e∆,

(169)

∥M ′
1 −M1∥op ≤

√
6 · maxj,k σ

2
k(Wj)

σ2
min(W2)

e∆ ≤
√
6 · maxj,k σ

2
k(Wj)

minj,k σ2
k(Wj)

e∆. (170)

Applying Lemma 15,

∥∥I −RHR
∥∥
op
≤ 1

σ2
min(W2)

· ∥∆23∥op ≤
1

minj,k σ2
k(Wj)

· e∆, (171)

∥∥I −RH−1R−1
∥∥
op
≤ 1

σ2
min(W3)

· ∥∆23∥op ≤
1

minj,k σ2
k(Wj)

· e∆. (172)

G SKEW-HERMITIAN ERROR TERM AND HERMITIAN MAIN TERM FOR
FOUR-LAYER MATRIX DECOMPOSITION

In this section, we construct skew-Hermitian error term and Hermitian main term to prepare for the
convergence proof, under four-layer setting with scaled identical target matrix Σ = σ1(Σ)I .

G.1 SKEW-HERMITIAN ERROR TERM

The skew-Hermitian error term is defined by ∥W1 −W ′
1∥

2
F . To address the dynamics:
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G.1.1 GRADIENT FLOW

Consider Σ = σ1(Σ)I . We study ∥W1 −W ′
1∥

2
F . From the derivative of inverse,

dW−1
2

dt
= −W−1

2

dW2

dt
W−1

2 = −W ′
1(Σ−W )WH

1 W−1
2 − a∆12W

−1
2 + aW−1

2 ∆23, (173)

dR

dt
=

dW−1
2

dt
WH

3 +W−1
2

dWH
3

dt

= −RWH
4 (Σ−W )WH

1 R+W1

(
Σ−WH

)
W4

− a∆12R+ 2aW−1
2 ∆23W

H
3 − aR∆34,

(174)

dW ′
1

dt
=

dW−1
2

dt
WH

3 WH
4 +W−1

2

dWH
3

dt
WH

4 +W−1
2 WH

3

dWH
4

dt

= −W ′
1(Σ−W )WH

1 W ′
1 +W1

(
Σ−WH

)
W ′H

1 RH−1R−1W ′
1

+RRHWH
2 W2W1

(
Σ−WH

)
− a∆12W

′
1 + 2aW−1

2 ∆23W2W
′
1.

(175)

From ℜ(tr(PQ)) = 0 if P = PH and Q = −QH , we have

ℜ
(
tr
((

W ′
1W

H
1 −W1W

′H
1

)
W ′

1 (W1 −W ′
1)

H
))

=− 1

2
tr
((

W ′
1W

H
1 −W1W

′H
1

) (
W ′

1W
H
1 −W1W

′H
1

)H)
.

(176)

Thus

d

dt
∥W1 −W ′

1∥
2
F = 2ℜ

(
tr

(
d(W1 −W ′

1)

dt
(W1 −W ′

1)
H

))
= 2ℜ

(
tr
( [

M2W
′
1(Σ−W ) +W ′

1(Σ−W )WH
1 W ′

1

−W1(Σ−WH)W ′H
1 RH−1R−1W ′

1 −RRHM2W1(Σ−WH)

−a∆12 (W1 −W ′
1)− 2aW−1

2 ∆23W2W
′
1

]
(W1 −W ′

1)
H
))

= −2σ1(Σ)tr
(
(W1 −W ′

1)
H
M2 (W1 −W ′

1)
)

− σ1(Σ)tr
((

W ′
1W

H
1 −W1W

′H
1

) (
W ′

1W
H
1 −W1W

′H
1

)H)
− tr

(
M2 (M

′
1 +M1)M2 (W1 −W ′

1) (W1 −W ′
1)

H
)

− tr
(
M2 (M

′
1 −M1)M2 (W

′
1 +W1) (W1 −W ′

1)
H
)

+ 2tr
(
[−M ′

1M2M1 +M1M2M
′
1]W

′
1 (W1 −W ′

1)
H
)

+ 2ℜ
(
tr
([

W1(Σ−WH)W4

(
RHR− I

)
WH

4

]
(W1 −W ′

1)
H
))

+ 2ℜ
(
tr
([(

I −RRH
)
WH

2 W2W1(Σ−WH)
]
(W1 −W ′

1)
H
))

− 2aℜ
(
tr
(
∆12 (W1 −W ′

1) (W1 −W ′
1)

H
))

− 4aℜ
(
tr
(
W−1

2 ∆23W2W
′
1 (W1 −W ′

1)
H
))

.

(177)

Note: −M ′
1M2M1+M1M2M

′
1 = 1

2 [(M1 −M ′
1)M2 (M1 +M ′

1)− (M1 +M ′
1)M2 (M1 −M ′

1)].
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G.1.2 GRADIENT DESCENT

From Lemma 17,

∥∥W2(t+ 1)−1 −W2(t)
−1

− η
[
−W ′

1(t)(Σ−W (t))W1(t)
HW2(t)

−1 − a∆12(t)W2(t)
−1 + aW2(t)

−1∆23(t)
]∥∥

F

≤η2
[(

1 + e∆(t)
∥∥W2(t)

−1
∥∥2
op

)
∥W1(t)∥op∥Σ−W (t)∥F +

√
2ae∆(t)

∥∥W2(t)
−1
∥∥
op

]
·∥W2(t+ 1)−1∥op∥∇W2L(t)∥F .

(178)

Under ∥Wj(t+ 1)∥op = O(∥Wj(t)∥op), e∆(t)
∥∥W2(t)

−1
∥∥2
op

= O(1),

∥W ′
1(t+ 1)−W ′

1(t)

−η
[
−W ′

1(t)(Σ−W (t))W1(t)
HW ′

1(t)

+W1(t)
(
Σ−W (t)H

)
W ′

1(t)
HR(t)H−1R(t)−1W ′

1(t)

+R(t)R(t)HW2(t)
HW2(t)W1(t)

(
Σ−W (t)H

)
− a∆12(t)W

′
1(t) + 2aW−1

2 (t)∆23(t)W2(t)W
′
1(t)

]∥∥
F

=η2O

([
max

j∈{1,2,3,4}
∥Wj(t)∥op ∥Σ−W (t)∥F + ae∆(t)

∥∥W2(t)
−1
∥∥
op

]
· max
j∈{1,2,3,4}

∥Wj(t)∥2op · ∥W2(t+ 1)−1∥op · max
j∈{1,2,3,4}

∥∇Wj
L(t)∥F

)
.

(179)

Finally giving

∥W1(t+ 1)−W ′
1(t+ 1)∥2F − ∥W1(t)−W ′

1(t)∥
2
F

=ℜ (tr ([(W1(t+ 1)−W ′
1(t+ 1)) + (W1(t)−W ′

1(t))]

· [(W1(t+ 1)−W ′
1(t+ 1))− (W1(t)−W ′

1(t))]
H
))

=− 2ησ1(Σ)tr
(
(W1(t)−W ′

1(t))
H
M2(t) (W1(t)−W ′

1(t))
)

−ησ1(Σ)tr
((

W ′
1(t)W1(t)

H −W1(t)W
′
1(t)

H
) (

W ′
1(t)W1(t)

H −W1(t)W
′
1(t)

H
)H)

−ηtr
(
M2(t) (M

′
1(t) +M1(t))M2(t) (W1(t)−W ′

1(t)) (W1(t)−W ′
1(t))

H
)

−ηtr
(
M2(t) (M

′
1(t)−M1(t))M2(t) (W

′
1(t) +W1(t)) (W1(t)−W ′

1(t))
H
)

+2ηtr
(
[−M ′

1(t)M2(t)M1(t) +M1(t)M2(t)M
′
1(t)]W

′
1(t) (W1(t)−W ′

1(t))
H
)

+2ηℜ
(
tr
([

W1(t)(Σ−W (t)H)W4(t)
(
R(t)HR(t)− I

)
W4(t)

H
]
(W1(t)−W ′

1(t))
H
))

+2ηℜ
(
tr
([(

I −R(t)R(t)H
)
W2(t)

HW2(t)W1(t)(Σ−W (t)H)
]
(W1(t)−W ′

1(t))
H
))

−2ηaℜ
(
tr
(
∆12(t) (W1(t)−W ′

1(t)) (W1(t)−W ′
1(t))

H
))

−4ηaℜ
(
tr
(
W−1

2 (t)∆23(t)W2(t)W
′
1(t) (W1(t)−W ′

1(t))
H
))

+η2O

([
max

j∈{1,2,3,4}
∥Wj(t)∥op ∥Σ−W (t)∥F + ae∆(t)

∥∥W2(t)
−1
∥∥
op

]2
· max
j∈{1,2,3,4}

∥Wj(t)∥5op · ∥W2(t+ 1)−1∥op
)
.

(180)
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G.2 SKEW-HERMITIAN ERROR TERM

G.2.1 GRADIENT FLOW

For gradient flow, we study the kth singular value of W1 + W ′
1, or equivalently

λk

(
(W1 +W ′

1)
H
(W1 +W ′

1)
)
= σ2

k (W1 +W ′
1). To address the dynamics:

Suppose the left and right singular vector of W1 +W ′
1 corresponding to σk(t) = σk (W1 +W ′

1) (t)
are ηk(t) and χk(t) respectively, (W1 +W ′

1)χk = σkηk, ηHk (W1 +W ′
1) = σkχk, ∥χk∥ = ∥ηk∥ =

1. Then from Lemma 22,

d

dt
λk

(
(W1 +W ′

1)
H
(W1 +W ′

1)
)
= χH

k

(
d

dt
(W1 +W ′

1)
H
(W1 +W ′

1)

)
χk

= 2ℜ
(
χH
k (W1 +W ′

1)
H
(

d

dt
(W1 +W ′

1)

)
χk

)
,

(181)

where

d

dt
(W1 +W ′

1) = M2W
′
1(Σ−W )−W ′

1(Σ−W )WH
1 W ′

1

+W1(Σ−WH)W ′H
1 RH−1R−1W ′

1 +RRHM2W1(Σ−WH)

− a∆12(W1 +W ′
1) + 2aW−1

2 ∆23W2W
′
1

= M2 (W1 +W ′
1) Σ +

(
W1ΣW

′H
1 −W ′

1ΣW
H
1

)
W ′

1

−M2

(
M1 +M ′

1

2
M2 (W1 +W ′

1) +
M1 −M ′

1

2
M2 (W1 −W ′

1)

)
+ (M ′

1M2M1 −M1M2M
′
1)W

′
1

−W1(Σ−WH)W ′H
1

(
I −RH−1R−1

)
W ′

1

−
(
I −RRH

)
M2W1(Σ−WH)

− a∆12(W1 +W ′
1) + 2aW−1

2 ∆23W2W
′
1.

(182)

Consider arbitrary χ ∈ Fd. Notice that
(
W1ΣW

′H
1 −W ′

1ΣW
H
1

)
is a skew-Hermitian matrix:

ℜ
(
2χH(W1 +W ′

1)
H
(
W1ΣW

′H
1 −W ′

1ΣW
H
1

)
W ′

1χ
)

=ℜ
(
χH(W1 +W ′

1)
H
(
W1ΣW

′H
1 −W ′

1ΣW
H
1

)
W ′

1χ
)

−ℜ
(
χHW ′H

1

(
W1ΣW

′H
1 −W ′

1ΣW
H
1

)
W1χ

)
−ℜ

(
χHWH

1

(
W1ΣW

′H
1 −W ′

1ΣW
H
1

)
W1χ

)
=ℜ

(
χH(W1 +W ′

1)
H
(
−W1ΣW

′H
1 +W ′

1ΣW
H
1

)
(W1 −W ′

1)χ
)
.

(183)

From Σ = σ1(Σ)I ,

−W1ΣW
′H
1 +W ′

1ΣW
H
1 = σ1(Σ) (W1 +W ′

1) (W1 −W ′
1)

H
+ σ1(Σ) (M

′
1 −M1) . (184)

Likewise,

ℜ
(
2χH(W1 +W ′

1)
H (M ′

1M2M1 −M1M2M
′
1)W

′
1χ
)

=ℜ
(
χH(W1 +W ′

1)
H (M ′

1M2M1 −M1M2M
′
1) (W

′
1 −W1)χ

)
.

(185)

Thus
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d

dt
σ2
k = 2σ1(Σ)σ

2
kη

H
k M2ηk + σ1(Σ)σ

2
kχ

H
k (W1 −W ′

1)
H
(W1 −W ′

1)χk

+ σ1(Σ)σkℜ
(
ηHk (M ′

1 −M1) (W1 −W ′
1)χk

)
− σ2

kη
H
k M2(M1 +M ′

1)M2ηk − σkℜ
(
ηHk M2(M1 −M ′

1)M2(W1 −W ′
1)χk

)
+ σkℜ

(
ηHk (M ′

1M2M1 −M1M2M
′
1) (W

′
1 −W1)χk

)
− 2σkℜ

(
ηHk W1(Σ−WH)W4

(
RHR− I

)
WH

4 χk

)
− 2σkℜ

(
ηHk
(
I −RRH

)
M2W1(Σ−WH)χk

)
− 2aσ2

kℜ
(
ηHk ∆12ηk

)
+ 4aσkℜ

(
ηHk W−1

2 ∆23W2W
′
1χk

)
.

(186)

G.2.2 GRADIENT DESCENT

For gradient descent, we study λmin

(
(W1 +W ′

1)
H
(W1 +W ′

1)
)
= σ2

min (W1 +W ′
1). To address

the dynamics:

(W1(t+ 1) +W ′
1(t+ 1))

=W1(t) +W ′
1(t)

+η

[
σ1(Σ)M2(t)−M2(t)

M1(t) +M ′
1(t)

2
M2(t)

]
(W1(t) +W ′

1(t))

+η (M ′
1(t)M2(t)M1(t)−M1(t)M2(t)M

′
1(t))W

′
1(t)

+ησ1(Σ)
(
W1(t)W

′
1(t)

H −W ′
1(t)W1(t)

H
)
W ′

1(t) + ηE1(t),

(187)

where the error term is bounded by

∥E1(t)∥op ≤
1

2
max

j∈{1,2,3,4}
∥Wj(t)∥4op ∥W1(t)−W ′

1(t)∥op ∥M1(t)−M ′
1(t)∥op

+
(∥∥R(t)HR(t)− I

∥∥
op

+
∥∥I −R(t)R(t)H

∥∥
op

)
max

j∈{1,2,3,4}
∥Wj(t)∥3op∥Σ−W (t)∥op

+ ae∆(t)

(
∥W1(t) +W ′

1(t)∥op + 2 ∥R(t)∥op
∥∥W2(t)

−1
∥∥
op

max
j∈{1,2,3,4}

∥Wj(t)∥2op
)

+ ηO

([
max

j∈{1,2,3,4}
∥Wj(t)∥op ∥Σ−W (t)∥F + ae∆(t)

∥∥W2(t)
−1
∥∥
op

]
· max
j∈{1,2,3,4}

∥Wj(t)∥2op · ∥W2(t+ 1)−1∥op · max
j∈{1,2,3,4}

∥∇WjL(t)∥F
)
.

(188)

Follow the tricks in Lemma 19,

λmin

(
(W1(t+ 1) +W ′

1(t+ 1))
H
(W1(t+ 1) +W ′

1(t+ 1))
)

≥λmin

(
(W1(t) +W ′

1(t))
H
(
I + η

[
σ1(Σ)M2(t)−M2(t)

M1(t) +M ′
1(t)

2
M2(t)

])2

(W1(t) +W ′
1(t))

)
+η∥E2(t)∥op + η2O

(
∥(W1(t+ 1) +W ′

1(t+ 1))− (W1(t) +W ′
1(t))∥

2
op

)
,

(189)

where
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∥E2(t)∥op = σmin (W1(t+ 1) +W ′
1(t+ 1))

·
[
∥E1(t)∥op + ∥W2(t)∥2op ∥M1(t) +M ′

1(t)∥op ∥M1(t)−M ′
1(t)∥op ∥W1(t)−W ′

1(t)∥op
]
.

(190)

H CONVERGENCE UNDER GRADIENT FLOW, STAGED ANALYSIS

In order to present the proof more clearly, we state the complete proof of convergence under Random
Gaussian Initialization C.2 and gradient flow, before tackling gradient descent.

At the beginning we assume (49) holds. (For the complex case, it holds with high probability 1− δ;
for the real case, it holds with probability 1

2 (1−δ). ) We omit the confidence level δ in f1(δ) = O( 1δ )

and f2(δ) = O( 1
δ5 ) for simplicity.

H.1 STAGE 1: ALIGNMENT STAGE

In this section, we set ϵ ≤ σ
1/4
1 (Σ)

2f1
√
d

, a ≥ 25f20
1 f2d

13σ1(Σ)b, where b ≥ 24 ln(4f1d) + ln f2.

Without loss of generality, f1 ≥ 2, and for simplicity we can further relax f2 appearing in the lower
bounds to f2 ≥ f6

1 (now f2 = O
(

1
δ6

)
).

Theorem 36. At T1 = 1
32f14

1 f2d10ϵ2σ1(Σ)
, the following conclusions hold:

σmin (W1 +W ′
1)|t=T1

≥ ϵ

2f3
1 f2d

9/2

e∆(T1) ≤ 2
√
3f2

1 d
3/2ϵ2 exp

(
− a

32f20
1 f2d13σ1(Σ)

)
max
j,k
|σk(Wj(T1))| ≤ (1 + 2−21)f1

√
dϵ

min
j,k
|σk(Wj(T1))| ≥ (1− 2−17)

ϵ

f1
√
d
.

(191)

This section proves the theorem above by following Lemmas and Corollaries.

Lemma 37. Maximum and minimum singular value bound of weight matrices in alignment stage.

For t ∈
[
0, 1

16f4
1 d

2ϵ2σ1(Σ)

]
,

min
j,k

σk(Wj) ≥
ϵ

f1
√
d
− 16f3

1 d
3/2ϵ3σ1(Σ)t, max

j,k
σk(Wj) ≤

f1
√
dϵ√

1− 4f2
1 dϵ

2σ1(Σ)t
. (192)

Proof. For t ≥ 0 such that maxj,k σk(Wj) ≤ 2f1
√
dϵ ≤ σ

1/4
1 (Σ),

max
j

∥∥∇WjLori

∥∥
op
≤ max

j,k
|σk(Wj)|3

(
σ1(Σ) + max

j,k
|σk(Wj)|4

)
≤ 2σ1(Σ)max

j,k
|σk(Wj)|3.

(193)

By invoking Theorem 28,

dmaxj,k σ
2
k(Wj)

dt
≤ 4max

j,k
|σk(Wj)|4σ1(Σ)

dminj,k σ
2
k(Wj)

dt
≥ −4min

j,k
|σk(Wj)|max

j,k
|σk(Wj)|3σ1(Σ).

(194)
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By solving the differential inequality,

max
j,k

σk|Wj | ≤
maxj,k σk|Wj(0)|√

1− 4σ1(Σ)maxj,k σk|Wj(0)|2 · t
≤ f1

√
dϵ√

1− 4f2
1 dϵ

2σ1(Σ)t
, t ∈

[
0,

3

16f2
1 dϵ

2σ1(Σ)

]
.

(195)

min
j,k
|σk(Wj)| ≥

ϵ

f1
√
d
− 16f3

1 d
3/2ϵ3σ1(Σ)t, t ∈

[
0,

1

16f4
1 d

2ϵ2σ1(Σ)

]
. (196)

This completes the proof.

Notice that

max
j,k
|σk(Wj(t ≤ T1))| ≤

f1
√
dϵ√

1− 1
8f12

1 f2

≤ (1 + 2−21)f1
√
dϵ

min
j,k
|σk(Wj(t ≤ T1))| ≥

(
1− 1

2f10
1 f2

)
· ϵ

f1
√
d
≥ (1− 2−17)

ϵ

f1
√
d
.

(197)

Corollary 38. Balanced term error in alignment stage.

For t ∈ [0, T1],

e∆(t) ≤ 2
√
3f2

1 d
3/2ϵ2 exp

(
− aϵ2

f6
1 d

3
t

)
. (198)

Specially, at t = T1,

e∆(T1) ≤ 2
√
3f2

1 d
3/2ϵ2 exp

(
− a

32f20
1 f2d13σ1(Σ)

)
≤
√
3 · 2−31f−14

1 f−1
2 d−29/2ϵ2. (199)

Proof. By simply combining Theorem 27 and Lemma 37.

Corollary 39. Main term at the end of alignment stage.

At t = T1,

σmin (W1 +W ′
1)|t=T1

≥ ϵ

2f3
1 f2d

9/2
. (200)

Proof. For simplicity, denote ∆X(t) = X(t)−X(0) for arbitrary X . Note: ∆XH = ∆H
X .

At t = T1,
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∥∆W (T1)∥op =

∥∥∥∥∥∥
∫ T1

0

4∑
j=1

[
W∏

L,j+1(t
′)W∏

L,j+1(t
′)H (Σ−W (t′))WH∏

R,j−1(t
′)W∏

R,j−1(t
′)
]
dt′

∥∥∥∥∥∥
op

≤
∫ T1

0

4∑
j=1

∥∥∥W∏
L,j+1(t

′)W∏
L,j+1(t

′)H (Σ−W (t′))WH∏
R,j−1(t

′)W∏
R,j−1(t

′)
∥∥∥
op

dt′

≤
∫ T1

0

4∑
j=1

(
∥Σ∥op + ∥W (t′)∥op

) ∏
k∈{1,2,3,4}, k ̸=j

∥Wi(t
′)∥2op

dt′

≤
∫ T1

0

4 · 2σ1(Σ) ·
((

1 + 2−21
)
f1
√
dϵ
)6

dt′

≤8
(
1 + 2−18

)
f6
1 d

3ϵ6σ1(Σ)T1 =
(
1 + 2−18

)
· 1
4
f−8
1 f−1

2 d−7ϵ4.

(201)

Thus

∥∆WHW (T1)∥op =

∥∥∥∥12 [(W (T1) +W (0))
H
∆W (T1) + ∆W (T1)

H (W (T1) +W (0))
]∥∥∥∥

op

≤
(
∥W (T1)∥op + ∥W (0)∥op

)
∥∆W (T1)∥op

≤
[
1 +

(
1 + 2−21

)4]
f4
1 d

2ϵ4 · ∥∆W (T1)∥op = (1 + 2−17) · 1
2
f−4
1 f−1

2 d−5ϵ8.

(202)

From Corollary 38,

∥∥∥(W1(T1)
HW2(T1)

HW2(T1)W1(T1)
)2 −W (T1)

HW (T1)
∥∥∥
op

=
∥∥W1(T1)

HW2(T1)
HM∆1234(T1)W2(T1)W1(T1)

∥∥
op

≤
∥∥W1(T1)

HW2(T1)
H
∥∥
op
∥M∆1234(T1)∥op ∥W2(T1)W1(T1)∥op

≤
((

1 + 2−21
)
f1
√
dϵ
)4
·
√
6
((

1 + 2−21
)
f1
√
dϵ
)2
· e∆(T1)

≤
√
6(1 + 2−18)f6

1 d
3ϵ6e∆(T1) ≤ 2−28f−8

1 f−16
2 d−23/2ϵ8.

(203)

Thus

∥∥∥(W1(T1)
HW2(T1)

HW2(T1)W1(T1)
)2 −W (T0)

HW (T0)
∥∥∥
op

≤
∥∥∥(W1(T1)

HW2(T1)
HW2(T1)W1(T1)

)2 −W (T1)
HW (T1)

∥∥∥
op

+ ∥∆WHW (T1)∥op

≤(1 + 2−16) · 1
2
f−4
1 f−1

2 d−5ϵ8.

(204)

From Lemma 16,
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∥∥∥W1(T1)
HW2(T1)

HW2(T1)W1(T1)−
(
W (T0)

HW (T0)
)1/2∥∥∥

op

≤

∥∥∥(W1(T1)
HW2(T1)

HW2(T1)W1(T1)
)2 −W (T0)

HW (T0)
∥∥∥
op

2

√
λmin (W (T0)HW (T0))−

∥∥∥(W1(T1)HW2(T1)HW2(T1)W1(T1))
2 −W (T0)HW (T0)

∥∥∥
op

≤
(1 + 2−16) · 12f

−4
1 f−1

2 d−5ϵ8

2

√(
ϵ

f1
√
d

)8
− (1 + 2−16) · 12f

−4
1 f−1

2 d−5ϵ8
≤ 0.27f−1

2 d−3ϵ4.

(205)

By (C.2),

σmin

(
W1(T1)

HW2(T1)
HW2(T1)W1(T1) +W (T1)

H
)

≥σmin

((
W (T0)

HW (T0)
)1/2

+W (0)H
)

−
∥∥∥W1(T1)

HW2(T1)
HW2(T1)W1(T1)−

(
W (T0)

HW (T0)
)1/2∥∥∥

op
− ∥∆W (T1)∥op

≥f−1
2 d−3ϵ4 − 0.27f−1

2 d−3ϵ4 −
(
1 + 2−18

)
· 1
4
f−8
1 f−1

2 d−7ϵ4

≥0.72f−1
2 d−3ϵ4,

(206)

which further gives

σmin (W1 +W ′
1)|t=T1

=σmin

((
W1(T1)

HW2(T1)
HW2(T1)

)−1 (
W1(T1)

HW2(T1)
HW2(T1)W1(T1) +W (T1)

H
))

≥
(

1

maxj,k |σk(Wj(T1))|

)3

· σmin

(
W1(T1)

HW2(T1)
HW2(T1)W1(T1) +W (T1)

H
)

≥ ϵ

2f3
1 f2d

9/2
.

(207)

H.2 STAGE 2: SADDLE AVOIDANCE STAGE

In this stage, we further assume a ≥ 32f20
1 f2d

13σ1(Σ)

(
5 ln

(
σ
1/4
1 (Σ)

ϵ

)
+ 281

8 ln d+ 23 ln(4f1) + 7 ln f2

)
,

while ϵ

σ
1/4
1 (Σ)

≤ 1
32f5

1 f2d
53/8 . From Lemma 26 and Theorem 36,

e∆(t ∈ [T1,+∞)) ≤ e∆(T1) ≤ 2
√
3f2

1 d
3/2ϵ2 exp

(
− a

32f20
1 f2d13σ1(Σ)

)
≤
√
3 · 2−45f−21

1 f−7
2 d−269/8ϵ7σ

−5/4
1 (Σ).

(208)

Moreover, a ≥ 32f20
1 f2d

13σ1(Σ)b, where b−ln b ≥ 3 ln

(
σ
1/4
1 (Σ)

ϵ

)
+ 303

8 ln d+37 ln(2f1)+6 ln f2.

Thus

ae∆(t ∈ [T1,+∞)) ≤ ae∆(T1) ≤ 26
√
3f22

1 f2d
29/2ϵ2σ1(Σ) exp(−(b− ln b))

≤
√
3 · 2−31f−15

1 f−5
2 d−187/8ϵ5σ

1/4
1 (Σ).

(209)
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Theorem 40. At T1 + T2, T2 =
32f6

1 f
2
2 d

9

σ1(Σ)ϵ2 , the following conclusions hold:

∥W1(T1 + T2)−W ′
1(T1 + T2)∥F ≤ 3f1dϵ

σmin(W1 +W ′
1)(T1 + T2) ≥ 23/4σ

1/4
1 (Σ).

(210)

Lemma 41. Bound of operator norms throughout the optimization process.

For t ∈ [0,+∞),

∥Σ−W (t)∥op ≤ ∥Σ−W (t)∥F ≤ 1.01
√
dσ1(Σ)

∥W∥op ≤ ∥W∥F ≤ 3
√
dσ1(Σ)

max
j
∥Wj∥op ≤ max

j
∥Wj∥F ≤

√
2d1/8σ

1/4
1 (Σ).

(211)

Proof. For t ∈ [0, T1], the result is obvious from Theorem 36 and Lemma 37.

For t ∈ (T1,+∞): from Lemma 23,

∥Σ−W (t)∥op ≤ ∥Σ−W (t)∥F ≤ ∥Σ−W (0)∥F ≤ ∥Σ∥F + ∥W (0)∥F ≤
√
2dσ1(Σ). (212)

Giving

∥W (t)∥op ≤ ∥W (t)∥F ≤ ∥Σ−W (t)∥F + ∥Σ∥F ≤ 3
√
dσ1(Σ). (213)

For the last inequality, prove by contradiction.

Suppose maxj ∥Wj∥op ≥
√
2d1/8σ

1/4
1 (Σ), then by invoking Corollary 38,

e∆(t) ≤ e∆(T1) ≤
√
3 · 2−15f−14

1 f−16
2 d−29/2ϵ2 ≤ 2−15 max

j
∥Wj∥2op. (214)

Thus for t > T1,

∥W∥2op =
∥∥WWH

∥∥
op

=
∥∥W4W3W2W1W

H
1 WH

2 WH
3 WH

4

∥∥
op

≥
∥∥W4W

H
4

∥∥
op
−
∥∥W4W3W2∆12W

H
2 WH

3 WH
4

∥∥
op

−
∥∥W4W3∆23W2W

H
2 WH

3 WH
4

∥∥
op
−
∥∥W4W3W2W

H
2 ∆23W

H
3 WH

4

∥∥
op

−
∥∥∥W4∆34

(
W3W

H
3

)2
WH

4

∥∥∥
op
−
∥∥W4W3W

H
3 ∆34W3W

H
3 WH

4

∥∥
op
−
∥∥∥W4

(
W3W

H
3

)2
∆34W

H
4

∥∥∥
op

≥
(
max

j
∥Wj∥2op − 3e∆

)4

− 6e∆ max
j
∥Wj∥6op > 15

√
dσ1(Σ).

(215)

which contradicts inequality (213). This completes the proof.

Lemma 42. Bound of
∥∥W−1

2

∥∥
op

,
∥∥W−1

3

∥∥
op

, and relevant terms.

For t ∈ [T1, T1 + T2],

max
(∥∥W−1

2 (t)
∥∥
op

,
∥∥W−1

3 (t)
∥∥
op

)
≤ 128f6

1 f
2
2 d

77/8ϵ−2σ
1/4
1 (Σ), (216)

max
(
e∆(t)

∥∥W−1
2 (t)

∥∥2
op

, e∆(t)
∥∥W−1

3 (t)
∥∥2
op

)
≤
√
3 · 2−31f−9

1 f−3
2 d−115/8ϵ3σ

−3/4
1 (Σ). (217)
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Proof. We begin with the time derivative of W−1
2 and W−1

3 :

dW−1
2

dt
= −RWH

4 (Σ−W )WH
1 W−1

2 − a∆12W
−1
2 + aW−1

2 ∆23

dW−1
3

dt
= −W−1

3 WH
4 (Σ−W )WH

1 RH−1 − a∆23W
−1
3 + aW−1

3 ∆34.

(218)

From d
dt ∥M∥op ≤

∥∥ d
dtM

∥∥
op

(this in equality is from triangular inequality and standard calculus
analysis),

d

dt

∥∥W−1
2

∥∥
op
≤ ∥R∥op ∥W4∥op ∥Σ−W∥op

∥∥WH
1 W−1

2

∥∥
op

+ a ∥∆12∥op
∥∥W−1

2

∥∥
op

+ a
∥∥W−1

2

∥∥
op
∥∆23∥op

d

dt

∥∥W−1
3

∥∥
op
≤
∥∥W−1

3 WH
4

∥∥
op
∥Σ−W∥op ∥W1∥op ∥R∥op

+ a ∥∆23∥op
∥∥W−1

3

∥∥
op

+ a
∥∥W−1

3

∥∥
op
∥∆34∥op .

(219)

From Lemma 41 and

∥R∥op ≤

√
1 +

1

σ2
min(W2)

· ∥∆23∥op

∥∥R−1
∥∥
op
≤

√
1 +

1

σ2
min(W3)

· ∥∆23∥op

∥∥WH
1 W−1

2

∥∥
op

=
√∥∥WH−1

2 W1WH
1 W−1

2

∥∥
op

=
√∥∥I +WH−1

2 ∆12W
−1
2

∥∥
≤
√
1 + e∆

∥∥W−1
2

∥∥2
op∥∥W−1

3 WH
4

∥∥
op

=
√∥∥W−1

3 WH
4 W4W

H−1
3

∥∥
op

=
√∥∥I −W−1

3 ∆34W
H−1
3

∥∥
≤
√
1 + e∆

∥∥W−1
3

∥∥2
op
.

(220)

Further we have

d

dt

∥∥W−1
2

∥∥
op
≤ 2
√
2
(
1 + e∆

∥∥W−1
2

∥∥2
op

)
d5/8σ

5/4
1 (Σ) +

√
2ae∆

∥∥W−1
2

∥∥
op

d

dt

∥∥W−1
3

∥∥
op
≤ 2
√
2
(
1 + e∆

∥∥W−1
3

∥∥2
op

)
d5/8σ

5/4
1 (Σ) +

√
2ae∆

∥∥W−1
3

∥∥
op

.

(221)

Combine with (208) and (209), for t ≥ T1 such that (216) holds,

max

(
d

dt

∥∥W−1
2

∥∥
op

,
d

dt

∥∥W−1
3

∥∥
op

)
≤2
√
2(1 +

√
3 · 2−31)d5/8σ

5/4
1 (Σ) + 2−22f−9

1 f−3
2 d−55/4ϵ3σ

1/2
1 (Σ)

≤2
√
2(1 + 2−20)d5/8σ

5/4
1 (Σ).

(222)

From Theorem 36, max
(∥∥W2(T1)

−1
∥∥
op

,
∥∥W3(T1)

−1
∥∥
op

)
≤ 1

minj,k |σk(Wj(T1))| ≤
f1

√
d

(1−2−17)ϵ ,
then the proof of the first inequality is completed via integration during the time interval [T1, T1+T2].
The second inequality follows immediately.
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Remark 17. This Lemma verifies that W−1
2,3 are bounded (consequently W2,3 are full rank), then

R is well defined throughout this stage. For t > T1 + T2, further analysis shows that the minimum
singular values of W2 and W3 are lower bounded by Ω(σ

1/4
1 (Σ)).

Lemma 43. Skew-Hermitian error.

For t ∈ [T1, T1 + T2],

∥W1 −W ′
1∥F ≤ 3f1dϵ. (223)

Proof. From section G.1.1,

d

dt
∥W1 −W ′

1∥
2
F = −2σ1(Σ)tr

(
(W1 −W ′

1)
H
M2 (W1 −W ′

1)
)

− σ1(Σ)tr
((

W ′
1W

H
1 −W1W

′H
1

) (
W ′

1W
H
1 −W1W

′H
1

)H)
− tr

(
M2 (M

′
1 +M1)M2 (W1 −W ′

1) (W1 −W ′
1)

H
)

− tr
(
M2 (M

′
1 −M1)M2 (W

′
1 +W1) (W1 −W ′

1)
H
)

+ 2tr
(
[−M ′

1M2M1 +M1M2M
′
1]W

′
1 (W1 −W ′

1)
H
)

+ 2ℜ
(
tr
([

W1(Σ−WH)W4

(
RHR− I

)
WH

4

]
(W1 −W ′

1)
H
))

+ 2ℜ
(
tr
([(

I −RRH
)
WH

2 W2W1(Σ−WH)
]
(W1 −W ′

1)
H
))

− 2aℜ
(
tr
(
∆12 (W1 −W ′

1) (W1 −W ′
1)

H
))

− 4aℜ
(
tr
(
W−1

2 ∆23W2W
′
1 (W1 −W ′

1)
H
))

.

(224)

Note: −M ′
1M2M1+M1M2M

′
1 = 1

2 [(M1 −M ′
1)M2 (M1 +M ′

1)− (M1 +M ′
1)M2 (M1 −M ′

1)].

From Lemma 42, for t ∈ [T1, T1 + T2],

max
(∥∥RHR− I

∥∥
op

,
∥∥I −RRH

∥∥
op

)
≤ e∆

∥∥W−1
2

∥∥2
op

≤
√
3 · 2−31f−9

1 f−3
2 d−115/8ϵ3σ

−3/4
1 (Σ),

(225)

∥M1 −M ′
1∥op ≤

√
6 · maxj,k σ

2
k(Wj)

σ2
min(W2)

e∆

≤ 2−27f−9
1 f−3

2 d−113/8ϵ3σ
−1/4
1 (Σ),

(226)

∥∥∥∥M2 −
M1 +M ′

1

2

∥∥∥∥
op

≤ ∥∆12∥op +
1

2
∥M1 −M ′

1∥op ≤

[
1 +

√
6

2
· maxj,k σ

2
k(Wj)

σ2
min(W2)

]
e∆

≤ 2−28f−9
1 f−3

2 d−113/8ϵ3σ
−1/4
1 (Σ).

(227)

Consequently:

∥R∥op ≤
√
1 + e∆

∥∥W−1
2

∥∥2
op
≤ 1 +

√
3 · 2−32f−9

1 f−3
2 d−115/8ϵ3σ

−3/4
1 (Σ), (228)

∥W ′
1∥op ≤ ∥W

′
1∥F ≤

√
2d1/8σ

1/4
1 (Σ) ∥R∥op ≤

(
1 + 2−31

)√
2d1/8σ

1/4
1 (Σ), (229)

57



3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2026

∥∥∥∥M1 +M ′
1

2

∥∥∥∥
op

≤ ∥M2∥op +
∥∥∥∥M2 −

M1 +M ′
1

2

∥∥∥∥
op

≤
(
1 + 2−29

)
2d1/4σ

1/2
1 (Σ), (230)

∥M ′
1M2M1 −M1M2M

′
1∥op ≤ ∥M1 −M ′

1∥ ∥M2∥ ∥M1 +M ′
1∥

≤
(
1 + 2−29

)
2−25f−9

1 f−3
2 d−109/8ϵ3σ

3/4
1 (Σ).

(231)

By combining all results above, for t ∈ [T1, T1 + T2] such that ∥W1 −W ′
1∥F ≤ 3f1dϵ holds,

d

dt
∥W1 −W ′

1∥
2
F ≤ −0− 0− 0

+ ∥M2∥F ∥M ′
1 −M1∥op ∥M2∥op

(
∥W ′

1∥op + ∥W1∥op
)
∥W1 −W ′

1∥F
+ 2 ∥−M ′

1M2M1 +M1M2M
′
1∥op ∥W

′
1∥F ∥W1 −W ′

1∥F
+ 2max

j
∥Wj∥3op∥Σ−W∥F

(∥∥RHR− I
∥∥
op

+
∥∥I −RRH

∥∥
op

)
∥W1 −W ′

1∥F

+ 2ae∆ ∥W1 −W ′
1∥

2
F

+ 4ae∆
∥∥W−1

2

∥∥
op
∥W2∥F ∥W ′

1∥op ∥W1 −W ′
1∥F

≤ 2−22f−8
1 f−3

2 d−25/2ϵ4σ1(Σ)

+ 2−21f−8
1 f−3

2 d−25/2ϵ4σ1(Σ)

+ 2−24f−8
1 f−3

2 d−25/2ϵ4σ1(Σ)

+ 2−26f−13
1 f−5

2 d−171/8ϵ7σ
1/4
1 (Σ)

+ 2−18f−8
1 f−3

2 d−25/2ϵ4σ1(Σ)

≤ 2−17f−8
1 f−3

2 d−25/2ϵ4σ1(Σ).
(232)

From Theorem 36, at t = T1,

∥W1(T1)−W ′
1(T1)∥F ≤ ∥W1(T1)∥F + ∥W ′

1(T1)∥F ≤ ∥W1(T1)∥F + ∥W4(T1)∥F ∥R(T1)∥op
≤
(
1 + 2−32

)
2
√
d ·
(
1 + 2−21

)
f1
√
dϵ ≤

(
1 + 2−20

)
2f1dϵ.

(233)

Thus ∥W1 −W ′
1∥

2
F ≤

√
[(1 + 2−20) 2f1dϵ]

2
+ 2−17f−8

1 f−3
2 d−25/2ϵ4σ1(Σ)(t− T1) , when both

t ∈ [T1, T1 + T2] and ∥W1 −W ′
1∥

2
F ≤ 3f1dϵ hold. Then

∥W1(T1 + T2)−W ′
1(T1 + T2)∥

2
F

≤
√
[(1 + 2−20) 2f1dϵ]

2
+ 2−17f−8

1 f−3
2 d−25/2ϵ4σ1(Σ)T2

≤
√
[(1 + 2−20) 2f1dϵ]

2
+ 2−12f−2

1 f−1
2 d−7/2ϵ2 < 3f1dϵ.

(234)

which completes the proof.

Corollary 44. The minimum eigenvalue of Hermitian term.

For any σk(W1 +W ′
1)(T1) ≥ ϵ

2f3
1 f2d

9/2 , it takes at most time T2 to increase to 23/4σ
1/4
1 (Σ).

Proof. We analyze the dynamics of λk

(
(W1 +W ′

1)
H
(W1 +W ′

1)
)
= σ2

k. The definition of ηk(t)
and χk(t) follows section G.2.1. The dynamics can be expressed as below:
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d

dt
σ2
k = 2σ1(Σ)σ

2
kη

H
k M2ηk + σ1(Σ)σ

2
kχ

H
k (W1 −W ′

1)
H
(W1 −W ′

1)χk

+ σ1(Σ)σkℜ
(
ηHk (M ′

1 −M1) (W1 −W ′
1)χk

)
− σ2

kη
H
k M2(M1 +M ′

1)M2ηk − σkℜ
(
ηHk M2(M1 −M ′

1)M2(W1 −W ′
1)χk

)
+ σkℜ

(
ηHk (M ′

1M2M1 −M1M2M
′
1) (W

′
1 −W1)χk

)
− 2σkℜ

(
ηHk W1(Σ−WH)W4

(
RHR− I

)
WH

4 χk

)
− 2σkℜ

(
ηHk
(
I −RRH

)
M2W1(Σ−WH)χk

)
− 2aσ2

kℜ
(
ηHk ∆12ηk

)
+ 4aσkℜ

(
ηHk W−1

2 ∆23W2W
′
1χk

)
.

(235)

From
∥∥∥M2 − M1+M ′

1

2

∥∥∥
op

≤ 2−28f−9
1 f−3

2 d−113/8ϵ3σ
−1/4
1 (Σ) and

∥∥∥M1+M ′
1

2

∥∥∥
op

≤(
1 + 2−29

)
2d1/4σ

1/2
1 (Σ),

ηHk M2ηk ≥ ηHk

(
M1 +M ′

1

2

)
ηk −

∥∥∥∥M2 −
M1 +M ′

1

2

∥∥∥∥
op

≥ ηHk

(
M1 +M ′

1

2

)
ηk − 2−28f−9

1 f−3
2 d−113/8ϵ3σ

−1/4
1 (Σ)

ηHk M2(M1 +M ′
1)M2ηk ≤ ηHk

(
M1 +M ′

1

2

)
(M1 +M ′

1)

(
M1 +M ′

1

2

)
ηk

+ 2

∥∥∥∥M2 −
M1 +M ′

1

2

∥∥∥∥
op

∥∥∥∥M1 +M ′
1

2

∥∥∥∥
op

(
∥M2∥op +

∥∥∥∥M1 +M ′
1

2

∥∥∥∥
op

)

≤ ηHk

(
M1 +M ′

1

2

)
(M1 +M ′

1)

(
M1 +M ′

1

2

)
ηk

+
(
1 + 2−28

)
2−24f−9

1 f−3
2 d−109/8ϵ3σ

3/4
1 (Σ).

(236)

By Lemma 43, ∥W1 −W ′
1∥op ≤ ∥W1 −W ′

1∥F ≤ 3f1dϵ,
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d

dt
σ2
k ≥ 2σ1(Σ)σ

2
kη

H
k M2ηk + 0

− σ1(Σ)σk ∥M ′
1 −M1∥op ∥W1 −W ′

1∥op
− σ2

kη
H
k M2(M1 +M ′

1)M2ηk − σk max
j
∥Wj∥4op ∥M1 −M ′

1∥op ∥W1 −W ′
1∥op

− σk ∥M ′
1M2M1 −M1M2M

′
1∥op ∥W

′
1 −W1∥op

− 2σk max
j
∥Wj∥3op ∥Σ−W∥op

(∥∥RHR− I
∥∥
op

+
∥∥I −RRH

∥∥
op

)
− 2ae∆σ

2
k − 4ae∆σk

∥∥W−1
2

∥∥
op

max
j
∥Wj∥2op∥R∥op

≥ 2σ1(Σ)σ
2
k

(
ηHk

(
M1 +M ′

1

2

)
ηk − 2−28f−9

1 f−3
2 d−113/8ϵ3σ

−1/4
1 (Σ)

)
− σk ∥W1 −W ′

1∥op · 2
−27f−9

1 f−3
2 d−113/8ϵ3σ

3/4
1 (Σ)

− σ2
k

[
ηHk

(
M1 +M ′

1

2

)
(M1 +M ′

1)

(
M1 +M ′

1

2

)
ηk +

(
1 + 2−28

)
2−24f−9

1 f−3
2 d−109/8ϵ3σ

3/4
1 (Σ)

]
− σk ∥W1 −W ′

1∥op · 2
−25f−9

1 f−3
2 d−109/8ϵ3σ

3/4
1 (Σ)

− σk ∥W1 −W ′
1∥op ·

(
1 + 2−29

)
2−25f−9

1 f−3
2 d−109/8ϵ3σ

3/4
1 (Σ)

− σk · 2−25f−9
1 f−3

2 d−27/2ϵ3σ1(Σ)

− σ2
k · 2−29f−15

1 f−5
2 d−187/8ϵ5σ

1/4
1 (Σ)− σk · 2−22f−9

1 f−3
2 d−27/2ϵ3σ1(Σ)

≥ 2σ2
kη

H
k

[
σ1(Σ)

(
M1 +M ′

1

2

)
−
(
M1 +M ′

1

2

)3
]
ηk

− σk ·
(
1 + 2−1

)
2−22f−9

1 f−3
2 d−27/2ϵ3σ1(Σ)− σ2

k · 2−23f−9
1 f−3

2 d−109/8ϵ3σ1(Σ).
(237)

under σk ≥ ϵ
2f3

1 f2d
9/2 ,

d

dt
σ2
k ≥ 2σ2

kη
H
k

[
σ1(Σ)

(
M1 +M ′

1

2

)
−
(
M1 +M ′

1

2

)3
]
ηk − 2−18σ1(Σ)σ

4
k. (238)

Denote P =
W1+W ′

1

2 , Q =
W1−W ′

1

2 . Notice that

PPH +QQH =
M1 +M ′

1

2
, PHηk =

1

2
σkχk, (239)

ηHk

(
M1 +M ′

1

2

)
ηk = ηHk

(
PPH +QQH

)
ηk ≥

1

4
σ2
k, (240)

ηHk

(
M1 +M ′

1

2

)3

ηk = ηHk
(
PPH +QQH

)(M1 +M ′
1

2

)(
PPH +QQH

)
ηk

=
1

16
σ4
kη

H
k

(
M1 +M ′

1

2

)
ηk + ηHk QQH

(
M1 +M ′

1

2

)
QQHηk

+
1

4
σ2
kη

H
k

[
QQH

(
M1 +M ′

1

2

)
+

(
M1 +M ′

1

2

)
QQH

]
ηk

≤ 1

16
σ4
kη

H
k

(
M1 +M ′

1

2

)
ηk +

∥∥∥∥M1 +M ′
1

2

∥∥∥∥
op

(
1

2
σ2
k∥Q∥2op + ∥Q∥4op

)
.

(241)
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Notice ∥Q∥op = 1
2 ∥W1 −W ′

1∥F ≤
3
2f1dϵ ≤ σk · 3f4

1 f2d
11/2, ϵ ≤ 1

32f5
1 f2d

53/8σ
1/4
1 (Σ),

d

dt
σ2
k ≥ 2σ2

k

[(
σ1(Σ)−

1

16
σ4
k

)
ηHk

(
M1 +M ′

1

2

)
ηk −

∥∥∥∥M1 +M ′
1

2

∥∥∥∥
op

(
1

2
σ2
k∥Q∥2op + ∥Q∥4op

)]
− 2−18σ1(Σ)σ

4
k

≥ 1

2
σ4
k

(
σ1(Σ)−

1

16
σ4
k

)
− 2σ2

k

∥∥∥∥M1 +M ′
1

2

∥∥∥∥
op

∥Q∥2op
(
1

2
σ2
k + ∥Q∥2op

)
− 2−18σ1(Σ)σ

4
k

≥ 1

2
σ4
kσ1(Σ)−

1

32
σ8
k − 81

(
1 + 2−5

)
f10
1 f2

2 d
53/4ϵ2σ

1/2
1 (Σ)σ4

k − 2−18σ1(Σ)σ
4
k

≥ 3

8
σ4
kσ1(Σ)−

1

32
σ8
k.

(242)

This indicates that for σk ∈
[

ϵ
2f3

1 f2d
9/2 , 2

3/4σ
1/4
1 (Σ)

]
, σk is monotonically increasing. By stan-

dard calculus, it takes at most time ∆t
(
σk ≥ 23/4σ

1/4
1 (Σ)

)
≤ T2 for σk to increase from at least

ϵ
2f3

1 f2d
9/2 to 23/4σ

1/4
1 (Σ):

∆t
(
σk ≥ 23/4σ

1/4
1 (Σ)

)
≤
∫ 2· 4

√
σ1(Σ)

2

ϵ

2f3
1 f2d9/2

(
3

8
σ1(Σ)σ

4
k −

1

32
σ8
k

)−1

d
(
σ2
k

)

=

∫ 4·
√

σ1(Σ)
2

ϵ

4f6
1 f2

2d9

(
3

8
σ1(Σ)λ

2
k −

1

32
λ4
k

)−1

dλk

≤
∫ 4·

√
σ1(Σ)

2

ϵ

4f6
1 f2

2d9

(
3

8
σ1(Σ)λ

2
k −

1

4
σ1(Σ)λ

2
k

)−1

dλk

≤ 8

( ϵ

4f6
1 f

2
2 d

9

)−1

−

(
4 ·
√

σ1(Σ)

2

)−1
σ−1

1 (Σ) ≤ T2.

(243)

And for t ∈
[
T1 +∆t

(
σk ≥ 23/4σ

1/4
1 (Σ)

)
, T1 + T2

]
, σk does not decrease to less than

23/4σ
1/4
1 (Σ) if t ≤ T1 + T2. This is from the continuity of σk and the time derivative of σ2

k at
σk = 23/4σ

1/4
1 (Σ), t ≤ T1 + T2 is positive:

d

dt
σ2
k

∣∣∣∣
σk=23/4σ

1/4
1 (Σ),t≤T1+T2

≥ 1

8
σ1(Σ) ·

(
23/4σ

1/4
1 (Σ)

)4
> 0. (244)

H.3 STAGE 3: LOCAL CONVERGENCE STAGE

In this stage, we analysis the time to reach ϵconv-convergence, that is

T (ϵconv) = inf
t
{L(t) ≤ ϵconv}. (245)

Lemma 45. σmin (W1 +W ′
1) is lower bounded, while the skew-Hermitian error is upper bounded.

For t ≥ T1 + T2,
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σmin (W1 +W ′
1) (t) ≥ 23/4σ

1/4
1 (Σ)

∥W1 −W ′
1∥F ≤ 3f1dϵ.

(246)

Proof. (246) holds at t = T1 + T2. Since both L.H.S. change continuously, it left to prove that
the derivatives at these thresholds (to be specific, t′ ≥ T2 such that ∥W1 −W ′

1∥F |t=t′ = 3f1dϵ or
σk (W1 +W ′

1)|t=t′ = 23/4σ1(Σ)) are positive/negative. (If such time does not exist, then the proof
is done. )

From

σ2
min(W1) + σ2

min(W
′
1) ≥

1

2
λmin

(
(W1 +W ′

1)(W1 +W ′
1)

H + (W1 −W ′
1)(W1 −W ′

1)
H
)

≥ 1

2
σ2
min (W1 +W ′

1) ,

(247)

and

σmin(W
′
1) ≤ σmin(W1) + ∥W1 −W ′

1∥F . (248)

For t > T1 + T2 such as (246) holds,

σmin(W2) ≥ σmin(W1)− e∆ ≥
1√
2
σ
1/4
1 (Σ). (249)

Then by following almost the same arguments as Lemma 43 and 44,

d

dt
∥W1 −W ′

1∥
2
F ≤ −2σ1(Σ)tr

(
(W1 −W ′

1)
H
σ2
min(W2) (W1 −W ′

1)
)
− 0− 0

+ 2−17f−8
1 f−3

2 d−25/2ϵ4σ1(Σ)

≤ −σ3/2
1 (Σ) ∥W1 −W ′

1∥
2
F + 2−17f−8

1 f−3
2 d−25/2ϵ4σ1(Σ),

(250)

d

dt
σ2
k (W1 +W ′

1) ≥
3

8
σ4
k (W1 +W ′

1)σ1(Σ)−
1

32
σ8
k (W1 +W ′

1) . (251)

Suppose for some t1, t2 ≥ T1 + T2 such that ∥W1 −W ′
1∥F |t=t1

= 3f1dϵ, σk (W1 +W ′
1)|t=t2

=

23/4σ1(Σ), then

d

dt
∥W1 −W ′

1∥
2
F

∣∣∣∣
t=t1

≤ 0

d

dt
σ2
k (W1 +W ′

1)

∣∣∣∣
t=t2

≥ 0.

(252)

This completes the proof.

Theorem 46. Global convergence bound.

For four-layer matrix factorization under gradient flow, with random Gaussian initialization with

scaling factor ϵ ≤ σ
1/4
1 (Σ)

32f5
1 f2d

53/8 , regularization factor a ≥ 32f20
1 f2d

13σ1(Σ)b, where b satisfies
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b ≥ 5 ln

(
σ
1/4
1 (Σ)

ϵ

)
+

281

8
ln d+ 23 ln(4f1) + 7 ln f2

b− ln b ≥ 3 ln

(
σ
1/4
1 (Σ)

ϵ

)
+

303

8
ln d+ 37 ln(2f1) + 6 ln f2.

(253)

Then for target matrix with identical singular values, there exists following T (ϵconv), such that for
any ϵconv > 0, (1) with high probability over the complex initialization (2) with probability close to
1
2 over the real initialization, when t > T (ϵconv), L(t) < ϵconv.

T (ϵconv) ≤ T1 + T2 + σ
−3/2
1 (Σ) ln

(
dσ2

1(Σ)

ϵconv

)
=

1

32f14
1 f2d10ϵ2σ1(Σ)

+
32f6

1 f
2
2 d

9

σ1(Σ)ϵ2
+ σ

−3/2
1 (Σ) ln

(
dσ2

1(Σ)

ϵconv

)
= O

(
f6
1 f

2
2 d

9

σ1(Σ)ϵ2
+

1

σ
3/2
1 (Σ)

ln

(
dσ2

1(Σ)

ϵconv

))
.

(254)

Proof. Following the derivations in Lemma 45,

min
j,k

σk(Wj)(t > T1 + T2) ≥
1√
2
σ
1/4
1 (Σ). (255)

By Lemma 23 and 41,

Lori(t) ≤ Lori(T1 + T2) exp

(
−8min

j,k
|σk(Wj)(t > T1 + T2)|6(t− T1 − T2)

)
≤ Lori(0) exp

(
−8min

j,k
|σk(Wj)(t > T1 + T2)|6(t− T1 − T2)

)
≤ 0.52dσ2

1(Σ) exp
(
−σ3/2

1 (Σ)(t− T1 − T2)
)
.

(256)

For regularization term, by invoking Theorem 27, 36 and Lemma 41,

Lreg(t) ≤ Lreg(T1 + T2) exp

(
−4a

3

minj,k |σk(Wj)(t > T1 + T2)|4

maxj,k |σk(Wj)|2
· (t− T1 − T2)

)
≤ a

4
e2∆(T1 + T2) exp

(
−4a

3

minj,k |σk(Wj)(t > T1 + T2)|4

maxj,k |σk(Wj)|2
· (t− T1 − T2)

)
≤ a

4
e2∆(T1) exp

(
−4a

3

minj,k |σk(Wj)(t > T1 + T2)|4

maxj,k |σk(Wj)|2
· (t− T1 − T2)

)
≤ 2−76f−36

1 f−12
2 d−57ϵ12σ−1

1 (Σ) exp
(
−16f20

1 f2d
51/4σ

3/2
1 (Σ)(t− T1 − T2)

)
.

(257)

By taking logarithm on the summation of these two inequalities, the proof is completed.

I CONVERGENCE UNDER GRADIENT DESCENT, STAGED ANALYSIS

This section states the complete proof of convergence under Random Gaussian Initialization C.2.

At the beginning we still assume (49) holds. (For the complex case, it holds with high probability
1− δ; for the real case, it holds with probability 1

2 (1− δ). )
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Theorem 47. Global convergence bound under random Gaussian initialization, gradient descent.

For four-layer matrix factorization under gradient descent, random Gaussian initialization with

scaling factor ϵ ≤ σ
1/4
1 (Σ)

32f5
1 f2d

53/8 , regularization factor a ≥ 32f20
1 f2d

13σ1(Σ)b, where b satisfies

b ≥ max

(
5 ln

(
σ
1/4
1 (Σ)

ϵ

)
+

281

8
ln d+ 23 ln(4f1) + 7 ln f2, 16 ln(2f1f2d)

)

b− ln b ≥ 3 ln

(
σ
1/4
1 (Σ)

ϵ

)
+

303

8
ln d+ 37 ln(2f1) + 6 ln f2.

(258)

Then for target matrix with identical singular values, there exists following learning rate η and
convergence time T (ϵconv, η), such that for any ϵconv > 0, (1) with high probability over the complex
initialization (2) with probability close to 1

2 over the real initialization, when t > T (ϵconv, η),
L(t) < ϵconv.

η = O
(
min

(
a−2f−4

1 d−2ϵ−2σ1(Σ),

af−56
1 f−14

2 d−301/4ϵ8σ
−9/2
1 (Σ), a−1f−44

1 f−10
2 d−219/4ϵ4σ

−3/2
1 (Σ),

f−27
1 f−9

2 d−355/8ϵ9σ
−15/4
1 (Σ), a−1f−21

1 f−7
2 d−273/8ϵ7σ

−9/4
1 (Σ)

))
T (ϵconv, η) ≤ T1 + T2 + η−1σ

−3/2
1 (Σ) ln

(
dσ2

1(Σ)

ϵconv

)
= O

(
f6
1 f

2
2 d

9

ησ1(Σ)ϵ2
+

1

ησ
3/2
1 (Σ)

ln

(
dσ2

1(Σ)

ϵconv

))
.

(259)

The following section completes the proof.

I.1 STAGE 1: ALIGNMENT STAGE

In this section, we set ϵ ≤ σ
1/4
1 (Σ)

4f1
√
d

, a ≥ 25f20
1 f2d

13σ1(Σ)b, where b ≥ 24 ln(4f1d) + ln f2.

η = O
(

σ1(Σ)
a2f4

1 d
2ϵ2

)
, with appropriate small constant. Without loss of generality, f1 ≥ 2, f2 ≥ f6

1 .

Theorem 48. At T1 = 1
32f14

1 f2d10ϵ2σ1(Σ)η
, the following conclusions hold:

σmin (W1 +W ′
1)|t=T1

≥ ϵ

2f3
1 f2d

9/2

e∆(T1) ≤ 2
√
3f4

1 d
3ϵ4e−2b + ηO (a−1f14

1 d8ϵ6σ2
1(Σ))

max
j,k
|σk(Wj(T1))| ≤ (1 + 2−21)f1

√
dϵ

min
j,k
|σk(Wj(T1))| ≥ (1− 2−17)

ϵ

f1
√
d
.

(260)

This section proves the theorem above by following Lemmas and Corollaries.

Lemma 49. Maximum and minimum singular value bound of weight matrices in alignment stage.

For t ∈
[
0, 1

32f4
1 d

2ϵ2σ1(Σ)η

]
,

min
j,k

σk(Wj) ≥
ϵ

f1
√
d
− 16f3

1 d
3/2ϵ3σ1(Σ)t, max

j,k
σk(Wj) ≤

f1
√
dϵ√

1− 4f2
1 dϵ

2σ1(Σ)t
. (261)
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Proof. For t ≥ 0 such that maxj,k σk(Wj) ≤ 2f1
√
dϵ ≤ 1

2σ
1/4
1 (Σ),

max
j

∥∥∇Wj
Lori

∥∥
op
≤ max

j,k
|σk(Wj)|3

(
σ1(Σ) + max

j,k
|σk(Wj)|4

)
≤ 3

2
max
j,k
|σk(Wj)|3σ1(Σ).

(262)

By invoking Corollary 30, for t ≥ 0 such that minj,k σk(Wj(t)) ≥ ϵ
2f1

√
d

,

max
j,k

σ2
k(Wj(t+ 1))−max

j,k
σ2
k(Wj(t)) ≤ 3ηmax

j,k
|σk(Wj(t))|4σ1(Σ)

+ η2O

(
a2
(
ϵf1
√
d
)6)

≤ 4ηmax
j,k
|σk(Wj(t))|4σ1(Σ)

min
j,k

σ2
k(Wj(t+ 1))−min

j,k
σ2
k(Wj(t)) ≥ −3ηmin

j,k
|σk(Wj(t))|max

j,k
|σk(Wj(t))|3σ1(Σ)

+ η2O

(
a2
(
ϵf1
√
d
)6)

≥ −2η
(
min
j,k
|σk(Wj(t+ 1))|+min

j,k
|σk(Wj(t))|

)
·max

j,k
|σk(Wj(t))|3σ1(Σ).

(263)

By solving the differential inequality,

max
j,k

σk|Wj(t)| ≤
maxj,k σk|Wj(0)|√

1− 4σ1(Σ)maxj,k σk|Wj(0)|2ηt
≤ f1

√
dϵ√

1− 4f2
1 dϵ

2σ1(Σ)ηt
, t ∈

[
0,

3

16f2
1 dϵ

2σ1(Σ)η

]
,

(264)

min
j,k
|σk(Wj(t))| ≥

ϵ

f1
√
d
− 16f3

1 d
3/2ϵ3σ1(Σ)ηt, t ∈

[
0,

1

32f4
1 d

2ϵ2σ1(Σ)η

]
. (265)

This completes the proof.

Notice that

max
j,k
|σk(Wj(t ≤ T1))| ≤

f1
√
dϵ√

1− 1
8f12

1 f2

≤ (1 + 2−21)f1
√
dϵ

min
j,k
|σk(Wj(t ≤ T1))| ≥

(
1− 1

2f10
1 f2

)
· ϵ

f1
√
d
≥ (1− 2−17)

ϵ

f1
√
d
.

(266)

Corollary 50. Balanced term error in alignment stage.

e∆(T1) ≤
√
3 · 2−31f−14

1 f−1
2 d−29/2ϵ2. (267)

Proof. By simply combining Theorem 29 and Lemma 49, denote M = maxj,k,t≤T1(Wj(t)),
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Lreg(t+ 1) ≤
(
1− 2.509

ηaϵ2

f6
1 d

3

)
· Lreg(t) + η2O

(
a2M4Lreg(t) +

√
aLreg(t)M

6Lori(t)

)
+ η4O

(
aM12Lori(t)

2 + a3M4Lreg(t)
2
)

≤
(
1− 2ηaϵ2

f6
1 d

3

)
· Lreg(t) + η2O

(
aM8Lori(t)

)
≤
(
1− 2ηaϵ2

f6
1 d

3

)
· Lreg(t) + η2O

(
af8

1 d
5ϵ8σ2

1(Σ)
)
,

(268)

giving

Lreg(t) ≤ Lreg(0)e
− 2ηaϵ2

f6
1d3

t
+ ηO

(
f14
1 d8ϵ6σ2

1(Σ)
)
. (269)

Lreg(T1) ≤ 3af4
1 d

3ϵ4e−2b + ηO
(
f14
1 d8ϵ6σ2

1(Σ)
)
, (270)

e∆(T1) = 2

√
Lreg(T1)

a
≤
√
3 · 2−31f−14

1 f−1
2 d−29/2ϵ2. (271)

Corollary 51. Main term at the end of alignment stage.

At t = T1,

σmin (W1 +W ′
1)|t=T1

≥ ϵ

2f3
1 f2d

9/2
. (272)

Proof. Denote ∆X(t) = X(t)−X(0) for arbitrary X .

At t = T1,

∥∆W (T1)∥op ≤

∥∥∥∥∥∥
T1−1∑
t′=0

η

 4∑
j=1

W∏
L,j+1(t

′)W∏
L,j+1(t

′)H (Σ−W (t′))WH∏
R,j−1(t

′)W∏
R,j−1(t

′)

∥∥∥∥∥∥
op

+η2
T1−1∑
t′=0

O

(
max

j∈{1,2,3,4}

∥∥∇Wj
L(t′)

∥∥2
F
· max
j∈{1,2,3,4}

∥Wj(t
′)∥2op

)
≤ηT1 · 6σ1(Σ) ·

((
1 + 2−21

)
f1
√
dϵ
)6

+ η2T1O

(
a2d

(
f1
√
dϵ
)8)

≤ηT1 · 8σ1(Σ) ·
((

1 + 2−21
)
f1
√
dϵ
)6

≤
(
1 + 2−18

)
· 1
4
f−8
1 f−1

2 d−7ϵ4.

(273)

Thus

∥∆WHW (T1)∥op =

∥∥∥∥12 [(W (T1) +W (0))
H
∆W (T1) + ∆W (T1)

H (W (T1) +W (0))
]∥∥∥∥

op

≤ (1 + 2−17) · 1
2
f−4
1 f−1

2 d−5ϵ8.

(274)
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From Corollary 50,

∥∥∥(W1(T1)
HW2(T1)

HW2(T1)W1(T1)
)2 −W (T1)

HW (T1)
∥∥∥
op

≤
∥∥W1(T1)

HW2(T1)
H
∥∥
op
∥M∆1234(T1)∥op ∥W2(T1)W1(T1)∥op

≤2−12f−8
1 f−16

2 d−23/2ϵ8.

(275)

Thus

∥∥∥(W1(T1)
HW2(T1)

HW2(T1)W1(T1)
)2 −W (T0)

HW (T0)
∥∥∥
op

≤
∥∥∥(W1(T1)

HW2(T1)
HW2(T1)W1(T1)

)2 −W (T1)
HW (T1)

∥∥∥
op

+ ∥∆WHW (T1)∥op

≤(1 + 2−16) · 1
2
f−4
1 f−1

2 d−5ϵ8.

(276)

From Lemma 16,

∥∥∥W1(T1)
HW2(T1)

HW2(T1)W1(T1)−
(
W (T0)

HW (T0)
)1/2∥∥∥

op

≤

∥∥∥(W1(T1)
HW2(T1)

HW2(T1)W1(T1)
)2 −W (T0)

HW (T0)
∥∥∥
op

2

√
λmin (W (T0)HW (T0))−

∥∥∥(W1(T1)HW2(T1)HW2(T1)W1(T1))
2 −W (T0)HW (T0)

∥∥∥
op

≤
(1 + 2−16) · 12f

−4
1 f−1

2 d−5ϵ8

2

√(
ϵ

f1
√
d

)8
− (1 + 2−16) · 12f

−4
1 f−1

2 d−5ϵ8
≤ 0.27f−1

2 d−3ϵ4.

(277)

By (C.2),

σmin

(
W1(T1)

HW2(T1)
HW2(T1)W1(T1) +W (T1)

H
)

≥σmin

((
W (T0)

HW (T0)
)1/2

+W (0)H
)

−
∥∥∥W1(T1)

HW2(T1)
HW2(T1)W1(T1)−

(
W (T0)

HW (T0)
)1/2∥∥∥

op
− ∥∆W (T1)∥op

≥0.72f−1
2 d−3ϵ4,

(278)

which further gives

σmin (W1 +W ′
1)|t=T1

=σmin

((
W1(T1)

HW2(T1)
HW2(T1)

)−1 (
W1(T1)

HW2(T1)
HW2(T1)W1(T1) +W (T1)

H
))

≥
(

1

maxj,k |σk(Wj(T1))|

)3

· σmin

(
W1(T1)

HW2(T1)
HW2(T1)W1(T1) +W (T1)

H
)

≥ ϵ

2f3
1 f2d

9/2
.

(279)
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I.2 STAGE 2: SADDLE AVOIDANCE STAGE

In this stage, we further assume a ≥ 32f20
1 f2d

13σ1(Σ)b, where b ≥(
5 ln

(
σ
1/4
1 (Σ)

ϵ

)
+ 281

8 ln d+ 23 ln(4f1) + 7 ln f2

)
. Meanwhile, ϵ

σ
1/4
1 (Σ)

≤ 1
32f5

1 f2d
53/8 .

From Theorem 48, for η = O
(
af−56

1 f−14
2 d−301/4ϵ8σ

−9/2
1 (Σ)

)
with appropriate small constant,

e∆(T1) ≤ 2
√
3f4

1 d
3ϵ4e−2b + ηO (a−1f14

1 d8ϵ6σ2
1(Σ))

≤ 2−44f−21
1 f−7

2 d−269/8ϵ7σ
−5/4
1 (Σ).

(280)

Moreover, b − ln b ≥ 3 ln

(
σ
1/4
1 (Σ)

ϵ

)
+ 303

8 ln d + 37 ln(2f1) + 6 ln f2. Thus for η =

O
(
a−1f−44

1 f−10
2 d−219/4ϵ4σ

−3/2
1 (Σ)

)
with appropriate small constant,

ae∆(T1) ≤ 2
√
3 · 210f44

1 f2
2 d

29ϵ4σ2
1(Σ) exp(−2(b− ln b)) + ηO (af14

1 d8ϵ6σ2
1(Σ))

≤ 2−30f−15
1 f−5

2 d−187/8ϵ5σ
1/4
1 (Σ).

(281)

Theorem 52. At T1 + T2, T2 =
32f6

1 f
2
2 d

9

ησ1(Σ)ϵ2 , the following conclusions hold:

∥W1(T1 + T2)−W ′
1(T1 + T2)∥F ≤ 3f1dϵ

σmin(W1 +W ′
1)(T1 + T2) ≥ 23/4σ

1/4
1 (Σ).

(282)

Lemma 53. Lori is approximately non-increasing.

For t ∈ [0,+∞), suppose
∥∥Wj∈{1,2,··· ,N}(t)

∥∥
op
≤M , then

Lori(t+ 1)− Lori(t) ≤ −2ηN min
j,k
|σk(Wj(t))|2(N−1)Lori(t)

+ η2O
(
M8

(
M4 +

√
Lori(t)

)
Lori(t) + aM4

√
Lori(t)Lreg(t)

)
+ η4O

(
M16Lori(t)

2 + a2M8Lreg(t)
2
)
.

(283)

Proof. Following the continuous case (75), the change of product matrix satisfy

∥∥∥∥∥∥W (t+ 1)−W (t)− η

N∑
j=1

W∏
L,j+1(t)W

∏
L,j+1(t)

H (Σ−W (t))W∏
R,j−1(t)

HW∏
R,j−1(t)

∥∥∥∥∥∥
F

=η2O

(
max

j∈{1,2,3,4}

∥∥∇Wj
L(t)

∥∥2
F
· max
j∈{1,2,3,4}

∥Wj(t)∥2op
)
.

(284)

Then
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Lori(t+ 1)− Lori(t) = −ℜ
(〈

Σ− W (t+ 1) +W (t)

2
,W (t+ 1)−W (t)

〉)
= −η

N∑
j=1

∥∥W∏
L,j+1(t)

H (Σ−W (t))W∏
R,j−1(t)

H
∥∥2
F

+ η2O

(
M2
√
Lori(t) · max

j∈{1,2,3,4}

∥∥∇Wj
L(t)

∥∥2
F

)
+ η2O

(
M6 · max

j∈{1,2,3,4}

∥∥∇WjLori(t)
∥∥2
F

)
+ η4O

(
M4 · max

j∈{1,2,3,4}

∥∥∇Wj
L(t)

∥∥4
F

)
≤ −2ηN min

j,k
|σk(Wj(t))|2(N−1)Lori(t)

+ η2O
(
M8

(
M4 +

√
Lori(t)

)
Lori(t) + aM4

√
Lori(t)Lreg(t)

)
+ η4O

(
M16Lori(t)

2 + a2M8Lreg(t)
2
)
.

(285)

Below we further assume η = O
(
min

(
f−27
1 f−9

2 d−355/8ϵ9σ
−15/4
1 (Σ), a−1f−21

1 f−7
2 d−273/8ϵ7σ

−9/4
1 (Σ)

))
with appropriate small constant.

Lemma 54. Bound of operator norms.

For t ∈ [T1, T1 + T2],

∥Σ−W (t)∥F ≤1.01
√
dσ1(Σ)

e∆(t) ≤1.01 · 2−44f−21
1 f−7

2 d−269/8ϵ7σ
−5/4
1 (Σ)

ae∆(t) ≤1.01 · 2−30f−15
1 f−5

2 d−187/8ϵ5σ
1/4
1 (Σ)

∥W∥op ≤ ∥W∥F ≤3
√
dσ1(Σ)

max
j
∥Wj∥op ≤ max

j
∥Wj∥F ≤

√
2d1/8σ

1/4
1 (Σ).

(286)

Proof. We first prove that if the first three inequalities hold at some time t, then the rest follows.
Then we prove the first three by mathematical induction.

1. For some t, it the first two hold, then

∥W (t)∥op ≤ ∥W (t)∥F ≤ ∥Σ−W (t)∥F + ∥Σ∥F ≤ 3
√
dσ1(Σ). (287)

For the last inequality, prove by contradiction. (Omit t here)

Suppose maxj ∥Wj∥op ≥
√
2d1/8σ

1/4
1 (Σ), then

e∆(t) ≤ 1.01e∆(T1) ≤ 2−15 max
j
∥Wj∥2op. (288)

Thus for t > T1,
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∥W∥2op =
∥∥W4W3W2W1W

H
1 WH

2 WH
3 WH

4

∥∥
op

≥
∥∥W4W

H
4

∥∥
op
−
∥∥W4W3W2∆12W

H
2 WH

3 WH
4

∥∥
op

−
∥∥W4W3∆23W2W

H
2 WH

3 WH
4

∥∥
op
−
∥∥W4W3W2W

H
2 ∆23W

H
3 WH

4

∥∥
op

−
∥∥∥W4∆34

(
W3W

H
3

)2
WH

4

∥∥∥
op
−
∥∥W4W3W

H
3 ∆34W3W

H
3 WH

4

∥∥
op
−
∥∥∥W4

(
W3W

H
3

)2
∆34W

H
4

∥∥∥
op

≥
(
max

j
∥Wj∥2op − 3e∆

)4

− 6e∆ max
j
∥Wj∥6op > 15

√
dσ1(Σ),

(289)

which contradicts inequality (287).

2. Mathematical induction.

For t = T1,

∥Σ−W (T1)∥F ≤ ∥Σ∥F + ∥W (T1)∥F ≤
(
1 + 2−39

)√
dσ1(Σ). (290)

Suppose for t′ ∈ [T1, t] (T1 ≤ t < T2), the first two properties hold. Denote M = maxj ∥Wj(t
′ ∈

[T1, t])∥op. By invoking Lemma 53 and 29, at t+ 1,

Lori(t+ 1) = Lori(T1) + η2(t− T1)O
(
M8

(
M4 +

√
Lori(T1)

)
Lori(T1) + aM4

√
Lori(T1)Lreg(T1)

)
+ η4(t− T1)O

(
M16Lori(T1)

2 + a2M8Lreg(T1)
2
)

= Lori(T1) + η2T2O
(
d2σ1(Σ)

4 + dσ1(Σ)
2(ae∆(T1))

2
)
≤ 1.012

√
dσ1(Σ).

(291)

Note thatLori =
a
4e

2
∆. Under η = O

(
min

(
f−27
1 f−9

2 d−355/8ϵ9σ
−15/4
1 (Σ), a−1f−21

1 f−7
2 d−273/8ϵ7σ

−9/4
1 (Σ)

))
with appropriate small constant,

Lreg(t+ 1) ≤ Lreg(T1) + η2(t− T1)O

(
a2M4Lreg(t) +

√
aLreg(t)M

6Lori(t)

)
+ η4(t− T1)O

(
aM12Lori(t)

2 + a3M4Lreg(t)
2
)

≤ Lreg(T1) + η2T2O

(√
aLreg(t)M

6Lori(t)

)
+ η4T2O

(
aM12Lori(t)

2
)

≤ 1.012

4
min

(
a ·
[
2−44f−21

1 f−7
2 d−269/8ϵ7σ

−5/4
1 (Σ)

]2
,
1

a
·
[
2−30f−15

1 f−5
2 d−187/8ϵ5σ

1/4
1 (Σ)

]2)
.

(292)

This completes the proof.

Lemma 55. Bound of
∥∥W−1

2

∥∥
op

and relevant term.

For t ∈ [T1, T1 + T2], ∥∥W−1
2 (t)

∥∥
op
≤ 128f6

1 f
2
2 d

77/8ϵ−2σ
1/4
1 (Σ), (293)

e∆(t)
∥∥W−1

2 (t)
∥∥2
op
≤ 1.01 · 2−30f−9

1 f−3
2 d−115/8ϵ3σ

−3/4
1 (Σ). (294)

Proof. We begin with the update of W−1
2 . From Lemma 17,
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∥∥W−1
2 (t+ 1)−W−1

2 (t)

− η
[
−R(t)W4(t)

H(Σ−W (t))W1(t)
HW2(t)

−1 − a∆12(t)W2(t)
−1 + aW2(t)

−1∆23(t)
]∥∥

op

≤η2∥W2(t)
−1∥2op∥W2(t+ 1)−1∥op∥∇W2

L(t)∥2op.
(295)

By triangular inequality,

∥∥W2(t+ 1)−1
∥∥
op
−
∥∥W2(t)

−1
∥∥
op
≤ η ∥R(t)∥op ∥W4(t)∥op ∥Σ−W (t)∥op

∥∥W1(t)
HW2(t)

−1
∥∥
op

+ ηa ∥∆12(t)∥op
∥∥W2(t)

−1
∥∥
op

+ ηa
∥∥W2(t)

−1
∥∥
op
∥∆23(t)∥op

+ η2∥W2(t)
−1∥2op∥W2(t+ 1)−1∥op∥∇W2

L(t)∥2op.
(296)

From

∥R∥op ≤

√
1 +

1

σ2
min(W2)

· ∥∆23∥op

∥∥WH
1 W−1

2

∥∥
op

=
√∥∥WH−1

2 W1WH
1 W−1

2

∥∥
op

=
√∥∥I +WH−1

2 ∆12W
−1
2

∥∥ ≤√1 + e∆
∥∥W−1

2

∥∥2
op
.

(297)

Further we have

∥∥W2(t+ 1)−1
∥∥
op
−
∥∥W2(t)

−1
∥∥
op
≤ 2
√
2η
(
1 + e∆(t)

∥∥W2(t)
−1
∥∥2
op

)
d5/8σ

5/4
1 (Σ)

+
√
2ηae∆(t)

∥∥W2(t)
−1
∥∥
op

+ η2O
(
∥W2(t)

−1∥2op∥W2(t+ 1)−1∥op∥∇W2
L(t)∥2op

)
.

(298)

Combine with Lemma 54, for t ≥ T1 such that (293) holds,∥∥W2(t+ 1)−1
∥∥
op
−
∥∥W2(t)

−1
∥∥
op

≤2
√
2(1 + 1.01 · 2−30)ηd5/8σ

5/4
1 (Σ) + 2−22ηf−9

1 f−3
2 d−55/4ϵ3σ

1/2
1 (Σ)

+η2O
(
f18
1 f6

2 d
245/8ϵ−6σ

17/4
1 (Σ)

)
≤2
√
2(1 + 2−20)ηd5/8σ

5/4
1 (Σ).

(299)

From Theorem 48, max
(∥∥W2(T1)

−1
∥∥
op

,
∥∥W3(T1)

−1
∥∥
op

)
≤ 1

minj,k |σk(Wj(T1))| ≤
f1

√
d

(1−2−17)ϵ ,
then the proof of the first inequality is completed via integration during the time interval [T1, T1+T2].
The second inequality follows immediately.

Remark 18. This Lemma verifies that W−1
2,3 are bounded (consequently W2,3 are full rank), then

R is well defined throughout this stage. For t > T1 + T2, further analysis shows that the minimum
singular values of W2 and W3 are lower bounded by Ω(σ

1/4
1 (Σ)).

Lemma 56. Skew-Hermitian error in saddle avoidance stage, gradient descent. For t ∈ [T1, T1 +
T2], ∥∥W1 −W−1

2 WH
3 WH

4

∥∥
F
≤ 3f1dϵ. (300)
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Proof. From Lemma 55, for t ∈ [T1, T1 + T2],

max
(∥∥RHR− I

∥∥
op

,
∥∥I −RRH

∥∥
op

)
≤ e∆

∥∥W−1
2

∥∥2
op

≤ 1.01 · 2−30f−9
1 f−3

2 d−115/8ϵ3σ
−3/4
1 (Σ),

(301)

∥M1 −M ′
1∥op ≤

√
6 · maxj,k σ

2
k(Wj)

σ2
min(W2)

e∆

≤ 2−27f−9
1 f−3

2 d−113/8ϵ3σ
−1/4
1 (Σ),

(302)

∥∥∥∥M2 −
M1 +M ′

1

2

∥∥∥∥
op

≤ ∥∆12∥op +
1

2
∥M1 −M ′

1∥op ≤

[
1 +

√
6

2
· maxj,k σ

2
k(Wj)

σ2
min(W2)

]
e∆

≤ 2−28f−9
1 f−3

2 d−113/8ϵ3σ
−1/4
1 (Σ).

(303)

Consequently:

∥R∥op ≤
√
1 + e∆

∥∥W−1
2

∥∥2
op
≤ 1 + 1.01 · 2−31f−9

1 f−3
2 d−115/8ϵ3σ

−3/4
1 (Σ), (304)

∥W ′
1∥op ≤ ∥W

′
1∥F ≤

√
2d1/8σ

1/4
1 (Σ) ∥R∥op ≤

(
1 + 1.01 · 2−31

)√
2d1/8σ

1/4
1 (Σ), (305)

∥∥∥∥M1 +M ′
1

2

∥∥∥∥
op

≤ ∥M2∥op +
∥∥∥∥M2 −

M1 +M ′
1

2

∥∥∥∥
op

≤
(
1 + 2−29

)
2d1/4σ

1/2
1 (Σ), (306)

∥M ′
1M2M1 −M1M2M

′
1∥op ≤ ∥M1 −M ′

1∥ ∥M2∥ ∥M1 +M ′
1∥

≤
(
1 + 2−29

)
2−25f−9

1 f−3
2 d−109/8ϵ3σ

3/4
1 (Σ).

(307)

By combining all results above, for t ∈ [T1, T1 + T2 − 1] such that ∥W1 −W ′
1∥F ≤ 3f1dϵ holds,

∥W1(t+ 1)−W ′
1(t+ 1)∥2F − ∥W1(t)−W ′

1(t)∥
2
F

≤− 2ησ1(Σ)σmin(W2)
2 ∥W1(t)−W ′

1(t)∥
2
F

+η∥M2(t)∥F ∥M ′
1(t)−M1(t)∥op ∥M2(t)∥op

(
∥W ′

1(t)∥op + ∥W1(t)∥op
)
∥W1(t)−W ′

1(t)∥F
+2η ∥−M ′

1(t)M2(t)M1(t) +M1(t)M2(t)M
′
1(t)∥op ∥W

′
1(t)∥F ∥W1(t)−W ′

1(t)∥F
+2ηmax

j
∥Wj(t)∥3op∥Σ−W (t)∥F

(∥∥R(t)HR(t)− I
∥∥
op

+
∥∥I −R(t)R(t)H

∥∥
op

)
∥W1(t)−W ′

1(t)∥F

+2ηae∆(t) ∥W1(t)−W ′
1(t)∥

2
F

+4ηae∆(t)
∥∥W2(t)

−1
∥∥
op
∥W2(t)∥F ∥W ′

1(t)∥op ∥W1(t)−W ′
1(t)∥F

+η2O

([
max

j∈{1,2,3,4}
∥Wj(t)∥op ∥Σ−W (t)∥F + ae∆(t)

∥∥W2(t)
−1
∥∥
op

]2
· max
j∈{1,2,3,4}

∥Wj(t)∥5op · ∥W2(t+ 1)−1∥op
)

≤− 2ησ1(Σ)σmin(W2)
2 ∥W1(t)−W ′

1(t)∥
2
F + 2−17ηf−8

1 f−3
2 d−25/2ϵ4σ1(Σ).

(308)

From Theorem 48, at t = T1,
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∥W1(T1)−W ′
1(T1)∥F ≤ ∥W1(T1)∥F + ∥W ′

1(T1)∥F ≤ ∥W1(T1)∥F + ∥W4(T1)∥F ∥R(T1)∥op
≤
(
1 + 2−20

)
2f1dϵ.

(309)

Thus ∥W1(t)−W ′
1(t)∥

2
F ≤

√
[(1 + 2−20) 2f1dϵ]

2
+ 2−17f−8

1 f−3
2 d−25/2ϵ4σ1(Σ)η(t− T1), when

both t ∈ [T1, T1 + T2] and ∥W1(t)−W ′
1(t)∥

2
F ≤ 3f1dϵ hold. Then

∥W1(T1 + T2)−W ′
1(T1 + T2)∥

2
F ≤

√
[(1 + 2−20) 2f1dϵ]

2
+ 2−17f−8

1 f−3
2 d−25/2ϵ4σ1(Σ)ηT2

≤
√
[(1 + 2−20) 2f1dϵ]

2
+ 2−12f−2

1 f−1
2 d−7/2ϵ2 < 3f1dϵ,

(310)

which completes the proof.

Lemma 57. The minimum eigenvalue of Hermitian term. For t = T1 + T2,

σmin

(
W1 +W−1

2 WH
3 WH

4

)
|t=T1+T2

≥ 23/4σ
1/4
1 (Σ). (311)

Proof. We analyze the dynamics of λmin

(
(W1 +W ′

1)
H
(W1 +W ′

1)
)
= σ2

min.

From
∥∥∥M2 − M1+M ′

1

2

∥∥∥
op

≤ 2−28f−9
1 f−3

2 d−113/8ϵ3σ
−1/4
1 (Σ) and

∥∥∥M1+M ′
1

2

∥∥∥
op

≤(
1 + 2−29

)
2d1/4σ

1/2
1 (Σ), define

E(t) := σ1(Σ)

(
M2(t)−

M1(t) +M ′
1(t)

2

)
−

(
M2(t)

(
M1(t) +M ′

1(t)

2

)
M2(t)−

(
M1(t) +M ′

1(t)

2

)3
)
.

(312)

Then

∥E(t)∥op ≤ 2−28f−9
1 f−3

2 d−113/8ϵ3σ
3/4
1 (Σ) +

(
1 + 2−28

)
2−24f−9

1 f−3
2 d−109/8ϵ3σ

3/4
1 (Σ)

≤
(
1 + 2−4 + 2−28

)
2−24f−9

1 f−3
2 d−109/8ϵ3σ

3/4
1 (Σ).

(313)

By Lemma 56, ∥W1 −W ′
1∥op ≤ ∥W1 −W ′

1∥F ≤ 3f1dϵ, and under σmin(t) ≥ ϵ
2f3

1 f2d
9/2 ,

σmin(t+ 1)2 ≥ λmin

(
Wnew(t)

HWnew(t)
)
− 2−18σ1(Σ)σmin(t)

4, (314)

where

Wnew(t) =

(
I + η

[
σ1(Σ)

(
M1(t) +M ′

1(t)

2

)
−
(
M1(t) +M ′

1(t)

2

)3

+ E(t)

])
(W1(t) +W ′

1(t)) .

(315)

Denote P =
W1+W ′

1

2 , Q =
W1−W ′

1

2 . Notice that PPH + QQH =
M1+M ′

1

2 . Then by invoking
Lemma 20 (omit t here) the first term becomes
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λmin

(
WH

newWnew

)
= λmin

(
WnewW

H
new

)
= 4λmin

((
I + η

[
σ1(Σ)

(
PPH +QQH

)
−
(
PPH +QQH

)3
+ E

])
PPH

·
(
I + η

[
σ1(Σ)

(
PPH +QQH

)
−
(
PPH +QQH

)3
+ E

]))
≥ σ2

min + 8η

(
σ1(Σ)− 2∥Q∥2op

∥∥∥∥M1 +M ′
1

2

∥∥∥∥
op

)(
σ2
min

4

)2

− 8η

∥∥∥∥M1 +M ′
1

2

∥∥∥∥
op

(
σ2
min

4

)3

− 8η

(
∥E∥op + ∥Q∥4op

∥∥∥∥M1 +M ′
1

2

∥∥∥∥
op

)(
σ2
min

4

)

+ η2O

((
σ1(Σ)

2

∥∥∥∥M1 +M ′
1

2

∥∥∥∥2
op

+

∥∥∥∥M1 +M ′
1

2

∥∥∥∥6
op

+ ∥E∥2op

)∥∥∥∥M1 +M ′
1

2

∥∥∥∥
op

)
.

(316)

Notice ∥Q∥op = 1
2 ∥W1 −W ′

1∥F ≤
3
2f1dϵ ≤ σk · 3f4

1 f2d
11/2, ϵ ≤ 1

32f5
1 f2d

53/8σ
1/4
1 (Σ), then under

σmin(t) ≥ ϵ
2f3

1 f2d
9/2 ,

σmin(t+ 1)2 ≥ σmin(t)
2 + (2−1 − 81(1 + 2−4)2−10)ησ1(Σ)σmin(t)

4 − 1

32
ησmin(t)

8. (317)

Notice that σmin(t) is bounded by O
(
d1/8σ

1/4
1 (Σ)

)
. By taking reciprocal,

1

σmin(t+ 1)2
≤ 1

σmin(t)2
+

(2−1 − 81(1 + 2−4)2−10)ησ1(Σ)σmin(t)
4 − 1

32ησmin(t)
8

σmin(t)4 + (2−1 − 81(1 + 2−4)2−10)ησ1(Σ)σmin(t)6 − 1
32ησmin(t)10

≤ 1

σmin(t)2
+

3

8
ησ1(Σ)−

1

32
ησmin(t)

4.

(318)

This indicates that σmin(t) takes at most time ∆t′ = 1
1
8ησ1(Σ)

[
1

σmin(t=0)2 −
1(

23/4σ
1/4
1 (Σ)

)2

]
< T2

to increase to 23/4σ
1/4
1 (Σ), and never decrease to less than 23/4σ

1/4
1 (Σ) afterwards (in t ∈ [T1 +

∆t′, T2]).

I.3 STAGE 3: LOCAL CONVERGENCE STAGE

In this stage, we analysis the time to reach ϵconv-convergence, that is

T (ϵconv, η) = inf
t
{L(t) ≤ ϵconv}. (319)

Theorem 58. Local convergence.

For t ∈ [T1 + T2,+∞),
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Lori(t) ≤ Lori(T1 + T2) exp
(
−ησ3/2

1 (Σ)(t− T1 − T2)
)

Lreg(t) ≤ lreg exp
(
−ησ3/2

1 (Σ)(t− T1 − T2)
)

σmin (W1(t) +W ′
1(t)) ≥ 23/4σ

1/4
1 (Σ)

∥W1(t)−W ′
1(t)∥F ≤ 3f1dϵ,

(320)

where Lori(T1 + T2) = 1.012

2 · dσ2
1(Σ), and lreg =

min

(
a
4

(
1.01 · 2−44f−21

1 f−7
2 d−269/8ϵ7σ

−5/4
1 (Σ))

)2
, 1
4a

(
1.01 · 2−30f−15

1 f−5
2 d−187/8ϵ5σ

1/4
1 (Σ)

)2)
.

Proof. Prove by induction.

At t = T2 these properties holds.

Suppose at some time t ∈ [T2,+∞) they holds, then follow the same arguments in Lemma 54,
maxj ∥Wj(t)∥op ≤

√
2d1/8σ

1/4
1 (Σ).

To address the bound of
∥∥W−1

2

∥∥
op

,

∥∥∥∥M1(t)−M ′
1(t)

2

∥∥∥∥
op

≤ ∥W1(t)−W ′
1(t)∥op

∥∥∥∥W1(t) +W ′
1(t)

2

∥∥∥∥
op

≤ 8f1d
9/8σ

1/4
1 (Σ)ϵ∥∥∥∥M2(t)−

M1(t) +M ′
1(t)

2

∥∥∥∥
op

≤ ∥∆12(t)∥op +
∥∥∥∥M1(t)−M ′

1(t)

2

∥∥∥∥
op

≤ 16f1d
9/8σ

1/4
1 (Σ)ϵ

σmin(W2(t)) =
√

λmin(M2(t)) ≥

√
λmin

(
M1(t) +M ′

1(t)

2

)
− 16f1d9/8σ

1/4
1 (Σ)ϵ

≥

√
σ2
min

(
W1(t) +W ′

1(t)

2

)
− 16f1d9/8σ

1/4
1 (Σ)ϵ ≥ 1

23/8
σ
1/4
1 (Σ).

(321)

Similarly, minj,k(σk(Wj(t))) ≥ 1
23/8

σ
1/4
1 (Σ).

Then following the derivations in Lemma 56 and 57,

∥W1(t+ 1)−W ′
1(t+ 1)∥2F ≤

(
1− 2ησ1(Σ)σmin(W2)

2
)
∥W1(t)−W ′

1(t)∥
2
F + 2−17ηf−8

1 f−3
2 d−25/2ϵ4σ1(Σ)

≤
(
1− ησ

3/2
1 (Σ)

)
∥W1(t)−W ′

1(t)∥
2
F + 2−17ηf−8

1 f−3
2 d−25/2ϵ4σ1(Σ) ≤ 3f1dϵ

1

σmin (W1(t+ 1) +W ′
1(t+ 1))

2 ≤
1

σmin(t)2
+

3

8
ησ1(Σ)−

1

32
ησmin(t)

4 <
1(

23/4σ
1/4
1 (Σ)

)2 .
(322)

Then by Theorem 53 and 29,

Lori(t+ 1) ≤ Lori(t)− 23/4ησ
3/2
1 (Σ)Lori(t)

+ η2O

(
max

j
∥Wj(t)∥8op

(
max

j
∥Wj(t)∥4op +

√
Lori(t)

)
Lori(t) + amax

j
∥Wj(t)∥4op

√
Lori(t)Lreg(t)

)
+ η4O

(
max

j
∥Wj(t)∥16opLori(t)

2 + a2 max
j
∥Wj(t)∥8opLreg(t)

2

)
≤
(
1− ησ

3/2
1 (Σ)

)
Lori(t),

(323)
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Lreg(t+ 1) ≤
(
1− 1

3
ηad−1/4σ

1/2
1 (Σ)

)
· Lreg(t) + η2O

(
a2M4Lreg(t) +

√
aLreg(t)M

6Lori(t)

)
+ η4O

(
aM12Lori(t)

2 + a3M4Lreg(t)
2
)

≤
(
1− 1

4
ηad−1/4σ

1/2
1 (Σ)

)
· Lreg(t) ≤

(
1− ηad−1/4σ

3/2
1 (Σ)

)
· Lreg(t).

(324)

This completes the proof.

By Combining the three-stage results, the global convergence guarantee of Theorem 47 is proved.

J EXPLANATION OF MAIN RESULT

This section expands the discussion of main convergence result Theorem 47.

J.1 PROOF OF EXAMPLE FOR TIGHTNESS

This section completes the proof of Example below Theorem 1 for tightness analysis.

Firstly, since all wj are initialized to the same value, from the property of balancedness all wj remain
identical through the optimization.

To solve the differential equation of dwj

dt = (σ1 − w4
j )w

3
j ,

T (wj = (1− γ)σ
1/4
1 ) =

∫ (1−γ)σ
1/4
1

ϵ

1

(σ1 − w4
j )w

3
j

dwj

= σ
−3/2
1

∫ 1−γ

ϵ/σ
1/4
1

1

(1− x4)x3
dx

= σ
−3/2
1

[∫ 2−1/4

ϵ/σ
1/4
1

1

(1− x4)x3
dx+

∫ 1−γ

2−1/4

1

(1− x4)x3
dx

]

= σ
−3/2
1

[
Θ

(∫ 2−1/4

ϵ/σ
1/4
1

1

x3
dx

)
+Θ

(∫ 1−γ

2−1/4

1

1− x
dx

)]
= σ

−3/2
1

[
Θ
(
σ
1/2
1 /ϵ2

)
+Θ(ln(1/γ))

]

(325)

By setting γ through ϵconv = 1
2 [1− (1− γ)4]2σ2

1 , γ = Θ(ϵconv/σ
2
1). Then it takes T (L ≤ ϵconv) =[

Θ
(
σ−1
1 ϵ−2

)
+Θ

(
σ
−3/2
1 ln(1/γ)

)]
This completes the proof of tightness.

J.2 ILLUSTRATION FOR THE EXPONENT OF σ1 IN INITIALIZATION SCALE AND
CONVERGENCE TIME

We consider arbitrary N -layer matrix factorization under gradient flow setting(gradient descent fol-
lows the same argument). Then for fixed condition number κ := σ1(Σ)/σd(Σ), the requirements
for initialization scale ϵ ∝ σ

1/N
1 (Σ), while the training time scales by σ

−2(N−1)/N
1 (Σ).

Suppose the target matrix is scaled by a positive real constant λ ∈ R+, then the new dynamics
becomes
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d

dt
Wj =

(
j+1∏
k=N

Wk

)
(λΣ−W )

 1∏
k=j−1

Wk

 . (326)

By setting W ′
j = λ1/NWj , t′ = λ−2(N−1)/N (correspondingly the initialization scale ϵ′ = λ1/N ϵ),

then the dynamics becomes the form of

d

dt′
W ′

j =

(
j+1∏
k=N

W ′
k

)
(Σ−W ′)

 1∏
k=j−1

W ′
k

 . (327)

Then W ′
j(t

′) shares exactly the same dynamics with Wj(t) before scaling . Thus for fixed conditional
number κ := σ1(Σ)/σd(Σ) (for Theorem 1 and 2, κ = 1) or to say, relative size of target singular
values, the initialization scale ϵ ∝ σ

1/N
1 (Σ), convergence time T ∝ σ

−2(N−1)/N
1 (Σ). For N = 4,

T ∝ σ
−3/2
1 (Σ); for N = 2, T ∝ σ−1

1 (Σ).

Remark 19. This is intuitively similar to dimensional analysis, which is a powerful technique used
to understand the relationships between different physical quantities by analyzing their dimensions
and units. For example, when calculating the resonant period of a simple pendulum with mass
m, pendulum length l and gravitational acceleration g, by analyzing the units of target quantity
[Tpendulum] = T 1 = [m]α[l]β [g]γ ([·] denotes its dimension) along with variables [m] = M1,
[l] = L1, [g] = L1T−2. (Here L is length, T is time, M is mass. ) Then by solving the coefficients,
α = 0, β = −1/2, γ = 1/2, we have Tpendulum ∝

√
l/g.

In our problem setting, if we view the dimension of the largest singular value of Σ to
be a unit (conditional number is dimensionless), then [Lori] = [ 12∥Σ −

∏1
j=N Wj∥2F ] =

[σ1(Σ)]
2

[
1
2

∥∥∥(σ−1
1 (Σ)Σ

)
−
∏1

j=N

(
σ
−1/N
1 (Σ)Wj

)∥∥∥2
F

]
= [σ1(Σ)]

2, so σ
−1/N
1 (Σ)Wj is dimen-

sionless, Wj has dimension [σ1(Σ)]
1/N , then the initialization scale ϵ ∝ σ

1/N
1 (Σ). For the training

time, d
dtWj =

(∏j+1
k=N Wk

)
(Σ −W )

(∏1
k=j−1 Wk

)
, then [ ddt ] = [σ

2(N−1)/N
1 (Σ)], the training

time is proportional to σ
−2(N−1)/N
1 (Σ).

K NUMERICAL SIMULATIONS

Through out this section, we consider numerical simulations under four-layer matrix factorization
on square matrices with dimension of 5.

K.1 SADDLE AVOIDANCE DYNAMICS UNDER BALANCE INITIALIZATION

This section presents numerical simulations of the saddle avoidance stage under balanced initializa-
tion. In this experiment, ϵ = 0.05, η = 0.1, Σw(0) = ϵ · diag(1, 0.8, 0.6, 0.5, 0.9).
We set the target matrix to Σ = I in Figure 1 and to Σ = diag(2.00, 1.55, 1.10, 0.65, 0.20) in Figure
2. Each pair of solid and dashed lines of the same color represents the logarithms of the kth singular
value of ΣW and that of 1

2 (U+V )ΣW , respectively. (Here U, V,Σw are defined by SVD of product
matrix W : W = UΣN

w V ⊤, or ·H for complex domain. ) Considering the numerical precision and
for appropriate visualization, all values plotted are truncated at a small value. (Here the singular
values are truncated at 1e− 5 so the logarithms are truncated at around −11.5. )

These figures clearly exhibit the following properties:

• σk

(
1
2 (U + V )ΣW

)
provides a tight lower bound for σk (ΣW ), verifying the conclusion of

Lemma 18.

• The spectral gap of the target matrix introduces non-smoothness and non-monotonicity into
the original lower bound for singular values of the product matrix, leading to segmented
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rather than global smoothness and monotonicity. This explains why the dynamics are easier
to analyze when the target matrix is the identity.

• The 1/2 failure probability of converging to a saddle point under real balanced initialization
is a general phenomenon, even if the target matrix is not identity. This illustrates that the
exact balancedness in real domain may hinder the convergence in matrix factorization,
which is also discussed in Xiong et al. (2024). For the complex initialization, such 1/2
failure probability of convergence does not occur. This indicates that the complex domain
does not suffer from the drawbacks of exact balancedness at least under our framework,
and thus merits further theoretical investigation.
It is also interesting to notice that in the setting of Figure 2, initializations with
det(U⊤V ) = 1 fail to converge but det(U⊤V ) = −1 converges, which contrasts with
the identity target case (but still with a 1/2 probability).

• The incremental learning of singular values. Through Figure 1 and Figure 2, we observe
the incremental learning of singular values: the model learns features (here the singular
values of target matrix) one by one. While we cannot explain why the larger singular
values of target matrix converges at first then the smaller ones in Figure 2, and the proof of
incremental learning itself is beyond the scope of this work, we still provide an explanation
of Figure 1 under the scheme of balanced Gaussian initialization, gradient flow.
Equation (11) provides both upper and lower bound for the kth singular value of product
matrix σk(W ) = σ4

k(Σw) by the term σk((U + V )Σw), while Theorem 5 demonstrates
that the increasing rate of this term is accurately bounded and approximately independent of
other components k′ ̸= k. By invoking conclusions in random matrix theory, we may prove
the gap of singular values at initialization, which leads to the explanation of incremental
learning. This method can be applied to general random initialization under gradient flow.
For gradient descent, more perturbation techniques are required.

Figure 1: Dynamics of singular values (log scale) for an identity target matrix. From left to right, up
to down: real initialization with det(U⊤V ) = 1, det(U⊤V ) = −1, and complex initialization.
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Figure 2: Dynamics of singular values (log scale) for a non-identity target matrix. From left to right,
up to down: real initialization with det(U⊤V ) = 1, det(U⊤V ) = −1, and complex initialization.

K.2 CONVERGENCE RATE OF DIFFERENT DEPTHS

This section presents examples showing the convergence rate of different depths. Specifically,
we vary the depth from 2 to 6 under complex balanced Gaussian initialization, with other hyper-
parameters fixed as ϵ = 0.05, η = 0.1, Σw(0) = ϵ · diag(1, 0.8, 0.6, 0.5, 0.9), Σ = I . The plots
of loss curves and singular values (with dashed line lower bounds which is the same in K.1) are
presented in Figure 3.

From the experimental results we exhibit that:

• Generally, deeper N takes more iterations to converge.

• For deeper N the network stays at saddle for more time relative to local convergence phase,
which is shown by the sharper change in the decrease of loss and the increase of singular
values.

• For depth N ≥ 5 the lower bound term σk((U + V )Σw) still suffers from sudden change
when one singular value converges. Furthermore, the monotonicity of this term may not
hold anymore, see Figure 4 for result on real domain.

K.3 ALIGNMENT DYNAMICS UNDER BALANCE REGULARIZATION TERM

This section exhibits the dynamics of weight matrices under regularization term. The original square
loss Lori is omitted. Here a = 1, ϵ = 1, η = 0.001.

Figure 5 illustrates the conclusion of Theorem 28 and 30. Clearly the maximum among all the
singular values are non-increasing while the minimum is non-decreasing.
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Figure 3: Dynamics of losses and log scale singular values for identity target matrix, under complex
initialization, with depth from 2 to 6. Figures on the left are loss curves, the right ones are logarithms
of singular values.
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Figure 4: Dynamics of singular values (log scale) for identity target matrix, under real initialization,
depth 5, det(U⊤V ) = 1.

Figure 5: Dynamics of extreme singular values (log scale) for four weight matrices.
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Figure 6 illustrates the dynamics of main term σmin(W1 + W−1
2 WH

3 WH
4 ). For real initialization

with det(W (0)) < 0, σmin(W1+W−1
2 WH

3 WH
4 ) decays to 0 at a linear rate, while for det(W (0)) >

0 and complex initialization it stays at a small value after some oscillation.

Figure 6: Dynamics of the minimum singular value of Hermitian main term W1 + W−1
2 WH

3 WH
4

(log scale). From left to right, up to down: real initialization with det(W ) > 0, det(W ) < 0, and
complex initialization.
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L LLM USAGE DECLARATION

In the preparation of this paper, large language models (LLMs) served only as an auxiliary tool
for enhancing writing clarity, checking grammar, and assisting in the drafting and debugging of
simulation code. These tasks were performed under the authors’ complete oversight. The central
scientific ideas, theoretical results, and research contributions are entirely the work of the authors.
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