

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 GLOBAL CONVERGENCE OF FOUR-LAYER MATRIX FACTORIZATION UNDER RANDOM INITIALIZATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Gradient descent dynamics on the deep matrix factorization problem is extensively studied as a simplified theoretical model for deep neural networks. Although the convergence theory for two-layer matrix factorization is well-established, no global convergence guarantee for general deep matrix factorization under random initialization has been established to date. To address this gap, we provide a polynomial-time global convergence guarantee for randomly initialized gradient descent on four-layer matrix factorization, given certain conditions on the target matrix and a standard balanced regularization term. Our analysis employs new techniques to show saddle-avoidance properties of gradient decent dynamics, and extends previous theories to characterize the change in eigenvalues of layer weights.

1 INTRODUCTION

This paper investigates matrix factorization, a fundamental non-convex optimization problem, which in its canonical form seeks to optimize the following objective:

$$\mathcal{L}(W_1, \dots, W_N) := \frac{1}{2} \|W_N \cdots W_1 - \Sigma\|_F^2 + \mathcal{L}_{\text{reg}}(W_1, \dots, W_N), \quad (1)$$

where $W_j \in \mathbb{F}^{d \times d}$ denotes the j^{th} layer weight matrix, $\Sigma \in \mathbb{F}^{d \times d}$ denotes the target matrix and \mathcal{L}_{reg} is a (optional) regularizer, $d \in \mathbb{N}^*$ is the size of matrices which can be arbitrary positive integers (for $d = 1$ it reduces to scalars). Here $\mathbb{F} \in \{\mathbb{C}, \mathbb{R}\}$ as we consider both real and complex matrices in this paper. Following a long line of works (Arora et al., 2019a; Jiang et al., 2023; Ye & Du, 2021; Chou et al., 2024), we aim to understand the dynamics of gradient descent (GD) on this problem:

$$j = 1, \dots, N : W_j(t+1) = W_j(t) - \eta \nabla_{W_j} \mathcal{L}(W_1(t), \dots, W_N(t)), \quad (2)$$

where $\eta \in \mathbb{R}^+$ is the learning rate.

While global convergence guarantee for the case of two-layer matrix factorization ($N = 2$) is well studied (Du et al., 2018; Ye & Du, 2021; Jiang et al., 2023), the deep matrix factorization problem, *i.e.*, the $N > 2$ case is less explored. While the model representation power is independent of depth N , the deep matrix factorization problem is naturally motivated by the goal of understanding benefits of depth in deep learning (see, *e.g.*, Arora et al. (2019b)). A long line of previous works (Hardt & Ma, 2016; Arora et al., 2019b;a; Wang & Jacot, 2023) studies this regime as it directly captures Deep Linear Networks (DLN), the simplest type of deep neural networks. However, a general global convergence guarantee is still missing. Therefore, the following open research question can be naturally asked:

Can we prove global convergence of GD for matrix factorization problem (1) with $N > 2$ layers?

In this paper, we take a positive step towards answering the question above. Specifically, we consider 4-layer matrix factorization ($N = 4$) with the standard balancing regularization term (see Park et al. (2017); Ge et al. (2017); Zheng & Lafferty (2016)) as

$$\mathcal{L}(W_1, W_2, W_3, W_4) := \frac{1}{2} \|W_4 W_3 W_2 W_1 - \Sigma\|_F^2 + \frac{1}{4} a \left(\sum_{j=1}^3 \|W_j W_j^H - W_{j+1}^H W_{j+1}\|_F^2 \right),$$

054 where W_j^H denotes the Hermitian transpose of W_j and $a \in \mathbb{R}^+$ is a hyperparameter. We consider
 055 both real ($\mathbb{F} = \mathbb{R}$) and complex ($\mathbb{F} = \mathbb{C}$) setting with random Gaussian initialization and prove
 056 global convergence of gradient descent. Our main result can be summarized as follows:
 057

058 **Theorem 1** (Main theorem, informal). *Consider four-layer matrix factorization for target matrix Σ
 059 with identical singular values $\sigma_1 > 0$, under gradient descent and random Gaussian initialization
 060 with small scaling factor $\epsilon \ll \sigma_1^{1/4}$, then with sufficient small learning rate η and large regular-
 061 ization factor a , (1) with high probability $1 - \delta$ over the complex initialization and complex Σ , or
 062 (2) with probability $\frac{1}{2}(1 - \delta)$ over the real initialization and real Σ , loss function $\mathcal{L}(t) \leq \epsilon_{\text{conv}}$ for
 063 $t > T(\epsilon_{\text{conv}}, \eta) = \eta^{-1} \sigma_1^{-1} \epsilon^{-2} \text{poly}(1/\delta, d) + O\left(\eta^{-1} \sigma_1^{-3/2} \ln(d\sigma_1^2/\epsilon_{\text{conv}})\right)$, for any $\epsilon_{\text{conv}} > 0$.*
 064

065 The formal version of Theorem 1 is stated in Theorem 47 in Appendix, where we specify the poly-
 066 nomial degrees for $\epsilon, a, \eta, T(\epsilon_{\text{conv}}, \eta)$. Below we provide a simple example to illustrate the result.
 067

068 **Example for tightness.** We show the convergence rate is nearly tight by the toy example of
 069 $d = 1$, where all the weight matrices degenerate into scalars. Consider identical initialization
 070 $w_{j:j \in [4]}(t = 0) = \epsilon$ and gradient flow, then all w_j remain identical and the dynamics become

$$\frac{dw_j}{dt} = (\sigma_1 - w_j^4)w_j^3.$$
 By solving the differential equation, it takes time $\Theta(\sigma_1^{-1}\epsilon^{-2})$ for product
 071 weight $w := w_4w_3w_2w_1$ to increase from ϵ^4 to $\Theta(\sigma_1)$, then time $\Theta(\sigma_1^{-3/2} \ln(\sigma_1^2/\epsilon_{\text{conv}}))$ to reach
 072 local convergence. Theorem 1 exactly reduces to this result when the dimension $d = 1$. Calculation
 073 details are provided in Appendix J.1.
 074

075 For further explanation on the exponents of σ_1 in ϵ and $T(\epsilon_{\text{conv}}, \eta)$, please refer to Appendix J.2.
 076

077 **Remark 1.** *A natural question is why the convergence guarantee in the real case holds only with
 078 probability close to $\frac{1}{2}$, but not 1. For the other $\frac{1}{2}$ probability, Theorem 2 presents a special case -
 079 considering gradient flow under the strict balance condition (which can be viewed as the limit as
 080 $a \rightarrow +\infty$), showing that the optimization process does not converge to a global minimum in finite
 081 time (and hence converges to a saddle point).*
 082

083 **Main contributions.** Our major contributions can summarized as follows:
 084

- 085 • We prove global convergence of GD for 4-layer matrix factorization under random Gaus-
 086 sian initialization. To the best of our knowledge, this is the first global convergence result
 087 for general deep linear networks under random initialization beyond the NTK regime in Du
 088 & Hu (2019). This result helps provide new insights towards understanding the training
 089 dynamics of general deep neural networks.
- 090 • We construct a novel three-stage convergence analysis of gradient descent dynamics, con-
 091 sisting of an alignment stage, a saddle-avoidance stage, and a local convergence stage. We
 092 also develop new techniques to show GD dynamics avoids saddle points and to charac-
 093 terize layer matrix eigenvalue changes, which we believe are of independent interest for deep
 094 linear networks analysis.

095 **Challenges and techniques.** Our analysis employs the following key techniques:
 096

- 097 • Initialization analysis. To guarantee that gradient descent makes progress, it is necessary
 098 to establish a monotonically increasing lower bound for the singular values of the weight
 099 matrices. This, in turn, requires analyzing the smallest singular value of a newly introduced
 100 term (namely $W + (WW^H)^{1/2}$, where $W = W_4W_3W_2W_1$), at initialization. This analysis
 101 utilizes tools from random matrix theory, particularly the concept of Circular Ensembles.
 102 The detailed proof is given in Appendix C.
- 103 • Regularity condition of each layer. To bridge the initialization with the subsequent training
 104 dynamics, we need to ensure that key matrix properties evolve in a controlled manner even
 105 during the rapid changes in the alignment stage. We prove that despite significant updates,
 106 the weight matrices retain certain spectral properties from their initial state. A delicate
 107 analysis of the smooth evolution of the extreme singular values and the behavior of the
 108 Hermitian term after the regularization term converges is provided in Section 5.2.1 and
 109 5.2.2.

- 108 • Saddle avoidance. To avoid convergence to a saddle point, it is essential to prevent the
109 smallest singular values of the weight matrices from decaying to zero, as such decay would
110 cause the gradient norm to vanish. To this end, we construct a hermitian term providing
111 lower-bounds for these singular values, along with a skew-hermitian error. During the opti-
112 mization, the skew-hermitian error is approximately non-increasing, which in turn ensures
113 that the minimum singular value of the hermitian term is non-decreasing. This mechanism
114 provides a persistent lower bound, thereby effectively avoiding saddle points.
- 115 • Bound of eigenvalue change. Finally, to translate the continuous-time intuition into rigor-
116 ous guarantees for the discrete gradient descent algorithm, we develop new perturbation
117 bounds for eigenvalues. In continuous time, the time derivatives of eigenvalues are di-
118 rectly characterized by the derivatives of the matrix. In discrete time, however, eigenvalue
119 changes depend on the spectral gap in general, requiring a fine-grained, problem-specific
120 analysis. Similar challenge are noted in Lemma 3.2 of Ye & Du (2021). We address this
121 issue in Lemma 19 and 20 in Appendix D.2.

122 These techniques form a cohesive proof strategy: the initialization analysis provides a favorable
123 starting point; the regularity analysis ensures controlled dynamics throughout training; the saddle
124 avoidance mechanism guarantees persistent progress; and the discrete-time perturbation bounds rig-
125 orously translate these insights into a full global convergence proof.

126 **Paper Roadmap.** Section 3 introduces basic notations. To provide a intuitive framework of the
127 convergence analysis, we first establish the result under a special initialization (namely balanced
128 Gaussian initialization) and gradient flow in Section 4, then generalize the proof strategy into general
129 random Gaussian initialization and gradient descent in Section 5, which consists of three stages.
130 Some of our supporting theorems can be applied to more general setting of target matrix Σ and
131 depth N , where we specify in Table 1 below (identical means the singular values are the same):

Theorem	Initialization	Depth N	Target
Thm 3: balanced Gaussian initialization	balanced Gaussian	≥ 2	-
Thm 6: random Gaussian initialization	random Gaussian	≥ 2	-
Thm 4: bounded skew-Hermitian error	balanced Gaussian	≥ 2	arbitrary
Thm 5: increasing rate of main term	balanced Gaussian	4	identical
Thm 7: convergence rate of regularization term \mathcal{L}_{reg}	-	4^1	arbitrary
Thm 8: max/min singular value changes under \mathcal{L}_{reg}	-	≥ 2	arbitrary

140 Table 1: Summary of the supporting theorems and their assumptions.
141
142

143 2 RELATED WORKS

144 For two-layer matrix factorization, the global convergence of symmetric case has been established
145 under various settings (Jain et al., 2017; Li et al., 2019; Chen et al., 2019). For asymmetric matrix
146 factorization case with objective $\mathcal{L} = \frac{1}{2}\|UV^\top - \Sigma\|_F^2$, the following homogeneity issue occurs:
147 the prediction result remains the same if one layer is multiplied by a positive constant while the
148 other is divided by the same, introducing significant challenges in convergence analyzing (Lee et al.
149 (2016), Proposition 4.11). Tu et al. (2016) and Ge et al. (2017) tackles this problem by manually
150 adding a regularization term on the objective function. Du et al. (2018) discovers that gradient de-
151 scent automatically balances the magnitudes of layers under small initialization, providing analysis
152 of global convergence with polynomial time under decayed learning rate, while removing the regu-
153 larization term. Ye & Du (2021) extends the convergence analysis to constant learning rate. Wang
154 et al. (2022) demonstrates the convergence for constant large learning rates and exhibits that the
155 optimization converges to a approximately balanced optimum. Xu et al. (2024) adopts an unbalanced
156 initialization, under which they proved that NAG achieves an accelerated convergence rate.

157 Kawaguchi (2016) analyzes landscape for general DLN, showing there exists saddle points with no
158 negative eigenvalues of Hessian for depth over three. Bartlett et al. (2018) analyzes the dynamic
159 under identity initialization, proving polynomial convergence with target matrix near initialization

160 ¹This can be generalized to arbitrary $N \geq 2$. An arbitrary N version for gradient flow is provided in
161 Theorem 28 in the Appendix.

or symmetric positive definite, but such initialization fails to converge when target matrix is symmetric and has a negative eigenvalue. Arora et al. (2019a) provides global convergence proof under specific deep linear neural network structures and initialization scheme, requiring the initial loss to be smaller than the loss of any rank-deficient solution. Ji & Telgarsky (2019) conducted the proof of convergence on general deep neural networks with similar requirements on the initial loss. Arora et al. (2019b) simplifies the training dynamics of deep linear neural network into the dynamic of singular values and singular vectors of product matrix under balanced initialization, providing theoretical illustration of local convergence when singular vectors are stationary. Nguegnang et al. (2024) proves that for general depth linear networks, under appropriate gradient scheduling and initialization the optimization converges to a critical point. Du & Hu (2019) proves global convergence for wide linear networks under the neural tangent kernel (NTK) regime. More recent works focus on GD dynamics under (approximately) balanced initialization schemes (Min et al., 2023) or the 2-layer case (Min et al., 2021; Xiong et al., 2023; Tarmoun et al., 2021). Chizat et al. (2024) studies the infinite-width limit of DLN in the mean field regime. However, none of these results imply a global convergence guarantee for general DLN with $N > 2$ under random initialization.

3 PRELIMINARIES

Notation. Denote the complex conjugate of M as \bar{M} and adjoint of M as M^H , \mathbb{N} as the set of non-negative integers, and \mathbb{N}^* as the set of positive integers. $\sigma_k(\cdot)$ denotes the k^{th} largest singular value of the matrix. For $k_1 < k_2 \in \mathbb{N}$, $\prod_{j=k_2}^{k_1} M_j = M_{k_2} M_{k_2-1} \cdots M_{k_1}$. $x \sim \mathcal{N}(0, 1)_{\mathbb{C}}$ means that the real and imaginary parts are independently sampled from Gaussian distribution with variance $\frac{1}{2}$: $\Re x, \Im x \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, 1/2)$. $Q \sim U(d, \mathbb{C})$ or $O(d, \mathbb{R})$ means Q is drawn from the unique uniform distribution (Haar measure) on the unitary or orthogonal group, implying its distribution is unitarily/orthogonally invariant.

Consider general N -layer matrix factorization, for simplicity we define the following notations:

$$W_{\Pi_L, j} := \prod_{k=N}^j W_k, \quad W_{\Pi_R, j} := \prod_{k=j}^1 W_k, \quad W := \prod_{k=N}^1 W_k = W_{\Pi_L, 1} = W_{\Pi_R, N}, \quad (3)$$

$$\Delta_{j, j+1} := \begin{cases} W_j W_j^H - W_{j+1}^H W_{j+1} & , j \in \{1, 2, \dots, N-1\} \\ O^{d \times d} & , j \in \{0, N\} \end{cases} . \quad (4)$$

W is referred to as *product matrix*. The loss is written by $\mathcal{L}(W_1, \dots, W_N) = \mathcal{L}_{\text{ori}} + \mathcal{L}_{\text{reg}}$, where $\mathcal{L}_{\text{ori}} = \frac{1}{2} \|\Sigma - W\|_F^2$, $\mathcal{L}_{\text{reg}} = \frac{1}{4} a \left(\sum_{j=1}^{N-1} \|\Delta_{j, j+1}\|_F^2 \right)$.

Algorithmic setup. For the real case ($W_j \in \mathbb{R}^{d \times d}$), GD dynamics is canonical and described by equation 2. Under complex field ($W_j \in \mathbb{C}^{d \times d}$), for simplicity and coherence we define $\nabla_M = \frac{\partial}{\partial \Re M} + i \frac{\partial}{\partial \Im M}$, which is two times of Wirtinger derivative with \bar{M} : $\frac{\partial}{\partial \bar{M}} = \frac{1}{2} \left(\frac{\partial}{\partial \Re M} + i \frac{\partial}{\partial \Im M} \right)$. By following the updating rule of complex neural networks (see Guberman (2016)), the gradient can be uniformly represented by

$$\begin{aligned} \nabla_{W_j} \mathcal{L} &= \nabla_{W_j} \mathcal{L}_{\text{ori}} + \nabla_{W_j} \mathcal{L}_{\text{reg}} \\ \nabla_{W_j} \mathcal{L}_{\text{ori}} &= -W_{\Pi_L, j+1}^H (\Sigma - W) W_{\Pi_R, j-1}^H, \quad \nabla_{W_j} \mathcal{L}_{\text{reg}} = -a W_j \Delta_{j-1, j} + a \Delta_{j, j+1} W_j, \end{aligned} \quad (5)$$

Under gradient flow, $\frac{dW_j}{dt} = -\nabla_{W_j} \mathcal{L}$; under gradient descent, $W_j(t+1) = W_j(t) - \eta \nabla_{W_j} \mathcal{L}(t)$.

Reduction to diagonal target. Following the simplification process of Section 2.1 in Ye & Du (2021), suppose the singular value decomposition of Σ is $\Sigma = \bar{U}_{\Sigma} \Sigma' V_{\Sigma}^H$, by applying the following transformation $W_1 \leftarrow W_1 V_{\Sigma}$ and $W_N \leftarrow U_{\Sigma}^H W_N$, the dynamics remain the same form, while the distributions of W_j under our initialization schemes remain the same. Hence without loss of generality, we assume the target matrix is *diagonal with real and non-negative entries* throughout our analysis. Detailed analysis is presented in Appendix B.

216 For some of the results, we further require target matrix to be *an identity matrix scaled by a positive*
 217 *constant* $\Sigma = \sigma_1(\Sigma)I$, which is equivalent to *requiring that the singular values of target matrix are*
 218 *identical*.

219 **Balancedness.** Following a long line of works (Arora et al., 2019a;b; Du et al., 2018), we define
 220 the balance difference between layer j and $j + 1$ as $\Delta_{j,j+1}$ (refer to 4). As discussed in Definition
 221 1 of Arora et al. (2019a), the weights are approximately balanced (namely $\|\Delta_{j,j+1}\|_F$ are small)
 222 throughout the iterations of gradient descent under approximate balancedness at initialization and
 223 small learning rate. Notice that approximate balancedness holds for small initialization near origin
 224 (small variance for Gaussian initialization).

225 Specifically, under *gradient flow* the balanced condition (defined as $\|\Delta_{j,j+1}(t)\|_F \equiv 0$ or equivalently
 226 $\Delta_{j,j+1}(t) \equiv O, \forall j \in \{1, 2, \dots, N-1\}$) *holds strictly at arbitrary time under balanced*
 227 *initialization*, which is defined as $\Delta_{j,j+1}(t=0) \equiv O, \forall j \in \{1, 2, \dots, N-1\}$.

228 **Remark 2.** *As previously discussed, balance condition holds approximately under small initialization,*
 229 *so such regularization's affect on the training process is relatively weak, especially when*
 230 *weight matrices grow larger and be away from origin.*

232 4 TRAINING DYNAMICS UNDER BALANCED GAUSSIAN INITIALIZATION

233 We denote the initialization satisfying strict balancedness as balanced initialization. Generally, strict
 234 balancedness yields a clean form of dynamics, where the dynamic of product matrix W depends on
 235 W itself solely and is irrelevant to layers $W_{1,2,\dots,N}$ (Arora et al., 2019b). However, random Gaussian
 236 initialization does not satisfy strict balancedness. To adapt the random Gaussian initialization to
 237 ensure balanced condition, we introduce a *balanced Gaussian initialization* scheme for the analysis
 238 below. The procedure is defined as follows:

239 (1) Sample G with entries $G_{ij} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, 1)_{\mathbb{F}}$, $Q_{k,k+1;k \in \{0,1,\dots,N\}} \stackrel{\text{i.i.d.}}{\sim}$ Haar on $U(d, \mathbb{C})$ for $\mathbb{F} = \mathbb{C}$
 240 (or $O(d, \mathbb{R})$ for $\mathbb{F} = \mathbb{R}$). $s_{j,j \in \{1,2,\dots,N\}} \in \mathbb{F}$ are arbitrary constants with modulus/absolute value 1.

241 (2) For scaling factor $\epsilon \in \mathbb{R}^+$, which is a small positive constant, set the weight matrices by:

$$242 W_j = \begin{cases} s_j \epsilon Q_{j,j+1} G Q_{j-1,j}^H & , 2 \nmid j \\ s_j \epsilon Q_{j,j+1} G^H Q_{j-1,j}^H & , 2 \mid j \end{cases} \quad (6)$$

243 Intuitively, $Q_{k,k+1;k \in \{0,1,\dots,N\}}$ are i.i.d. uniformly distributed unitary/orthogonal matrices. By
 244 Corollary 13 in the Appendix, each matrix is a ϵ -scaled Gaussian random matrix ensemble (but
 245 not independent of the others), while satisfying balanced condition $\Delta_{j,j+1}(0) = O, \forall j \in \{1, 2, \dots, N-1\}$.

246 To exhibit the convergence dynamics clearly, we present the global convergence under the simplified
 247 scenario of balanced Gaussian initialization and gradient flow. Notice that the adjacent matrices
 248 remain balanced due to the non-increasing property of regularization term (Lemma 26).

249 **Theorem 2.** *(Informal) Global convergence bound under balanced Gaussian initialization, gradient*
 250 *flow. For four-layer matrix factorization under gradient flow, balanced Gaussian initialization with*
 251 *scaling factor $\epsilon \leq \sigma_1^{1/4}(\Sigma)/\text{poly}(1/\delta, d)$, then for target matrix with identical singular values,*

252 1. *For $\mathbb{F} = \mathbb{R}$, with probability at least $\frac{1}{2}$ the loss does not converge to zero.*

253 2. *For $\mathbb{F} = \mathbb{C}$ with high probability at least $1 - \delta$ and for $\mathbb{F} = \mathbb{R}$ with probability at least $\frac{1}{2}(1 - \delta)$, there exists $T(\epsilon_{\text{conv}}) = \sigma_1^{-1} \epsilon^{-2} \text{poly}(1/\delta, d) + O\left(\sigma_1^{-3/2} \ln(d\sigma_1^2/\epsilon_{\text{conv}})\right)$, such that for any*
 254 $\epsilon_{\text{conv}} > 0$, when $t > T(\epsilon_{\text{conv}})$, $\mathcal{L}(t) < \epsilon_{\text{conv}}$.

255 The formal version is stated in Theorem 35 in the Appendix, where we specify the polynomial
 256 degrees of ϵ and $T(\epsilon_{\text{conv}}, \eta)$.

260 4.1 BALANCED GAUSSIAN INITIALIZATION

261 This section establishes the properties for balanced Gaussian initialization.

270 **Theorem 3.** Under ϵ -scaled balanced Gaussian initialization, suppose W is $W = U\Sigma_w^N V^H$,
 271 where U, V are unitary/orthogonal matrices, Σ_w is positive semi-definite and diagonal, denote
 272 $s := \prod_{j=1}^N s_j$, then for some $f_1 = O\left(\frac{1}{\delta}\right)$, $f'_2 = O\left(\frac{1}{\delta^2}\right)$:
 273

274 1. If $\mathbb{F} = \mathbb{C}$, at the initialization the following inequalities hold with probability at least $1 - \delta$:

$$\begin{aligned} 276 \quad \|\Sigma_w\|_{op} &\leq f_1(\delta)\sqrt{d}\epsilon, \|(U - V)\Sigma_w\|_F|_{t=0} \leq 2f_1(\delta)d\epsilon \\ 277 \quad \sigma_{\min}((U + V)\Sigma_w)|_{t=0} &\geq f'_2(\delta)^{-1}d^{-3/2}\epsilon. \end{aligned} \quad (7)$$

279 2. If $\mathbb{F} = \mathbb{R}$, at the initialization we have $\Pr(s \det(Q_{N,N+1}) \det(Q_{01}) = 1) =$
 280 $\Pr(s \det(Q_{N,N+1}) \det(Q_{01}) = -1) = \frac{1}{2}$. If the initialization satisfies $s \det(Q_{N,N+1}) \det(Q_{01}) =$
 281 -1 , then $\sigma_{\min}((U + V)\Sigma_w)|_{t=0}$; otherwise $s \det(Q_{N,N+1}) \det(Q_{01}) = 1$, then the following in-
 282 equalities hold with probability at least $1 - \delta$:

$$\begin{aligned} 284 \quad \|\Sigma_w\|_{op} &\leq f_1(\delta)\sqrt{d}\epsilon, \|(U - V)\Sigma_w\|_F|_{t=0} \leq 2f_1(\delta)d\epsilon \\ 285 \quad \sigma_{\min}((U + V)\Sigma_w)|_{t=0} &\geq f'_2(\delta)^{-1}d^{-3/2}\epsilon. \end{aligned} \quad (8)$$

287 Proof is presented in Appendix C.3. One may question the motivation of analyzing $\sigma_{\min}((U +$
 288 $V)\Sigma_w)|_{t=0}$. We later show that this term acts as a crucial lower bound with a relatively simple
 289 dynamics in Section 4.3.

291 4.2 NON-INCREASING SKEW-HERMITIAN ERROR

293 As presented in Lemma 24 in the Appendix, the product matrix can be factorized in to the form
 294 of $\bar{W}(t) = U(t)\Sigma_w(t)^N V(t)^H$, where $\Sigma_w(t)$ is positive semi-definite and diagonal (consequently
 295 real-valued), U and V are unitary/orthogonal matrices, U, V and Σ_w are analytic. For simplicity,
 296 we denote $\sigma_{w,j}$ as the j^{th} diagonal entry of Σ_w , and u_j, v_j as the j^{th} column of U, V . Under this
 297 representation of product matrix, we obtain a *non-increasing Skew-Hermitian/Symmetric term*:

298 **Theorem 4.** (Informal) Skew-Hermitian error term is non-increasing. Under balanced initialization
 299 with product matrix $\bar{W}(t) = U(t)\Sigma_w(t)^N V(t)^H$, for depth $N \geq 2$, if the singular values of the
 300 product matrix at initial $\bar{W}(0)$ are non-zero and distinct, then the following skew-Hermitian error
 301 $\|\Sigma^{1/2}(U - V)\Sigma_w\|_F^2$ is non-increasing:

$$\frac{d}{dt} \|\Sigma^{1/2}(U - V)\Sigma_w\|_F^2 \leq 0. \quad (9)$$

306 *Proof sketch.* Proof of the Theorem 4 involves technical and lengthy calculations. The formal version
 307 is stated in Theorem 31, while a special version for even N is separately discussed in Theorem 32.
 308 For the proof of Theorem 31, the idea is to decompose the derivative of this term into the derivative of
 309 $\sigma_{w,j}$ and u_j, v_j , which have been characterized by Theorem 3 and Lemma 2 in Arora et al. (2019b)
 310 respectively. This method is hard to generalize into imbalanced setting. For Theorem 32, this term
 311 is directly derived from derivative of $W_N W_N^H, W_1^H W_1$ and W . This approach is straight forward
 312 and can be extended to imbalanced initialization, but encounters difficulty under odd depth $2 \nmid N$.

313 **Remark 3.** This result is established under the reduction to target matrix (refer to Section 3 and
 314 Appendix B). For general target matrix, suppose its SVD is $\Sigma = U_\Sigma \Sigma' V_\Sigma^H$, then Theorem 4 becomes:

$$\frac{d}{dt} \|\Sigma'^{1/2}(U_\Sigma^H U - V_\Sigma^H V)\Sigma_w\|_F^2 \leq 0. \quad (10)$$

318 **Explanation of the result.** This theorem provides an intrinsic non-increasing term of *general deep*
 319 *matrix factorization*. (Under initialization close to origin, this term is already small at initial.)
 320 Although the result is accurately derived under strictly balanced initialization and gradient flow, one
 321 may expect similar property to hold under small initialization and gradient descent.

322 Moreover, this theorem characterizes when U and V become aligned. The product ma-
 323 trix can be expressed as $W = \sum_{i=1}^d \sigma_{w,j}^N u_j v_j^H$, while the error can be rewritten as

324 $\sum_{j=1}^d \sigma_{w,j}^2 \|\Sigma^{1/2}(u_j - v_j)\|_F^2$. Each term $\sigma_{w,j}^N u_j v_j^H$ of the product matrix can be interpreted as
 325 a “feature” of the linear neural network, containing one “value” $\sigma_{w,j}^N$ and two “directions” u_j, v_j .
 326 When the loss converges, each feature converges to $\sigma_j u_{\Sigma,j} u_{\Sigma,j}^H$, where $\Sigma = \sum_{j=1}^d \sigma_j u_{\Sigma,j} u_{\Sigma,j}^H$ is
 327 a SVD of Σ . This shows that under initialization near origin, once a “value” of the j^{th} feature
 328 increases to a relatively large value (comparing to initialization), the directions of this feature au-
 329 tomatically align with each other (i.e. $\langle u_j, v_j \rangle \approx 1$). Followed by Theoretical illustration part of
 330 Arora et al. (2019b), Section 3, generally the alignment of U, V leads to convergence.
 331

332 As shown in the proof sketch, the analysis for odd N encounters difficulty when generalized to the
 333 imbalanced case, thus this intrinsic non-increasing term becomes considerably more challenging to
 334 characterize. This is why we have developed the convergence proof for the four-layer case rather
 335 than the three-layer architecture.
 336

337 4.3 NON-DECREASING HERMITIAN MAIN TERM

338 This section shows the dynamics of the minimum singular value of Hermitian main term $(U + V)\Sigma_w$.
 339 The motivation of studying this specific term is that it provides both lower and upper bounds for
 340 $\sigma_k(\Sigma_w)$, $k \in \{1, 2, \dots, N - 1\}$, especially tight bounds for $\sigma_{\min}(\Sigma_w)$ (refer to Lemma 18):
 341

$$\begin{aligned} 342 \frac{1}{2} \sigma_k((U + V)\Sigma_w) &\leq \sigma_k(\Sigma_w) \leq \frac{\sqrt{2}}{2} \sqrt{\sigma_k^2((U + V)\Sigma_w) + \|(U - V)\Sigma_w\|_{op}^2} \\ 343 \frac{1}{2} \sigma_{\min}((U + V)\Sigma_w) &\leq \sigma_{\min}(\Sigma_w) \leq \frac{1}{2} \sqrt{\sigma_{\min}^2((U + V)\Sigma_w) + \|(U - V)\Sigma_w\|_{op}^2}. \end{aligned} \quad (11)$$

344 Notice that the extra term in the upper bound is bounded by the skew-Hermitian error term discussed
 345 in the previous section.
 346

347 Although the evolution of $\sigma_k((U + V)\Sigma_w)$ is difficult to characterize in general, we find that in the
 348 special case of $\Sigma = \sigma_1(\Sigma)I$ and $N = 4$, it exhibits a monotonically increasing pattern before local
 349 convergence:
 350

351 **Theorem 5.** *Dynamics of minimum singular value of Hermitian term. Under balanced initialization*
 352 *with product matrix $W(t) = U(t)\Sigma_w(t)^N V(t)^H$, for target matrix with identical singular values*
 353 *(reduces to $\Sigma = \sigma_1(\Sigma)I$) and depth $N = 4$, the time derivative of the k^{th} singular value of the*
 354 *Hermitian term $x_k := \frac{1}{2}\sigma_k((U + V)\Sigma_w)$ is bounded by:*

$$\begin{aligned} 355 \left(2\sigma_1(\Sigma) - x_k^4 - \frac{1}{2}\|\Sigma_w\|_{op}^2\|((U - V)\Sigma_w)|_{t=0}\|_F^2\right) x_k^4 - \frac{1}{16} x_k^2 \|\Sigma_w\|_{op}^2 \|((U - V)\Sigma_w)|_{t=0}\|_F^4 \\ 356 \leq \frac{d}{dt} x_k^2 \leq \sigma_1(\Sigma) (2\|\Sigma_w\|_{op}^2 + \|((U - V)\Sigma_w)|_{t=0}\|_F^2) x_k^2. \end{aligned} \quad (12)$$

357 Detailed proof is presented in E.2.
 358

359 **Discussion on 1/2 failure probability.** This theorem implies that under small initialization, if all
 360 singular values $\sigma_k((U + V)\Sigma_w)$ are initially non-zero, they increase monotonically to relatively large
 361 values, leading to subsequent local convergence. However, if any singular value is initialized to zero
 362 (which occurs with probability at least 1/2 for $\mathbb{F} = \mathbb{R}$, as shown in Theorem 3), it remains zero
 363 throughout the optimization (see Corollary 34), thereby explaining the 1/2 convergence probability
 364 in Theorem 2. Numerical simulations under the identity target setting are provided in Figure 1.
 365

366 **Discussion on target matrix with spectral gaps (singular values are different from each other).**
 367 We also conduct additional simulations for non-identical targets (i.e. non-zero spectral gaps) in
 368 Figure 2, which we do not cover in Theorem 5. From these results, we exhibit that while the lower
 369 bounds constructed in equation (11) still hold under general target matrix with spectral gap, they
 370 suffer from sudden change when one singular value converges, so the monotonicity in Theorem 5
 371 does not hold anymore. More detailed discussions are presented in Appendix K.1.
 372

378 **A short note on incremental learning.** Although the proof of incremental learning is beyond the
 379 scope of this work, we do have a brief theoretical explanation for this behavior exhibited in Figure 1
 380 by exploiting Theorem 5 and equation (11). Detailed discussion is presented in the Appendix K.1.
 381

382 5 CONVERGENCE UNDER RANDOM GAUSSIAN INITIALIZATION

384 This section presents the proof sketch for Theorem 1, extending our analytical framework in the
 385 previous section to accommodate random Gaussian initialization.
 386

387 We divide the training dynamics into three stages: alignment stage $t \in [0, T_1]$, saddle-avoidance
 388 stage $t \in [T_1, T_1 + T_2]$, and local convergence stage $t \in [T_2, +\infty)$. Here $T_1 = \frac{1}{\eta\sigma_1(\Sigma)\epsilon^2} \cdot$
 389 $\text{poly}^{-1}(1/\delta, d)$, $T_2 = \frac{1}{\eta\sigma_1(\Sigma)\epsilon^2} \cdot \text{poly}(1/\delta, d)$ (δ is failure probability in Theorem 1), refer
 390 to Theorem 48 and 52 respectively. Following the method in Section 4, we then characterize
 391 the skew-Hermitian error term and Hermitian main term by $\|W_1 - W_2^{-1}W_3^HW_4^H\|_F^2$ and
 392 $\lambda_{\min}((W_1 + W_2^{-1}W_3^HW_4^H)^H(W_1 + W_2^{-1}W_3^HW_4^H))$ respectively.
 393

394 5.1 RANDOM GAUSSIAN INITIALIZATION

395 We consider the canonical setting of random Gaussian initialization near origin:
 396

$$397 (W_{1,2,\dots,N})_{ij} \stackrel{\text{i.i.d.}}{\sim} \epsilon \cdot \mathcal{N}(0, 1)_{\mathbb{F}}. \quad (13)$$

400 Specifically, we apply Gaussian distribution to generate $W_{1,2,\dots,N} \in \mathbb{F}^{d \times d}$, $\mathbb{F} = \mathbb{R}$ or \mathbb{C} element-
 401 wisely and independently. Then the initialization is scaled by a small positive constant $\epsilon \in \mathbb{R}^+$. The
 402 scale of ϵ is determined in the main convergence Theorem 1.
 403

404 **Theorem 6.** *For ϵ -scaled random Gaussian initialization on $W_{k,k \in \{1,2,\dots,N\}}$ over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} ,
 405 $N \in \mathbb{N}^*$,*

406 1. *If $\mathbb{F} = \mathbb{C}$, at the initialization the following inequalities hold with probability at least $1 - \delta$:*

$$407 \max_{j,k} \sigma_k(W_j) \leq f_1(\delta, N)\sqrt{d}\epsilon, \min_{j,k} \sigma_k(W_j) \leq \frac{\epsilon}{f_1(\delta, N)\sqrt{d}} \\ 408 \sigma_{\min}(W + (WW^H)^{1/2}) \geq f_2(\delta, N)^{-1} \cdot d^{-(N/2+1)}\epsilon^N. \quad (14)$$

413 2. *If $\mathbb{F} = \mathbb{R}$, at the initialization we have $\Pr(\det(W) > 0) = \Pr(\det(W) < 0) = \frac{1}{2}$. If the
 414 initialization satisfies $\det(W) < 0$, then $\sigma_{\min}(W + (WW^T)^{1/2}) = 0$; otherwise $\det(W) > 0$,
 415 then the following inequalities hold with probability at least $1 - \delta$ (given $\det(W) > 0$):*

$$417 \max_{j,k} \sigma_k(W_j) \leq f_1(\delta, N)\sqrt{d}\epsilon, \min_{j,k} \sigma_k(W_j) \leq \frac{\epsilon}{f_1(\delta, N)\sqrt{d}} \\ 418 \sigma_{\min}(W + (WW^T)^{1/2}) \geq f_2(\delta, N)^{-1} \cdot d^{-(N/2+1)}\epsilon^N, \quad (15)$$

422 where $f_1(\delta, N) = O\left(\frac{N}{\delta}\right)$, $f_2(\delta, N) = O\left(\frac{N^N}{\delta^{N+1}}\right)$.

424 Proof is provided in Appendix C.2. For $N = 4$, $f_1 = O\left(\frac{1}{\delta}\right)$, $f_2 = O\left(\frac{1}{\delta^5}\right)$. The term $\sigma_{\min}(W +$
 425 $(WW^H)^{1/2})$ is introduced in Section 5.2.2 for the purpose of analyzing the Hermitian main term.
 426

427 In the convergence proof below, we consider the initialization where (14) and (15) holds.
 428

429 5.2 STAGE 1: ALIGNMENT STAGE

431 During alignment stage, the weight matrices align with each other under the convergence of the
 432 regularization term, while the Hermitian main term stays away from origin at the end of this stage.

432 5.2.1 CONVERGENCE OF REGULARIZATION TERM:
433434 The convergence rate of regularization term is lower bounded through the following Theorem:
435436 **Theorem 7.** *(Informal) Convergence rate of the regularization term. For four-layer matrix factorization, suppose the maximum and minimum singular values of the weight matrices are upper and lower bounded by μ_{\max} and μ_{\min} respectively, then the regularization term decays by*
437

438
$$\mathcal{L}_{\text{reg}}(t+1) \leq (1 - \Omega(\eta a \mu_{\min}^4 \mu_{\max}^{-2})) \cdot \mathcal{L}_{\text{reg}}(t) + O(\eta^2 a^2). \quad (16)$$

439

440 The formal version can be found in Theorem 29. A N -layer version of this Theorem under gradient
441 flow is provided in Theorem 27.
442443 We can observe that the convergence rate of the regularization term is related to the extreme singular
444 values of weight matrices, which motivates the following Theorem:
445446 **Theorem 8.** *(Informal) Under a small learning rate, the changes in the maximum and minimum
447 singular values are approximately independent of the regularization term:*
448

449
$$\max_{j,k} \sigma_k^2(W_j(t+1)) - \max_{j,k} \sigma_k^2(W_j(t)) \leq 2\eta \max_{j,k} \sigma_k(W_j(t)) \max_j \|\nabla_{W_j} \mathcal{L}_{\text{ori}}(t)\|_{\text{op}} + O(\eta^2 a^2)$$

450
$$\min_{j,k} \sigma_k^2(W_j(t+1)) - \min_{j,k} \sigma_k^2(W_j(t)) \geq -2\eta \min_{j,k} \sigma_k(W_j(t)) \max_j \|\nabla_{W_j} \mathcal{L}_{\text{ori}}(t)\|_{\text{op}} + O(\eta^2 a^2). \quad (17)$$

451

452 The complete formal statement can be found in Theorem 30 (and Theorem 28 for the continuous-
453 time case) in the Appendix.
454455 **Remark 4.** *This Theorem ensures the smooth change of the extreme singular values over short time
456 intervals. Although the regularization term can induce significant fluctuations in individual singular
457 values due to its potentially large coefficient, the largest and smallest singular values remain stable.
458 This theoretical conclusion is corroborated by numerical simulations, as shown in Figure 5.*
459460 5.2.2 THE BEHAVIOR OF THE HERMITIAN MAIN TERM AT THE END OF ALIGNMENT STAGE
461462 Typically, the dynamics of the smallest singular value of the Hermitian main term $W_1 + W_2^{-1}W_3^H W_4^H$ is involved and does not obtain a non-trivial lower bound during this stage. However
463 its behavior at the end of alignment stage can be characterized by $W(0) + (W(0)W(0)^H)^{1/2}$:
464465 The Hermitian main term can be written by $(W_1 + W_2^{-1}W_3^H W_4^H)|_{t=T_1} = (W_2^{-1}W_3^{-1}W_4^{-1})|_{t=T_1} \cdot$
466 $(W + W_4 W_3 W_3^H W_4^H)|_{t=T_1}$. At $t = T_1$, $W_4 W_3 W_3^H W_4^H \approx (WW^H)^{1/2}$ due to the approximate
467 balancedness. During the alignment stage, the product remains approximately unchanged: $W(t = T_1) \approx W(t = 0)$. For the singular values of $W_{2,3,4}^{-1}$, at $t = 0$ they are bounded through Theorem
468 6, then Theorem 8 ensures the changes during the alignment stage are small. Together we obtain a
469 lower bound for $\sigma_{\min}(W_1 + W_2^{-1}W_3^H W_4^H)|_{t=T_1}$. Detailed analysis is presented in Corollary 51.
470471 **Remark 5.** *Note that $\sigma_{\min}(W_1 + W_2^{-1}W_3^H W_4^H)$ is not necessarily lower-bounded by the above
472 expression minus some error terms during the alignment stage. Instead, it may exhibit oscillations
473 or a transient decrease, achieving stability only upon convergence of the regularization term. This
474 behavior is illustrated in Figure 6 in the Appendix.*
475476 5.3 STAGE 2: SADDLE AVOIDANCE STAGE
477478 After alignment stage, the Hermitian main term is guaranteed to be away from zero while the skew-
479 Hermitian error is upper bounded. During the saddle avoidance stage $t \in [T_1, T_1 + T_2]$, the Her-
480 mitian main term $\sigma_{\min}(W_1 + W_2^{-1}W_3^H W_4^H)$ increases to at least $2^{3/4} \sigma_1^{1/4}(\Sigma)$, while the skew-
481 Hermitian error is upper bounded by $O(1) \cdot \|W_1 - W_2^{-1}W_3^H W_4^H\|_F$ ($t = T_1$). Former statements
482 are presented in Lemma 57 and 56 respectively.
483484 Intuitively, these results generalize Theorem 5 and 4 into imbalanced case respectively by bounding
485 the error terms introduced by imbalancedness. To adapt these results into discrete time, new pertur-
486 bation bound for eigenvalues is discussed in Lemma 19. Another technical challenge is to bound
487

486 the operator norm of the inverse of W_2 below infinity. Under small balance difference (equivalently
 487 small regularization term) which is guaranteed by the previous stage, this is rigorously proved in
 488 Lemma 55.

490 **5.4 STAGE 3: LOCAL CONVERGENCE STAGE**

492 In the local convergence stage, both the balanced error and skew-Hermitian error remain small, the
 493 minimal singular values of the weight matrices, after growing to the scale of the target matrix's, are
 494 prevented from decaying. This guarantees the local convergence.

495 **Theorem 9.** *(Informal) Local convergence. After the second stage ($t \geq T_1 + T_2$),*

$$497 \quad 498 \quad \mathcal{L}(t) \leq \mathcal{L}_{\text{ori}}(T_1 + T_2) \exp\left(-\eta\sigma_1^{3/2}(\Sigma)(t - T_1 - T_2)\right). \quad (18)$$

500 Proof is presented in I.3 in the Appendix.

502 **6 CONCLUSIONS, LIMITATIONS AND FUTURE WORK**

504 In this work, we establish a polynomial-time global convergence guarantee for gradient descent
 505 applied to four-layer matrix decomposition, under the setting of a target matrix with identical singular
 506 values and small random Gaussian initialization beyond the NTK regime. For complex random
 507 Gaussian initialization, global convergence is ensured with high probability, whereas for real random
 508 Gaussian initialization, it is guaranteed with a probability close to $\frac{1}{2}$.

509 The analysis developed in this work reveals intrinsic properties of the training dynamics, such as
 510 the effective behavior of the regularization term, the monotonically increasing lower bound for the
 511 minimum singular value, and the non-increasing nature of the skew-Hermitian error. These findings
 512 might provide deeper insight into the training process of Deep Linear Networks. Some of our results
 513 are directly generalizable to arbitrary depth $N \geq 2$, see Table 1. We anticipate that this work
 514 will stimulate further research on global convergence proofs under general random initialization for
 515 matrix factorization with arbitrary depth and arbitrary - possibly low-rank - target matrices.

516 The observed divergence in convergence behavior between real and complex initializations also
 517 reveals a subtle disparity, suggesting that complex initializations may circumvent certain saddle
 518 points introduced by exact balancedness that real initializations are not capable of. Previous work
 519 have addressed the drawback of exact balancedness on real domain (Xiong et al., 2023). This might
 520 motivate more detailed analysis of the performance gap between complex and real neural networks.

522 **REPRODUCIBILITY STATEMENT**

524 All theoretical results stated in this paper are proved in full detail in the Appendix, from Section B to
 525 I, including the proofs of all main-text theorems as well as intermediate lemmas and derivations, so
 526 that a reader can verify each step independently. The numerical illustration in Appendix K, where
 527 we specify the hyper-parameters in that section. Because the experiments are straightforward, we
 528 have not released an implementation.

530 **REFERENCES**

532 Sanjeev Arora, Nadav Cohen, Noah Golowich, and Wei Hu. A convergence analysis of gradient
 533 descent for deep linear neural networks, 2019a. URL <https://arxiv.org/abs/1810.02281>.

535 Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep matrix
 536 factorization, 2019b. URL <https://arxiv.org/abs/1905.13655>.

538 Peter L. Bartlett, David P. Helmbold, and Philip M. Long. Gradient descent with identity initial-
 539 ization efficiently learns positive definite linear transformations by deep residual networks, 2018.
 URL <https://arxiv.org/abs/1802.06093>.

540 R. Bhatia. *Matrix Analysis*. Graduate Texts in Mathematics. Springer New York, 1996. ISBN
 541 9780387948461. URL <https://books.google.co.uk/books?id=F4hRy1F1M6QC>.

542

543 A. Bunse-Gerstner, R. Byers, V. Mehrmann, and N. Nichols. Numerical computation of an ana-
 544 lytic singular value decomposition of a matrix valued function. *Numerische Mathematik*, 60(1):
 545 1–40, 1991/92. URL <http://eudml.org/doc/133582>.

546

547 Yuxin Chen, Yuejie Chi, Jianqing Fan, and Cong Ma. Gradient descent with random initialization:
 548 fast global convergence for nonconvex phase retrieval. *Mathematical Programming*, 176(1–2):
 549 5–37, February 2019. ISSN 1436-4646. doi: 10.1007/s10107-019-01363-6. URL <http://dx.doi.org/10.1007/s10107-019-01363-6>.

550

551 Lénaïc Chizat, Maria Colombo, Xavier Fernández-Real, and Alessio Figalli. Infinite-width limit of
 552 deep linear neural networks. *Communications on Pure and Applied Mathematics*, 77(10):3958–
 553 4007, 2024.

554

555 Hung-Hsu Chou, Carsten Gieshoff, Johannes Maly, and Holger Rauhut. Gradient descent for deep
 556 matrix factorization: Dynamics and implicit bias towards low rank. *Applied and Computational
 557 Harmonic Analysis*, 68:101595, 2024.

558

559 B. De Moor and S. Boyd. Analytic properties of singular values and vectors. Technical Report
 560 1989-28, ESAT-SISTA, Department of Electrical Engineering, KU Leuven, 1989. URL <http://ftp.esat.kuleuven.be/pub/sista/ida/reports/89-28.pdf>.

561

562 Simon Du and Wei Hu. Width provably matters in optimization for deep linear neural networks. In
 563 *International Conference on Machine Learning*, pp. 1655–1664. PMLR, 2019.

564

565 Simon S. Du, Wei Hu, and Jason D. Lee. Algorithmic regularization in learning deep homogeneous
 566 models: Layers are automatically balanced, 2018. URL <https://arxiv.org/abs/1806.00900>.

567

568 Freeman J. Dyson. The threefold way: Algebraic structure of symmetry groups and ensembles in
 569 quantum mechanics. *Journal of Mathematical Physics*, 3(6):1199–1215, 1962.

570

571 P.J. Forrester. *Log-Gases and Random Matrices (LMS-34)*. London Mathematical Society Mono-
 572 graphs. Princeton University Press, 2010. ISBN 9781400835416. URL <https://books.google.com/books?id=C7z3Ng0lb1gC>.

573

574 Rong Ge, Chi Jin, and Yi Zheng. No spurious local minima in nonconvex low rank problems: A
 575 unified geometric analysis, 2017. URL <https://arxiv.org/abs/1704.00708>.

576

577 V. L. Girko. Distribution of eigenvalues and eigenvectors of orthogonal random matrices. *Ukrainian
 578 Mathematical Journal*, 37:457–463, September 1985. doi: 10.1007/BF01061167.

579

580 Nitzan Guberman. On complex valued convolutional neural networks, 2016. URL <https://arxiv.org/abs/1602.09046>.

581

582 Moritz Hardt and Tengyu Ma. Identity matters in deep learning. *arXiv preprint arXiv:1611.04231*,
 583 2016.

584

585 Prateek Jain, Chi Jin, Sham M. Kakade, and Praneeth Netrapalli. Global convergence of non-convex
 586 gradient descent for computing matrix squareroot, 2017. URL <https://arxiv.org/abs/1507.05854>.

587

588 Ziwei Ji and Matus Telgarsky. Gradient descent aligns the layers of deep linear networks, 2019.
 589 URL <https://arxiv.org/abs/1810.02032>.

590

591 Liwei Jiang, Yudong Chen, and Lijun Ding. Algorithmic regularization in model-free over-
 592 parametrized asymmetric matrix factorization. *SIAM Journal on Mathematics of Data Science*, 5
 593 (3):723–744, 2023.

594

595 Kenji Kawaguchi. Deep learning without poor local minima, 2016. URL <https://arxiv.org/abs/1605.07110>.

594 Jason D. Lee, Max Simchowitz, Michael I. Jordan, and Benjamin Recht. Gradient descent converges
 595 to minimizers, 2016. URL <https://arxiv.org/abs/1602.04915>.

596

597 Yuanzhi Li, Tengyu Ma, and Hongyang Zhang. Algorithmic regularization in over-parameterized
 598 matrix sensing and neural networks with quadratic activations, 2019. URL <https://arxiv.org/abs/1712.09203>.

599

600 Hancheng Min, Salma Tarmoun, René Vidal, and Enrique Mallada. On the explicit role of initialization
 601 on the convergence and implicit bias of overparametrized linear networks. In *International Conference on Machine Learning*, pp. 7760–7768. PMLR, 2021.

602

603 Hancheng Min, René Vidal, and Enrique Mallada. On the convergence of gradient flow on multi-
 604 layer linear models. In *International Conference on Machine Learning*, pp. 24850–24887. PMLR,
 605 2023.

606

607 Gabin Maxime Nguegnang, Holger Rauhut, and Ulrich Terstiege. Convergence of gradient descent
 608 for learning linear neural networks. *Advances in Continuous and Discrete Models*, 2024(1):23,
 609 jul 2024. ISSN 2731-4235. doi: 10.1186/s13662-023-03797-x. URL <https://doi.org/10.1186/s13662-023-03797-x>.

610

611 Dohyung Park, Anastasios Kyrillidis, Constantine Carmanis, and Sujay Sanghavi. Non-square ma-
 612 trix sensing without spurious local minima via the burer-monteiro approach. In *Artificial Intelli-
 613 gence and Statistics*, pp. 65–74. PMLR, 2017.

614

615 G. Szegő. *Orthogonal Polynomials*. American Mathematical Society colloquium publications.
 616 American mathematical society, 1939. URL <https://books.google.com/books?id=w755xgEACAAJ>.

617

618 T. Tao. *Topics in Random Matrix Theory*. Graduate studies in mathematics. American Mathemat-
 619 ical Soc. ISBN 9780821885079. URL https://books.google.com/books?id=Hjq_JHNP0C.

620

621 Terence Tao and Van Vu. Random matrices: The distribution of the smallest singular values, 2009.
 622 URL <https://arxiv.org/abs/0903.0614>.

623

624 Salma Tarmoun, Guilherme Franca, Benjamin D Haefele, and Rene Vidal. Understanding the
 625 dynamics of gradient flow in overparameterized linear models. In *International Conference on
 626 Machine Learning*, pp. 10153–10161. PMLR, 2021.

627

628 Stephen Tu, Ross Boczar, Max Simchowitz, Mahdi Soltanolkotabi, and Benjamin Recht. Low-rank
 629 solutions of linear matrix equations via procrustes flow, 2016. URL <https://arxiv.org/abs/1507.03566>.

630

631 Roman Vershynin. *Random Matrices*, pp. 70–97. Cambridge Series in Statistical and Probabilistic
 632 Mathematics. Cambridge University Press, 2018.

633

634 Yuqing Wang, Minshuo Chen, Tuo Zhao, and Molei Tao. Large learning rate tames homogeneity:
 635 Convergence and balancing effect, 2022. URL <https://arxiv.org/abs/2110.03677>.

636

637 Zihan Wang and Arthur Jacot. Implicit bias of sgd in l_2 -regularized linear dnns: One-way jumps
 638 from high to low rank. *arXiv preprint arXiv:2305.16038*, 2023.

639

640 Nuoya Xiong, Lijun Ding, and Simon S Du. How over-parameterization slows down gradi-
 641 ent descent in matrix sensing: The curses of symmetry and initialization. *arXiv preprint
 642 arXiv:2310.01769*, 2023.

643

644 Nuoya Xiong, Lijun Ding, and Simon Du. How over-parameterization slows down gradi-
 645 ent descent in matrix sensing: The curses of symmetry and initialization. In
 646 B. Kim, Y. Yue, S. Chaudhuri, K. Fragkiadaki, M. Khan, and Y. Sun (eds.), *Inter-
 647 national Conference on Representation Learning*, volume 2024, pp. 24311–24367,
 648 2024. URL https://proceedings.iclr.cc/paper_files/paper/2024/file/6a13cffb5ec4128324f64a186785215b-Paper-Conference.pdf.

649

648 Zhenghao Xu, Yuqing Wang, Tuo Zhao, Rachel Ward, and Molei Tao. Provable acceleration of
649 nesterov’s accelerated gradient for rectangular matrix factorization and linear neural networks,
650 2024. URL <https://arxiv.org/abs/2410.09640>.

651
652 Tian Ye and Simon S. Du. Global convergence of gradient descent for asymmetric low-rank matrix
653 factorization, 2021. URL <https://arxiv.org/abs/2106.14289>.

654 Qinqing Zheng and John Lafferty. Convergence analysis for rectangular matrix completion using
655 burer-monteiro factorization and gradient descent. *arXiv preprint arXiv:1605.07051*, 2016.

656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702 **A ORGANIZATION OF THE APPENDIX**
 703

704 This section outlines the organization of the Appendix to facilitate navigation. The core technical
 705 journey, comprising the main convergence proofs, spans from Appendix B to I. Following this,
 706 Appendix J provides insights into the global convergence rate, and Appendix K presents supporting
 707 numerical simulations.

708 Appendix B completes the proof of Reduction To Diagonal (Identical) Target discussed in Section
 709 3 so that we can assume target matrix to be diagonal (some cases identical). While subsection B.1
 710 proves that the form of dynamics remains the same, B.2 claims that the initializations we consider
 711 throughout this paper are invariant under the reduction.

712 Appendix C proves the properties of balanced Gaussian initialization (6) and random Gaussian initia-
 713 lization (13) stated in Theorem 3 and 6, respectively. C.1 states and proves some lemmas on
 714 Circular Ensembles, leading to the proof of Theorem 6 in C.2 and the proof of Theorem 3 in sub-
 715 section C.3. Then, C.4 establishes a general property for any balanced initialization.

716 Appendix D presents fundamental lemmas utilized in subsequent sections:

- 718 • D.1 collects standard results from classical matrix analysis, including spectral properties
 719 and perturbation bounds.
- 720 • D.2 provides two specific perturbation bounds, which serve as preliminaries for bounding
 721 eigenvalue changes in discrete time.
- 722 • D.3 establishes the existence of analytic singular value decomposition for the general N -
 723 layer matrix factorization under gradient flow. It also derives the time derivatives of the
 724 decomposed matrices, thereby laying the groundwork for the proof of Theorem 2 in E.
- 725 • D.4 analyzes the dynamics with a regularization term under gradient flow. Specifically, it
 726 investigates: 1. the convergence behavior of the regularization term; 2. Upper and lower
 727 bounds for the maximum and minimum singular values of the weight matrices.

728 The results for gradient flow are then adapted in D.5 to prove the corresponding theorems
 729 for gradient descent: Theorem 7 and Theorem 8.

730 Appendix E analyzes dynamics under gradient flow with balanced Gaussian initialization. E.1
 731 proves Theorem 4 for arbitrary depth N , while E.2 proves Theorem 5 for $N = 4$ and target matrix
 732 $\Sigma = \sigma_1(\Sigma)I$. By combining these results, E.3 formally states and proves Theorem 2, completing
 733 the global convergence proof for balanced Gaussian initialization.

734 To prepare for generalization of this method on random Gaussian initialization, Appendix F further
 735 defines some notations and inequalities, Appendix G adapts the terms studied in Theorem 4 and 5
 736 into imbalanced setting.

737 Appendix H completes the proof of global convergence under $N = 4$, $\Sigma = \sigma_1(\Sigma)I$ by dividing the
 738 training dynamics into three stages analyzed in H.1, H.2 and H.3.

739 Appendix I then adapts the proof intuition into gradient descent, completing the proof of Theorem
 740 1.

741 Appendix J provides a discussion of the convergence rate in Theorem 1. J.1 details the calculation
 742 of the example after Theorem 1, verifying the near-tightness of the upper bound. J.2 analyzes
 743 the exponent of $\sigma_1(\Sigma)$ in the initialization scale and the convergence rate, from both scaling and
 744 dimensional analysis perspectives.

745 Appendix K conducts three simulation experiments. K.1 illustrates the saddle avoidance behavior
 746 of both identity and non-identity targets, under complex and real balanced Gaussian initialization.
 747 K.2 compares the convergence behavior for different depths under complex balanced Gaussian ini-
 748 tialization. K.3 illustrates Theorem 8 and Remark 5 through the simulation with only the balance
 749 regularization term.

750
 751
 752
 753
 754
 755

756 B REDUCTION TO DIAGONAL (IDENTICAL) TARGET
757

758 For arbitrary ground truth $\Sigma \in \mathbb{F}^{d \times d}$, $\mathbb{F} = \mathbb{C}$ or \mathbb{R} , suppose its singular value decomposition is
759 $\Sigma = U_\Sigma \Sigma' V_\Sigma^H$ (replace \cdot^H by \cdot^\top for the real case, same for the rest of the analysis), we apply the
760 following transformation:
761

$$\begin{cases} W'_1 &= W_1 V_\Sigma \\ W'_j &= W_j, j \in \{2, 3, \dots, N-1\} \\ W'_N &= U_\Sigma^H W_N \end{cases} \quad (19)$$

762 Then the balance difference can be rewritten as
763

$$\Delta_{j,j+1} = \begin{cases} W'_j W'_j^H - {W'_{j+1}}^H W'_{j+1} & , j \in \{1, 2, \dots, N-1\} \\ O^{d \times d} & , j \in \{0, N\} \end{cases} \quad (20)$$

772 B.1 TRAINING DYNAMICS
773

774 For gradient flow, the dynamics becomes
775

$$\frac{dW'_j}{dt} = \left(\prod_{k=j+1}^N {W'_k}^H \right) \left(\Sigma' - \prod_{k=N}^1 W'_k \right) \left(\prod_{k=1}^{j-1} {W'_k}^H \right) + aW'_j \Delta_{j-1,j} - a\Delta_{j,j+1} W'_j. \quad (21)$$

780 For gradient descent,
781

$$\begin{aligned} W'_j(t+1) &= W'_j(t) + \eta \left(\prod_{k=j+1}^N {W'_k(t)}^H \right) \left(\Sigma' - \prod_{k=N}^1 W'_k(t) \right) \left(\prod_{k=1}^{j-1} {W'_k(t)}^H \right) \\ &\quad + \eta a W'_j(t) \Delta_{j-1,j}(t) - \eta a \Delta_{j,j+1}(t) W'_j(t). \end{aligned} \quad (22)$$

788 Both share the same form as the original one (by replacing Σ with Σ').
789

790 B.2 INITIALIZATION
791

792 However, the distributions of W_1 and W_N at initialization change correspondingly. To address this
793 issue, we introduce the following definition:
794

Definition 1. *Input-Output Unitary(Orthogonal)-Invariant initialization.*

795 For a N -layer complex (real) matrix factorization $W = \prod_{j=N}^1 W_j$, an initialization is input-output
796 unitary-invariant (in the complex case) or orthogonal-invariant (in the real case) if the distribution
797 of W_N is left unitarily (or orthogonally) invariant and the distribution of W_1 is right unitarily (or
798 orthogonally) invariant. That is, for all $U, V \in U(d, \mathbb{C})$ (or $O(d, \mathbb{R})$ in the real case),
799

$$W_N \stackrel{d}{=} UW_N, W_1 \stackrel{d}{=} W_1V. \quad (23)$$

800 **Remark 6.** The distribution of $W_{j,j \in \{1, 2, \dots, N\}}$ does not change under transformation 19 if the
801 initialization is Input-Output Unitary(Orthogonal)-Invariant.
802

803 Throughout this work, the initialization schemes discussed (including random Gaussian initialization
804 and balanced Gaussian initialization) are Input-Output Unitary(Orthogonal)-Invariant. This is
805 from the left and right invariance under multiplication of unitary/orthogonal matrices.
806

807 Thus without loss of generality, the target matrix can be reduced to positive semi-definite diagonal
808 matrix. Under Input-Output Unitary(Orthogonal)-Invariant initialization discussed in Definition 1,
809 the initialization on W_1 and W_N is not affected by this reduction.

810 Moreover, if all singular values of Σ are the same (to rephrase, a unitary/orthogonal matrix scaled
 811 by a constant), the convergence analysis can be reduced to $\Sigma' = \sigma_1(\Sigma)I$.
 812

813 C INITIALIZATION

815 First and foremost, we introduce the concept of Circular ensembles (Dyson, 1962) along with some
 816 properties.
 817

818 C.1 LEMMAS FOR GAUSSIAN RANDOM MATRIX ENSEMBLE AND HAAR MEASURE ON 819 $U(d, \mathbb{C})$ AND $O(d, \mathbb{R})$

821 In the following derivations, we denote $O(d, \mathbb{R})$ as the d -dimensional orthogonal group on real
 822 number, and $U(d, \mathbb{C})$ as the d -dimensional unitary group on complex number.
 823

824 We list the classical conclusions in Linear Algebra without proof:

825 **Lemma 10.** *The eigenvalues of Orthogonal/Unitary Matrices.*

826 1. *Unitary matrices.* $\forall U \in U(d, \mathbb{C}), d \in \mathbb{N}^*$, the eigenvalues of U are $e^{i\theta_{1,2,\dots,d}}$, where $\theta_i \in [0, 2\pi)$.
 827

828 2. *Orthogonal matrices.* $\forall O \in O(d, \mathbb{R}), d \in \mathbb{N}^*$, the eigenvalues of O are:

$$829 \quad \begin{cases} 1, e^{\pm i\theta_{1,2,\dots,m}} & , d = 2m + 1, \det(O) = 1 \\ -1, e^{\pm i\theta_{1,2,\dots,m}} & , d = 2m + 1, \det(O) = -1 \\ e^{\pm i\theta_{1,2,\dots,m}} & , d = 2m, \det(O) = 1 \\ 1, -1, e^{\pm i\theta_{1,2,\dots,m-1}} & , d = 2m, \det(O) = -1 \end{cases} \quad (24)$$

834 Following the conventions, we call the argument of the eigenvalues as eigenangles.

835 **Definition 2.** *Circular ensembles.* (refer to Dyson (1962), Forrester (2010))

836 The circular ensembles are measures on spaces of unitary(or orthogonal, when generalizing from
 837 complex number to real number) matrices.

838 1. *Unitary circular ensemble.* The distribution of the unitary circular ensemble (CUE) is the Haar
 839 measure on d -dimensional (complex) unitary group $U(d, \mathbb{C})$.

840 2. *Circular real ensemble.* The distribution of the circular real ensemble (CRE) is the Haar measure
 841 on d -dimensional real orthogonal group $O(d, \mathbb{R})$.

842 **Lemma 11.** 1-point correlation function of CUE(d) and CRE(d).

843 1. *CUE.* The 1-point correlation function of CUE(d) is

$$844 \quad \rho_{(1), \text{CUE}}(\theta) = \frac{d}{2\pi}. \quad (25)$$

845 2. *CRE, determinant 1.* The 1-point correlation function of CRE(d) under determinant 1 is

$$846 \quad \rho_{(1), \text{CRE, det}=1}(\theta) = \frac{1}{2\pi} \left(d - 1 + (-1)^d \frac{\sin(d-1)|\theta|}{\sin|\theta|} \right), \theta \in (-\pi, \pi]. \quad (26)$$

847 **Remark 7.** 1-point correlation function $\rho_{(1)}(\theta)$ can be interpreted as the density of eigenangles at
 848 θ (despite probably existed fixed eigenangles, e.g. 0, π).

849 *Proof.* Part 1. CUE.

850 From (146) of Dyson (1962) and Forrester (2010), the joint probability density function of eigenan-
 851 gles is

$$852 \quad p_{\text{CUE}}(\theta_{k,k \in \{1,2,\dots,d\}}) \propto \prod_{1 \leq k < j \leq d} |e^{i\theta_j} - e^{i\theta_k}|^2 = \prod_{1 \leq k < j \leq d} |e^{i(\theta_j - \theta_k)} - 1|^2. \quad (27)$$

Notice that it is rotation invariant, that is $\forall \Delta\theta \in [0, 2\pi]$, $p_{\text{CUE}}(\theta_{k,k \in \{1,2,\dots,d\}}) = p_{\text{CUE}}((\theta_k + \Delta\theta)_{k \in \{1,2,\dots,d\}})$. Thus the 1-point correlation function (density of eigenangles at θ) is uniform, which is $\frac{d}{2\pi}$.

Part 2. CRE.

Below we define $x_i = \cos \theta_i$, then $\rho_{(1)}(\theta) = \sin \theta \cdot \rho_{(1)}(x)$, $p(x_{k,k \in \{1,2,\dots,K\}}) = \left(\prod_{k=1}^K \frac{1}{\sqrt{1-x^2}}\right) p(\theta_{k,k \in \{1,2,\dots,K\}})$.

By combining Proposition 5.1.1 and 5.1.2 in Forrester (2010) together, suppose with $p_k(x)$ a polynomial of degree k which is further more monic (i.e. the coefficient of x^k is unity), $\{p_k(x)\}_{k \in \mathbb{N}}$ is the orthogonal polynomials associated with the weight function $w_2(x)$,

$$\int_{-\infty}^{+\infty} p_j(x) p_k(x) w_2(x) dx =: \langle p_j, p_k \rangle_2 = \langle p_j, p_j \rangle_2 \delta_{j,k}. \quad (28)$$

Here $\delta_{j,k} = \mathbf{1}\{j = k\}$ is the Kronecker delta function. And the joint probability density function satisfies

$$p(x_{k,k \in \{1,2,\dots,K\}}) \propto \prod_{1 \leq k < j \leq K} (x_j - x_k)^2 \prod_{l=1}^K w_2(x). \quad (29)$$

The 1-point correlation function is

$$\rho_{(1)}(x) = w_2(x) \sum_{\nu=0}^{K-1} \frac{p_\nu^2(x)}{\langle p_\nu, p_\nu \rangle_2}. \quad (30)$$

Note that the restriction of monic can be omitted since there is a normalization coefficient on the denominator.

2.1. CRE, determinant 1, $d = 2K$. From (135) of Dyson (1962), Section 2.9 of Forrester (2010) and Girko (1985),

$$p_{\text{CRE,even,det=1}}(\theta_{k,k \in \{1,2,\dots,K\}}) \propto \prod_{1 \leq k < j \leq K} |\cos \theta_j - \cos \theta_k|^2, \theta_{k,k \in \{1,2,\dots,K\}} \in [0, \pi]. \quad (31)$$

By the change of variables,

$$p_{\text{CRE,even,det=1}}(x_{k,k \in \{1,2,\dots,K\}}) \propto \prod_{1 \leq k < j \leq K} (x_j - x_k)^2 \prod_{l=1}^K \frac{1}{\sqrt{1-x_l^2}}. \quad (32)$$

Here $w_2(x) = \frac{1}{\sqrt{1-x^2}}$. From knowledge of orthogonal polynomials ((1.12.3), (4.1.7), Szegő (1939)), Chebyshev polynomials of the first kind $T_n(x) = \cos(n \arccos x)$ associates with $w_2(x) = \frac{1}{\sqrt{1-x^2}}$:

$$\int_{-1}^1 T_j(x) T_k(x) w_2(x) dx = \begin{cases} \pi, & j = k = 0 \\ \frac{\pi}{2}, & j = k \geq 1 \\ 0, & j \neq k \end{cases}. \quad (33)$$

By (30),

918

$$\begin{aligned}
\rho_{(1),\text{CRE,even,det}=1}(x) &= \frac{1}{\sqrt{1-x^2}} \cdot \left(\frac{1}{\pi} + \frac{2}{\pi} \sum_{\nu=1}^{K-1} \cos^2 \nu \theta \right) \\
&= \frac{1}{2\pi \sin \theta} \left[2K - 1 + \frac{\sin(2K-1)\theta}{\sin \theta} \right]. \tag{34}
\end{aligned}$$

$$\rho_{(1),\text{CRE,even,det}=1}(\theta) = \frac{1}{2\pi} \left[d - 1 + \frac{\sin(d-1)\theta}{\sin \theta} \right], \theta \in [0, \pi]. \tag{35}$$

From symmetry, $\rho_{(1),\text{CRE,even,det}=1}(-\theta) = \rho_{(1),\text{CRE,even,det}=1}(\theta)$.

2.2. CRE, determinant 1, $d = 2K + 1$. From (137) of Dyson (1962), Section 2.9 of Forrester (2010) and Girko (1985),

$$p_{\text{CRE,odd,det}=1}(\theta_{k,k \in \{1,2,\dots,K\}}) \propto \prod_{1 \leq k < j \leq K} |\cos \theta_j - \cos \theta_k|^2 \prod_{l=1}^K (1 - \cos \theta_l), \theta_{k,k \in \{1,2,\dots,K\}} \in [0, \pi]. \tag{36}$$

By the change of variables,

$$p_{\text{CRE,odd,det}=1}(x_{k,k \in \{1,2,\dots,K\}}) \propto \prod_{1 \leq k < j \leq K} (x_j - x_k)^2 \prod_{l=1}^K \sqrt{\frac{1-x_l}{1+x_l}}. \tag{37}$$

Here $w_2(x) = \sqrt{\frac{1-x}{1+x}}$. From knowledge of orthogonal polynomials ((1.12.3), (4.1.7), Szegő (1939)), Chebyshev polynomials of the fourth kind $W_n(x) = \frac{\sin((n+\frac{1}{2})\theta)}{\sin(\frac{\theta}{2})}$, $\theta = \arccos x$ associates with $w_2(x) = \sqrt{\frac{1-x}{1+x}}$:

$$\int_{-1}^1 W_j(x) W_k(x) w_2(x) dx = \begin{cases} \pi, & j = k \geq 0 \\ 0, & j \neq k \end{cases}. \tag{38}$$

By (30),

$$\begin{aligned}
\rho_{(1),\text{CRE,odd,det}=1}(x) &= \sqrt{\frac{1-x}{1+x}} \cdot \left(\frac{1}{\pi} \sum_{\nu=0}^{K-1} \left(\frac{\sin((n+\frac{1}{2})\theta)}{\sin(\frac{\theta}{2})} \right)^2 \right) \\
&= \frac{1}{2\pi \sin(\theta)} \left[2K - \frac{\sin(2K\theta)}{\sin \theta} \right]. \tag{39}
\end{aligned}$$

$$\rho_{(1),\text{CRE,odd,det}=1}(\theta) = \frac{1}{2\pi} \left[d - 1 - \frac{\sin(d-1)\theta}{\sin \theta} \right], \theta \in [0, \pi]. \tag{40}$$

From symmetry, $\rho_{(1),\text{CRE,odd,det}=1}(-\theta) = \rho_{(1),\text{CRE,odd,det}=1}(\theta)$.

This completes the proof. \square

Theorem 12. For Q sampled from Haar measure on $U(d, \mathbb{C})$ (or $O(d, \mathbb{R})$ if $\mathbb{F} = \mathbb{R}$),

1. $\mathbb{F} = \mathbb{C}$. $\Pr(\sigma_{\min}(I + Q) \geq \pi\delta d^{-1}) \geq 1 - \delta$.
2. $\mathbb{F} = \mathbb{R}$. If $d \geq 2$, $\Pr(\sigma_{\min}(I + Q) \geq \frac{\pi\delta}{2}(d-1)^{-1} \mid \det(Q) = 1) \geq 1 - \delta$.

Remark 8. For $\mathbb{F} = \mathbb{R}$, $d = 1$, the eigenvalue of Q is $\det(Q)$, and thus $\Pr(\sigma_{\min}(I + Q) \geq 2 - \Delta | \det(Q) = 1) = 1, \forall \Delta \in (0, 2)$.

Remark 9. For $\mathbb{F} = \mathbb{R}$, $\Pr(\det(Q) = 1) = \Pr(\det(Q) = -1) = \frac{1}{2}$. If $\det(Q) = -1$, Q has an eigenvalue of -1 , causing $\Pr(\sigma_{\min}(I + Q)) = 0$.

Proof. Consider $\theta_k \in (-\pi, \pi]$,

$$\begin{aligned}\sigma_k(I+Q) &= \sqrt{\lambda_k(2I+Q+Q^H)} = \sqrt{2 + e^{i\theta_k} + 1/e^{i\theta_k}} = 2 \cos\left(\frac{\theta_k}{2}\right) \\ \sigma_{\min}(I+Q) &= \min_k \cos\left(\frac{\theta_k}{2}\right).\end{aligned}\tag{41}$$

The second step is from the fact that $Q^H = Q^{-1}$ shares the same eigenvectors with Q , and corresponding eigenvalues are the reciprocal of the original eigenvalues.

Denote $N(\delta\theta)$ to be number of eigenvectors in $(-\pi, -\pi + \delta\theta] \cup [\pi - \delta\theta, \pi]$, $\delta\theta \in (0, \pi)$. From Markov inequality,

$$\begin{aligned}
\Pr(\sigma_{\min}(I+Q) \geq \delta\theta) &\geq \Pr\left(\sigma_{\min}(I+Q) \geq 2 \sin \frac{\delta\theta}{2}\right) \\
&= 1 - \Pr(N(\delta\theta) \geq 1) \\
&\geq 1 - \mathbb{E}(N(\delta\theta)) = 1 - \int_{\theta \in (-\pi, -\pi + \delta\theta] \cup [\pi - \delta\theta, \pi]} \rho_{(1)}(\theta) d\theta.
\end{aligned} \tag{42}$$

By invoking Lemma 11,

1. For $\mathbb{F} = \mathbb{C}$,

$$\mathbb{E}(N(\delta\theta)) = \frac{d}{2\pi} \cdot 2\delta\theta. \quad (43)$$

By setting $\delta\theta = \pi\delta d^{-1}$, $\Pr(\sigma_{\min}(I + Q) > \delta\theta) > 1 - \delta$.

2. For $\mathbb{F} = \mathbb{R}$ under determinant 1, for $\theta' \in [0, \pi]$, $\rho_{(1)}(\pi - \theta') = \frac{1}{2\pi} \left(d - 1 + \frac{\sin(d-1)\theta'}{\sin \theta'} \right)$.

If $d = 1$, $\rho_{(1)}(\theta) \equiv 0$ and thus $\mathbb{E}(N(\delta\theta)) \equiv 0$. For $d > 2$:

From $\frac{\sin(d-1)\theta}{\theta} < d-1$

$$\mathbb{E}(N(\delta\theta)) = 2 \int^{\delta\theta} \rho_{(1)}(\pi - \theta') d\theta' \leq 2 \int^{\delta\theta} \frac{1}{2\pi} \cdot 2(d-1) d\theta' = \frac{2(d-1)}{\pi} \delta\theta. \quad (44)$$

By setting $\delta\theta = \frac{\pi\delta}{(d-1)}(d-1)^{-1}$, $\Pr(\sigma_i : (I+O) \geq \delta\theta | \det(O) = 1) \geq 1 - \delta$

This completes the proof.

1

C.2 RANDOM GAUSSIAN INITIALIZATION

In the following, we present the proof for Theorem 6.

For a real/complex Gaussian random matrix of dimension $d \times d$, with probability at least δ , the largest singular value is upper bounded by $O\left(\left(1 + \sqrt{\frac{\ln(\frac{1}{\delta})}{d}}\right)\sqrt{d}\right)$ (Theorem 4.4.5, Vershynin (2018)), while the smallest is lower bounded by $\Omega\left(\frac{\delta}{\sqrt{d}}\right)$ (Theorem 1.1, Tao & Vu (2009)). (also refer to Corollary 2.3.5 and Theorem 2.7.5 of Tao)

1026 *Proof.* The upper and lower bound for singular values of W_k follows immediately. The main chal-
 1027 lenge is the minimum singular value of $W + (WW^H)^{1/2}$.
 1028

1029 At the beginning, we define a modification of Gaussian random matrix ensemble for simplification:
 1030 W is sampled from (complex or real) Gaussian random matrix ensemble, and if $\text{rank}(W)$ is not full,
 1031 sample W from Gaussian random matrix ensemble again until it is full rank.

1032 Since the set of $\text{rank}(W)$ not being full is zero measure, the distribution of W shares the same with
 1033 the one before modification almost surely, and thus changing Gaussian random matrix ensemble to
 1034 modified version *does not affect* the analysis below essentially.
 1035

1036 This modification is for better expression on definition of left and right unitary (orthogonal) matrix
 1037 of SVD. For full rank square matrix $W = U\Sigma V^H$, U and V are not unique, but VU^H is (even if the
 1038 singular values are non-distinct, or changing the order of diagonal elements of Σ . This is due to the
 1039 uniqueness of polar decomposition $W = SQ$ under full rank, where $Q = UV^H$, $S = (WW^H)^{1/2}$.
 1040) and thus well-defined.

1041 Without changing the result, we analysis the initialization scheme of modified Gaussian random
 1042 matrix ensemble instead. Then W is full rank and thus polar decomposition is unique.

1043 Generally, suppose the right polar decomposition of W is $W = (WW^H)^{1/2}Q$, then
 1044

$$1045 \quad W + (WW^H)^{1/2} = (WW^H)^{1/2}(I + Q). \quad (45)$$

1046 If $\mathbb{F} = \mathbb{R}$, $\Pr(\det(W) > 0) = \Pr(\det(W) < 0) = \frac{1}{2}$ due to the symmetry of Gaussian random
 1047 matrix ensemble. If $\det(W) = \det((WW^H)^{1/2})\det(Q) < 0$, $\det(Q) = -1$, then $\sigma_{\min}(I + Q) = 0$ and further $\sigma_{\min}(W + (WW^H)^{1/2}) = 0$.
 1048

1049 Consider both $\mathbb{F} = \mathbb{C}$ and $\mathbb{F} = \mathbb{R}$, $\det(W) > 0$ (which indicates $\det(Q) = 1$):
 1050

$$1051 \quad \begin{aligned} \sigma_{\min}(W + (WW^H)^{1/2}) &\geq \sigma_{\min}((WW^H)^{1/2})\sigma_{\min}(I + Q) \\ 1052 &= \sigma_{\min}(W)\sigma_{\min}(I + Q) \\ 1053 &\geq \left[\prod_{k=1}^N \sigma_{\min}(W_k) \right] \sigma_{\min}(I + Q). \end{aligned} \quad (46)$$

1054 From Theorem 1.1 of Tao & Vu (2009), by applying union bound, $\sigma_{\min}(W_{k,k \in \{1,2,\dots,N\}}) > f_1^{-1}(\delta, N)d^{-1/2}\epsilon$ with high probability $1 - \delta/2$, where $f_1(\delta, N) = O\left(\frac{N}{\delta}\right)$. Then
 1055 $\left[\prod_{k=1}^N \sigma_{\min}(W_k) \right] \geq (f_1^{-1}(\delta, N)d^{-1/2}\epsilon)^N$, and it remains to find lower bound for $\sigma_{\min}(I + Q)$.
 1056

1057 To apply results in Theorem 12, it is sufficient to show that Q follows Haar measure on $U(d, \mathbb{C})$ (or
 1058 $O(d, \mathbb{R})$).
 1059

1060 Due to the property of invariance under left and right multiplication of unitary (orthogonal) ma-
 1061 trix for Gaussian random matrix ensemble (Section 2.6.2, (2.131), Tao), \forall fixed $Q_0 \in U(d, \mathbb{C})$
 1062 (or $O(d, \mathbb{R})$ if $\mathbb{F} = \mathbb{R}$), $W_1 Q_0^H$ follows the same distribution as W_1 while still independent of
 1063 $W_{k,k \in \{2,3,\dots,N\}}$, resulting that WQ_0^H follows the same distribution as W . Since the right polar
 1064 decomposition of WQ_0^H is $WQ_0^H = (WQ_0^H Q_0 W^H)^{1/2} Q Q_0^H = (WW^H)^{1/2} (QQ_0^H)$, we have
 1065

$$1066 \quad Q_0 Q \stackrel{d}{=} Q, \forall \text{ fixed } Q_0 \in U(d, \mathbb{C}) \text{ (or } O(d, \mathbb{R}) \text{ if } \mathbb{F} = \mathbb{R}). \quad (47)$$

1067 Likewise
 1068

$$1069 \quad QQ_0 \stackrel{d}{=} Q, \forall \text{ fixed } Q_0 \in U(d, \mathbb{C}) \text{ (or } O(d, \mathbb{R}) \text{ if } \mathbb{F} = \mathbb{R}). \quad (48)$$

1080 From the fact that the only measure invariant under left (or right) multiplication of arbitrary element
 1081 of a compact lie group is Haar measure, Q follows Haar measure on $U(d, \mathbb{C})$ (or $O(d, \mathbb{R})$), and the
 1082 proof is completed.
 1083 \square

1084
 1085 By Theorem 6, for depth $N = 4$, if $\mathbb{F} = \mathbb{C}$ then with high probability $1 - \delta$ (if $\mathbb{F} = \mathbb{R}$ then
 1086 with probability $1/2$, $\sigma_{\min} \left(W(0) + (W(0)W(0)^\top)^{1/2} \right) = 0$, and with probability $(1 - \delta)/2$ the
 1087 following holds), $\exists f_1(\delta) = O\left(\frac{1}{\delta}\right), f_2(\delta) = O\left(\frac{1}{\delta^5}\right)$ such that
 1088

$$\begin{aligned} 1090 \max_{j,k} \sigma_k(W_j(0)) &\leq f_1(\delta)\sqrt{d}\epsilon \\ 1091 \min_{j,k} \sigma_k(W_j(0)) &\leq \frac{1}{f_1(\delta)\sqrt{d}} \cdot \epsilon \\ 1092 \sigma_{\min} \left(W(0) + (W(0)W(0)^H)^{1/2} \right) &\geq \frac{1}{f_2(\delta)d^3} \cdot \epsilon^4. \end{aligned} \quad (49)$$

1093 Consequently,
 1094

$$1095 e_\Delta(0) := \sqrt{\sum_{i=1}^3 \|\Delta_{i,i+1}\|_F^2} \Big|_{t=0} \leq \sqrt{3} \cdot 2\sqrt{d} \cdot \max_{j,k} \sigma_k^2(W_j(0)) = 2\sqrt{3}f_1^2(\delta)d^{3/2}\epsilon^2. \quad (50)$$

1104 C.3 BALANCED GAUSSIAN INITIALIZATION

1105 This section analyzes the balanced Gaussian initialization scheme.

1106 **Corollary 13.** *Under balanced Gaussian initialization scheme (6), each matrix $W_{k,k \in \{1,2,\dots,N\}}$ is
 1107 a Gaussian random matrix ensemble scaled by ϵ .*

1108 *Proof.* This is immediately from the property of invariance under left and right multiplication of
 1109 unitary (orthogonal) matrix for Gaussian random matrix ensemble (Section 2.6.2, (2.131), Tao).
 1110 \square

1111 Due to Corollary 24, the product matrix can be expressed as $U\Sigma_w^N V^H$. Then we present the proof
 1112 of Theorem 3.

1113 *Proof.* We first consider $2 \mid N$. From (6), $W(t=0) = s\epsilon^N Q_{N,N+1} (G^H G)^{N/2} Q_{01}^H$.

1114 Naturally $\|\Sigma_w\|_{op} = \epsilon \|(G^H G)^{1/2}\|_{op} = \epsilon \|G\|_{op} = O\left(1 + \sqrt{\frac{\ln(\frac{1}{\delta})}{d}}\right) \sqrt{d}\epsilon$. Last step is from
 1115 Theorem 4.4.5 of Vershynin (2018) directly.

1116 For the other two terms,

$$\begin{aligned} 1117 \sigma_{\min}((U + V)\Sigma_w)|_{t=0} &= \sqrt{\lambda_{\min}((U + V)\Sigma_w^2(U + V)^H)} \Big|_{t=0} \\ 1118 &= \sqrt{\lambda_{\min}\left((WW^H)^{\frac{1}{N}} + (W^HW)^{\frac{1}{N}} + (WW^H)^{-\frac{N-2}{2N}} W + (W^HW)^{-\frac{N-2}{2N}} W^H\right)} \Big|_{t=0} \\ 1119 &= \epsilon \sqrt{\lambda_{\min}\left((Q_{01} + sQ_{N,N+1})(G^H G)(Q_{01} + sQ_{N,N+1})^H\right)} \\ 1120 &\in [\epsilon\sigma_{\min}(I + sQ_{01}^H Q_{N,N+1})\sigma_{\min}(G), \epsilon\sigma_{\min}(I + sQ_{01}^H Q_{N,N+1})\sigma_{\max}(G)]. \end{aligned} \quad (51)$$

1134 And
1135

$$\|(U - V)\Sigma_w\|_F|_{t=0} \leq 2\sqrt{d}\epsilon\|G\|_{op}. \quad (52)$$

1136 Since $Q_{N,N+1}$ and Q_{01} are independent and both sampled from Haar measure, then $Q_{01}^H Q_{N,N+1} \sim$
1139 Haar on $U(d, \mathbb{C})$ (or $O(d, \mathbb{R})$) if $\mathbb{F} = \mathbb{R}$ as well.

1140 For $\mathbb{F} = \mathbb{R}$, since s is independent of $Q_{j,j \in \{0,1,\dots,N\}}$, $\Pr(s \det(Q_{N,N+1}) \det(Q_{01}) = 1) =$
1141 $\Pr(s \det(Q_{N,N+1}) \det(Q_{01}) = -1) = \frac{1}{2}$ is directly from symmetry of Haar measure.

1142 Then by combining Theorem 12 and Theorem 4.4.5 of Vershynin (2018), Theorem 1.1 of Tao & Vu
1143 (2009) (with high probability $1 - \delta'$, $\max(\|G\|_{op}, \|G^{-1}\|_{op}) \leq f_1(\delta')\sqrt{d}$, $f_1(\delta') = O(\frac{1}{\delta'})$), the
1144 proof for $2 \mid N$ is completed.

1145 For $2 \nmid N$, suppose the SVD of G is $G = U_G \Sigma_G V_G^H$, then $W(t = 0) =$
1146 $s\epsilon^N (Q_{N,N+1} U_G V_G^H) (G^H G)^{N/2} Q_{01}^H$. Note that since $Q_{N,N+1}$ and G are independent, then
1147 $Q_{N,N+1} U_G V_G^H \sim$ Haar, $Q_{N,N+1} U_G V_G^H$ and Q_{01} are independent. Then the proof for $2 \nmid N$
1148 is completed by replacing the $Q_{N,N+1}$ with $Q_{N,N+1} U_G V_G^H$ in the derivations.

1149 □

1150 C.4 GENERAL BALANCED INITIALIZATION

1151 This section introduces a property for general balanced and input-output orthogonal-invariant initia-
1152 lization (refer to Definition 1) under real field.

1153 **Theorem 14.** *For any real matrix factorization, if the initialization is balanced and input-output
1154 orthogonal-invariant, then the minimum singular value of $W + (WW^\top)^{1/2}$ at $t = 0$ is exactly 0
1155 with at least probability 1/2:*

$$1156 \Pr\left(\sigma_{\min}\left(W + (WW^\top)^{1/2}\right) = 0\right) \geq 1/2. \quad (53)$$

1157 *Proof.* As a direct consequence of Definition 1, W is left and right orthogonal invariant:

$$1158 W \stackrel{d}{=} U' W V', \forall U', V' \in O(d, \mathbb{R}). \quad (54)$$

1159 Suppose the right polar decomposition of W is $W = WW^\top Q$, following the same arguments in
1160 the proof (C.2) of Theorem 6,

$$1161 W + (WW^\top)^{1/2} = (WW^\top)^{1/2} (I + Q), Q \sim \text{Haar}. \quad (55)$$

1162 From Theorem 12, $\Pr(\sigma_{\min}(I + Q) = 0) = \frac{1}{2}$, resulting

$$1163 \Pr\left(\sigma_{\min}\left(W + (WW^\top)^{1/2}\right) = 0\right) \geq \Pr(\sigma_{\min}(I + Q) = 0) = \frac{1}{2}. \quad (56)$$

1164 This completes the proof. □

1165 D BASIC LEMMAS

1166 D.1 CLASSIC MATRIX ANALYSIS CONCLUSIONS

1167 **Lemma 15.** *Let $R \in \mathbb{F}^{d \times d}$, where $\mathbb{F} = \mathbb{C}$ or \mathbb{R} . Then:*

1168 1. $I - RR^H$ and $I - R^H R$ (or $I - RR^\top$ and $I - R^\top R$ if $\mathbb{F} = \mathbb{R}$) share the same set of eigenvalues.

1188 2. These eigenvalues are real-valued.
 1189

1190 *Proof.* We prove the complex case, and the real case follows. Suppose the singular value decompo-
 1191 sition of R is $U_R \Sigma_R V_R^H$, then
 1192

$$\begin{aligned} I - RR^H &= I - U_R \Sigma_R^2 U_R^H = U_R (I - \Sigma_R^2) U_R^H \\ I - R^H R &= I - V_R \Sigma_R^2 V_R^H = V_R (I - \Sigma_R^2) V_R^H. \end{aligned} \quad (57)$$

1193 Thus both $I - RR^H$ and $I - R^H R$ are unitarily similar to $I - \Sigma_R^2$, which completes the proof. \square
 1194

1195 **Lemma 16.** Given symmetric matrices $X, \Delta \in \mathbb{F}^{d \times d}$, where $\mathbb{F} = \mathbb{C}$ or \mathbb{R} , suppose $X \succ \|\Delta\|_{op} I \succ O$, then
 1196

$$\|X^{1/2} - (X + \Delta)^{1/2}\|_{op} \leq \frac{\|\Delta\|_{op}}{2(\lambda_{\min}(X) - \|\Delta\|_{op})^{1/2}}. \quad (58)$$

1201 *Proof.* Directly by Theorem X.3.8 and inequality (X.46) in Bhatia (1996).
 1202 \square
 1203

1204 **Lemma 17.** $\forall X, \Delta \in \mathbb{F}^{d \times d}$, where $\mathbb{F} = \mathbb{C}$ or \mathbb{R} , if X and $X + \Delta$ are both invertible, then
 1205

$$(X + \Delta)^{-1} - (X^{-1} - X^{-1} \Delta X^{-1}) = X^{-1} \Delta X^{-1} \Delta (X + \Delta)^{-1}. \quad (59)$$

1206 *Proof.*

$$\begin{aligned} (X + \Delta)^{-1} - (X^{-1} - X^{-1} \Delta X^{-1}) &= X^{-1} [X - (X - \Delta) X^{-1} (X + \Delta)] (X + \Delta)^{-1} \\ &= X^{-1} \Delta X^{-1} \Delta (X + \Delta)^{-1}. \end{aligned} \quad (60)$$

1207 \square

1208 **Lemma 18.** Bound of eigenvalues under perturbation.
 1209

1210 For unitary (or orthogonal, for real field) d -dimensional matrices U, V , positive semi-definite matrix
 1211 S , denote $P := \left(\frac{U+V}{2}\right) S \left(\frac{U+V}{2}\right)^H$, then the eigenvalues of S are bounded by
 1212

$$\lambda_k(P) \leq \lambda_k(S) \leq \begin{cases} 2 \left[\lambda_k(P) + \left\| \left(\frac{U-V}{2}\right) S \left(\frac{U-V}{2}\right)^H \right\|_{op} \right] & , 1 \leq k \leq d-1 \\ \lambda_k(P) + \left\| \left(\frac{U-V}{2}\right) S \left(\frac{U-V}{2}\right)^H \right\|_{op} & , k = d \end{cases}. \quad (61)$$

1213 *Proof.* Let $Q = U^H V$.
 1214

1215 Due to Courant-Fischer min-max Theorem, $A \succeq B$ indicates $\lambda_k(A) \geq \lambda_k(B)$. Then the lower
 1216 bound is straight forward:
 1217

$$\begin{aligned} \lambda_k \left(\left(\frac{U+V}{2}\right) S \left(\frac{U+V}{2}\right)^H \right) &= \lambda_k \left(S^{1/2} \left(\frac{U+V}{2}\right) \left(\frac{U+V}{2}\right)^H S^{1/2} \right) \\ &\leq \lambda_k \left(S^{1/2} \left(\left\| \frac{U+V}{2} \right\|_{op}^2 I \right) S^{1/2} \right) \\ &\leq \lambda_k \left(S^{1/2} \left(\left(\frac{\|U\|_{op} + \|V\|_{op}}{2} \right)^2 I \right) S^{1/2} \right) = \lambda_k(S). \end{aligned} \quad (62)$$

1218 For upper bound, by applying Wely inequality,
 1219

$$\begin{aligned}
& \lambda_k \left(\left(\frac{U+V}{2} \right) S \left(\frac{U+V}{2} \right)^H \right) = \lambda_k \left(\left(\frac{I+Q}{2} \right) S \left(\frac{I+Q^H}{2} \right) \right) \\
& \geq \lambda_k \left(\left(\frac{I+Q}{2} \right) S \left(\frac{I+Q^H}{2} \right) + \left(\frac{I-Q}{2} \right) S \left(\frac{I-Q^H}{2} \right) \right) - \left\| \left(\frac{I-Q}{2} \right) S \left(\frac{I-Q^H}{2} \right) \right\|_{op} \\
& = \frac{1}{2} \lambda_k (S + QSQ^H) - \left\| \left(\frac{U-V}{2} \right) S \left(\frac{U-V}{2} \right)^H \right\|_{op}.
\end{aligned} \tag{63}$$

For arbitrary k , $\lambda_k (S + QSQ^H) \geq \lambda_k (S)$; for $k = d$, $\lambda_d (S + QSQ^H) \geq 2\lambda_d (S)$. This completes the proof. \square

D.2 LEMMAS ON EIGENVALUE CHANGE UNDER DISCRETE TIME

Lemma 19. Suppose $\Sigma, S \in \mathbb{F}^{d \times d}$ are positive semi-definite matrices, $0 \leq \alpha \leq \frac{1}{6} \|S\|_{op}^{-1}$, $\mathbb{F} = \mathbb{C}$ or \mathbb{R} . Consider $S' = (I + \alpha(\Sigma - S))S(I + \alpha(\Sigma - S))$,

$$\begin{aligned}
\lambda_{\min}(S') & \geq \lambda_{\min}(S)(1 + \alpha(\lambda_{\min}(\Sigma) - \lambda_{\min}(S)))^2 + O(\alpha^2 (\|\Sigma\|_{op}^2 + \|S\|_{op}^2) \|S\|_{op}) \\
\lambda_{\max}(S') & \leq \lambda_{\max}(S)(1 + \alpha(\lambda_{\max}(\Sigma) - \lambda_{\max}(S)))^2.
\end{aligned} \tag{64}$$

This generalizes Lemma 3.2 in Ye & Du (2021).

Proof. Following the derivations in Ye & Du (2021), $\forall \beta \in (0, 1)$, rewrite the terms by the following:

$$\begin{aligned}
S' & = \beta \left(I - \frac{\alpha}{\beta} S \right) S \left(I - \frac{\alpha}{\beta} S \right) + (1 - \beta) \left(I + \frac{\alpha}{1 - \beta} \Sigma \right) S \left(I + \frac{\alpha}{1 - \beta} \Sigma \right) \\
& \quad - \frac{\alpha^2}{\beta(1 - \beta)} [(1 - \beta)S + \beta\Sigma] S [(1 - \beta)S + \beta\Sigma].
\end{aligned} \tag{65}$$

The first term has eigenvalues $\lambda_{i'}(S') = \beta \left(1 - \frac{\alpha}{\beta} \lambda_i(S) \right)^2 \lambda_i(S)$ (note that $f(x) = (1 - x)^2 x$ is non-decreasing in $[0, \frac{1}{3}]$, so $\lambda_{i'}(S')$ is exactly the i^{th} eigenvalue of the first term when $\beta \geq \frac{1}{2}$), while the second term is bounded by

$$(1 - \beta) \left(I + \frac{\alpha}{1 - \beta} \lambda_{\min}(\Sigma) \right)^2 \lambda_{\min}(S) \preceq \text{term2} \preceq (1 - \beta) \left(I + \frac{\alpha}{1 - \beta} \lambda_{\max}(\Sigma) \right)^2 \lambda_{\max}(S). \tag{66}$$

By treating the third term as error term and taking $\beta = \frac{1}{2}$, the proof is completed. \square

Lemma 20. Suppose $D, S \in \mathbb{F}^{d \times d}$ are positive semi-definite matrices, $E \in \mathbb{F}^{d \times d}$, $\mathbb{F} = \mathbb{C}$ or \mathbb{R} . Denote $M = S + D$. Consider $S' = (I + \eta(aM - M^3 + E))S(I + \eta(aM - M^3 + E))$, under $\eta < \frac{1}{16(\|M\|_{op}^3 + \|E\|_{op})}$,

$$\begin{aligned}
\lambda_{\min}(S') & \geq \lambda_{\min}(S) + 2\eta(a - 2\|D\|_{op}\|M\|_{op} - \|M\|_{op}\lambda_{\min}(S)) \lambda_{\min}^2(S) \\
& \quad - 2\eta(\|E\|_{op} + \|D\|_{op}^2\|M\|_{op}) \lambda_{\min}(S) \\
& \quad + O((a^2\|M\|_{op}^2 + \|M\|_{op}^6 + \|E\|_{op}^2) \|S\|_{op}).
\end{aligned} \tag{67}$$

1296 *Proof.* Expand the expression of S' :

$$\begin{aligned}
 1299 \quad S' &= S + \eta(aM + E - DMD)S + \eta S(aM + E - DMD) \\
 1300 \quad &\quad - \eta(DMS^2 + S^2MD) - \eta S(MD + DM)S - \eta(SMS^2 + S^2MS) + \eta^2 M'_{\text{error}} \\
 1301 \quad &= \frac{1}{4}(I + 4\eta(aM + E - DMD))S(I + 4\eta(aM + E - DMD)) \\
 1302 \quad &\quad + \frac{1}{4s}(I - 4\eta s DM)S^2(I - 4\eta s MD) + \frac{1}{4s}S(I - 4\eta s(MD + DM))S \\
 1303 \quad &\quad + \frac{1}{4s^2}S(I - 4\eta s^2 M)S(I - 4\eta s^2 M)S + \left(\frac{3}{4}S - \frac{1}{2s}S^2 - \frac{1}{4s^2}S^3\right) + \eta^2 M'_{\text{error}}. \\
 1304 \quad & \\
 1305 \quad & \\
 1306 \quad & \\
 1307 \quad & \\
 1308 \quad & \\
 1309 \quad \text{where } \|M'_{\text{error}}\|_{\text{op}} = O((a^2\|M\|_{\text{op}}^2 + \|M\|_{\text{op}}^6 + \|E\|_{\text{op}}^2)\|S\|_{\text{op}}). \\
 1310 \quad & \\
 1311 \quad \text{Notice that } \frac{3}{4}S - \frac{1}{2s}S^2 - \frac{1}{4s^2}S^3 \text{ has eigenvalues } \lambda_{i'}(S') = \frac{3}{4}\lambda_i(S) - \frac{1}{2s}\lambda_i^2(S) - \frac{1}{4s^2}\lambda_i^3(S), \text{ so by} \\
 1312 \quad \text{taking } s = 2\|S\|_{\text{op}}, \lambda_{i'}(S') \text{ is exactly the } i^{\text{th}} \text{ eigenvalue of } S'. \\
 1313 \quad \text{This further gives} \\
 1314 \quad & \\
 1315 \quad & \\
 1316 \quad \lambda_{\min}(S') &\geq \frac{1}{4}(1 + 4\eta(a\lambda_{\min}(M) - \|E\|_{\text{op}} - \|D\|_{\text{op}}^2\|M\|_{\text{op}}))^2\lambda_{\min}(S) \\
 1317 \quad &\quad + \frac{1}{4s}(1 - 4\eta s\|D\|_{\text{op}}\|M\|_{\text{op}})^2\lambda_{\min}^2(S) + \frac{1}{4s}(1 - 8\eta s\|M\|_{\text{op}}\|D\|_{\text{op}})\lambda_{\min}^2(S) \\
 1318 \quad &\quad + \frac{1}{4s^2}(1 - 4\eta s^2\|M\|_{\text{op}})^2\lambda_{\min}^3(S) + \left(\frac{3}{4}\lambda_{\min}(S) - \frac{1}{2s}\lambda_{\min}^2(S) - \frac{1}{4s^2}\lambda_{\min}^3(S)\right) \\
 1319 \quad &\quad + \eta^2\|M'_{\text{error}}\|_{\text{op}} \\
 1320 \quad &\geq \lambda_{\min}(S) + 2\eta(a\lambda_{\min}(M) - 2\|D\|_{\text{op}}\|M\|_{\text{op}}\lambda_{\min}(S) - \|M\|_{\text{op}}\lambda_{\min}^2(S))\lambda_{\min}(S) \\
 1321 \quad &\quad - 2\eta(\|E\|_{\text{op}} + \|D\|_{\text{op}}^2\|M\|_{\text{op}})\lambda_{\min}(S) + \eta^2\|M'_{\text{error}}\|_{\text{op}}. \\
 1322 \quad & \\
 1323 \quad & \\
 1324 \quad & \\
 1325 \quad & \\
 1326 \quad & \\
 1327 \quad \text{From } \lambda_{\min}(M) \geq \lambda_{\min}(S), \text{ the proof is completed.} \\
 1328 \quad & \\
 1329 \quad & \square \\
 1330 \quad & \\
 1331 \quad \text{D.3 LEMMAS ON ANALYTIC SINGULAR VALUE DECOMPOSITION OF PRODUCT MATRIX} \\
 1332 \quad \text{UNDER BALANCED INITIALIZATION AND GRADIENT FLOW} \\
 1333 \quad & \\
 1334 \quad \textbf{Lemma 21.} *Existence of analytic singular value decomposition (ASVD).* \\
 1335 \quad \text{Under Section 3 with gradient flow and balanced initialization, for } t \in \mathbb{R}^+ \cup \{0\}, \text{ there exists} \\
 1336 \quad \text{analytical singular value decompositions for } W_{j,j \in \{1,2,\dots,N\}}(t) \text{ and } W(t). \\
 1337 \quad & \\
 1338 \quad \textit{Proof.} For $\mathbb{F} = \mathbb{R}$, the proof is exactly the same as Lemma 1 in Arora et al. (2019b): real analytic \\
 1339 \quad matrices have ASVD (Theorem 1 in Bunse-Gerstner et al. (1991/92)), and $W_j(t)$ are analytic then \\
 1340 \quad so does $W(t)$. For complex case, Theorem 1 and 3 in De Moor & Boyd (1989) gives that complex \\
 1341 \quad analytic matrices (of a real parameter) have ASVD, then the rest of proof follows. \\
 1342 \quad & \\
 1343 \quad & \square \\
 1344 \quad & \\
 1345 \quad \textbf{Remark 10.} *For complex field here, the "analytic" here has no relation with the standard definition of "complex analytic function", who has complex parameters and consequently more restrictions on definition of derivatives.* \\
 1346 \quad & \\
 1347 \quad & \\
 1348 \quad \text{Throughout the proof for gradient flow (continuous time), we only deal with real-valued parameter} \\
 1349 \quad \text{t} \in \mathbb{R}^+ \cup \{0\}, \text{ so any "analytic" means real-analytic (for } \mathbb{F} = \mathbb{C}, \text{ it means the real and imaginary} \\
 1350 \quad \text{part are both real-analytic), not complex-analytic.}$$

1350
 1351 **Lemma 22.** Suppose the analytic singular value decomposition of $M(t)$ exists and is
 1352 $U(t)\Sigma_M(t)V^H(t)$, $M(t) \in \mathbb{F}^{d \times d}$, where $\mathbb{F} = \mathbb{C}$ or \mathbb{R} , then the derivative of the k^{th} singular
 1353 value is

1354

$$\frac{d\sigma_k(M)}{dt} = \Re \left(u_k^H \frac{dM}{dt} v_k \right), \quad (70)$$

1355

1356 where u_k, v_k are the k^{th} column vectors of left and right unitary (or orthogonal if $\mathbb{F} = \mathbb{R}$) matrices
 1357 respectively.

1361 *Proof.* We prove the case when $\mathbb{F} = \mathbb{C}$. For $\mathbb{F} = \mathbb{R}$, replace \cdot^H by \cdot^\top .

1362

$$\frac{dM}{dt} = \frac{dU}{dt} \Sigma_M V^H + U \frac{d\Sigma_M}{dt} V^H + U \Sigma_M \frac{dV^H}{dt}. \quad (71)$$

1363

1364 Then

1365

$$\begin{aligned} \Re \left(u_k^H \frac{dM}{dt} v_k \right) &= \Re \left(u_k^H \frac{dU}{dt} \Sigma_M V^H v_k + u_k^H U \frac{d\Sigma_M}{dt} V^H v_k + u_k^H U \Sigma_M \frac{dV^H}{dt} v_k \right) \\ &= \frac{d\sigma_k(M)}{dt} + \sigma_k(M) \left(\Re \left(u_k^H \frac{du_k}{dt} \right) + \Re \left(\frac{dv_k^H}{dt} v_k \right) \right). \end{aligned} \quad (72)$$

1366

1367 From $\Re \left(u_k^H \frac{du_k}{dt} \right) = \frac{d}{dt} \left(\frac{1}{2} \|u_k\|^2 \right) = 0$, $\Re \left(\frac{dv_k^H}{dt} v_k \right) = \frac{d}{dt} \left(\frac{1}{2} \|v_k\|^2 \right) = 0$, the proof is done.

1368 \square

1369 **Remark 11.** If M is Hermitian, then the \Re can be omitted.

1370 **Remark 12.** This generalizes Lemma 2 in Arora et al. (2019b) from real field into complex field by
 1371 adding a \Re on the right side:

1372

$$\frac{d\sigma_r(S)}{dt} = -N(\sigma_r^2(S))^{1-1/N} \cdot \Re \left(\langle \nabla_W \mathcal{L}(W), u_r v_r^H \rangle \right). \quad (73)$$

1373

1374 **Lemma 23.** Under Section 3 with gradient flow, \mathcal{L}_{ori} is non-increasing.

1375 For $t \in [0, +\infty)$,

1376

$$\frac{d}{dt} \mathcal{L}_{\text{ori}} \leq -2N \min_{j,k} |\sigma_k(W_j)|^{2(N-1)} \mathcal{L}_{\text{ori}}. \quad (74)$$

1377

1378 *Proof.* Naturally we have the derivative of product matrix $W(t)$:

$$\begin{aligned}
1404 \\
1405 \quad \frac{dW}{dt} &= \sum_{j=1}^N W_{\Pi_L, j+1} \left[W_{\Pi_L, j+1}^H (\Sigma - W) W_{\Pi_R, j-1}^H + a (W_j \Delta_{j-1, j} - \Delta_{j, j+1} W_j) \right] W_{\Pi_R, j-1} \\
1406 \\
1407 \\
1408 \\
1409 \quad &= \sum_{j=1}^N W_{\Pi_L, j+1} W_{\Pi_L, j+1}^H (\Sigma - W) W_{\Pi_R, j-1}^H W_{\Pi_R, j-1} \\
1410 \\
1411 \\
1412 \quad &+ a \sum_{j=1}^N W_{\Pi_L, j} \Delta_{j-1, j} W_{\Pi_R, j-1} - a \sum_{j=1}^N W_{\Pi_L, j+1} \Delta_{j, j+1} W_{\Pi_R, j} \\
1413 \\
1414 \\
1415 \quad &= \sum_{j=1}^N W_{\Pi_L, j+1} W_{\Pi_L, j+1}^H (\Sigma - W) W_{\Pi_R, j-1}^H W_{\Pi_R, j-1} + a (W \Delta_{0, 1} - \Delta_{N, N+1} W) \\
1416 \\
1417 \\
1418 \quad &= \sum_{j=1}^N W_{\Pi_L, j+1} W_{\Pi_L, j+1}^H (\Sigma - W) W_{\Pi_R, j-1}^H W_{\Pi_R, j-1}. \\
1419 \\
1420
\end{aligned} \tag{75}$$

1421 Then

$$\begin{aligned}
1422 \quad \frac{d}{dt} \mathcal{L}_{\text{ori}} &= -\Re \left(\left\langle \Sigma - W, \frac{dW}{dt} \right\rangle \right) \\
1423 \\
1424 \quad &= -\Re \left(\left\langle \Sigma - W, \sum_{j=1}^N W_{\Pi_L, j+1} W_{\Pi_L, j+1}^H (\Sigma - W) W_{\Pi_R, j-1}^H W_{\Pi_R, j-1} \right\rangle \right) \\
1425 \\
1426 \\
1427 \quad &= -\sum_{j=1}^N \Re \left(\left\langle \Sigma - W, W_{\Pi_L, j+1} W_{\Pi_L, j+1}^H (\Sigma - W) W_{\Pi_R, j-1}^H W_{\Pi_R, j-1} \right\rangle \right) \\
1428 \\
1429 \\
1430 \quad &= -\sum_{j=1}^N \Re \left(\left\langle W_{\Pi_L, j+1}^H (\Sigma - W) W_{\Pi_R, j-1}^H, W_{\Pi_L, j+1}^H (\Sigma - W) W_{\Pi_R, j-1}^H \right\rangle \right) \\
1431 \\
1432 \\
1433 \quad &= -\sum_{j=1}^N \left\| W_{\Pi_L, j+1}^H (\Sigma - W) W_{\Pi_R, j-1}^H \right\|_F^2. \\
1434 \\
1435 \\
1436 \\
1437 \\
1438
\end{aligned} \tag{76}$$

1439 From $\|LXR\|_F \geq \sigma_{\min}(L)\sigma_{\min}(R)\|X\|_F$, $\sigma_{\min}(W_{\Pi_L, j+1}^H) \geq \min_{j, k} |\sigma_k(W_j)|^{N-j}$ and
1440 $\sigma_{\min}(W_{\Pi_R, j-1}^H) \geq \min_{j, k} |\sigma_k(W_j)|^{j-1}$, the proof is completed.

1441 \square

1442 **Lemma 24.** *Analytic singular value decomposition of product matrix with positive semi-definite
1443 diagonal matrix.*

1444 *Under Section 3 with gradient flow and any bounded (i.e. $W_{j, j \in \{1, 2, \dots, N\}}(t = 0)$ is bounded)
1445 balanced initialization, \forall positive integer $N \geq 2$, the product matrix $W(t)$ can be expressed as:*

$$1446 \quad W(t) = U(t)S(t)V(t)^H, \tag{77}$$

1447 *where: $U(t) \in \mathbb{F}^{d \times d}$, $S(t) \in \mathbb{R}^{d \times d}$ and $V(t) \in \mathbb{F}^{d \times d}$ are analytic functions of t , $U(t)$ and $V(t)$
1448 are orthogonal matrices, $S(t)$ is diagonal and positive semi-definite (elements on its diagonal may
1449 appear in any order), $\Sigma_w(t) := S(t)^{1/N}$ is well-defined (meaning the real-valued operation $S_{ii} \mapsto$
1450 $(S_{ii})^{1/N}$ is applied to each diagonal element of $S(t)$, resulting in another semi-positive diagonal
1451 matrix) and analytic.*

1452 *Moreover, if the singular values of product matrix W are non-zero, then throughout the optimization
1453 W remains full rank in finite time.*

1458 *Proof.* From Lemma 21, it is left to construct a new ASVD (analytic singular value decomposition)
 1459 of $W(t)$ using existed ASVD $W(t) = U(t)S(t)V(t)^H$ ($S(t)$ is not guaranteed to be positive semi-
 1460 definite).

1461 By Lemma 23, $\|\Sigma - W\|_F \leq \|\Sigma - W(t=0)\|_F$. Then the following term is bounded by a constant
 1462 for all $t \in \mathbb{R}^+ \cup \{0\}$:

$$\begin{aligned} 1465 \quad |\langle \nabla l(W(t)), u_r(t)v_r(t)^H \rangle| &\leq \|\nabla l(W(t))\|_{op} = \|\Sigma - W\|_{op} \\ 1466 \quad &\leq \|\Sigma - W\|_F \leq \|\Sigma - W(t=0)\|_F. \end{aligned} \quad (78)$$

1468 By invoking Theorem 3 in Arora et al. (2019b) (for complex case, add \Re), the absolute value of time
 1469 derivative of $\sigma_r(t)$ is bounded by:

$$1471 \quad \left| \frac{d\sigma_r(t)}{dt} \right| \leq \|\Sigma - W(t=0)\|_F \cdot N (\sigma_r^2(t))^{1-1/N}. \quad (79)$$

1474 Thus all $\sigma_r(t)$ do not change sign for $t \in \mathbb{R}^+ \cup \{0\}$. Moreover, if $|\sigma_r(t=0)| > 0$, the it never
 1475 decrease to 0 in finite time.

1477 Then we construct $S_{\text{new}}(t)$ by flipping the sign of negative diagonal terms, and $U_{\text{new}}(t)$ by changing
 1478 the sign of corresponding columns of $U(t)$. Now $W(t) = U_{\text{new}}(t)S_{\text{new}}(t)V(t)^H$ is also an ASVD
 1479 of $W(t)$, $U_{\text{new}}(t)$ is analytic and unitary (orthogonal), $S_{\text{new}}(t)$ is analytic, diagonal and positive
 1480 semi-definite.

1481 Specially, if for some r , $\sigma_r(t) = 0$ at time t , then it remains zero. Thus, from $S_{\text{new}}(t)$ is analytic, so
 1482 is $\Sigma_w(t)$. This completes the proof. □

1486 Finally, we generalize Lemma 2 in Arora et al. (2019b) into complex field. Here we assume all
 1487 matrices are square matrices of dimension $d \times d$.

1488 **Lemma 25.** *Under balanced initialization, assume the singular values of $W(t) = U(t)S(t)V(t)^H$
 1489 (U, V are unitary, S is real-valued and diagonal) are distinct and different from zero at initialization,
 1490 then the derivatives of U, V satisfy*

$$1492 \quad \frac{dU}{dt} = U (F \odot M_U + D_U), \quad \frac{dV}{dt} = V (F \odot M_V + D_V), \quad (80)$$

1495 where D_U, D_V are diagonal matrices with pure imaginary entries (and thus skew-Hermitian) satisfying

$$1499 \quad (D_U)_{jj} - (D_V)_{jj} = -\frac{N}{2} (\sigma_j^2(S))^{1/2-1/N} \left[(U^H (\nabla_W \mathcal{L}_{\text{ori}}) V)_{jj} - (V^H (\nabla_W \mathcal{L}_{\text{ori}})^H U)_{jj} \right], \quad (81)$$

1502 and

$$1504 \quad M_U = -[U^H (\nabla_W \mathcal{L}_{\text{ori}}) V S + S V^H (\nabla_W \mathcal{L}_{\text{ori}})^H U] \\ 1505 \quad M_V = -[V^H (\nabla_W \mathcal{L}_{\text{ori}})^H U S + S U^H (\nabla_W \mathcal{L}_{\text{ori}}) V]. \quad (82)$$

1508 Here \odot stands for Hadamard (element-wise) product and F is defined by

$$1510 \quad F_{jk} = \begin{cases} 0 & , j = k \\ \frac{1}{(\sigma_k^2(S))^{1/N} - (\sigma_j^2(S))^{1/N}} & , j \neq k. \end{cases} \quad (83)$$

1512 **Remark 13.** Note that only the difference $D_U - D_V$ is uniquely determined. Adding the same purely
 1513 imaginary diagonal matrix to both D_U and D_V leaves the dynamics of W unchanged, correspond-
 1514 ing to a shared phase rotation of U and V .

1515 For real matrices, R.H.S. of equation (81) is zero, $D_U = D_V = O$, then this Lemma degenerates
 1516 into Lemma 2 of Arora et al. (2019b).

1518 *Proof.* We calculate the time derivative of U and the time derivative of V follows the same way.
 1519

1520 Following the derivations in Arora et al. (2019b),
 1521

1522
$$U^H \frac{dW}{dt} V = U^H \frac{dU}{dt} S + \frac{dS}{dt} + S \frac{dV^H}{dt} V, \quad (84)$$

1525 where $U^H \frac{dU}{dt} = -\frac{dU^H}{dt} U$ and $V^H \frac{dV}{dt} = -\frac{dV^H}{dt} V$ are skew-Hermitian matrices, whose diagonal
 1526 entries are therefore purely imaginary. Since S is real, denote \bar{I}_d to be a matrix holding zeros on its
 1527 diagonal and ones elsewhere,
 1528

1529
$$\begin{aligned} \Re \left(\bar{I}_d \odot \left(U^H \frac{dW}{dt} VS + SV^H \frac{dW^H}{dt} U \right) \right) &= \Re \left(U^H \frac{dU}{dt} S^2 - S^2 U^H \frac{dU}{dt} \right) \\ 1530 \Im \left(U^H \frac{dW}{dt} VS + SV^H \frac{dW^H}{dt} U \right) &= \Im \left(U^H \frac{dU}{dt} S^2 - S^2 U^H \frac{dU}{dt} \right). \end{aligned} \quad (85)$$

1536 Since $U^H \frac{dW}{dt} VS + SV^H \frac{dW^H}{dt} U$ is Hermitian, its diagonal entries are real, further giving
 1537 $\Im \left(U^H \frac{dW}{dt} VS + SV^H \frac{dW^H}{dt} U \right) = \Im \left(\bar{I}_d \odot \left(U^H \frac{dW}{dt} VS + SV^H \frac{dW^H}{dt} U \right) \right)$. Combining the real
 1538 and imaginary parts gives
 1539

1540
$$\bar{I}_d \odot \left(U^H \frac{dW}{dt} VS + SV^H \frac{dW^H}{dt} U \right) = U^H \frac{dU}{dt} S^2 - S^2 U^H \frac{dU}{dt}. \quad (86)$$

1544 Here $U^H \frac{dW}{dt} V = -\sum_{j=1}^N (S^2)^{\frac{j-1}{N}} U^H (\nabla_W \mathcal{L}_{\text{ori}}) V (S^2)^{\frac{N-j}{N}}$. Then the non-diagonal entries of
 1545 $U^H \frac{dU}{dt}$ follows by the proof of Lemma 2 in Arora et al. (2019b).

1546 For the diagonal entries of $U^H \frac{dU}{dt}$, by taking imaginary part of equation (84),
 1547

1548
$$\begin{aligned} \sigma_j(S) \left(\left(U^H \frac{dU}{dt} \right)_{jj} - \left(V^H \frac{dV}{dt} \right)_{jj} \right) &= i \Im \left(\sigma_j(S) \left(\left(U^H \frac{dU}{dt} \right)_{jj} - \left(V^H \frac{dV}{dt} \right)_{jj} \right) \right) \\ 1551 &= i \Im \left(\left(U^H \frac{dW}{dt} V \right)_{jj} \right) = \frac{1}{2} \left(\left(U^H \frac{dW}{dt} V \right)_{jj} - \left(V^H \frac{dW^H}{dt} U \right)_{jj} \right). \end{aligned} \quad (87)$$

1558 The last step uses the fact that $i \Im(z) = \frac{1}{2} (z - \bar{z})$. This deduces that
 1559

1560
$$\left(U^H \frac{dU}{dt} \right)_{jj} - \left(V^H \frac{dV}{dt} \right)_{jj} = -\frac{N}{2} (\sigma_j^2(S))^{1/2-1/N} \left[(U^H (\nabla_W \mathcal{L}_{\text{ori}}) V)_{jj} - (V^H (\nabla_W \mathcal{L}_{\text{ori}})^H U)_{jj} \right]. \quad (88)$$

1564 This completes the proof.
 1565

□

1566
1567

D.4 LEMMAS ON REGULARIZATION, GRADIENT FLOW

1568
1569
1570**Lemma 26.** Consider optimizing a generalized loss function coupled with a generalized regularization term using gradient flow:1571
1572
1573
1574

$$\mathcal{L}(W_1, \dots, W_N) := \mathcal{L}_{\text{ori}} \left(\prod_{j=N}^1 W_j \right) + \frac{1}{4} \sum_{j=1}^{N-1} a_{j,j+1} \|\Delta_{j,j+1}\|_F^2, \quad a_{j,j+1} \in \mathbb{R}^+ \cup \{0\}. \quad (89)$$

1575
1576Where $\Delta_{j,j+1}$ is defined in (4). Then the regularization terms decays by:1577
1578
1579
1580

$$\frac{d}{dt} \left(\sum_{j=1}^{N-1} a_{j,j+1} \|\Delta_{j,j+1}\|_F^2 \right) = -4 \sum_{j=1}^N \|a_{j,j+1} \Delta_{j,j+1} W_j - a_{j-1,j} W_j \Delta_{j-1,j}\|_F^2. \quad (90)$$

1581
1582*Proof.*1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593

$$\begin{aligned} \frac{d}{dt} W_j W_j^H &= - \left[(\nabla_{W_j} \mathcal{L}_{\text{ori}}) W_j^H + W_j (\nabla_{W_j} \mathcal{L}_{\text{ori}})^H \right. \\ &\quad - 2a_{j-1,j} W_j \Delta_{j-1,j} W_j^H \\ &\quad \left. + a_{j,j+1} (\Delta_{j,j+1} W_j W_j^H + W_j W_j^H \Delta_{j,j+1}) \right] \\ \frac{d}{dt} W_{j+1}^H W_{j+1} &= - \left[(\nabla_{W_{j+1}} \mathcal{L}_{\text{ori}})^H W_{j+1} + W_{j+1}^H (\nabla_{W_{j+1}} \mathcal{L}_{\text{ori}}) \right. \\ &\quad + 2a_{j+1,j+2} W_{j+1}^H \Delta_{j+1,j+2} W_{j+1} \\ &\quad \left. - a_{j,j+1} (\Delta_{j,j+1} W_{j+1}^H W_{j+1} + W_{j+1}^H W_{j+1} \Delta_{j,j+1}) \right]. \end{aligned} \quad (91)$$

1594
1595
1596Denote $W_{\prod_L, j} := \prod_{k=N}^j W_k$, $W_{\prod_R, j} := \prod_{k=j}^1 W_k$, $W := \prod_{k=N}^1 W_k = W_{\prod_L, 1} = W_{\prod_R, N}$.
From property of the loss \mathcal{L}_{ori} ,1597
1598
1599

$$(\nabla_{W_j} \mathcal{L}_{\text{ori}}) W_j^H = W_{\prod_L, j+1}^H (\nabla_W \mathcal{L}_{\text{ori}}(W)) W_{\prod_R, j} = W_{j+1}^H (\nabla_{W_{j+1}} \mathcal{L}_{\text{ori}}), \quad \forall j \in \{1, 2, \dots, N-1\}. \quad (92)$$

1600
1601

Thus we have

1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

$$\begin{aligned} \frac{d}{dt} \Delta_{j,j+1} &= 2a_{j-1,j} W_j \Delta_{j-1,j} W_j^H + 2a_{j+1,j+2} W_{j+1}^H \Delta_{j+1,j+2} W_{j+1} \\ &\quad - a_{j,j+1} (\Delta_{j,j+1} (W_j W_j^H + W_{j+1}^H W_{j+1}) + (W_j W_j^H + W_{j+1}^H W_{j+1}) \Delta_{j,j+1}), \end{aligned} \quad (93)$$

$$\begin{aligned} \frac{d \|\Delta_{j,j+1}\|_F^2}{dt} &= 4a_{j-1,j} \text{tr} (W_j \Delta_{j-1,j} W_j^H \Delta_{j,j+1}) \\ &\quad + 4a_{j+1,j+2} \text{tr} (W_{j+1} \Delta_{j,j+1} W_{j+1}^H \Delta_{j+1,j+2}) \\ &\quad - 4a_{j,j+1} \text{tr} ((W_j W_j^H + W_{j+1}^H W_{j+1}) \Delta_{j,j+1}^2) \\ &= -\frac{2}{a_{j,j+1}} \left[\|a_{j,j+1} \Delta_{j,j+1} W_j - a_{j-1,j} W_j \Delta_{j-1,j}\|_F^2 \right. \\ &\quad + \|a_{j+1,j+2} \Delta_{j+1,j+2} W_{j+1} - a_{j,j+1} W_{j+1} \Delta_{j,j+1}\|_F^2 \\ &\quad + a_{j,j+1}^2 (\|\Delta_{j,j+1} W_j\|_F^2 + \|W_{j+1} \Delta_{j,j+1}\|_F^2) \\ &\quad \left. - a_{j-1,j}^2 \|W_j \Delta_{j-1,j}\|_F^2 - a_{j+1,j+2}^2 \|\Delta_{j+1,j+2} W_{j+1}\|_F^2 \right]. \end{aligned} \quad (94)$$

By taking weighted sum,

1620

1621

1622

1623

1624

$$\frac{d}{dt} \left(\sum_{j=1}^{N-1} a_{j,j+1} \|\Delta_{j,j+1}\|_F^2 \right) = -4 \sum_{j=1}^N \|a_{j,j+1} \Delta_{j,j+1} W_j - a_{j-1,j} W_j \Delta_{j-1,j}\|_F^2. \quad (95)$$

1625

1626

1627

1628 Below we back to $a_{j,j+1} \equiv a \in \mathbb{R}^+ \cup \{0\}$, $\forall j \in \{1, 2, \dots, N-1\}$. Then 89 becomes

1629

1630

1631

1632

1633

$$\mathcal{L}(W_1, \dots, W_N) := \mathcal{L}_{\text{ori}} \left(\prod_{j=N}^1 W_j \right) + \frac{1}{4} \sum_{j=1}^{N-1} a \|\Delta_{j,j+1}\|_F^2, \quad a \in \mathbb{R}^+ \cup \{0\}. \quad (96)$$

1634

1635 **Theorem 27.** Suppose for all $j \in \{1, 2, \dots, N\}$, $\sigma_{\min}(W_j) \geq \mu_{\min} > 0$, $\sigma_{\max}(W_j) \leq \mu_{\max}$.
1636 Consider optimizing 96 under gradient flow, then the convergence rate of the regularization term is
lower bounded.

1637

1638

1639

1640

1641

$$\frac{d}{dt} \left(\sum_{j=1}^{N-1} \|\Delta_{j,j+1}\|_F^2 \right) \leq -4a \cdot \frac{2}{N-1} \frac{\mu_{\max}^2 - \mu_{\min}^2}{\left(\frac{\mu_{\max}}{\mu_{\min}} \right)^{2[N/2]} - 1} \cdot \left(\sum_{j=1}^{N-1} \|\Delta_{j,j+1}\|_F^2 \right). \quad (97)$$

1642

1643

1644 *Proof.* Denote $D_j = \Delta_{j,j+1} W_j - W_j \Delta_{j-1,j}$. Then

1645

1646

$$\Delta_{j,j+1} = (D_j + W_j \Delta_{j-1,j}) W_j^{-1}. \quad (98)$$

1647

1648 Deducing

1649

1650

1651

$$\|\Delta_{j,j+1}\|_F \leq \|W_j^{-1}\|_{op} (\|D_j\|_F + \|\Delta_{j-1,j}\|_F \|W_j\|_{op}) \leq \frac{1}{\mu_{\min}} \|D_j\|_F + \frac{\mu_{\max}}{\mu_{\min}} \|\Delta_{j-1,j}\|_F. \quad (99)$$

1652

1653

1654 From $\Delta_{0,1} = O$, inductively we have

1655

1656

$$\begin{aligned} \|\Delta_{j,j+1}\|_F^2 &\leq \frac{1}{\mu_{\min}^2} \left(\sum_{k=1}^j \left(\frac{\mu_{\max}}{\mu_{\min}} \right)^{j-k} \|D_k\|_F \right)^2 \leq \frac{1}{\mu_{\min}^2} \left(\sum_{k=1}^j \left(\frac{\mu_{\max}}{\mu_{\min}} \right)^{2(j-k)} \right) \left(\sum_{k=1}^j \|D_k\|_F^2 \right) \\ &= \frac{1}{\mu_{\min}^2} \frac{\left(\frac{\mu_{\max}}{\mu_{\min}} \right)^{2j} - 1}{\left(\frac{\mu_{\max}}{\mu_{\min}} \right)^2 - 1} \sum_{k=1}^j \|D_k\|_F^2. \end{aligned} \quad (100)$$

1664

1665 The last two step use Cauchy-Schwarz inequality.

1666

1667

1668 From $\Delta_{N,N+1} = O$, following the same procedure we have

1669

1670

1671

1672

1673

$$\|\Delta_{N-j,N-j+1}\|_F^2 \leq \frac{1}{\mu_{\min}^2} \frac{\left(\frac{\mu_{\max}}{\mu_{\min}} \right)^{2j} - 1}{\left(\frac{\mu_{\max}}{\mu_{\min}} \right)^2 - 1} \sum_{k=N-j+1}^N \|D_k\|_F^2. \quad (101)$$

1674 Summing all terms up, for odd N we have

$$\begin{aligned}
1674 & \\
1675 & \\
1676 & \sum_{j=1}^{N-1} \|\Delta_{j,j+1}\|_F^2 = \sum_{j=1}^{(N-1)/2} (\|\Delta_{j,j+1}\|_F^2 + \|\Delta_{N-j,N-j+1}\|_F^2) \\
1677 & \leq \sum_{j=1}^{(N-1)/2} \left(\frac{1}{\mu_{\min}^2} \frac{\left(\frac{\mu_{\max}}{\mu_{\min}}\right)^{2j} - 1}{\left(\frac{\mu_{\max}}{\mu_{\min}}\right)^2 - 1} \sum_{k=1}^j (\|D_k\|_F^2 + \|D_{N+1-k}\|_F^2) \right) \\
1678 & = \sum_{k=1}^{(N-1)/2} \left((\|D_k\|_F^2 + \|D_{N+1-k}\|_F^2) \sum_{j=k}^{(N-1)/2} \left(\frac{1}{\mu_{\min}^2} \frac{\left(\frac{\mu_{\max}}{\mu_{\min}}\right)^{2j} - 1}{\left(\frac{\mu_{\max}}{\mu_{\min}}\right)^2 - 1} \right) \right) \\
1679 & \leq \frac{N-1}{2} \frac{\left(\frac{\mu_{\max}}{\mu_{\min}}\right)^{N-1} - 1}{\mu_{\max}^2 - \mu_{\min}^2} \left(\sum_{k=1}^N \|D_k\|^2 \right). \\
1680 & \\
1681 & \\
1682 & \\
1683 & \\
1684 & \\
1685 & \\
1686 & \\
1687 & \\
1688 & \\
1689 & \\
1690 & \\
1691 & \text{For even } N, \\
1692 & \\
1693 & \\
1694 & \\
1695 & \sum_{j=1}^{N-1} \|\Delta_{j,j+1}\|_F^2 = \sum_{j=1}^{N/2-1} (\|\Delta_{j,j+1}\|_F^2 + \|\Delta_{N-j,N-j+1}\|_F^2) + \|\Delta_{N/2,N/2+1}\|_F^2 \\
1696 & \leq \sum_{j=1}^{N/2-1} \left(\frac{1}{\mu_{\min}^2} \frac{\left(\frac{\mu_{\max}}{\mu_{\min}}\right)^{2j} - 1}{\left(\frac{\mu_{\max}}{\mu_{\min}}\right)^2 - 1} \sum_{k=1}^j (\|D_k\|_F^2 + \|D_{N+1-k}\|_F^2) \right) \\
1697 & \\
1698 & \\
1699 & \\
1700 & \\
1701 & \\
1702 & \\
1703 & \\
1704 & \\
1705 & \\
1706 & \\
1707 & \\
1708 & \\
1709 & \\
1710 & \\
1711 & \\
1712 & \\
1713 & \\
1714 & \\
1715 & \\
1716 & \\
1717 & \\
1718 & \\
1719 & \\
1720 & \\
1721 & \\
1722 & \\
1723 & \\
1724 & \\
1725 & \\
1726 & \\
1727 & \\
1728 & \text{Combine with Lemma 26, then the proof is done.} \\
1729 & \square \\
1730 & \\
1731 & \text{Remark 14. For } N = 4, \text{ Theorem 27 reduces to} \\
1732 &
\end{aligned} \tag{102}$$

$$\begin{aligned}
1674 & \\
1675 & \\
1676 & \\
1677 & \\
1678 & \\
1679 & \\
1680 & \\
1681 & \\
1682 & \\
1683 & \\
1684 & \\
1685 & \\
1686 & \\
1687 & \\
1688 & \\
1689 & \\
1690 & \\
1691 & \text{For even } N, \\
1692 & \\
1693 & \\
1694 & \\
1695 & \sum_{j=1}^{N-1} \|\Delta_{j,j+1}\|_F^2 = \sum_{j=1}^{N/2-1} (\|\Delta_{j,j+1}\|_F^2 + \|\Delta_{N-j,N-j+1}\|_F^2) + \|\Delta_{N/2,N/2+1}\|_F^2 \\
1696 & \leq \sum_{j=1}^{N/2-1} \left(\frac{1}{\mu_{\min}^2} \frac{\left(\frac{\mu_{\max}}{\mu_{\min}}\right)^{2j} - 1}{\left(\frac{\mu_{\max}}{\mu_{\min}}\right)^2 - 1} \sum_{k=1}^j (\|D_k\|_F^2 + \|D_{N+1-k}\|_F^2) \right) \\
1697 & \\
1698 & \\
1699 & \\
1700 & \\
1701 & \\
1702 & \\
1703 & \\
1704 & \\
1705 & \\
1706 & \\
1707 & \\
1708 & \\
1709 & \\
1710 & \\
1711 & \\
1712 & \\
1713 & \\
1714 & \\
1715 & \\
1716 & \\
1717 & \\
1718 & \\
1719 & \\
1720 & \\
1721 & \\
1722 & \\
1723 & \\
1724 & \\
1725 & \\
1726 & \\
1727 & \\
1728 & \\
1729 & \\
1730 & \\
1731 & \\
1732 & \\
1733 & \text{Combine with Lemma 26, then the proof is done.} \\
1734 & \square \\
1735 & \\
1736 & \text{Remark 14. For } N = 4, \text{ Theorem 27 reduces to} \\
1737 &
\end{aligned} \tag{103}$$

$$\sum_{j=1}^N \|D_j\|^2 \geq \frac{2}{N-1} \frac{\mu_{\max}^2 - \mu_{\min}^2}{\left(\frac{\mu_{\max}}{\mu_{\min}}\right)^{2[N/2]} - 1} \sum_{i=1}^{N-1} \|\Delta_{i,i+1}\|_F^2. \tag{104}$$

Combine with Lemma 26, then the proof is done. \square

Remark 14. For $N = 4$, Theorem 27 reduces to

1728
1729
1730
1731
1732

$$\frac{d}{dt} \left(\sum_{j=1}^3 \|\Delta_{j,j+1}\|_F^2 \right) \leq -\frac{8a}{3} \frac{\mu_{\min}^4}{\mu_{\max}^2 + \mu_{\min}^2} \cdot \left(\sum_{j=1}^3 \|\Delta_{j,j+1}\|_F^2 \right). \quad (105)$$

1733 **Theorem 28.** Under problem settings in section 3 with gradient flow, the change of maximum and
1734 minimum singular values of W_j s have bounds that are irrelevant to the regularization term:
17351736
1737
1738
1739
1740
1741

$$\begin{aligned} \frac{d \max_{j,k} \sigma_k^2(W_j)}{dt} &\leq 2 \max_{j,k} |\sigma_k(W_j)| \max_j \|\nabla_{W_j} \mathcal{L}_{\text{ori}}\|_{op} \\ \frac{d \min_{j,k} \sigma_k^2(W_j)}{dt} &\geq -2 \min_{j,k} |\sigma_k(W_j)| \max_j \|\nabla_{W_j} \mathcal{L}_{\text{ori}}\|_{op}. \end{aligned} \quad (106)$$

1742 **Remark 15.** If $\arg \max_{(j,k)} |\sigma_k(W_j)|$, $\arg \min_{(j,k)} |\sigma_k(W_j)|$ are not unique, the derivatives are
1743 not well-defined. In these cases, the inequalities become:
17441745
1746
1747
1748
1749
1750
1751

$$\begin{aligned} \frac{d \sigma_{k'}^2(W_{j'})}{dt} &\leq 2 \max_{j,k} |\sigma_k(W_j)| \max_j \|\nabla_{W_j} \mathcal{L}_{\text{ori}}\|_{op}, (j', k') \in \arg \max_{(j,k)} |\sigma_k(W_j)| \\ \frac{d \sigma_{k'}^2(W_{j'})}{dt} &\geq -2 \min_{j,k} |\sigma_k(W_j)| \max_j \|\nabla_{W_j} \mathcal{L}_{\text{ori}}\|_{op}, (j', k') \in \arg \min_{(j,k)} |\sigma_k(W_j)|. \end{aligned} \quad (107)$$

1752 *Proof.* For simplicity, set $W_0 \equiv W_1, W_5 \equiv W_4$.1753 Denote the analytic singular value decomposition of $W_j(t)$ to be $U^{(j)} \Sigma_w^{(j)} V^{(j)H}$, then from Lemma
1754 22, we have
17551756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766

$$\begin{aligned} \frac{d \sigma_k(W_j)}{dt} &= \Re \left(u_k^{(j)H} (-\nabla_{W_j} \mathcal{L}_{\text{ori}} + a W_j \Delta_{j-1,j} - a \Delta_{j,j+1} W_j) v_k^{(j)} \right) \\ &= \Re \left(u_k^{(j)H} (-\nabla_{W_j} \mathcal{L}_{\text{ori}}) v_k^{(j)} \right) \\ &\quad + a u_k^{(j)H} (W_j W_{j-1} W_{j-1}^H + W_{j+1}^H W_{j+1} W_j - 2 W_j W_j^H W_j) v_k^{(j)} \\ &= \Re \left(u_k^{(j)H} (-\nabla_{W_j} \mathcal{L}_{\text{ori}}) v_k^{(j)} \right) \\ &\quad + a \left[\left(u_k^{(j)H} W_{j+1}^H W_{j+1} u_k^{(j)} + v_k^{(j)H} W_{j-1} W_{j-1}^H v_k^{(j)} \right) \sigma_k(W_j) - 2 \sigma_k(W_j)^3 \right]. \end{aligned} \quad (108)$$

1767 From $u_k^{(j)H} W_{j+1}^H W_{j+1} u_k^{(j)}$, $v_k^{(j)H} W_{j-1} W_{j-1}^H v_k^{(j)} \in [\min_{j,k} \sigma_k^2(W_j), \max_{j,k} \sigma_k^2(W_j)]$, the proof
1768 is completed.
1769

□

1770
1771
17721773 Note:
17741775
1776
1777
1778

$$\max_j \|\nabla_{W_j} \mathcal{L}_{\text{ori}}\|_{op} \leq \max_{j,k} |\sigma_k(W_j)|^{N-1} \left(\sigma_1(\Sigma) + \max_{j,k} |\sigma_k(W_j)|^N \right). \quad (109)$$

1779 D.5 LEMMAS ON REGULARIZATION, GRADIENT DESCENT

1780
1781**Theorem 29.** Suppose for all $j \in \{1, 2, 3, 4\}$, $\sigma_{\min}(W_j(t)) \geq \mu_{\min} > 0$, $\sigma_{\max}(W_j(t)) \leq \mu_{\max}$,
then the convergence rate of the regularization term is lower bounded by:

$$\begin{aligned}
1782 \quad & \mathcal{L}_{\text{reg}}(t+1) \leq \left(1 - \frac{8}{3} \frac{\eta a \mu_{\min}^4}{\mu_{\max}^2 + \mu_{\min}^2}\right) \cdot \mathcal{L}_{\text{reg}}(t) \\
1783 \quad & + \eta^2 O\left(a^2 \mu_{\max}^4 \mathcal{L}_{\text{reg}}(t) + \sqrt{a \mathcal{L}_{\text{reg}}(t)} \mu_{\max}^6 \mathcal{L}_{\text{ori}}(t)\right) \\
1784 \quad & + \eta^4 O\left(a \mu_{\max}^{12} \mathcal{L}_{\text{ori}}(t)^2 + a^3 \mu_{\max}^4 \mathcal{L}_{\text{reg}}(t)^2\right). \tag{110}
\end{aligned}$$

1789 *Proof.*

$$\begin{aligned}
1791 \quad & \Delta_{j,j+1}(t+1) - \Delta_{j,j+1}(t) = 2\eta a W_j(t) \Delta_{j-1,j}(t) W_j(t)^H \\
1792 \quad & + 2\eta a W_{j+1}(t)^H \Delta_{j+1,j+2}(t) W_{j+1}(t) \\
1793 \quad & - \eta a \Delta_{j,j+1}(t) (W_j(t) W_j(t)^H + W_{j+1}(t)^H W_{j+1}(t)) \\
1794 \quad & - \eta a (W_j(t) W_j(t)^H + W_{j+1}(t)^H W_{j+1}(t)) \Delta_{j,j+1}(t) \\
1795 \quad & + \eta^2 [\nabla_{W_j} \mathcal{L}(t) \nabla_{W_j} \mathcal{L}(t)^H - \nabla_{W_{j+1}} \mathcal{L}(t)^H \nabla_{W_{j+1}} \mathcal{L}(t)]. \tag{111}
\end{aligned}$$

1798 From

$$\begin{aligned}
1800 \quad & \|\nabla_{W_j} \mathcal{L}(t)\|_F \leq \|\nabla_{W_j} \mathcal{L}_{\text{ori}}(t)\|_F + \|\nabla_{W_j} \mathcal{L}_{\text{reg}}(t)\|_F \\
1801 \quad & = O\left(\mu_{\max}^3 \sqrt{\mathcal{L}_{\text{ori}}(t)} + \mu_{\max} \sqrt{a \mathcal{L}_{\text{reg}}(t)}\right) \\
1802 \quad & \|\Delta_{j,j+1}(t+1) - \Delta_{j,j+1}(t)\|_F = O\left(\eta \mu_{\max}^2 \sqrt{a \mathcal{L}_{\text{reg}}(t)} + \eta^2 \|\nabla_{W_j} \mathcal{L}(t)\|_F^2\right) \\
1803 \quad & = O\left(\eta \mu_{\max}^2 \sqrt{a \mathcal{L}_{\text{reg}}(t)} + \eta^2 \mu_{\max}^6 \mathcal{L}_{\text{ori}}(t) + \eta^2 a \mu_{\max}^2 \mathcal{L}_{\text{reg}}(t)\right). \tag{112}
\end{aligned}$$

1810 We have

$$\begin{aligned}
1812 \quad & \mathcal{L}_{\text{reg}}(t+1) - \mathcal{L}_{\text{reg}}(t) = 2a \sum_{j=1}^3 \langle \Delta_{j,j+1}(t+1) - \Delta_{j,j+1}(t), \Delta_{j,j+1}(t) \rangle \\
1813 \quad & + a \sum_{j=1}^3 \|\Delta_{j,j+1}(t+1) - \Delta_{j,j+1}(t)\|_F^2 \\
1814 \quad & = -4\eta a^2 \sum_{j=1}^4 \|\Delta_{j,j+1}(t) W_j(t) - W_j(t) \Delta_{j-1,j}(t)\|_F^2 \\
1815 \quad & + O\left(\eta^2 \sqrt{a \mathcal{L}_{\text{reg}}(t)} (\eta \mu_{\max}^2 \mathcal{L}_{\text{reg}}(t) + \mu_{\max}^6 \mathcal{L}_{\text{ori}}(t))\right) \\
1816 \quad & + O\left(\eta^2 a^2 \mu_{\max}^4 \mathcal{L}_{\text{reg}}(t) + \eta^4 a \mu_{\max}^{12} \mathcal{L}_{\text{ori}}(t)^2 + \eta^4 a^3 \mu_{\max}^4 \mathcal{L}_{\text{reg}}(t)^2\right) \\
1817 \quad & = -4\eta a^2 \sum_{j=1}^4 \|\Delta_{j,j+1}(t) W_j(t) - W_j(t) \Delta_{j-1,j}(t)\|_F^2 \\
1818 \quad & + \eta^2 O\left(a^2 \mu_{\max}^4 \mathcal{L}_{\text{reg}}(t) + \sqrt{a \mathcal{L}_{\text{reg}}(t)} \mu_{\max}^6 \mathcal{L}_{\text{ori}}(t)\right) \\
1819 \quad & + \eta^4 O\left(a \mu_{\max}^{12} \mathcal{L}_{\text{ori}}(t)^2 + a^3 \mu_{\max}^4 \mathcal{L}_{\text{reg}}(t)^2\right). \tag{113}
\end{aligned}$$

1832 Follow previous analysis in continuous case,

$$\sum_{j=1}^4 \|\Delta_{j,j+1}(t) W_j(t) - W_j(t) \Delta_{j-1,j}(t)\|_F^2 \geq \frac{2}{3} \frac{\mu_{\min}^4}{\mu_{\max}^2 + \mu_{\min}^2} \sum_{i=1}^3 \|\Delta_{i,i+1}(t)\|_F^2. \tag{114}$$

1836 Then the proof is done.
 1837 \square

1838

1839

1840

1841

1842

1843

Theorem 30. *The maximum and minimum singular values of W_j s are irrelevant to the regularization term.*

1844

1845

1846

1847

1848

1849

1850

Under $\eta \leq \min \left(\frac{1}{18a \max_{j,k} \sigma_k^2(W_j(t))}, \frac{\min_{j,k} \sigma_k(W_j(t))}{3 \max_j \|\nabla_{W_j} \mathcal{L}_{\text{ori}}(t)\|_{op}} \right)$,

1851

1852

1853

1854

1855

$$\begin{aligned} \max_{j,k} \sigma_k^2(W_j(t+1)) - \max_{j,k} \sigma_k^2(W_j(t)) &\leq 2\eta \max_{j,k} \sigma_k(W_j(t)) \max_j \|\nabla_{W_j} \mathcal{L}_{\text{ori}}(t)\|_{op} \\ &\quad + \eta^2 O \left(\|\nabla_{W_j} \mathcal{L}_{\text{ori}}(t)\|_{op}^2 + a^2 \max_{j,k} \sigma_k^6(W_j(t)) \right) \\ \min_{j,k} \sigma_k^2(W_j(t+1)) - \min_{j,k} \sigma_k^2(W_j(t)) &\geq -2\eta \min_{j,k} \sigma_k(W_j(t)) \max_j \|\nabla_{W_j} \mathcal{L}_{\text{ori}}(t)\|_{op} \\ &\quad + \eta^2 O \left(\|\nabla_{W_j} \mathcal{L}_{\text{ori}}(t)\|_{op}^2 + a^2 \max_{j,k} \sigma_k^6(W_j(t)) \right). \end{aligned} \quad (115)$$

1856

1857

1858

1859

1860

1861

1862

1863

Proof. For simplicity, set $W_0 \equiv W_1, W_5 \equiv W_4$.

1864

1865

Generally,

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

$$\begin{aligned} W_j(t+1)W_j(t+1)^H &= W_j(t)W_j(t)^H - \eta W_j(t)\nabla_{W_j} \mathcal{L}(t)^H - \eta \nabla_{W_j} \mathcal{L}(t)W_j(t)^H \\ &\quad + \eta^2 \nabla_{W_j} \mathcal{L}(t)\nabla_{W_j} \mathcal{L}(t)^H \\ &= W_j(t)W_j(t)^H - \eta W_j(t)\nabla_{W_j} \mathcal{L}_{\text{ori}}(t)^H - \eta \nabla_{W_j} \mathcal{L}_{\text{ori}}(t)W_j(t)^H \\ &\quad + 2\eta a W_j(t)\Delta_{j-1,j}(t)W_j(t)^H - \eta a W_j(t)W_j(t)^H \Delta_{j,j+1}(t) \\ &\quad - \eta a \Delta_{j,j+1}(t)W_j(t)W_j(t)^H + \eta^2 \nabla_{W_j} \mathcal{L}(t)\nabla_{W_j} \mathcal{L}(t)^H \\ &= \frac{1}{3} W_j(t) (I + 3\eta a \Delta_{j-1,j}(t))^2 W_j(t)^H \\ &\quad + \frac{1}{3} (I - 3\eta a \Delta_{j,j+1}(t)) W_j(t)W_j(t)^H (I - 3\eta a \Delta_{j,j+1}(t)) \\ &\quad + \frac{1}{3} (W_j(t) - 3\eta \nabla_{W_j} \mathcal{L}_{\text{ori}}(t)) (W_j(t) - 3\eta \nabla_{W_j} \mathcal{L}_{\text{ori}}(t))^H \\ &\quad + \eta^2 \nabla_{W_j} \mathcal{L}(t)\nabla_{W_j} \mathcal{L}(t)^H - 3\eta^2 \nabla_{W_j} \mathcal{L}_{\text{ori}}(t)\nabla_{W_j} \mathcal{L}_{\text{ori}}(t)^H \\ &\quad - 3\eta^2 a^2 W_j(t)\Delta_{j-1,j}(t)^2 W_j(t)^H \\ &\quad - 3\eta^2 a^2 \Delta_{j,j+1}(t)W_j(t)W_j(t)^H \Delta_{j,j+1}(t). \end{aligned} \quad (116)$$

Notice that $W_j(t) (I + 3\eta a \Delta_{j-1,j}(t))^2 W_j(t)^H$ and $(I + 3\eta a \Delta_{j-1,j}(t)) W_j(t)^H W_j(t) (I + 3\eta a \Delta_{j-1,j}(t))$ shares the same eigenvalues. Then from Lemma 19, the maximum and minimum singular values of $W_j(t+1)$ satisfy

1890
 1891
 1892 $\sigma_{\max}^2(W_j(t+1)) \leq \frac{1}{3}\sigma_{\max}^2(W_j(t)) \left[1 + 3\eta a (\sigma_{\max}^2(W_{j-1}(t)) - \sigma_{\max}^2(W_j(t)))\right]^2$
 1893 $+ \frac{1}{3}\sigma_{\max}^2(W_j(t)) \left[1 + 3\eta a (\sigma_{\max}^2(W_{j+1}(t)) - \sigma_{\max}^2(W_j(t)))\right]^2$
 1894 $+ \frac{1}{3} \left[\sigma_{\max}(W_j(t)) + 3\eta \|\nabla_{W_j} \mathcal{L}_{\text{ori}}(t)\|_{op} \right]^2$
 1895 $+ \eta^2 O \left(\|\nabla_{W_j} \mathcal{L}_{\text{ori}}(t)\|_{op}^2 + a^2 \max_{j,k} \sigma_k^6(W_j(t)) \right)$
 1896 $= \sigma_{\max}^2(W_j(t)) \left[1 + 3\eta a (\sigma_{\max}^2(W_{j+1}(t)) + \sigma_{\max}^2(W_{j-1}(t)) - 2\sigma_{\max}^2(W_j(t)))\right]$
 1897 $+ 2\eta\sigma_{\max}(W_j(t)) \|\nabla_{W_j} \mathcal{L}_{\text{ori}}(t)\|_{op} + \eta^2 O \left(\|\nabla_{W_j} \mathcal{L}_{\text{ori}}(t)\|_{op}^2 + a^2 \max_{j,k} \sigma_k^6(W_j(t)) \right)$
 1898
 1899
 1900
 1901
 1902
 1903
 1904 $\sigma_{\min}^2(W_j(t+1)) \geq \frac{1}{3}\sigma_{\min}^2(W_j(t)) \left[1 + 3\eta a (\sigma_{\min}^2(W_{j-1}(t)) - \sigma_{\min}^2(W_j(t)))\right]^2$
 1905 $+ \frac{1}{3}\sigma_{\min}^2(W_j(t)) \left[1 + 3\eta a (\sigma_{\min}^2(W_{j+1}(t)) - \sigma_{\min}^2(W_j(t)))\right]^2$
 1906 $+ \frac{1}{3} \left[\sigma_{\min}(W_j(t)) - 3\eta \|\nabla_{W_j} \mathcal{L}_{\text{ori}}(t)\|_{op} \right]^2$
 1907 $+ \eta^2 O \left(\|\nabla_{W_j} \mathcal{L}_{\text{ori}}(t)\|_{op}^2 + a^2 \max_{j,k} \sigma_k^6(W_j(t)) \right)$
 1908 $= \sigma_{\min}^2(W_j(t)) \left[1 + 3\eta a (\sigma_{\min}^2(W_{j+1}(t)) + \sigma_{\min}^2(W_{j-1}(t)) - 2\sigma_{\min}^2(W_j(t)))\right]$
 1909 $- 2\eta\sigma_{\min}(W_j(t)) \|\nabla_{W_j} \mathcal{L}_{\text{ori}}(t)\|_{op} + \eta^2 O \left(\|\nabla_{W_j} \mathcal{L}_{\text{ori}}(t)\|_{op}^2 + a^2 \max_{j,k} \sigma_k^6(W_j(t)) \right).$
 1910
 1911
 1912
 1913
 1914
 1915
 1916 (117)

By taking maximum and minimum over $j \in \{1, 2, 3, 4\}$ (for $\eta \leq \frac{1}{6a \max_{j,k} \sigma_k^2(W_j(t))}$, the first term of R.H.S can be upper bounded by $\max_{j,k} \sigma_k^2(W_j(t))$ or lower bounded by $\min_{j,k} \sigma_k^2(W_j(t))$ respectively), the proof is completed.

E DYNAMICS UNDER BALANCED INITIALIZATION

This section analyzes the training dynamics under balanced initialization.

At the beginning, We derive some properties from Lemma 24. Under balanced condition,

$$\begin{aligned}
W_{\prod_L, j} W_{\prod_L, j}^H &= \left(\prod_{k=N}^j W_k \right) \left(\prod_{k=N}^j W_k \right)^H = \left(W_N W_N^H \right)^{N-j+1} \\
W_{\prod_R, j}^H W_{\prod_R, j} &= \left(\prod_{k=j}^1 W_k \right)^H \left(\prod_{k=j}^1 W_k \right) = \left(W_1^H W_1 \right)^{N-j+1}.
\end{aligned} \tag{118}$$

Consider $j = 1$ and $j = N$, then

$$\begin{aligned} W_N W_N^H &= (WW^H)^{1/N} = U \Sigma_w^2 U^H \\ W_1 W_1^H &= (W^H W)^{1/N} = V \Sigma_w^2 V^H. \end{aligned} \quad (119)$$

Suppose the non-negative ASVD of product matrix is $W = U\Sigma_w^N V^H$, then

$$\begin{aligned}
1944 & \\
1945 \quad \frac{d}{dt} (U \Sigma_w^2 U^H) = \frac{d}{dt} (W_N W_N^H) = \Sigma V \Sigma_w^N U^H + U \Sigma_w^N V^H \Sigma^H - 2U \Sigma_w^{2N} U^H \\
1946 & \\
1947 \quad \frac{d}{dt} (V \Sigma_w^2 V^H) = \frac{d}{dt} (W_1^H W_1) = V \Sigma_w^N U^H \Sigma + \Sigma^H U \Sigma_w^N V^H - 2V \Sigma_w^{2N} V^H \\
1948 & \\
1949 \quad \frac{dW}{dt} = \sum_{j=1}^N U \Sigma_w^{2(j-1)} U^H \Sigma V \Sigma_w^{2(N-j)} V^H - N U \Sigma_w^{3N-2} V^H. \\
1950 & \\
1951 & \\
1952 \quad \text{The dynamics of } \sigma_r := \sigma_{w,r}^N \text{ is presented in (73).} \\
1953 & \\
1954 & \\
1955 \quad \text{E.1 SKEW-HERMITIAN ERROR} \\
1956 & \\
1957 \quad \text{This section formally state and prove Theorem 4.} \\
1958 \quad \textbf{Theorem 31.} \text{ The skew-Hermitian error is non-increasing.} \\
1959 & \\
1960 & \\
1961 & \\
1962 & \\
1963 & \\
1964 & \\
1965 & \\
1966 & \\
1967 & \\
1968 & \\
1969 & \\
1970 & \\
1971 & \\
1972 & \\
1973 & \\
1974 & \\
1975 & \\
1976 & \\
1977 & \\
1978 & \\
1979 & \\
1980 & \\
1981 & \\
1982 & \\
1983 & \\
1984 & \\
1985 & \\
1986 & \\
1987 & \\
1988 & \\
1989 & \\
1990 & \\
1991 & \\
1992 & \\
1993 & \\
1994 & \\
1995 & \\
1996 & \\
1997 & \\
\end{aligned} \tag{120}$$

The dynamics of $\sigma_r := \sigma_{w,r}^N$ is presented in (73).

E.1 SKEW-HERMITIAN ERROR

This section formally state and prove Theorem 4.

Theorem 31. *The skew-Hermitian error is non-increasing.*

Under balanced Gaussian initialization, for $\mathbb{F} = \mathbb{C}$ or \mathbb{R} , suppose the ASVD of the product matrix is $W(t) = U(t) \Sigma_w(t)^N V(t)^H$, furthermore assume that the singular values of the product matrix at initialization ($W(0)$) are distinct and different from zero (refer to Lemma 2 in Arora et al. (2019b)).

Denote $\sigma_{w,j} = (\Sigma_w)_{jj}$, $U' = \Sigma^{1/2} U$, $V' = \Sigma^{1/2} V$, u'_j and v'_j are the j^{th} columns of U' and V' respectively, then

$$\begin{aligned}
1966 \quad \frac{d}{dt} \|\Sigma^{1/2} (U - V) \Sigma_w\|_F^2 &= -2 \sum_j \sigma_{w,j}^N \cdot \left\| \Sigma^{1/2} (u'_j - v'_j) \right\|^2 - 2 \sum_j \sigma_{w,j}^{2N} \cdot \|u'_j - v'_j\|^2 \\
1967 & \\
1968 & \\
1969 & \\
1970 & \\
1971 & \\
1972 & \\
1973 & \\
1974 & \\
1975 & \\
1976 & \\
1977 & \\
1978 & \\
1979 & \\
1980 & \\
1981 & \\
1982 & \\
1983 & \\
1984 & \\
1985 & \\
1986 & \\
1987 & \\
1988 & \\
1989 & \\
1990 & \\
1991 & \\
1992 & \\
1993 & \\
1994 & \\
1995 & \\
1996 & \\
1997 & \\
\end{aligned} \tag{121}$$

where $f_N(x, y) = \begin{cases} \frac{x^2 y^2 (x^{N-2} - y^{N-2})}{x^2 - y^2}, & y \neq x \\ \frac{N-2}{2} x^N, & y = x \end{cases}$ is a non-negative real-analytic function on $[0, +\infty)^2$.

Proof. By (73)

$$\frac{d\sigma_{w,j}}{dt} = \sigma_{w,j}^{N-1} \left(\frac{\langle u'_j, v'_j \rangle + \langle v'_j, u'_j \rangle}{2} - \sigma_{w,j}^N \right). \tag{122}$$

From Lemma 25,

$$\frac{dU}{dt} = U (F \odot M_U + D_U), \quad \frac{dV}{dt} = V (F \odot M_V + D_V), \tag{123}$$

where

$$\begin{cases} (M_U)_{jk} = \langle v'_k, u'_j \rangle \sigma_{w,k}^N + \langle u'_k, v'_j \rangle \sigma_{w,j}^N - 2\sigma_{w,j}^{2N} \delta_{j,k}, \\ (M_V)_{jk} = \langle u'_k, v'_j \rangle \sigma_{w,k}^N + \langle v'_k, u'_j \rangle \sigma_{w,j}^N - 2\sigma_{w,j}^{2N} \delta_{j,k}, \end{cases} \tag{124}$$

$D_{U,V}$ are pure imaginary diagonal matrices defined by

$$(D_U)_{jj} - (D_V)_{jj} = \frac{N}{2} \sigma_{w,j}^{N-2} [\langle v'_j, u'_j \rangle - \langle u'_j, v'_j \rangle], \quad \Re(D_U) = \Re(D_V) = O. \tag{125}$$

Here $\langle a, b \rangle := b^H a$ follows the standard definition of (complex) inner product. Then

$$\begin{aligned}
1998 \\
1999 \\
2000 \quad \frac{dU'^H V'}{dt} &= \frac{dU^H}{dt} \Sigma V + U^H \Sigma \frac{dV}{dt} = (F^H \odot M_U^H - D_U) U^H \Sigma V + U^H \Sigma V (F \odot M_V + D_V) \\
2001 \\
2002 \quad \frac{dU'^H U'}{dt} &= \frac{dU^H}{dt} \Sigma U + U^H \Sigma \frac{dU}{dt} = (F^H \odot M_U^H - D_U) U^H \Sigma U + U^H \Sigma U (F \odot M_U + D_U) \\
2003 \\
2004 \quad \frac{dV'^H V'}{dt} &= \frac{dV^H}{dt} \Sigma V + V^H \Sigma \frac{dV}{dt} = (F^H \odot M_V^H - D_V) V^H \Sigma V + V^H \Sigma V (F \odot M_V + D_V). \\
2005 \\
2006 \\
2007 \quad \text{For each diagonal entry,} \\
2008 \\
2009 \\
2010 \quad \frac{d}{dt} \langle v'_j, u'_j \rangle &= \left(\frac{dU'^H V'}{dt} \right)_{jj} \\
2011 \\
2012 \quad = -\frac{N}{2} \sigma_{w,j}^{N-2} \langle v'_j, u'_j \rangle [\langle v'_j, u'_j \rangle - \langle u'_j, v'_j \rangle] \\
2013 \\
2014 \quad + \sum_{k \neq j} \frac{1}{\sigma_{w,j}^2 - \sigma_{w,k}^2} \left[\left(|\langle u'_j, v'_k \rangle|^2 + |\langle u'_k, v'_j \rangle|^2 \right) \sigma_{w,j}^N + 2 \langle v'_k, u'_j \rangle \langle v'_j, u'_k \rangle \sigma_{w,k}^N \right] \\
2015 \\
2016 \\
2017 \quad \frac{d}{dt} \langle u'_j, u'_j \rangle &= \left(\frac{dU'^H U'}{dt} \right)_{jj} \\
2018 \\
2019 \\
2020 \quad = \sum_{k \neq j} \frac{1}{\sigma_{w,j}^2 - \sigma_{w,k}^2} \left[(\langle u'_k, v'_j \rangle \langle u'_j, u'_k \rangle + \langle u'_k, u'_j \rangle \langle u'_j, u'_k \rangle) \sigma_{w,j}^N \right. \\
2021 \\
2022 \quad \left. + (\langle v'_k, u'_j \rangle \langle u'_j, u'_k \rangle + \langle u'_k, u'_j \rangle \langle u'_j, v'_k \rangle) \sigma_{w,k}^N \right] \\
2023 \\
2024 \quad \frac{d}{dt} \langle v'_j, v'_j \rangle &= \left(\frac{dV'^H V'}{dt} \right)_{jj} \\
2025 \\
2026 \\
2027 \quad = \sum_{k \neq j} \frac{1}{\sigma_{w,j}^2 - \sigma_{w,k}^2} \left[(\langle v'_k, u'_j \rangle \langle v'_j, v'_k \rangle + \langle v'_k, v'_j \rangle \langle u'_j, v'_k \rangle) \sigma_{w,j}^N \right. \\
2028 \\
2029 \quad \left. + (\langle u'_k, v'_j \rangle \langle v'_j, v'_k \rangle + \langle v'_k, v'_j \rangle \langle v'_j, u'_k \rangle) \sigma_{w,k}^N \right]. \\
2030 \\
2031 \quad \text{Notice that for the second and third equation, } D_U, D_V \text{ terms cancel out with each other. This further} \\
2032 \quad \text{gives} \\
2033 \\
2034 \\
2035 \quad \frac{d}{dt} \|u'_j - v'_j\|^2 \\
2036 \\
2037 \quad = \frac{N}{2} \sigma_{w,j}^{N-2} [\langle v'_j, u'_j \rangle - \langle u'_j, v'_j \rangle]^2 \\
2038 \\
2039 \quad + \sum_{k \neq j} \frac{\sigma_{w,j}^N}{\sigma_{w,j}^2 - \sigma_{w,k}^2} \cdot \left[-2 \left(|\langle u'_j, v'_k \rangle|^2 + |\langle u'_k, v'_j \rangle|^2 \right) \right. \\
2040 \\
2041 \quad \left. + (\langle u'_k, v'_j \rangle \langle u'_j, u'_k \rangle + \langle u'_k, u'_j \rangle \langle v'_j, u'_k \rangle) + (\langle v'_k, u'_j \rangle \langle v'_j, v'_k \rangle + \langle v'_k, v'_j \rangle \langle u'_j, v'_k \rangle) \right] \\
2042 \\
2043 \quad + \sum_{k \neq j} \frac{\sigma_{w,k}^N}{\sigma_{w,j}^2 - \sigma_{w,k}^2} \cdot \left[-2 (\langle v'_k, u'_j \rangle \langle v'_j, u'_k \rangle + \langle u'_j, v'_k \rangle \langle u'_k, v'_j \rangle) \right. \\
2044 \\
2045 \quad \left. + (\langle v'_k, u'_j \rangle \langle u'_j, u'_k \rangle + \langle u'_k, u'_j \rangle \langle u'_j, v'_k \rangle) + (\langle u'_k, v'_j \rangle \langle v'_j, v'_k \rangle + \langle v'_k, v'_j \rangle \langle v'_j, u'_k \rangle) \right]. \\
2046 \\
2047 \\
2048 \quad \text{For the L.H.S. of (121),} \\
2049 \\
2050 \\
2051 \quad \frac{d}{dt} \|(U' - V') \Sigma_w\|_F^2 &= \sum_j \|u'_j - v'_j\|^2 \frac{d}{dt} \sigma_{w,j}^2 + \sum_j \sigma_{w,j}^2 \frac{d}{dt} \|u'_j - v'_j\|^2. \tag{129}
\end{aligned}$$

2052 The first term can be written by
 2053

$$\begin{aligned}
 & \sum_j \|u'_j - v'_j\|^2 \frac{d}{dt} \sigma_{w,j}^2 \\
 &= \sum_j \sigma_{w,j}^N (\langle u'_j, v'_j \rangle + \langle v'_j, u'_j \rangle - 2\sigma_{w,j}^N) \|u'_j - v'_j\|^2 \\
 &= \sum_j \sigma_{w,j}^N \left(u'^H_j u'_j u'^H_j v'_j + v'^H_j u'_j u'^H_j u'_j + u'^H_j v'_j v'^H_j v'_j + v'^H_j v'_j v'^H_j u'_j \right) \\
 &\quad - \sum_j \sigma_{w,j}^N \left(u'^H_j v'_j + v'^H_j u'_j \right)^2 - 2 \sum_j \sigma_{w,j}^{2N} \cdot \|u'_j - v'_j\|^2.
 \end{aligned} \tag{130}$$

2065 For the second term,
 2066

$$\begin{aligned}
 & \sum_j \sigma_{w,j}^2 \frac{d}{dt} \|u'_j - v'_j\|^2 \\
 &= \frac{1}{2} \left(\sum_j \sigma_{w,j}^2 \frac{d}{dt} \|u'_j - v'_j\|^2 + \sum_k \sigma_{w,k}^2 \frac{d}{dt} \|u'_k - v'_k\|^2 \right) \\
 &= \frac{N}{2} \sum_j \sigma_{w,j}^N [\langle v'_j, u'_j \rangle - \langle u'_j, v'_j \rangle]^2 \\
 &\quad - \sum_{j,k,j \neq k} \frac{\sigma_{w,j}^2 \sigma_{w,k}^2 (\sigma_{w,j}^{N-2} - \sigma_{w,k}^{N-2})}{\sigma_{w,j}^2 - \sigma_{w,k}^2} |\langle v'_k, u'_j \rangle - \langle u'_k, v'_j \rangle|^2 \\
 &\quad - 2 \sum_{j,k,j \neq k} \sigma_{w,j}^N \cdot (|\langle u'_j, v'_k \rangle|^2 + |\langle u'_k, v'_j \rangle|^2) \\
 &\quad + 2 \sum_{j,k,j \neq k} \sigma_{w,j}^N \cdot \Re(\langle u'_k, v'_j \rangle \langle u'_j, u'_k \rangle + \langle u'_j, v'_k \rangle \langle v'_k, v'_j \rangle).
 \end{aligned} \tag{131}$$

2085 Notice that
 2086

$$[\langle v'_j, u'_j \rangle - \langle u'_j, v'_j \rangle]^2 = 4 [i \Im(\langle v'_j, u'_j \rangle)]^2 = - \left| u'^H_j v'_j - v'^H_j u'_j \right|^2, \tag{132}$$

$$\begin{aligned}
 & - \sum_j \sigma_{w,j}^N \left(u'^H_j v'_j + v'^H_j u'_j \right)^2 - 2 \sum_{j,k,j \neq k} \sigma_{w,j}^N \left(|\langle u'_j, v'_k \rangle|^2 + |\langle u'_k, v'_j \rangle|^2 \right) \\
 &= - \sum_j \sigma_{w,j}^N \left(u'^H_j v'_j - v'^H_j u'_j \right)^2 - 2 \sum_j \sigma_{w,j}^N \left(u'^H_j v'_j v'^H_j u'_j + v'^H_j u'_j u'^H_j v'_j \right) \\
 &\quad - 2 \sum_j \sigma_{w,j}^N \cdot \left(u'^H_j \left(\sum_{k \neq j} v'_k v'^H_k \right) u'_j + v'^H_j \left(\sum_{k \neq j} u'_k u'^H_k \right) v'_j \right) \\
 &= - \sum_j \sigma_{w,j}^N \left(u'^H_j v'_j - v'^H_j u'_j \right)^2 - 2 \sum_j \sigma_{w,j}^N \cdot \left(u'^H_j V' V'^H u'_j + v'^H_j U' U'^H v'_j \right) \\
 &= \sum_j \sigma_{w,j}^N \left| u'^H_j v'_j - v'^H_j u'_j \right|^2 - 2 \sum_j \sigma_{w,j}^N \cdot \left(u'^H_j \Sigma u'_j + v'^H_j \Sigma v'_j \right),
 \end{aligned} \tag{133}$$

2105 and

$$\begin{aligned}
& \sum_j \sigma_{w,j}^N \left(u_j'^H u_j' u_j'^H v_j' + v_j'^H u_j' u_j'^H u_j' + u_j'^H v_j' v_j'^H v_j' + v_j'^H v_j' v_j'^H u_j' \right) \\
& + 2 \sum_{j,k,j \neq k} \sigma_{w,j}^N \cdot \Re \left(\langle u_k', v_j' \rangle \langle u_j', u_k' \rangle + \langle u_j', v_k' \rangle \langle v_k', v_j' \rangle \right) \\
& = 2 \sum_{j,k} \sigma_{w,j}^N \cdot \Re \left(u_j'^H \left(UU'^H + VV'^H \right) v_j' \right) \\
& = 2 \sum_j \sigma_{w,j}^N \cdot \left(u_j'^H \Sigma v_j' + v_j'^H \Sigma u_j' \right). \tag{134}
\end{aligned}$$

By combining the results above,

$$\begin{aligned}
& \frac{d}{dt} \|(U' - V') \Sigma_w\|_F^2 \\
& = -2 \sum_j \sigma_{w,j}^N \cdot \left(u_j'^H \Sigma u_j' + v_j'^H \Sigma v_j' \right) + 2 \sum_j \sigma_{w,j}^N \cdot \left(u_j'^H \Sigma v_j' + v_j'^H \Sigma u_j' \right) \\
& - 2 \sum_j \sigma_{w,j}^{2N} \cdot \|u_j' - v_j'\|^2 \\
& - \sum_{j,k,j \neq k} \frac{\sigma_{w,j}^2 \sigma_{w,k}^2 \left(\sigma_{w,j}^{N-2} - \sigma_{w,k}^{N-2} \right)}{\sigma_{w,j}^2 - \sigma_{w,k}^2} \left| u_j'^H v_k' - v_j'^H u_k' \right|^2 - \sum_j \frac{N-2}{2} \sigma_{w,j}^N \left| u_j'^H v_j' - v_j'^H u_j' \right|^2 \\
& = -2 \sum_j \sigma_{w,j}^N \cdot \left\| \Sigma^{1/2} (u_j' - v_j') \right\|^2 - 2 \sum_j \sigma_{w,j}^{2N} \cdot \|u_j' - v_j'\|^2 \\
& - \sum_{j,k} f_N(\sigma_{w,j}, \sigma_{w,k}) \left| u_j'^H v_k' - v_j'^H u_k' \right|^2. \tag{135}
\end{aligned}$$

This completes the proof. \square

For even depth $2 \mid N$, we have a similar result written in matrix form:

Theorem 32. *If $2 \mid N$, the singular values of the product matrix $W(0)$ are different from zero at initialization, then*

$$\begin{aligned}
\frac{d}{dt} \left\| \Sigma^{1/2} (U - V) \Sigma_w \right\|_F^2 & = -2 \left\| \Sigma (U - V) \Sigma_w^{N/2} \right\|_F^2 - 2 \left\| \Sigma^{1/2} (U - V) \Sigma_w^N \right\|_F^2 \\
& - 2 \Re \left(\text{tr} \left(\sum_{j=1}^{N/2-1} \Sigma U \Sigma_w^{2j} (U^H \Sigma V - V^H \Sigma U) \Sigma_w^{N-2j} V^H \right) \right) \tag{136} \\
& \leq 0.
\end{aligned}$$

We present another approach of proof which *takes the inverse* of some terms. This approach *adapts to the skew-Hermitian term in imbalanced initialization*, where the proof of Theorem 31 in does not hold.

To prove the theorem, we introduce the following lemma.

Lemma 33. *If $2 \mid N$, Σ_w is full rank at initialization, then $\forall k = 0, 1, \dots, N/2$ we have*

$$\begin{aligned}
& \frac{d}{dt} (U \pm V) \Sigma_w^{2k} (U \pm V)^H \\
&= \sum_{j=1}^k \left[U \Sigma_w^{2(j-1)} U^H \Sigma V \Sigma_w^{N+2k-2j} U^H + U \Sigma_w^{N+2(j-1)} V^H \Sigma U \Sigma_w^{2(k-j)} U^H \right. \\
&\quad \left. + V \Sigma_w^{2(j-1)} V^H \Sigma U \Sigma_w^{N+2k-2j} V^H + V \Sigma_w^{N+2(j-1)} U^H \Sigma V \Sigma_w^{2(k-j)} V^H \right] \\
&\pm \sum_{j=1}^{N/2+k} \left[U \Sigma_w^{2(j-1)} U^H \Sigma V \Sigma_w^{N+2k-2j} V^H + V \Sigma_w^{2(j-1)} V^H \Sigma U \Sigma_w^{N+2k-2j} U^H \right] \\
&\mp \sum_{j=1}^{N/2-k} \left[U \Sigma_w^{2(j-1+k)} V^H \Sigma U \Sigma_w^{N-2j} V^H + V \Sigma_w^{2(j-1+k)} U^H \Sigma V \Sigma_w^{N-2j} U^H \right] \\
&- 2k (U \pm V) \Sigma_w^{2(N+k-1)} (U \pm V)^H.
\end{aligned} \tag{137}$$

Proof. $\forall l \in \mathbb{N}$ we have

$$\begin{aligned}
& \frac{d}{dt} (U \Sigma_w^{2l} U^H) = \sum_{j=1}^l U \Sigma_w^{2(j-1)} U^H \left(\frac{d}{dt} (U \Sigma_w^2 U^H) \right) U \Sigma_w^{2(l-j)} U^H \\
&= \sum_{j=1}^l U \Sigma_w^{2(j-1)} U^H (\Sigma V \Sigma_w^N U^H + U \Sigma_w^N V^H \Sigma^H - 2U \Sigma_w^{2N} U^H) U \Sigma_w^{2(l-j)} U^H.
\end{aligned} \tag{138}$$

$$\begin{aligned}
& \frac{d}{dt} (V \Sigma_w^{2l} V^H) = \sum_{j=1}^l V \Sigma_w^{2(j-1)} V^H \left(\frac{d}{dt} (V \Sigma_w^2 V^H) \right) V \Sigma_w^{2(l-j)} V^H \\
&= \sum_{j=1}^l V \Sigma_w^{2(j-1)} V^H (\Sigma U \Sigma_w^N V^H + V \Sigma_w^N U^H \Sigma^H - 2V \Sigma_w^{2N} V^H) V \Sigma_w^{2(l-j)} V^H.
\end{aligned} \tag{139}$$

From Lemma 24, $U \Sigma_w^{N-2k} U^H$ is invertible at arbitrary time $t \in [0, +\infty)$, thus

$$\begin{aligned}
& \frac{d}{dt} (U \Sigma_w^{-(N-2k)} U^H) = - (U \Sigma_w^{N-2k} U^H)^{-1} \left[\frac{d}{dt} (U \Sigma_w^{N-2k} U^H) \right] (U \Sigma_w^{N-2k} U^H)^{-1} \\
&= - (U \Sigma_w^{-(N-2k)} U^H) \left[\frac{d}{dt} (U \Sigma_w^{N-2k} U^H) \right] (U \Sigma_w^{-(N-2k)} U^H),
\end{aligned} \tag{140}$$

which further gives

$$\begin{aligned}
& \frac{d}{dt} (U \Sigma_w^{2k} V^H) \\
&= \left[\frac{d}{dt} (U \Sigma_w^{-(N-2k)} U^H) \right] U \Sigma_w^N V^H + U \Sigma_w^{-(N-2k)} U^H \left[\frac{d}{dt} (U \Sigma_w^N V^H) \right] \\
&= - (U \Sigma_w^{-(N-2k)} U^H) \left[\frac{d}{dt} (U \Sigma_w^{N-2k} U^H) \right] (U \Sigma_w^{2k} V^H) \\
&\quad + U \Sigma_w^{-(N-2k)} U^H \left[\frac{d}{dt} (U \Sigma_w^N V^H) \right] \\
&= \sum_{j=1}^{N/2+k} U \Sigma_w^{2(j-1)} U^H \Sigma V \Sigma_w^{N+2(k-j)} V^H + \sum_{j=1}^{N/2-k} U \Sigma_w^{2(k+j-1)} V^H \Sigma^H U \Sigma_w^{N-2j} V^H \\
&\quad - 2k U \Sigma_w^{2(N+k-1)} V^H.
\end{aligned} \tag{141}$$

2214 Combine (138), (139) and (141) together, then the proof is completed.
 2215

□

2216
 2217 Now we present the proof of Theorem 32.
 2218

2219 *Proof.* Denote $Q = U^H \Sigma V$, calculate the L.H.S. of (136) by setting $k = 1$ in Lemma 33:
 2220

$$\begin{aligned}
 & \frac{d}{dt} \left\| \Sigma^{1/2} (U - V) \Sigma_w \right\|_F^2 \\
 &= \frac{d}{dt} \text{tr} (\Sigma (U - V) \Sigma_w^2 (U - V)^H) \\
 &= -2 \text{tr} (\Sigma^2 (U - V) \Sigma_w^N (U - V)^H) - 2 \text{tr} (\Sigma (U - V) \Sigma_w^{2N} (U - V)^H) \\
 &\quad - 2 \Re \left(\text{tr} \left(\sum_{j=1}^{N/2-1} \Sigma U \Sigma_w^{2j} (U^H \Sigma V - V^H \Sigma U) \Sigma_w^{N-2j} V^H \right) \right) \\
 &= -2 \left\| \Sigma (U - V) \Sigma_w^{N/2} \right\|_F^2 - 2 \left\| \Sigma^{1/2} (U - V) \Sigma_w^N \right\|_F^2 \\
 &\quad - 2 \Re \left(\text{tr} \left(\sum_{j=1}^{N/2-1} \Sigma_w^{2j} (Q - Q^H) \Sigma_w^{N-2j} Q^H \right) \right). \tag{142}
 \end{aligned}$$

2231 To analyze the last term,
 2232

$$\begin{aligned}
 & \Re \left(\text{tr} \left(\sum_{j=1}^{N/2-1} \Sigma_w^{2j} (Q - Q^H) \Sigma_w^{N-2j} Q^H \right) \right) \\
 &= \Re \left(\sum_{m,n} \left(\sum_{j=1}^{N/2-1} \sigma_m^{2j} (\Sigma_w) (Q_{mn} - \overline{Q_{nm}}) \sigma_n^{N-2j} (\Sigma_w) \overline{Q_{mn}} \right) \right) \\
 &= \frac{1}{2} \sum_{m,n} \left(\sum_{j=1}^{N/2-1} \sigma_m^{2j} (\Sigma_w) \sigma_n^{N-2j} (\Sigma_w) (|Q_{mn}|^2 + |Q_{nm}|^2 - 2 \Re(Q_{mn} Q_{nm})) \right) \\
 &= \frac{1}{2} \sum_{m,n} |Q_{mn} - \overline{Q_{nm}}|^2 \left(\sum_{j=1}^{N/2-1} \sigma_m^{2j} (\Sigma_w) \sigma_n^{N-2j} (\Sigma_w) \right) \geq 0. \tag{143}
 \end{aligned}$$

2253 Thus for arbitrary $\Sigma \succ O$ we have
 2254

$$\begin{aligned}
 & \frac{d}{dt} \left\| \Sigma^{1/2} (U - V) \Sigma_w \right\|_F^2 = -2 \left\| \Sigma (U - V) \Sigma_w^{N/2} \right\|_F^2 - 2 \left\| \Sigma^{1/2} (U - V) \Sigma_w^N \right\|_F^2 \\
 &\quad - \sum_{m,n} |Q_{mn} - \overline{Q_{nm}}|^2 \left(\sum_{j=1}^{N/2-1} \sigma_m^{2j} (\Sigma_w) \sigma_n^{N-2j} (\Sigma_w) \right) \\
 &\leq 0. \tag{144}
 \end{aligned}$$

2262 which completes the proof.
 2263

□

2264
 2265
 2266 E.2 HERMITIAN MAIN TERM
 2267

This section proves Theorem 5.

2268 *Proof.* Consider

$$\begin{aligned}
 & \frac{d}{dt}(U + V)\Sigma_w^2(U + V)^H \\
 &= \Sigma(U + V)\Sigma_w^N(U + V)^H + (U + V)\Sigma_w^N(U + V)^H\Sigma - 2(U + V)\Sigma_w^{2N}(U + V)^H \\
 &+ \sum_{j=1}^{N/2-1} [U\Sigma_w^{2j}(U^H\Sigma V - V^H\Sigma U)\Sigma_w^{N-2j}V^H + V\Sigma_w^{2j}(V^H\Sigma U - U^H\Sigma V)\Sigma_w^{N-2j}U^H].
 \end{aligned} \tag{145}$$

2278 Denote $P = \frac{(U+V)\Sigma_w}{2}$, $Q = \frac{(U-V)\Sigma_w}{2}$. Then $P^H Q = -Q^H P$, $\Sigma_w^2 = P^H P + Q^H Q$.

2280 From $ABC^H - CBA^H = \frac{1}{2}[(A - C)B(A + C)^H - (A + C)B(A - C)^H]$ for arbitrary A, B, C
2281 we have

$$\begin{aligned}
 \frac{d}{dt}PP^H &= \Sigma P\Sigma_w^{N-2}P^H + P\Sigma_w^{N-2}P^H\Sigma - 2P\Sigma_w^{2N-2}P^H \\
 &+ \sum_{j=1}^{N/2-1} [Q\Sigma_w^{2j-2}(Q^H\Sigma P - P^H\Sigma Q)\Sigma_w^{N-2j-2}P^H \\
 &- P\Sigma_w^{2j-2}(Q^H\Sigma P - P^H\Sigma Q)\Sigma_w^{N-2j-2}Q^H].
 \end{aligned} \tag{146}$$

2290 Suppose the k^{th} eigenvalue and eigenvector of PP^H are x_k^2 and ξ_k respectively, $P^H\xi_k = x_k\eta_k$,
2291 then

$$\begin{aligned}
 \frac{d}{dt}x_k^2 &= \xi_k^H \left(\frac{d}{dt}PP^H \right) \xi_k \\
 &= 2\xi_k^H \Sigma P\Sigma_w^{N-2}P^H \xi_k - 2\xi_k^H P\Sigma_w^{2N-2}P^H \xi_k \\
 &+ 2\xi_k^H \left[\sum_{j=1}^{N/2-1} Q\Sigma_w^{2j-2}(Q^H\Sigma P - P^H\Sigma Q)\Sigma_w^{N-2j-2}P^H \right] \xi_k.
 \end{aligned} \tag{147}$$

2301 We focus on $N = 4$, $\Sigma = \sigma_1(\Sigma)I$. Then

$$\begin{aligned}
 \frac{d}{dt}x_k^2 &= 2\sigma_1(\Sigma)\xi_k^H P\Sigma_w^2P^H \xi_k - 2\xi_k^H P\Sigma_w^6P^H \xi_k + 4\sigma_1(\Sigma)\xi_k^H QQ^H PP^H \xi_k \\
 &= 2\sigma_1(\Sigma)\xi_k^H P\Sigma_w^2P^H \xi_k - 2\xi_k^H P\Sigma_w^6P^H \xi_k + 4\sigma_1(\Sigma)x_k^2\xi_k^H QQ^H \xi_k.
 \end{aligned} \tag{148}$$

2307 For the second term:

$$\begin{aligned}
 \xi_k^H P\Sigma_w^6P^H \xi_k &= \xi_k^H P(P^H P + Q^H Q)\Sigma_w^2(P^H P + Q^H Q)P^H \xi_k \\
 &= x_k^4\xi_k^H P\Sigma_w^2P^H \xi_k + 2x_k^2\xi_k^H P\Sigma_w^2Q^H QP^H \xi_k + \xi_k^H PQ^H Q\Sigma_w^2Q^H QP^H \xi_k \\
 &\leq x_k^4\xi_k^H P\Sigma_w^2P^H \xi_k + 2x_k^4\|Q\|_{op}^2\|\Sigma_w\|_{op}^2 + x_k^2\|Q\|_{op}^4\|\Sigma_w\|_{op}^2.
 \end{aligned} \tag{149}$$

2315 From Theorem 32, $\|Q\|_{op} \leq \|Q\|_F \leq \|Q(t=0)\|_F$. Then

$$\begin{aligned}
 \frac{d}{dt}x_k^2 &\geq (2\sigma_1(\Sigma) - x_k^4)\xi_k^H P\Sigma_w^2P^H \xi_k - 2x_k^4\|Q\|_{op}^2\|\Sigma_w\|_{op}^2 - x_k^2\|Q\|_{op}^4\|\Sigma_w\|_{op}^2 \\
 &\geq \left(2\sigma_1(\Sigma) - x_k^4 - \frac{1}{2}\|\Sigma_w\|_{op}^2\|((U - V)\Sigma_w)|_{t=0}\|_F^2\right)x_k^4 - \frac{1}{16}x_k^2\|\Sigma_w\|_{op}^2\|((U - V)\Sigma_w)|_{t=0}\|_F^4.
 \end{aligned} \tag{150}$$

2322 The lower bound is proved.

2323 For the upper bound,

$$2326 \frac{d}{dt} x_k^2 \leq 2\sigma_1(\Sigma)x_k^2 \|\Sigma_w\|_{op}^2 + 4\sigma_1(\Sigma)x_k^2 \|Q\|_{op}^2. \quad (151)$$

2328 This completes the proof.

2329 \square

2331 **Corollary 34.** *If for some k , $\sigma_k((U + V)\Sigma_w)|_{t=0} = 0$, then $\sigma_k((U + V)\Sigma_w) \equiv 0$ for finite time*
 2332 *$t \in [0, +\infty)$.*

2334 *Proof.* Denote $x_k \equiv \frac{1}{2}\sigma_k((U + V)\Sigma_w)$. By Lemma 23, $\|\Sigma - W\|_F \leq \|\Sigma - W(0)\|_F$. Then $\|\Sigma_w\|_{op}$
 2335 is bounded:

$$2338 \|\Sigma_w\|_{op} = \|W\|_{op}^{1/N} \leq (\|\Sigma\|_{op} + \|\Sigma - W\|_{op})^{1/N} \leq (\|\Sigma\|_{op} + \|\Sigma - W\|_F)^{1/N} \quad (152)$$

$$2339 \leq (\|\Sigma\|_{op} + \|\Sigma - W(0)\|_F)^{1/N}.$$

2341 Then from Theorem 5, there exists some $C \in (0, +\infty)$ such that

$$2344 \frac{d}{dt} x_k^2 \leq \sigma_1(\Sigma) (2\|\Sigma_w\|_{op}^2 + \|((U - V)\Sigma_w)|_{t=0}\|_F^2) x_k^2 \leq C x_k^2. \quad (153)$$

2346 Giving

$$2348 x_k^2(t) \leq x_k^2(0)e^{Ct} = 0. \quad (154)$$

2350 This completes the proof.

2351 \square

2353 E.3 CONVERGENCE PROOF

2355 This section states the global convergence guarantee under balanced Gaussian initialization, with
 2356 gradient flow. Below we omit the confidence level δ in $f_1(\delta) = O(\frac{1}{\delta})$ and $f_2'(\delta) = O(\frac{1}{\delta^2})$ for
 2357 simplicity.

2358 **Theorem 35.** *Global convergence bound under balanced Gaussian initialization, gradient flow.*

2360 *For four-layer matrix factorization under gradient flow, balanced Gaussian initialization with scal-*
 2361 *ing factor $\epsilon \leq \frac{\sigma_1^{1/4}(\Sigma)}{4f_1^2 f_2' d^{29/8}}$, then for target matrix with identical singular values,*

2363 *1. For $\mathbb{F} = \mathbb{R}$, with probability at least $\frac{1}{2}$ the loss does not converge to zero. Specifically,*

$$2365 \mathcal{L}(t) \geq \frac{1}{2}\sigma_1^2(\Sigma), \forall t \in [0, +\infty). \quad (155)$$

2367 *2. For $\mathbb{F} = \mathbb{C}$ with high probability and for $\mathbb{F} = \mathbb{R}$ with probability close to $\frac{1}{2}$, there exists*
 $T(\epsilon_{\text{conv}}) = \frac{16f_2'^2 d^3}{\sigma_1(\Sigma)\epsilon^2} + \frac{1}{8\sigma_1^{3/2}(\Sigma)} \ln \left(\frac{d\sigma_1^2(\Sigma)}{\epsilon_{\text{conv}}} \right)$ *, such that for any $\epsilon_{\text{conv}} > 0$, when $t > T(\epsilon_{\text{conv}})$,*
 $\mathcal{L}(t) < \epsilon_{\text{conv}}$.

2372 **Remark 16.** *The first part of this Theorem can be generalized to general (bounded) balanced ini-*
 2373 *tialization.*

2374 *Proof.* For the first conclusion, by Theorem 3 and Corollary 34, for $\mathbb{F} = \mathbb{R}$, $\sigma_{\min}((U + V)\Sigma_w) \equiv 0$
 2375 with probability at least $\frac{1}{2}$. Consequently $\sigma_{\min}((U + V)\Sigma_w^N) \equiv 0$.

2376 Suppose at time t , for some unit vector y , $(U + V)\Sigma_w^N y(t) = 0$. Then
 2377

$$\begin{aligned} 2378 \|\Sigma - W\|_F &= \|\sigma_1(\Sigma)I - U\Sigma_w^N V^\top\|_F = \|\sigma_1(\Sigma)V - U\Sigma_w^N\|_F \\ 2379 &\geq \|\sigma_1(\Sigma)V - U\Sigma_w^N\|_{op} \geq \|(\sigma_1(\Sigma)V - U\Sigma_w^N)y\| \\ 2380 &= \|(\sigma_1(\Sigma)V + V\Sigma_w^N)y\| = \|(\sigma_1(\Sigma) + \Sigma_w^N)y\| \geq \sigma_1(\Sigma). \\ 2381 \end{aligned} \quad (156)$$

2383 For the second part:
 2384

2385 From Lemma 23, $\|\Sigma - W\|_F \leq \|\Sigma - W(0)\|_F < 2\sqrt{d}\sigma_1(\Sigma)$. Thus for any time t ,
 2386

$$\begin{aligned} 2387 \|\Sigma_w\|_{op} &= \|W\|_{op}^{1/4} \leq (\|\Sigma\|_{op} + \|\Sigma - W\|_{op})^{1/4} \leq (\|\Sigma\|_{op} + \|\Sigma - W\|_F)^{1/N} \\ 2388 &\leq (\|\Sigma\|_{op} + \|\Sigma - W(0)\|_F)^{1/4} \leq \sqrt{2}d^{1/8}\sigma_1^{1/4}(\Sigma). \\ 2389 \end{aligned} \quad (157)$$

2391 From Theorem 3, for $\mathbb{F} = \mathbb{C}$ with high probability (while for $\mathbb{F} = \mathbb{R}$ with probability close to $\frac{1}{2}$),
 2392 $x_k(t=0) \geq \frac{\epsilon}{2f_2' d^{3/2}}$, $\|(U - V)\Sigma_w\|_F|_{t=0} \leq 2f_1 d \epsilon$. Thus by taking $\epsilon \leq \frac{\sigma_1^{1/4}(\Sigma)}{4f_1^2 f_2' d^{29/8}}$, for t such that
 2393 $x_k(t) \geq x_k(0)$,
 2394

$$\begin{aligned} 2395 \frac{d}{dt}x_k^2 &\geq \left(2\sigma_1(\Sigma) - \left(4f_1^2 d^{9/4} + 8f_1^4 f_2'^2 d^{29/4}\right)\epsilon^2 \sigma_1^{1/2}(\Sigma) - x_k^4\right)x_k^4 \geq \left(\frac{5}{4}\sigma_1(\Sigma) - x_k^4\right)x_k^4. \\ 2396 \end{aligned} \quad (158)$$

2400 This indicates that all x_k monotonically increase to $\sigma_1^{1/4}(\Sigma)$ in $T_1 = \frac{4}{\sigma_1(\Sigma)} \cdot x_k(0)^{-2} = \frac{16f_2'^2 d^3}{\sigma_1(\Sigma)\epsilon^2}$,
 2401 and never decrease to below $\sigma_1^{1/4}(\Sigma)$ for $t > T_1$.
 2402

2403 By Theorem 18, $\sigma_{\min}(\Sigma_w) \geq x_k$. Then combine with Lemma 23,
 2404

$$\mathcal{L}_{\text{ori}}(t) \leq \mathcal{L}_{\text{ori}}(0)e^{-8\sigma_{\min}^6(\Sigma_w(T_1))(t-T_1)} \leq d\sigma_1^2(\Sigma)e^{-8\sigma_1^{3/2}(\Sigma)(t-T_1)}. \quad (159)$$

2408 Thus it takes at most $t = T_1 + \frac{1}{8\sigma_1^{3/2}(\Sigma)} \ln\left(\frac{d\sigma_1^2(\Sigma)}{\epsilon_{\text{conv}}}\right)$ to reach ϵ_{conv} -convergence.
 2409

2410 \square

2412 F NOTATIONS AND PRELIMINARIES UNDER THE DEPTH OF FOUR, 2413 IMBALANCED

2416 To tackle the imbalanced initialization with depth $N = 4$, we make the following notations and
 2417 derive some basic properties.

2418 Below we denote $R = W_2^{-1}W_3^H$, $W_1' = RW_4^H$, $W = W_4W_3W_2W_1$, $M_2 = W_2^HW_2$, $M_1 = W_1W_1^H$, $M_{\Delta 1234} = W_2W_1W_1^HW_2^H - W_3^HW_4^HW_4W_3$, $M_1' = W_1'W_1'^H$, $e_{\Delta} = \sqrt{\sum_{i=1}^3 \|\Delta_{i,i+1}\|_F^2}$.
 2419 Then:
 2420

$$2423 W = W_1'^H M_2 W_1, \quad (160)$$

$$2426 RR^H = W_2^{-1}W_3^H W_3 W_2^{H-1} = I - W_2^{-1}\Delta_{23}W_2^{H-1}, \quad (161)$$

$$2428 R^{-1}R^{H-1} = W_3^{H-1}W_2W_2^HW_3^{-1} = I + W_3^{H-1}\Delta_{23}W_3^{-1}, \quad (162)$$

2430

$$\begin{aligned}
M_{\Delta 1234} &= \left((W_2^H W_2)^2 - (W_3 W_3^H)^2 \right) + W_3^H \Delta_{34} W_3 + W_2 \Delta_{12} W_2^H \\
&= \frac{1}{2} (\Delta_{23} (W_3^H W_3 + W_2 W_2^H) + (W_3^H W_3 + W_2 W_2^H) \Delta_{23}) \\
&\quad + W_3^H \Delta_{34} W_3 + W_2 \Delta_{12} W_2^H,
\end{aligned} \tag{163}$$

2435

2436

2437

2438

$$M'_1 - M_1 = W_2^{-1} M_{\Delta 1234} W_2^{H-1}. \tag{164}$$

2439

2440 Deducing that

2441

2442

$$\|R\|_{op} \leq \sqrt{1 + \frac{1}{\sigma_{\min}^2(W_2)} \cdot \|\Delta_{23}\|_{op}} \leq \sqrt{1 + \frac{1}{\min_{j,k} \sigma_k^2(W_j)} \cdot e_{\Delta}}, \tag{165}$$

2445

2446

$$\|R^{-1}\|_{op} \leq \sqrt{1 + \frac{1}{\sigma_{\min}^2(W_3)} \cdot \|\Delta_{23}\|_{op}} \leq \sqrt{1 + \frac{1}{\min_{j,k} \sigma_k^2(W_j)} \cdot e_{\Delta}}, \tag{166}$$

2447

2448

2449

2450

2451

$$\|I - RR^H\|_{op} \leq \frac{1}{\sigma_{\min}^2(W_2)} \cdot \|\Delta_{23}\|_{op} \leq \frac{1}{\min_{j,k} \sigma_k^2(W_j)} \cdot e_{\Delta}, \tag{167}$$

2452

2453

2454

$$\|I - R^{-1}R^{H-1}\|_{op} \leq \frac{1}{\sigma_{\min}^2(W_3)} \cdot \|\Delta_{23}\|_{op} \leq \frac{1}{\min_{j,k} \sigma_k^2(W_j)} \cdot e_{\Delta}, \tag{168}$$

2455

2456

2457

2458

$$\begin{aligned}
\|M_{\Delta 1234}\|_{op} &\leq (\|W_2\|_{op}^2 + \|W_3\|_{op}^2) \|\Delta_{23}\|_{op} + \|W_3\|_{op}^2 \|\Delta_{34}\|_{op} + \|W_2\|_{op}^2 \|\Delta_{12}\|_{op} \\
&\leq \sqrt{6} \max_{j,k} \sigma_k^2(W_j) e_{\Delta},
\end{aligned} \tag{169}$$

2459

2460

2461

2462

2463

$$\|M'_1 - M_1\|_{op} \leq \sqrt{6} \cdot \frac{\max_{j,k} \sigma_k^2(W_j)}{\sigma_{\min}^2(W_2)} e_{\Delta} \leq \sqrt{6} \cdot \frac{\max_{j,k} \sigma_k^2(W_j)}{\min_{j,k} \sigma_k^2(W_j)} e_{\Delta}. \tag{170}$$

2464

2465

2466 Applying Lemma 15,

2467

2468

2469

2470

$$\|I - R^H R\|_{op} \leq \frac{1}{\sigma_{\min}^2(W_2)} \cdot \|\Delta_{23}\|_{op} \leq \frac{1}{\min_{j,k} \sigma_k^2(W_j)} \cdot e_{\Delta}, \tag{171}$$

2471

2472

2473

2474

$$\|I - R^{H-1} R^{-1}\|_{op} \leq \frac{1}{\sigma_{\min}^2(W_3)} \cdot \|\Delta_{23}\|_{op} \leq \frac{1}{\min_{j,k} \sigma_k^2(W_j)} \cdot e_{\Delta}. \tag{172}$$

G SKEW-HERMITIAN ERROR TERM AND HERMITIAN MAIN TERM FOR FOUR-LAYER MATRIX DECOMPOSITION

2478

2479

2480

In this section, we construct skew-Hermitian error term and Hermitian main term to prepare for the convergence proof, under four-layer setting with scaled identical target matrix $\Sigma = \sigma_1(\bar{\Sigma})I$.

2481

2482

G.1 SKEW-HERMITIAN ERROR TERM

2483

The skew-Hermitian error term is defined by $\|W_1 - W'_1\|_F^2$. To address the dynamics:

2484 G.1.1 GRADIENT FLOW
24852486 Consider $\Sigma = \sigma_1(\Sigma)I$. We study $\|W_1 - W'_1\|_F^2$. From the derivative of inverse,
2487

2488
2489
$$\frac{dW_2^{-1}}{dt} = -W_2^{-1} \frac{dW_2}{dt} W_2^{-1} = -W'_1(\Sigma - W) W_1^H W_2^{-1} - a\Delta_{12} W_2^{-1} + aW_2^{-1} \Delta_{23}, \quad (173)$$

2490

2491
2492
$$\begin{aligned} \frac{dR}{dt} &= \frac{dW_2^{-1}}{dt} W_3^H + W_2^{-1} \frac{dW_3^H}{dt} \\ &= -RW_4^H(\Sigma - W) W_1^H R + W_1(\Sigma - W^H) W_4 \\ &\quad - a\Delta_{12} R + 2aW_2^{-1} \Delta_{23} W_3^H - aR\Delta_{34}, \end{aligned} \quad (174)$$

2493

2494
2495
$$\begin{aligned} \frac{dW'_1}{dt} &= \frac{dW_2^{-1}}{dt} W_3^H W_4^H + W_2^{-1} \frac{dW_3^H}{dt} W_4^H + W_2^{-1} W_3^H \frac{dW_4^H}{dt} \\ &= -W'_1(\Sigma - W) W_1^H W'_1 + W_1(\Sigma - W^H) W_1'^H R^{H-1} R^{-1} W'_1 \\ &\quad + RR^H W_2^H W_2 W_1(\Sigma - W^H) - a\Delta_{12} W'_1 + 2aW_2^{-1} \Delta_{23} W_2 W'_1. \end{aligned} \quad (175)$$

2496

2503 From $\Re(\text{tr}(PQ)) = 0$ if $P = P^H$ and $Q = -Q^H$, we have
2504

2505
2506
$$\begin{aligned} \Re \left(\text{tr} \left((W'_1 W_1^H - W_1 W_1'^H) W'_1 (W_1 - W'_1)^H \right) \right) \\ = -\frac{1}{2} \text{tr} \left((W'_1 W_1^H - W_1 W_1'^H) (W'_1 W_1^H - W_1 W_1'^H)^H \right). \end{aligned} \quad (176)$$

2507

2510 Thus
2511

2512
2513
$$\begin{aligned} \frac{d}{dt} \|W_1 - W'_1\|_F^2 &= 2\Re \left(\text{tr} \left(\frac{d(W_1 - W'_1)}{dt} (W_1 - W'_1)^H \right) \right) \\ &= 2\Re \left(\text{tr} \left([M_2 W'_1(\Sigma - W) + W'_1(\Sigma - W) W_1^H W'_1 \right. \right. \\ &\quad \left. \left. - W_1(\Sigma - W^H) W_1'^H R^{H-1} R^{-1} W'_1 - RR^H M_2 W_1(\Sigma - W^H) \right. \right. \\ &\quad \left. \left. - a\Delta_{12} (W_1 - W'_1) - 2aW_2^{-1} \Delta_{23} W_2 W'_1] (W_1 - W'_1)^H \right) \right) \\ &= -2\sigma_1(\Sigma) \text{tr} \left((W_1 - W'_1)^H M_2 (W_1 - W'_1) \right) \\ &\quad - \sigma_1(\Sigma) \text{tr} \left((W'_1 W_1^H - W_1 W_1'^H) (W'_1 W_1^H - W_1 W_1'^H)^H \right) \\ &\quad - \text{tr} \left(M_2 (M'_1 + M_1) M_2 (W_1 - W'_1) (W_1 - W'_1)^H \right) \\ &\quad - \text{tr} \left(M_2 (M'_1 - M_1) M_2 (W'_1 + W_1) (W_1 - W'_1)^H \right) \\ &\quad + 2\text{tr} \left([-M'_1 M_2 M_1 + M_1 M_2 M'_1] W'_1 (W_1 - W'_1)^H \right) \\ &\quad + 2\Re \left(\text{tr} \left([W_1(\Sigma - W^H) W_4 (R^H R - I) W_4^H] (W_1 - W'_1)^H \right) \right) \\ &\quad + 2\Re \left(\text{tr} \left([(I - RR^H) W_2^H W_2 W_1(\Sigma - W^H)] (W_1 - W'_1)^H \right) \right) \\ &\quad - 2a\Re \left(\text{tr} \left(\Delta_{12} (W_1 - W'_1) (W_1 - W'_1)^H \right) \right) \\ &\quad - 4a\Re \left(\text{tr} \left(W_2^{-1} \Delta_{23} W_2 W'_1 (W_1 - W'_1)^H \right) \right). \end{aligned} \quad (177)$$

2514

2533 Note: $-M'_1 M_2 M_1 + M_1 M_2 M'_1 = \frac{1}{2} [(M_1 - M'_1) M_2 (M_1 + M'_1) - (M_1 + M'_1) M_2 (M_1 - M'_1)]$.
2534

2538 G.1.2 GRADIENT DESCENT

2539

2540 From Lemma 17,

2541

2542

2543

2544

2545

2546

2547

2548

2549

2550

2551

2552

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

$$\begin{aligned}
& \|W_2(t+1)^{-1} - W_2(t)^{-1} \\
& - \eta \left[-W_1'(t)(\Sigma - W(t))W_1(t)^H W_2(t)^{-1} - a\Delta_{12}(t)W_2(t)^{-1} + aW_2(t)^{-1}\Delta_{23}(t) \right] \|_F \\
& \leq \eta^2 \left[\left(1 + e_\Delta(t) \|W_2(t)^{-1}\|_{op}^2 \right) \|W_1(t)\|_{op} \|\Sigma - W(t)\|_F + \sqrt{2}ae_\Delta(t) \|W_2(t)^{-1}\|_{op} \right] \\
& \cdot \|W_2(t+1)^{-1}\|_{op} \|\nabla_{W_2} \mathcal{L}(t)\|_F.
\end{aligned} \tag{178}$$

Under $\|W_j(t+1)\|_{op} = O(\|W_j(t)\|_{op})$, $e_\Delta(t) \|W_2(t)^{-1}\|_{op}^2 = O(1)$,

Finally giving

$$\begin{aligned}
& \|W_1(t+1) - W_1'(t+1)\|_F^2 - \|W_1(t) - W_1'(t)\|_F^2 \\
& = \Re \left(\text{tr} \left(\left[(W_1(t+1) - W_1'(t+1)) + (W_1(t) - W_1'(t)) \right. \right. \right. \\
& \cdot \left. \left. \left. \left[(W_1(t+1) - W_1'(t+1)) - (W_1(t) - W_1'(t)) \right]^H \right] \right) \\
& = -2\eta\sigma_1(\Sigma) \text{tr} \left((W_1(t) - W_1'(t))^H M_2(t) (W_1(t) - W_1'(t)) \right) \\
& - \eta\sigma_1(\Sigma) \text{tr} \left((W_1'(t)W_1(t)^H - W_1(t)W_1'(t)^H) (W_1'(t)W_1(t)^H - W_1(t)W_1'(t)^H) \right) \\
& - \eta \text{tr} \left(M_2(t) (M_1'(t) + M_1(t)) M_2(t) (W_1(t) - W_1'(t)) (W_1(t) - W_1'(t))^H \right) \\
& - \eta \text{tr} \left(M_2(t) (M_1'(t) - M_1(t)) M_2(t) (W_1'(t) + W_1(t)) (W_1(t) - W_1'(t))^H \right) \\
& + 2\eta \text{tr} \left(\left[-M_1'(t)M_2(t)M_1(t) + M_1(t)M_2(t)M_1'(t) \right] W_1'(t) (W_1(t) - W_1'(t))^H \right) \\
& + 2\eta \Re \left(\text{tr} \left(\left[W_1(t)(\Sigma - W(t)^H)W_4(t)(R(t)^H R(t) - I)W_4(t)^H \right] (W_1(t) - W_1'(t))^H \right) \right) \\
& + 2\eta \Re \left(\text{tr} \left(\left[(I - R(t)R(t)^H)W_2(t)^H W_2(t)W_1(t)(\Sigma - W(t)^H) \right] (W_1(t) - W_1'(t))^H \right) \right) \\
& - 2\eta a \Re \left(\text{tr} \left(\Delta_{12}(t) (W_1(t) - W_1'(t)) (W_1(t) - W_1'(t))^H \right) \right) \\
& - 4\eta a \Re \left(\text{tr} \left(W_2^{-1}(t)\Delta_{23}(t)W_2(t)W_1'(t) (W_1(t) - W_1'(t))^H \right) \right) \\
& + \eta^2 O \left(\left[\max_{j \in \{1,2,3,4\}} \|W_j(t)\|_{op} \|\Sigma - W(t)\|_F + ae_\Delta(t) \|W_2(t)^{-1}\|_{op} \right]^2 \right. \\
& \cdot \left. \max_{j \in \{1,2,3,4\}} \|W_j(t)\|_{op}^5 \cdot \|W_2(t+1)^{-1}\|_{op} \right).
\end{aligned} \tag{180}$$

2592 G.2 SKEW-HERMITIAN ERROR TERM
25932594 G.2.1 GRADIENT FLOW
25952596 For gradient flow, we study the k^{th} singular value of $W_1 + W'_1$, or equivalently
2597 $\lambda_k \left((W_1 + W'_1)^H (W_1 + W'_1) \right) = \sigma_k^2 (W_1 + W'_1)$. To address the dynamics:2598 Suppose the left and right singular vector of $W_1 + W'_1$ corresponding to $\sigma_k(t) = \sigma_k (W_1 + W'_1)(t)$
2599 are $\eta_k(t)$ and $\chi_k(t)$ respectively, $(W_1 + W'_1) \chi_k = \sigma_k \eta_k$, $\eta_k^H (W_1 + W'_1) = \sigma_k \chi_k$, $\|\chi_k\| = \|\eta_k\| =$
2600 1. Then from Lemma 22,
2601

2602
2603
$$\frac{d}{dt} \lambda_k \left((W_1 + W'_1)^H (W_1 + W'_1) \right) = \chi_k^H \left(\frac{d}{dt} (W_1 + W'_1)^H (W_1 + W'_1) \right) \chi_k$$

2604
$$= 2\Re \left(\chi_k^H (W_1 + W'_1)^H \left(\frac{d}{dt} (W_1 + W'_1) \right) \chi_k \right), \quad (181)$$

2605
2606
2607

2608 where
2609

2610
2611
$$\frac{d}{dt} (W_1 + W'_1) = M_2 W'_1 (\Sigma - W) - W'_1 (\Sigma - W) W_1^H W'_1$$

2612
$$+ W_1 (\Sigma - W^H) W_1'^H R^{H-1} R^{-1} W'_1 + R R^H M_2 W_1 (\Sigma - W^H)$$

2613
$$- a \Delta_{12} (W_1 + W'_1) + 2a W_2^{-1} \Delta_{23} W_2 W'_1$$

2614
$$= M_2 (W_1 + W'_1) \Sigma + (W_1 \Sigma W_1'^H - W'_1 \Sigma W_1^H) W'_1$$

2615
$$- M_2 \left(\frac{M_1 + M'_1}{2} M_2 (W_1 + W'_1) + \frac{M_1 - M'_1}{2} M_2 (W_1 - W'_1) \right) \quad (182)$$

2616
2617
2618
2619
2620
2621
2622
2623
2624

2625 Consider arbitrary $\chi \in \mathbb{F}^d$. Notice that $(W_1 \Sigma W_1'^H - W'_1 \Sigma W_1^H)$ is a skew-Hermitian matrix:
2626

2627
2628
$$\Re (2\chi^H (W_1 + W'_1)^H (W_1 \Sigma W_1'^H - W'_1 \Sigma W_1^H) W'_1 \chi)$$

2629
$$= \Re (\chi^H (W_1 + W'_1)^H (W_1 \Sigma W_1'^H - W'_1 \Sigma W_1^H) W'_1 \chi)$$

2630
$$- \Re (\chi^H W_1'^H (W_1 \Sigma W_1'^H - W'_1 \Sigma W_1^H) W_1 \chi) \quad (183)$$

2631
2632
2633
2634

2635 From $\Sigma = \sigma_1(\Sigma)I$,
2636

2637
2638
$$- W_1 \Sigma W_1'^H + W'_1 \Sigma W_1^H = \sigma_1(\Sigma) (W_1 + W'_1) (W_1 - W'_1)^H + \sigma_1(\Sigma) (M'_1 - M_1). \quad (184)$$

2639

2640 Likewise,
2641

2642
2643
$$\Re (2\chi^H (W_1 + W'_1)^H (M'_1 M_2 M_1 - M_1 M_2 M'_1) W'_1 \chi) \quad (185)$$

2644
2645

2646 Thus

$$\begin{aligned}
& \frac{d}{dt} \sigma_k^2 = 2\sigma_1(\Sigma) \sigma_k^2 \eta_k^H M_2 \eta_k + \sigma_1(\Sigma) \sigma_k^2 \chi_k^H (W_1 - W'_1)^H (W_1 - W'_1) \chi_k \\
& \quad + \sigma_1(\Sigma) \sigma_k \Re(\eta_k^H (M'_1 - M_1) (W_1 - W'_1) \chi_k) \\
& \quad - \sigma_k^2 \eta_k^H M_2 (M_1 + M'_1) M_2 \eta_k - \sigma_k \Re(\eta_k^H M_2 (M_1 - M'_1) M_2 (W_1 - W'_1) \chi_k) \\
& \quad + \sigma_k \Re(\eta_k^H (M'_1 M_2 M_1 - M_1 M_2 M'_1) (W'_1 - W_1) \chi_k) \\
& \quad - 2\sigma_k \Re(\eta_k^H W_1 (\Sigma - W^H) W_4 (R^H R - I) W_4^H \chi_k) \\
& \quad - 2\sigma_k \Re(\eta_k^H (I - R R^H) M_2 W_1 (\Sigma - W^H) \chi_k) \\
& \quad - 2a\sigma_k^2 \Re(\eta_k^H \Delta_{12} \eta_k) + 4a\sigma_k \Re(\eta_k^H W_2^{-1} \Delta_{23} W_2 W'_1 \chi_k). \tag{186}
\end{aligned}$$

G.2.2 GRADIENT DESCENT

For gradient descent, we study $\lambda_{\min} \left((W_1 + W'_1)^H (W_1 + W'_1) \right) = \sigma_{\min}^2 (W_1 + W'_1)$. To address the dynamics:

$$\begin{aligned}
& (W_1(t+1) + W'_1(t+1)) \\
& = W_1(t) + W'_1(t) \\
& \quad + \eta \left[\sigma_1(\Sigma) M_2(t) - M_2(t) \frac{M_1(t) + M'_1(t)}{2} M_2(t) \right] (W_1(t) + W'_1(t)) \\
& \quad + \eta (M'_1(t) M_2(t) M_1(t) - M_1(t) M_2(t) M'_1(t)) W'_1(t) \\
& \quad + \eta \sigma_1(\Sigma) (W_1(t) W'_1(t)^H - W'_1(t) W_1(t)^H) W'_1(t) + \eta E_1(t), \tag{187}
\end{aligned}$$

where the error term is bounded by

$$\begin{aligned}
\|E_1(t)\|_{op} & \leq \frac{1}{2} \max_{j \in \{1, 2, 3, 4\}} \|W_j(t)\|_{op}^4 \|W_1(t) - W'_1(t)\|_{op} \|M_1(t) - M'_1(t)\|_{op} \\
& \quad + \left(\|R(t)^H R(t) - I\|_{op} + \|I - R(t) R(t)^H\|_{op} \right) \max_{j \in \{1, 2, 3, 4\}} \|W_j(t)\|_{op}^3 \|\Sigma - W(t)\|_{op} \\
& \quad + a e_{\Delta}(t) \left(\|W_1(t) + W'_1(t)\|_{op} + 2 \|R(t)\|_{op} \|W_2(t)^{-1}\|_{op} \max_{j \in \{1, 2, 3, 4\}} \|W_j(t)\|_{op}^2 \right) \\
& \quad + \eta O \left(\left[\max_{j \in \{1, 2, 3, 4\}} \|W_j(t)\|_{op} \|\Sigma - W(t)\|_F + a e_{\Delta}(t) \|W_2(t)^{-1}\|_{op} \right] \right. \\
& \quad \left. \cdot \max_{j \in \{1, 2, 3, 4\}} \|W_j(t)\|_{op}^2 \cdot \|W_2(t+1)^{-1}\|_{op} \cdot \max_{j \in \{1, 2, 3, 4\}} \|\nabla_{W_j} \mathcal{L}(t)\|_F \right). \tag{188}
\end{aligned}$$

Follow the tricks in Lemma 19,

$$\begin{aligned}
& \lambda_{\min} \left((W_1(t+1) + W'_1(t+1))^H (W_1(t+1) + W'_1(t+1)) \right) \\
& \geq \lambda_{\min} \left((W_1(t) + W'_1(t))^H \left(I + \eta \left[\sigma_1(\Sigma) M_2(t) - M_2(t) \frac{M_1(t) + M'_1(t)}{2} M_2(t) \right] \right)^2 (W_1(t) + W'_1(t)) \right) \\
& \quad + \eta \|E_2(t)\|_{op} + \eta^2 O \left(\|(W_1(t+1) + W'_1(t+1)) - (W_1(t) + W'_1(t))\|_{op}^2 \right), \tag{189}
\end{aligned}$$

where

$$\begin{aligned}
\|E_2(t)\|_{op} &= \sigma_{\min}(W_1(t+1) + W'_1(t+1)) \\
&\cdot \left[\|E_1(t)\|_{op} + \|W_2(t)\|_{op}^2 \|M_1(t) + M'_1(t)\|_{op} \|M_1(t) - M'_1(t)\|_{op} \|W_1(t) - W'_1(t)\|_{op} \right]. \tag{190}
\end{aligned}$$

H CONVERGENCE UNDER GRADIENT FLOW, STAGED ANALYSIS

In order to present the proof more clearly, we state the complete proof of convergence under Random Gaussian Initialization C.2 and gradient flow, before tackling gradient descent.

At the beginning we assume (49) holds. (For the complex case, it holds with high probability $1 - \delta$; for the real case, it holds with probability $\frac{1}{2}(1 - \delta)$.) We omit the confidence level δ in $f_1(\delta) = O(\frac{1}{\delta})$ and $f_2(\delta) = O(\frac{1}{\delta^5})$ for simplicity.

H.1 STAGE 1: ALIGNMENT STAGE

In this section, we set $\epsilon \leq \frac{\sigma_1^{1/4}(\Sigma)}{2f_1\sqrt{d}}$, $a \geq 2^5 f_1^{20} f_2 d^{13} \sigma_1(\Sigma) b$, where $b \geq 2^4 \ln(4f_1 d) + \ln f_2$.

Without loss of generality, $f_1 \geq 2$, and for simplicity we can further relax f_2 appearing in the lower bounds to $f_2 \geq f_1^6$ (now $f_2 = O(\frac{1}{\delta^6})$).

Theorem 36. At $T_1 = \frac{1}{32f_1^{14}f_2d^{10}\epsilon^2\sigma_1(\Sigma)}$, the following conclusions hold:

$$\begin{aligned}
\sigma_{\min}(W_1 + W'_1)|_{t=T_1} &\geq \frac{\epsilon}{2f_1^3 f_2 d^{9/2}} \\
e_{\Delta}(T_1) &\leq 2\sqrt{3} f_1^2 d^{3/2} \epsilon^2 \exp\left(-\frac{a}{32f_1^{20}f_2d^{13}\sigma_1(\Sigma)}\right) \tag{191} \\
\max_{j,k} |\sigma_k(W_j(T_1))| &\leq (1 + 2^{-21}) f_1 \sqrt{d} \epsilon \\
\min_{j,k} |\sigma_k(W_j(T_1))| &\geq (1 - 2^{-17}) \frac{\epsilon}{f_1 \sqrt{d}}.
\end{aligned}$$

This section proves the theorem above by following Lemmas and Corollaries.

Lemma 37. Maximum and minimum singular value bound of weight matrices in alignment stage.

For $t \in \left[0, \frac{1}{16f_1^4d^2\epsilon^2\sigma_1(\Sigma)}\right]$,

$$\min_{j,k} \sigma_k(W_j) \geq \frac{\epsilon}{f_1 \sqrt{d}} - 16f_1^3 d^{3/2} \epsilon^3 \sigma_1(\Sigma) t, \quad \max_{j,k} \sigma_k(W_j) \leq \frac{f_1 \sqrt{d} \epsilon}{\sqrt{1 - 4f_1^2 d \epsilon^2 \sigma_1(\Sigma)} t}. \tag{192}$$

Proof. For $t \geq 0$ such that $\max_{j,k} \sigma_k(W_j) \leq 2f_1 \sqrt{d} \epsilon \leq \sigma_1^{1/4}(\Sigma)$,

$$\max_j \|\nabla_{W_j} \mathcal{L}_{\text{ori}}\|_{op} \leq \max_{j,k} |\sigma_k(W_j)|^3 \left(\sigma_1(\Sigma) + \max_{j,k} |\sigma_k(W_j)|^4 \right) \leq 2\sigma_1(\Sigma) \max_{j,k} |\sigma_k(W_j)|^3. \tag{193}$$

By invoking Theorem 28,

$$\begin{aligned}
\frac{d \max_{j,k} \sigma_k^2(W_j)}{dt} &\leq 4 \max_{j,k} |\sigma_k(W_j)|^4 \sigma_1(\Sigma) \\
\frac{d \min_{j,k} \sigma_k^2(W_j)}{dt} &\geq -4 \min_{j,k} |\sigma_k(W_j)| \max_{j,k} |\sigma_k(W_j)|^3 \sigma_1(\Sigma). \tag{194}
\end{aligned}$$

2754 By solving the differential inequality,
 2755

$$2757 \max_{j,k} \sigma_k |W_j| \leq \frac{\max_{j,k} \sigma_k |W_j(0)|}{\sqrt{1 - 4\sigma_1(\Sigma) \max_{j,k} \sigma_k |W_j(0)|^2 \cdot t}} \leq \frac{f_1 \sqrt{d} \epsilon}{\sqrt{1 - 4f_1^2 d \epsilon^2 \sigma_1(\Sigma) t}}, t \in \left[0, \frac{3}{16f_1^2 d \epsilon^2 \sigma_1(\Sigma)}\right]. \quad (195)$$

2761
 2762
 2763 $\min_{j,k} |\sigma_k(W_j)| \geq \frac{\epsilon}{f_1 \sqrt{d}} - 16f_1^3 d^{3/2} \epsilon^3 \sigma_1(\Sigma) t, t \in \left[0, \frac{1}{16f_1^4 d^2 \epsilon^2 \sigma_1(\Sigma)}\right]. \quad (196)$
 2764

2765 This completes the proof. \square
 2766

2770 Notice that
 2771

$$2773 \max_{j,k} |\sigma_k(W_j(t \leq T_1))| \leq \frac{f_1 \sqrt{d} \epsilon}{\sqrt{1 - \frac{1}{8f_1^{12} f_2}}} \leq (1 + 2^{-21}) f_1 \sqrt{d} \epsilon \quad (197)$$

$$2776 \min_{j,k} |\sigma_k(W_j(t \leq T_1))| \geq \left(1 - \frac{1}{2f_1^{10} f_2}\right) \cdot \frac{\epsilon}{f_1 \sqrt{d}} \geq (1 - 2^{-17}) \frac{\epsilon}{f_1 \sqrt{d}}.$$

2779 **Corollary 38.** *Balanced term error in alignment stage.*

2780 For $t \in [0, T_1]$,

$$2783 e_\Delta(t) \leq 2\sqrt{3} f_1^2 d^{3/2} \epsilon^2 \exp\left(-\frac{a \epsilon^2}{f_1^6 d^3} t\right). \quad (198)$$

2786 Specially, at $t = T_1$,

$$2790 e_\Delta(T_1) \leq 2\sqrt{3} f_1^2 d^{3/2} \epsilon^2 \exp\left(-\frac{a}{32f_1^{20} f_2 d^{13} \sigma_1(\Sigma)}\right) \leq \sqrt{3} \cdot 2^{-31} f_1^{-14} f_2^{-1} d^{-29/2} \epsilon^2. \quad (199)$$

2794 *Proof.* By simply combining Theorem 27 and Lemma 37. \square

2798 **Corollary 39.** *Main term at the end of alignment stage.*

2799 At $t = T_1$,

$$2802 \sigma_{\min} (W_1 + W'_1)|_{t=T_1} \geq \frac{\epsilon}{2f_1^3 f_2 d^{9/2}}. \quad (200)$$

2806 *Proof.* For simplicity, denote $\Delta_X(t) = X(t) - X(0)$ for arbitrary X . Note: $\Delta_{X^H} = \Delta_X^H$.

2807 At $t = T_1$,

$$\begin{aligned}
\| \Delta_W(T_1) \|_{op} &= \left\| \int_0^{T_1} \sum_{j=1}^4 \left[W_{\Pi_L, j+1}(t') W_{\Pi_L, j+1}(t')^H (\Sigma - W(t')) W_{\Pi_R, j-1}^H(t') W_{\Pi_R, j-1}(t') \right] dt' \right\|_{op} \\
&\leq \int_0^{T_1} \sum_{j=1}^4 \left\| W_{\Pi_L, j+1}(t') W_{\Pi_L, j+1}(t')^H (\Sigma - W(t')) W_{\Pi_R, j-1}^H(t') W_{\Pi_R, j-1}(t') \right\|_{op} dt' \\
&\leq \int_0^{T_1} \sum_{j=1}^4 \left(\|\Sigma\|_{op} + \|W(t')\|_{op} \right) \left(\prod_{k \in \{1, 2, 3, 4\}, k \neq j} \|W_i(t')\|_{op}^2 \right) dt' \\
&\leq \int_0^{T_1} 4 \cdot 2\sigma_1(\Sigma) \cdot \left((1 + 2^{-21}) f_1 \sqrt{d\epsilon} \right)^6 dt' \\
&\leq 8 (1 + 2^{-18}) f_1^6 d^3 \epsilon^6 \sigma_1(\Sigma) T_1 = (1 + 2^{-18}) \cdot \frac{1}{4} f_1^{-8} f_2^{-1} d^{-7} \epsilon^4.
\end{aligned} \tag{201}$$

Thus

$$\begin{aligned}
\| \Delta_{W^H W}(T_1) \|_{op} &= \left\| \frac{1}{2} \left[(W(T_1) + W(0))^H \Delta_W(T_1) + \Delta_W(T_1)^H (W(T_1) + W(0)) \right] \right\|_{op} \\
&\leq \left(\|W(T_1)\|_{op} + \|W(0)\|_{op} \right) \|\Delta_W(T_1)\|_{op} \\
&\leq \left[1 + (1 + 2^{-21})^4 \right] f_1^4 d^2 \epsilon^4 \cdot \|\Delta_W(T_1)\|_{op} = (1 + 2^{-17}) \cdot \frac{1}{2} f_1^{-4} f_2^{-1} d^{-5} \epsilon^8.
\end{aligned} \tag{202}$$

From Corollary 38,

$$\begin{aligned}
&\left\| (W_1(T_1)^H W_2(T_1)^H W_2(T_1) W_1(T_1))^2 - W(T_1)^H W(T_1) \right\|_{op} \\
&= \|W_1(T_1)^H W_2(T_1)^H M_{\Delta 1234}(T_1) W_2(T_1) W_1(T_1)\|_{op} \\
&\leq \|W_1(T_1)^H W_2(T_1)^H\|_{op} \|M_{\Delta 1234}(T_1)\|_{op} \|W_2(T_1) W_1(T_1)\|_{op} \\
&\leq \left((1 + 2^{-21}) f_1 \sqrt{d\epsilon} \right)^4 \cdot \sqrt{6} \left((1 + 2^{-21}) f_1 \sqrt{d\epsilon} \right)^2 \cdot e_{\Delta}(T_1) \\
&\leq \sqrt{6} (1 + 2^{-18}) f_1^6 d^3 \epsilon^6 e_{\Delta}(T_1) \leq 2^{-28} f_1^{-8} f_2^{-16} d^{-23/2} \epsilon^8.
\end{aligned} \tag{203}$$

Thus

$$\begin{aligned}
&\left\| (W_1(T_1)^H W_2(T_1)^H W_2(T_1) W_1(T_1))^2 - W(T_0)^H W(T_0) \right\|_{op} \\
&\leq \left\| (W_1(T_1)^H W_2(T_1)^H W_2(T_1) W_1(T_1))^2 - W(T_1)^H W(T_1) \right\|_{op} + \|\Delta_{W^H W}(T_1)\|_{op} \\
&\leq (1 + 2^{-16}) \cdot \frac{1}{2} f_1^{-4} f_2^{-1} d^{-5} \epsilon^8.
\end{aligned} \tag{204}$$

From Lemma 16,

$$\begin{aligned}
& \left\| W_1(T_1)^H W_2(T_1)^H W_2(T_1) W_1(T_1) - (W(T_0)^H W(T_0))^{1/2} \right\|_{op} \\
& \leq \frac{\left\| (W_1(T_1)^H W_2(T_1)^H W_2(T_1) W_1(T_1))^2 - W(T_0)^H W(T_0) \right\|_{op}}{2\sqrt{\lambda_{\min}(W(T_0)^H W(T_0)) - \left\| (W_1(T_1)^H W_2(T_1)^H W_2(T_1) W_1(T_1))^2 - W(T_0)^H W(T_0) \right\|_{op}}} \\
& \leq \frac{(1 + 2^{-16}) \cdot \frac{1}{2} f_1^{-4} f_2^{-1} d^{-5} \epsilon^8}{2\sqrt{\left(\frac{\epsilon}{f_1 \sqrt{d}}\right)^8 - (1 + 2^{-16}) \cdot \frac{1}{2} f_1^{-4} f_2^{-1} d^{-5} \epsilon^8}} \leq 0.27 f_2^{-1} d^{-3} \epsilon^4. \tag{205}
\end{aligned}$$

By (C.2),

$$\begin{aligned}
& \sigma_{\min}(W_1(T_1)^H W_2(T_1)^H W_2(T_1) W_1(T_1) + W(T_1)^H) \\
& \geq \sigma_{\min}((W(T_0)^H W(T_0))^{1/2} + W(0)^H) \\
& \quad - \left\| W_1(T_1)^H W_2(T_1)^H W_2(T_1) W_1(T_1) - (W(T_0)^H W(T_0))^{1/2} \right\|_{op} - \|\Delta_W(T_1)\|_{op} \tag{206} \\
& \geq f_2^{-1} d^{-3} \epsilon^4 - 0.27 f_2^{-1} d^{-3} \epsilon^4 - (1 + 2^{-18}) \cdot \frac{1}{4} f_1^{-8} f_2^{-1} d^{-7} \epsilon^4 \\
& \geq 0.72 f_2^{-1} d^{-3} \epsilon^4,
\end{aligned}$$

which further gives

$$\begin{aligned}
& \sigma_{\min}(W_1 + W'_1)|_{t=T_1} \\
& = \sigma_{\min}\left((W_1(T_1)^H W_2(T_1)^H W_2(T_1))^{-1} (W_1(T_1)^H W_2(T_1)^H W_2(T_1) W_1(T_1) + W(T_1)^H)\right) \\
& \geq \left(\frac{1}{\max_{j,k} |\sigma_k(W_j(T_1))|}\right)^3 \cdot \sigma_{\min}(W_1(T_1)^H W_2(T_1)^H W_2(T_1) W_1(T_1) + W(T_1)^H) \\
& \geq \frac{\epsilon}{2f_1^3 f_2 d^{9/2}}. \tag{207}
\end{aligned}$$

□

H.2 STAGE 2: SADDLE AVOIDANCE STAGE

In this stage, we further assume $a \geq 32f_1^{20}f_2d^{13}\sigma_1(\Sigma)\left(5\ln\left(\frac{\sigma_1^{1/4}(\Sigma)}{\epsilon}\right) + \frac{281}{8}\ln d + 23\ln(4f_1) + 7\ln f_2\right)$, while $\frac{\epsilon}{\sigma_1^{1/4}(\Sigma)} \leq \frac{1}{32f_1^5f_2d^{53/8}}$. From Lemma 26 and Theorem 36,

$$\begin{aligned}
e_\Delta(t \in [T_1, +\infty)) & \leq e_\Delta(T_1) \leq 2\sqrt{3}f_1^2d^{3/2}\epsilon^2 \exp\left(-\frac{a}{32f_1^{20}f_2d^{13}\sigma_1(\Sigma)}\right) \tag{208} \\
& \leq \sqrt{3} \cdot 2^{-45}f_1^{-21}f_2^{-7}d^{-269/8}\epsilon^7\sigma_1^{-5/4}(\Sigma).
\end{aligned}$$

Moreover, $a \geq 32f_1^{20}f_2d^{13}\sigma_1(\Sigma)b$, where $b - \ln b \geq 3\ln\left(\frac{\sigma_1^{1/4}(\Sigma)}{\epsilon}\right) + \frac{303}{8}\ln d + 37\ln(2f_1) + 6\ln f_2$.

Thus

$$\begin{aligned}
ae_\Delta(t \in [T_1, +\infty)) & \leq ae_\Delta(T_1) \leq 2^6\sqrt{3}f_1^{22}f_2d^{29/2}\epsilon^2\sigma_1(\Sigma)\exp(-(b - \ln b)) \tag{209} \\
& \leq \sqrt{3} \cdot 2^{-31}f_1^{-15}f_2^{-5}d^{-187/8}\epsilon^5\sigma_1^{1/4}(\Sigma).
\end{aligned}$$

2916 **Theorem 40.** At $T_1 + T_2$, $T_2 = \frac{32f_1^6 f_2^2 d^9}{\sigma_1(\Sigma)\epsilon^2}$, the following conclusions hold:
 2917

$$\begin{aligned} \|W_1(T_1 + T_2) - W'_1(T_1 + T_2)\|_F &\leq 3f_1 d\epsilon \\ \sigma_{\min}(W_1 + W'_1)(T_1 + T_2) &\geq 2^{3/4} \sigma_1^{1/4}(\Sigma). \end{aligned} \quad (210)$$

2921 **Lemma 41.** Bound of operator norms throughout the optimization process.
 2922

2923 For $t \in [0, +\infty)$,

$$\begin{aligned} \|\Sigma - W(t)\|_{op} &\leq \|\Sigma - W(t)\|_F \leq 1.01\sqrt{d}\sigma_1(\Sigma) \\ \|W\|_{op} &\leq \|W\|_F \leq 3\sqrt{d}\sigma_1(\Sigma) \\ \max_j \|W_j\|_{op} &\leq \max_j \|W_j\|_F \leq \sqrt{2}d^{1/8}\sigma_1^{1/4}(\Sigma). \end{aligned} \quad (211)$$

2930 *Proof.* For $t \in [0, T_1]$, the result is obvious from Theorem 36 and Lemma 37.
 2931

2932 For $t \in (T_1, +\infty)$: from Lemma 23,

$$\|\Sigma - W(t)\|_{op} \leq \|\Sigma - W(t)\|_F \leq \|\Sigma - W(0)\|_F \leq \|\Sigma\|_F + \|W(0)\|_F \leq \sqrt{2d}\sigma_1(\Sigma). \quad (212)$$

2936 Giving

$$\|W(t)\|_{op} \leq \|W(t)\|_F \leq \|\Sigma - W(t)\|_F + \|\Sigma\|_F \leq 3\sqrt{d}\sigma_1(\Sigma). \quad (213)$$

2940 For the last inequality, prove by contradiction.

2942 Suppose $\max_j \|W_j\|_{op} \geq \sqrt{2}d^{1/8}\sigma_1^{1/4}(\Sigma)$, then by invoking Corollary 38,

$$e_\Delta(t) \leq e_\Delta(T_1) \leq \sqrt{3} \cdot 2^{-15} f_1^{-14} f_2^{-16} d^{-29/2} \epsilon^2 \leq 2^{-15} \max_j \|W_j\|_{op}^2. \quad (214)$$

2946 Thus for $t > T_1$,

$$\begin{aligned} \|W\|_{op}^2 &= \|WW^H\|_{op} = \|W_4 W_3 W_2 W_1 W_1^H W_2^H W_3^H W_4^H\|_{op} \\ &\geq \|W_4 W_4^H\|_{op} - \|W_4 W_3 W_2 \Delta_{12} W_2^H W_3^H W_4^H\|_{op} \\ &\quad - \|W_4 W_3 \Delta_{23} W_2 W_2^H W_3^H W_4^H\|_{op} - \|W_4 W_3 W_2 W_2^H \Delta_{23} W_3^H W_4^H\|_{op} \\ &\quad - \|W_4 \Delta_{34} (W_3 W_3^H)^2 W_4^H\|_{op} - \|W_4 W_3 W_3^H \Delta_{34} W_3 W_3^H W_4^H\|_{op} - \|W_4 (W_3 W_3^H)^2 \Delta_{34} W_4^H\|_{op} \\ &\geq \left(\max_j \|W_j\|_{op}^2 - 3e_\Delta \right)^4 - 6e_\Delta \max_j \|W_j\|_{op}^6 > 15\sqrt{d}\sigma_1(\Sigma). \end{aligned} \quad (215)$$

2959 which contradicts inequality (213). This completes the proof. □
 2960

2962 **Lemma 42.** Bound of $\|W_2^{-1}\|_{op}$, $\|W_3^{-1}\|_{op}$, and relevant terms.
 2963

2964 For $t \in [T_1, T_1 + T_2]$,

$$\max \left(\|W_2^{-1}(t)\|_{op}, \|W_3^{-1}(t)\|_{op} \right) \leq 128 f_1^6 f_2^2 d^{77/8} \epsilon^{-2} \sigma_1^{1/4}(\Sigma), \quad (216)$$

$$\max \left(e_\Delta(t) \|W_2^{-1}(t)\|_{op}^2, e_\Delta(t) \|W_3^{-1}(t)\|_{op}^2 \right) \leq \sqrt{3} \cdot 2^{-31} f_1^{-9} f_2^{-3} d^{-115/8} \epsilon^3 \sigma_1^{-3/4}(\Sigma). \quad (217)$$

2970 *Proof.* We begin with the time derivative of W_2^{-1} and W_3^{-1} :
 2971

$$\begin{aligned} \frac{dW_2^{-1}}{dt} &= -RW_4^H(\Sigma - W)W_1^HW_2^{-1} - a\Delta_{12}W_2^{-1} + aW_2^{-1}\Delta_{23} \\ \frac{dW_3^{-1}}{dt} &= -W_3^{-1}W_4^H(\Sigma - W)W_1^HR^{H-1} - a\Delta_{23}W_3^{-1} + aW_3^{-1}\Delta_{34}. \end{aligned} \quad (218)$$

2977 From $\frac{d}{dt}\|M\|_{op} \leq \|\frac{d}{dt}M\|_{op}$ (this in equality is from triangular inequality and standard calculus
 2978 analysis),
 2979

$$\begin{aligned} \frac{d}{dt}\|W_2^{-1}\|_{op} &\leq \|R\|_{op}\|W_4\|_{op}\|\Sigma - W\|_{op}\|W_1^HW_2^{-1}\|_{op} \\ &\quad + a\|\Delta_{12}\|_{op}\|W_2^{-1}\|_{op} + a\|W_2^{-1}\|_{op}\|\Delta_{23}\|_{op} \\ \frac{d}{dt}\|W_3^{-1}\|_{op} &\leq \|W_3^{-1}W_4^H\|_{op}\|\Sigma - W\|_{op}\|W_1\|_{op}\|R\|_{op} \\ &\quad + a\|\Delta_{23}\|_{op}\|W_3^{-1}\|_{op} + a\|W_3^{-1}\|_{op}\|\Delta_{34}\|_{op}. \end{aligned} \quad (219)$$

2988 From Lemma 41 and
 2989

$$\begin{aligned} \|R\|_{op} &\leq \sqrt{1 + \frac{1}{\sigma_{\min}^2(W_2)} \cdot \|\Delta_{23}\|_{op}} \\ \|R^{-1}\|_{op} &\leq \sqrt{1 + \frac{1}{\sigma_{\min}^2(W_3)} \cdot \|\Delta_{23}\|_{op}} \\ \|W_1^HW_2^{-1}\|_{op} &= \sqrt{\|W_2^{H-1}W_1W_1^HW_2^{-1}\|_{op}} = \sqrt{\|I + W_2^{H-1}\Delta_{12}W_2^{-1}\|} \\ &\leq \sqrt{1 + e_\Delta\|W_2^{-1}\|_{op}^2} \\ \|W_3^{-1}W_4^H\|_{op} &= \sqrt{\|W_3^{-1}W_4^HW_4W_3^{H-1}\|_{op}} = \sqrt{\|I - W_3^{-1}\Delta_{34}W_3^{H-1}\|} \\ &\leq \sqrt{1 + e_\Delta\|W_3^{-1}\|_{op}^2}. \end{aligned} \quad (220)$$

3005 Further we have
 3006

$$\begin{aligned} \frac{d}{dt}\|W_2^{-1}\|_{op} &\leq 2\sqrt{2}\left(1 + e_\Delta\|W_2^{-1}\|_{op}^2\right)d^{5/8}\sigma_1^{5/4}(\Sigma) + \sqrt{2}ae_\Delta\|W_2^{-1}\|_{op} \\ \frac{d}{dt}\|W_3^{-1}\|_{op} &\leq 2\sqrt{2}\left(1 + e_\Delta\|W_3^{-1}\|_{op}^2\right)d^{5/8}\sigma_1^{5/4}(\Sigma) + \sqrt{2}ae_\Delta\|W_3^{-1}\|_{op}. \end{aligned} \quad (221)$$

3012 Combine with (208) and (209), for $t \geq T_1$ such that (216) holds,
 3013

$$\begin{aligned} \max\left(\frac{d}{dt}\|W_2^{-1}\|_{op}, \frac{d}{dt}\|W_3^{-1}\|_{op}\right) \\ \leq 2\sqrt{2}(1 + \sqrt{3} \cdot 2^{-31})d^{5/8}\sigma_1^{5/4}(\Sigma) + 2^{-22}f_1^{-9}f_2^{-3}d^{-55/4}\epsilon^3\sigma_1^{1/2}(\Sigma) \\ \leq 2\sqrt{2}(1 + 2^{-20})d^{5/8}\sigma_1^{5/4}(\Sigma). \end{aligned} \quad (222)$$

3020 From Theorem 36, $\max\left(\|W_2(T_1)^{-1}\|_{op}, \|W_3(T_1)^{-1}\|_{op}\right) \leq \frac{1}{\min_{j,k}|\sigma_k(W_j(T_1))|} \leq \frac{f_1\sqrt{d}}{(1-2^{-17})\epsilon}$,
 3021 then the proof of the first inequality is completed via integration during the time interval $[T_1, T_1+T_2]$.
 3022 The second inequality follows immediately.
 3023

□

3024
 3025 **Remark 17.** This Lemma verifies that $W_{2,3}^{-1}$ are bounded (consequently $W_{2,3}$ are full rank), then
 3026 R is well defined throughout this stage. For $t > T_1 + T_2$, further analysis shows that the minimum
 3027 singular values of W_2 and W_3 are lower bounded by $\Omega(\sigma_1^{1/4}(\Sigma))$.

3028 **Lemma 43.** *Skew-Hermitian error.*

3029 For $t \in [T_1, T_1 + T_2]$,

3031
$$\|W_1 - W'_1\|_F \leq 3f_1d\epsilon. \quad (223)$$

3033 *Proof.* From section G.1.1,

3036
$$\begin{aligned} \frac{d}{dt} \|W_1 - W'_1\|_F^2 &= -2\sigma_1(\Sigma) \operatorname{tr} \left((W_1 - W'_1)^H M_2 (W_1 - W'_1) \right) \\ &\quad - \sigma_1(\Sigma) \operatorname{tr} \left((W'_1 W_1^H - W_1 W'_1^H) (W'_1 W_1^H - W_1 W'_1^H)^H \right) \\ &\quad - \operatorname{tr} \left(M_2 (M'_1 + M_1) M_2 (W_1 - W'_1) (W_1 - W'_1)^H \right) \\ &\quad - \operatorname{tr} \left(M_2 (M'_1 - M_1) M_2 (W'_1 + W_1) (W_1 - W'_1)^H \right) \\ &\quad + 2\operatorname{tr} \left([-M'_1 M_2 M_1 + M_1 M_2 M'_1] W'_1 (W_1 - W'_1)^H \right) \\ &\quad + 2\Re \left(\operatorname{tr} \left([W_1(\Sigma - W^H) W_4 (R^H R - I) W_4^H] (W_1 - W'_1)^H \right) \right) \\ &\quad + 2\Re \left(\operatorname{tr} \left([(I - R R^H) W_2^H W_2 W_1(\Sigma - W^H)] (W_1 - W'_1)^H \right) \right) \\ &\quad - 2a\Re \left(\operatorname{tr} \left(\Delta_{12} (W_1 - W'_1) (W_1 - W'_1)^H \right) \right) \\ &\quad - 4a\Re \left(\operatorname{tr} \left(W_2^{-1} \Delta_{23} W_2 W'_1 (W_1 - W'_1)^H \right) \right). \end{aligned} \quad (224)$$

3053 Note: $-M'_1 M_2 M_1 + M_1 M_2 M'_1 = \frac{1}{2} [(M_1 - M'_1) M_2 (M_1 + M'_1) - (M_1 + M'_1) M_2 (M_1 - M'_1)]$.

3055 From Lemma 42, for $t \in [T_1, T_1 + T_2]$,

3058
$$\begin{aligned} \max \left(\|R^H R - I\|_{op}, \|I - R R^H\|_{op} \right) &\leq e_\Delta \|W_2^{-1}\|_{op}^2 \\ &\leq \sqrt{3} \cdot 2^{-31} f_1^{-9} f_2^{-3} d^{-115/8} \epsilon^3 \sigma_1^{-3/4}(\Sigma), \end{aligned} \quad (225)$$

3062
$$\begin{aligned} \|M_1 - M'_1\|_{op} &\leq \sqrt{6} \cdot \frac{\max_{j,k} \sigma_k^2(W_j)}{\sigma_{\min}^2(W_2)} e_\Delta \\ &\leq 2^{-27} f_1^{-9} f_2^{-3} d^{-113/8} \epsilon^3 \sigma_1^{-1/4}(\Sigma), \end{aligned} \quad (226)$$

3066
$$\begin{aligned} \left\| M_2 - \frac{M_1 + M'_1}{2} \right\|_{op} &\leq \|\Delta_{12}\|_{op} + \frac{1}{2} \|M_1 - M'_1\|_{op} \leq \left[1 + \frac{\sqrt{6}}{2} \cdot \frac{\max_{j,k} \sigma_k^2(W_j)}{\sigma_{\min}^2(W_2)} \right] e_\Delta \\ &\leq 2^{-28} f_1^{-9} f_2^{-3} d^{-113/8} \epsilon^3 \sigma_1^{-1/4}(\Sigma). \end{aligned} \quad (227)$$

3072 Consequently:

3074
$$\|R\|_{op} \leq \sqrt{1 + e_\Delta \|W_2^{-1}\|_{op}^2} \leq 1 + \sqrt{3} \cdot 2^{-32} f_1^{-9} f_2^{-3} d^{-115/8} \epsilon^3 \sigma_1^{-3/4}(\Sigma), \quad (228)$$

3075
$$\|W'_1\|_{op} \leq \|W'_1\|_F \leq \sqrt{2} d^{1/8} \sigma_1^{1/4}(\Sigma) \|R\|_{op} \leq (1 + 2^{-31}) \sqrt{2} d^{1/8} \sigma_1^{1/4}(\Sigma), \quad (229)$$

3078

$$\left\| \frac{M_1 + M'_1}{2} \right\|_{op} \leq \|M_2\|_{op} + \left\| M_2 - \frac{M_1 + M'_1}{2} \right\|_{op} \leq (1 + 2^{-29}) 2d^{1/4} \sigma_1^{1/2}(\Sigma), \quad (230)$$

3081

$$\begin{aligned} \|M'_1 M_2 M_1 - M_1 M_2 M'_1\|_{op} &\leq \|M_1 - M'_1\| \|M_2\| \|M_1 + M'_1\| \\ &\leq (1 + 2^{-29}) 2^{-25} f_1^{-9} f_2^{-3} d^{-109/8} \epsilon^3 \sigma_1^{3/4}(\Sigma). \end{aligned} \quad (231)$$

3082

By combining all results above, for $t \in [T_1, T_1 + T_2]$ such that $\|W_1 - W'_1\|_F \leq 3f_1 d \epsilon$ holds,

3083

$$\begin{aligned} \frac{d}{dt} \|W_1 - W'_1\|_F^2 &\leq -0 - 0 - 0 \\ &\quad + \|M_2\|_F \|M'_1 - M_1\|_{op} \|M_2\|_{op} \left(\|W'_1\|_{op} + \|W_1\|_{op} \right) \|W_1 - W'_1\|_F \\ &\quad + 2 \| -M'_1 M_2 M_1 + M_1 M_2 M'_1 \|_{op} \|W'_1\|_F \|W_1 - W'_1\|_F \\ &\quad + 2 \max_j \|W_j\|_{op}^3 \|\Sigma - W\|_F \left(\|R^H R - I\|_{op} + \|I - R R^H\|_{op} \right) \|W_1 - W'_1\|_F \\ &\quad + 2a\epsilon_\Delta \|W_1 - W'_1\|_F^2 \\ &\quad + 4a\epsilon_\Delta \|W_2^{-1}\|_{op} \|W_2\|_F \|W'_1\|_{op} \|W_1 - W'_1\|_F \\ &\leq 2^{-22} f_1^{-8} f_2^{-3} d^{-25/2} \epsilon^4 \sigma_1(\Sigma) \\ &\quad + 2^{-21} f_1^{-8} f_2^{-3} d^{-25/2} \epsilon^4 \sigma_1(\Sigma) \\ &\quad + 2^{-24} f_1^{-8} f_2^{-3} d^{-25/2} \epsilon^4 \sigma_1(\Sigma) \\ &\quad + 2^{-26} f_1^{-13} f_2^{-5} d^{-171/8} \epsilon^7 \sigma_1^{1/4}(\Sigma) \\ &\quad + 2^{-18} f_1^{-8} f_2^{-3} d^{-25/2} \epsilon^4 \sigma_1(\Sigma) \\ &\leq 2^{-17} f_1^{-8} f_2^{-3} d^{-25/2} \epsilon^4 \sigma_1(\Sigma). \end{aligned} \quad (232)$$

3107

From Theorem 36, at $t = T_1$,

3108

$$\begin{aligned} \|W_1(T_1) - W'_1(T_1)\|_F &\leq \|W_1(T_1)\|_F + \|W'_1(T_1)\|_F \leq \|W_1(T_1)\|_F + \|W_4(T_1)\|_F \|R(T_1)\|_{op} \\ &\leq (1 + 2^{-32}) 2\sqrt{d} \cdot (1 + 2^{-21}) f_1 \sqrt{d} \epsilon \leq (1 + 2^{-20}) 2f_1 d \epsilon. \end{aligned} \quad (233)$$

3113

Thus $\|W_1 - W'_1\|_F^2 \leq \sqrt{[(1 + 2^{-20}) 2f_1 d \epsilon]^2 + 2^{-17} f_1^{-8} f_2^{-3} d^{-25/2} \epsilon^4 \sigma_1(\Sigma)(t - T_1)}$, when both $t \in [T_1, T_1 + T_2]$ and $\|W_1 - W'_1\|_F^2 \leq 3f_1 d \epsilon$ hold. Then

3117

$$\begin{aligned} &\|W_1(T_1 + T_2) - W'_1(T_1 + T_2)\|_F^2 \\ &\leq \sqrt{[(1 + 2^{-20}) 2f_1 d \epsilon]^2 + 2^{-17} f_1^{-8} f_2^{-3} d^{-25/2} \epsilon^4 \sigma_1(\Sigma) T_2} \\ &\leq \sqrt{[(1 + 2^{-20}) 2f_1 d \epsilon]^2 + 2^{-12} f_1^{-2} f_2^{-1} d^{-7/2} \epsilon^2} < 3f_1 d \epsilon. \end{aligned} \quad (234)$$

3123

which completes the proof. \square

3125

Corollary 44. *The minimum eigenvalue of Hermitian term.*

3127

For any $\sigma_k(W_1 + W'_1)(T_1) \geq \frac{\epsilon}{2f_1^3 f_2 d^{9/2}}$, it takes at most time T_2 to increase to $2^{3/4} \sigma_1^{1/4}(\Sigma)$.

3129

3130

3131

Proof. We analyze the dynamics of $\lambda_k \left((W_1 + W'_1)^H (W_1 + W'_1) \right) = \sigma_k^2$. The definition of $\eta_k(t)$ and $\chi_k(t)$ follows section G.2.1. The dynamics can be expressed as below:

3132
 3133
 3134
 3135
 3136
 3137
 3138
 3139
 3140
 3141
 3142
$$\frac{d}{dt} \sigma_k^2 = 2\sigma_1(\Sigma) \sigma_k^2 \eta_k^H M_2 \eta_k + \sigma_1(\Sigma) \sigma_k^2 \chi_k^H (W_1 - W'_1)^H (W_1 - W'_1) \chi_k$$
 3143
$$+ \sigma_1(\Sigma) \sigma_k \Re(\eta_k^H (M'_1 - M_1) (W_1 - W'_1) \chi_k)$$
 3144
$$- \sigma_k^2 \eta_k^H M_2 (M_1 + M'_1) M_2 \eta_k - \sigma_k \Re(\eta_k^H M_2 (M_1 - M'_1) M_2 (W_1 - W'_1) \chi_k)$$
 3145
$$+ \sigma_k \Re(\eta_k^H (M'_1 M_2 M_1 - M_1 M_2 M'_1) (W'_1 - W_1) \chi_k)$$
 3146
$$- 2\sigma_k \Re(\eta_k^H W_1 (\Sigma - W^H) W_4 (R^H R - I) W_4^H \chi_k)$$
 3147
$$- 2\sigma_k \Re(\eta_k^H (I - R R^H) M_2 W_1 (\Sigma - W^H) \chi_k)$$
 3148
$$- 2a\sigma_k^2 \Re(\eta_k^H \Delta_{12} \eta_k) + 4a\sigma_k \Re(\eta_k^H W_2^{-1} \Delta_{23} W_2 W'_1 \chi_k). \quad (235)$$
 3149
 3150
 3151
 3152
 3153
 3154
 3155
 3156
 3157
 3158
 3159
 3160
 3161 From $\left\| M_2 - \frac{M_1 + M'_1}{2} \right\|_{op} \leq 2^{-28} f_1^{-9} f_2^{-3} d^{-113/8} \epsilon^3 \sigma_1^{-1/4}(\Sigma)$ and $\left\| \frac{M_1 + M'_1}{2} \right\|_{op} \leq$
 3162
$$(1 + 2^{-29}) 2d^{1/4} \sigma_1^{1/2}(\Sigma),$$
 3163
 3164
 3165
 3166
 3167
 3168
 3169
 3170
 3171
$$\eta_k^H M_2 \eta_k \geq \eta_k^H \left(\frac{M_1 + M'_1}{2} \right) \eta_k - \left\| M_2 - \frac{M_1 + M'_1}{2} \right\|_{op}$$
 3172
$$\geq \eta_k^H \left(\frac{M_1 + M'_1}{2} \right) \eta_k - 2^{-28} f_1^{-9} f_2^{-3} d^{-113/8} \epsilon^3 \sigma_1^{-1/4}(\Sigma)$$
 3173
 3174
 3175
 3176
$$\eta_k^H M_2 (M_1 + M'_1) M_2 \eta_k \leq \eta_k^H \left(\frac{M_1 + M'_1}{2} \right) (M_1 + M'_1) \left(\frac{M_1 + M'_1}{2} \right) \eta_k$$
 3177
$$+ 2 \left\| M_2 - \frac{M_1 + M'_1}{2} \right\|_{op} \left\| \frac{M_1 + M'_1}{2} \right\|_{op} \left(\left\| M_2 \right\|_{op} + \left\| \frac{M_1 + M'_1}{2} \right\|_{op} \right)$$
 3178
 3179
 3180
 3181
 3182
 3183
 3184
 3185
$$\leq \eta_k^H \left(\frac{M_1 + M'_1}{2} \right) (M_1 + M'_1) \left(\frac{M_1 + M'_1}{2} \right) \eta_k$$

$$+ (1 + 2^{-28}) 2^{-24} f_1^{-9} f_2^{-3} d^{-109/8} \epsilon^3 \sigma_1^{3/4}(\Sigma). \quad (236)$$

By Lemma 43, $\|W_1 - W'_1\|_{op} \leq \|W_1 - W'_1\|_F \leq 3f_1 d \epsilon$,

3186
3187
3188 $\frac{d}{dt} \sigma_k^2 \geq 2\sigma_1(\Sigma) \sigma_k^2 \eta_k^H M_2 \eta_k + 0$
3189
3190 $- \sigma_1(\Sigma) \sigma_k \|M'_1 - M_1\|_{op} \|W_1 - W'_1\|_{op}$
3191 $- \sigma_k^2 \eta_k^H M_2 (M_1 + M'_1) M_2 \eta_k - \sigma_k \max_j \|W_j\|_{op}^4 \|M_1 - M'_1\|_{op} \|W_1 - W'_1\|_{op}$
3192
3193 $- \sigma_k \|M'_1 M_2 M_1 - M_1 M_2 M'_1\|_{op} \|W'_1 - W_1\|_{op}$
3194 $- 2\sigma_k \max_j \|W_j\|_{op}^3 \|\Sigma - W\|_{op} \left(\|R^H R - I\|_{op} + \|I - RR^H\|_{op} \right)$
3195
3196 $- 2ae_\Delta \sigma_k^2 - 4ae_\Delta \sigma_k \|W_2^{-1}\|_{op} \max_j \|W_j\|_{op}^2 \|R\|_{op}$
3197
3198 $\geq 2\sigma_1(\Sigma) \sigma_k^2 \left(\eta_k^H \left(\frac{M_1 + M'_1}{2} \right) \eta_k - 2^{-28} f_1^{-9} f_2^{-3} d^{-113/8} \epsilon^3 \sigma_1^{-1/4}(\Sigma) \right)$
3199
3200 $- \sigma_k \|W_1 - W'_1\|_{op} \cdot 2^{-27} f_1^{-9} f_2^{-3} d^{-113/8} \epsilon^3 \sigma_1^{3/4}(\Sigma)$
3201
3202 $- \sigma_k^2 \left[\eta_k^H \left(\frac{M_1 + M'_1}{2} \right) (M_1 + M'_1) \left(\frac{M_1 + M'_1}{2} \right) \eta_k + (1 + 2^{-28}) 2^{-24} f_1^{-9} f_2^{-3} d^{-109/8} \epsilon^3 \sigma_1^{3/4}(\Sigma) \right]$
3203
3204 $- \sigma_k \|W_1 - W'_1\|_{op} \cdot 2^{-25} f_1^{-9} f_2^{-3} d^{-109/8} \epsilon^3 \sigma_1^{3/4}(\Sigma)$
3205
3206 $- \sigma_k \|W_1 - W'_1\|_{op} \cdot (1 + 2^{-29}) 2^{-25} f_1^{-9} f_2^{-3} d^{-109/8} \epsilon^3 \sigma_1^{3/4}(\Sigma)$
3207
3208 $- \sigma_k \cdot 2^{-25} f_1^{-9} f_2^{-3} d^{-27/2} \epsilon^3 \sigma_1(\Sigma)$
3209
3210 $- \sigma_k^2 \cdot 2^{-29} f_1^{-15} f_2^{-5} d^{-187/8} \epsilon^5 \sigma_1^{1/4}(\Sigma) - \sigma_k \cdot 2^{-22} f_1^{-9} f_2^{-3} d^{-27/2} \epsilon^3 \sigma_1(\Sigma)$
3211
3212 $\geq 2\sigma_k^2 \eta_k^H \left[\sigma_1(\Sigma) \left(\frac{M_1 + M'_1}{2} \right) - \left(\frac{M_1 + M'_1}{2} \right)^3 \right] \eta_k$
3213
3214 $- \sigma_k \cdot (1 + 2^{-1}) 2^{-22} f_1^{-9} f_2^{-3} d^{-27/2} \epsilon^3 \sigma_1(\Sigma) - \sigma_k^2 \cdot 2^{-23} f_1^{-9} f_2^{-3} d^{-109/8} \epsilon^3 \sigma_1(\Sigma).$ (237)

3215 under $\sigma_k \geq \frac{\epsilon}{2f_1^3 f_2 d^{9/2}}$,

3216
3217
3218 $\frac{d}{dt} \sigma_k^2 \geq 2\sigma_k^2 \eta_k^H \left[\sigma_1(\Sigma) \left(\frac{M_1 + M'_1}{2} \right) - \left(\frac{M_1 + M'_1}{2} \right)^3 \right] \eta_k - 2^{-18} \sigma_1(\Sigma) \sigma_k^4.$ (238)

3219 Denote $P = \frac{W_1 + W'_1}{2}$, $Q = \frac{W_1 - W'_1}{2}$. Notice that

3220
3221
3222 $PP^H + QQ^H = \frac{M_1 + M'_1}{2}, P^H \eta_k = \frac{1}{2} \sigma_k \chi_k,$ (239)

3223
3224
3225 $\eta_k^H \left(\frac{M_1 + M'_1}{2} \right) \eta_k = \eta_k^H (PP^H + QQ^H) \left(\frac{M_1 + M'_1}{2} \right) (PP^H + QQ^H) \eta_k \geq \frac{1}{4} \sigma_k^2,$ (240)

3226
3227
3228
3229
3230
3231 $\eta_k^H \left(\frac{M_1 + M'_1}{2} \right)^3 \eta_k = \eta_k^H (PP^H + QQ^H) \left(\frac{M_1 + M'_1}{2} \right) (PP^H + QQ^H) \eta_k$
3232
3233 $= \frac{1}{16} \sigma_k^4 \eta_k^H \left(\frac{M_1 + M'_1}{2} \right) \eta_k + \eta_k^H QQ^H \left(\frac{M_1 + M'_1}{2} \right) QQ^H \eta_k$
3234
3235
3236
3237
3238
3239 $+ \frac{1}{4} \sigma_k^2 \eta_k^H \left[QQ^H \left(\frac{M_1 + M'_1}{2} \right) + \left(\frac{M_1 + M'_1}{2} \right) QQ^H \right] \eta_k$
 $\leq \frac{1}{16} \sigma_k^4 \eta_k^H \left(\frac{M_1 + M'_1}{2} \right) \eta_k + \left\| \frac{M_1 + M'_1}{2} \right\|_{op} \left(\frac{1}{2} \sigma_k^2 \|Q\|_{op}^2 + \|Q\|_{op}^4 \right).$ (241)

3240 Notice $\|Q\|_{op} = \frac{1}{2} \|W_1 - W'_1\|_F \leq \frac{3}{2} f_1 d \epsilon \leq \sigma_k \cdot 3 f_1^4 f_2 d^{11/2}$, $\epsilon \leq \frac{1}{32 f_1^5 f_2 d^{53/8}} \sigma_1^{1/4}(\Sigma)$,

3241

3242

3243

3244 $\frac{d}{dt} \sigma_k^2 \geq 2\sigma_k^2 \left[\left(\sigma_1(\Sigma) - \frac{1}{16} \sigma_k^4 \right) \eta_k^H \left(\frac{M_1 + M'_1}{2} \right) \eta_k - \left\| \frac{M_1 + M'_1}{2} \right\|_{op} \left(\frac{1}{2} \sigma_k^2 \|Q\|_{op}^2 + \|Q\|_{op}^4 \right) \right]$

3245 $- 2^{-18} \sigma_1(\Sigma) \sigma_k^4$

3246

3247 $\geq \frac{1}{2} \sigma_k^4 \left(\sigma_1(\Sigma) - \frac{1}{16} \sigma_k^4 \right) - 2\sigma_k^2 \left\| \frac{M_1 + M'_1}{2} \right\|_{op} \|Q\|_{op}^2 \left(\frac{1}{2} \sigma_k^2 + \|Q\|_{op}^2 \right) - 2^{-18} \sigma_1(\Sigma) \sigma_k^4$

3248

3249 $\geq \frac{1}{2} \sigma_k^4 \sigma_1(\Sigma) - \frac{1}{32} \sigma_k^8 - 81 (1 + 2^{-5}) f_1^{10} f_2^2 d^{53/4} \epsilon^2 \sigma_1^{1/2}(\Sigma) \sigma_k^4 - 2^{-18} \sigma_1(\Sigma) \sigma_k^4$

3250

3251 $\geq \frac{3}{8} \sigma_k^4 \sigma_1(\Sigma) - \frac{1}{32} \sigma_k^8.$

3252

3253

3254

3255

3256

3257

3258

3259

3260

3261

3262

3263

3264

3265

3266

3267

3268

3269

3270

3271

3272

3273

3274

3275

3276

3277

3278

3279

3280

3281

3282

3283

3284

3285

3286

3287

3288

3289

3290

3291

3292

3293

3294

3295

3296

3297

3298

3299

3300

3301

3302

3303

3304

3305

3306

3307

3308

3309

3310

3311

3312

3313

3314

3315

3316

3317

3318

3319

3320

3321

3322

3323

3324

3325

3326

3327

3328

3329

3330

3331

3332

3333

3334

3335

3336

3337

3338

3339

3340

3341

3342

3343

3344

3345

3346

3347

3348

3349

3350

3351

3352

3353

3354

3355

3356

3357

3358

3359

3360

3361

3362

3363

3364

3365

3366

3367

3368

3369

3370

3371

3372

3373

3374

3375

3376

3377

3378

3379

3380

3381

3382

3383

3384

3385

3386

3387

3388

3389

3390

3391

3392

3393

3394

3395

3396

3397

3398

3399

3400

3401

3402

3403

3404

3405

3406

3407

3408

3409

3410

3411

3412

3413

3414

3415

3416

3417

3418

3419

3420

3421

3422

3423

3424

3425

3426

3427

3428

3429

3430

3431

3432

3433

3434

3435

3436

3437

3438

3439

3440

3441

3442

3443

3444

3445

3446

3447

3448

3449

3450

3451

3452

3453

3454

3455

3456

3457

3458

3459

3460

3461

3462

3463

3464

3465

3466

3467

3468

3469

3470

3471

3472

3473

3474

3475

3476

3477

3478

3479

3480

3481

3482

3483

3484

3485

3486

3487

3488

3489

3490

3491

3492

3493

3494

3495

3496

3497

3498

3499

3500

3501

3502

3503

3504

3505

3506

3507

3508

3509

3510

3511

3512

3513

3514

3515

3516

3517

3518

3519

3520

3521

3522

3523

3524

3525

3526

3527

3528

3529

3530

3531

3532

3533

3534

3535

3536

3537

3538

3539

3540

3541

3542

3543

3544

3545

3546

3547

3548

3549

3550

3551

3552

3553

3554

3555

3556

3557

3558

3559

3560

3561

3562

3563

3564

3565

3566

3567

3568

3569

3570

3571

3572

3573

3574

3575

3576

3577

3578

3579

3580

3581

3582

3583

3584

3585

3586

3587

3588

3589

3590

3591

3592

3593

3594

3595

3596

3597

3598

3599

3600

3601

3602

3603

3604

3605

3606

3607

3608

3609

3610

3611

3612

3613

3614

3615

3616

3617

3618

3619

3620

3621

3622

3623

3624

3625

3626

3627

3628

3629

3630

3631

3632

3633

3634

3635

3636

3637

3638

3639

3640

3641

3642

3643

3644

3645

3646

3647

3648

3649

3650

3651

3652

3653

3654

3655

3656

3657

3658

3659

3660

3661

3662

3663

3664

3665

3666

3667

3668

3669

3670

3671

3672

3673

3674

3675

3676

3677

3678

3679

3680

3681

3682

3683

3684

3685

3686

3687

3688

3689

3690

3691

3692

3693

3694

3695

3696

3697

3698

3699

3700

3701

3702

3703

3704

3705

3706

3707

3708

3709

3710

3711

3712

3713

3714

3715

3716

3717

3718

3719

3720

3721

3722

3723

3724

3725

3726

3727

3728

3729

3730

3731

3732

3733

3734

3735

3736

3737

3738

3739

3740

3741

3742

3743

3744

3745

3746

3747

3748

3749

3750

3751

3752

3753

3754

3755

3756

3757

3758

3759

3760

3761

3762

3763

3764

3765

3766

3767

3768

3769

3770

3771

3772

3773

3774

3775

3776

3777

3778

3779

3780

3781

3782

3783

3784

3785

3786

3787

3788

3789

3790

3791

3792

3793

3794

3795

3796

3797

3798

3799

3800

3801

3802

3803

3804

3805

3806

3807

3808

3809

3810

3811

3812

3813

3814

3815

3816

3817

3818

3819

3820

3821

3822

3823

3824

3825

3826

3827

3828

3829

3830

3831

3832

3833

3834

3835

3836

3837

3838

3839

3840

3841

3842

3843

3844

3845

3846

3847

3848

3849

3850

3851

3852

3853

3854

3855

3856

3857

3858

3859

3860

3861

3862

3863

3864

3865

3866

3867

3868

3869

3870

3871

3872

3873

3874

3875

3876

3877

3878

3879

3880

3881

3882

3883

3884

3885

3886

3887

3888

3889

3890

3891

3892

3893

3894

3895

3896

3897

3898

3899

3900

3901

3902

3903

3904

3905

3906

3907

3908

3909

3910

3911

3912

3913

3914

3915

3916

3917

3918

3919

3920

3921

3922

3923

3924

3925

3926

3927

3928

3929

3930

3931

3932

3933

3934

3935

3936

3937

3938

3939

3940

3941

3942

3943

3944

3945

3946

3947

3948

3949

3950

3951

3952

3953

3954

3955

3956

3957

3958

3959

3960

3961

3962

3963

3964

3965

3966

3967

3968

3969

3970

3971

3972

3973

3974

3975

3976

3977

3978

3979

3980

3981

3982

3983

3984

3985

3986

3987

3988

3989

3990

3991

3992

3993

3994

3995

3996

3997

3998

3999

4000

4001

4002

4003

4004

4005

4006

4007

4008

4009

4010

4011

4012

4013

4014

4015

4016

4017

4018

4019

4020

4021

4022

4023

4024

4025

4026

4027

4028

4029

4030

4031

4032

4033

4034

4035

4036

4037

4038

4039

4040

4041

4042

4043

4044

4045

4046

4047

4048

4049

4050

4051

4052

4053

4054

4055

4056

4057

4058

4059

4060

4061

4062

4063

4064

4065

4066

4067

4068

4069

4070

4071

4072

4073

4074

4075

4076

4077

4078

4079

4080

4081

4082

4083

4084

4085

4086

4087

4088

4089

4090

4091

4092

4093

4094

4095

4096

4097

4098

4099

4100

4101

4102

4103

4104

4105

4106

4107

4108

4109

4110

4111

4112

4113

4114

4115

4116

4117

4118

4119

4120

4121

4122

4123

4124

4125

4126

4127

4128

4129

4130

4131

4132

4133

4134

4135

4136

4137

4138

4139

4140

4141

4142

4143

4144

4145

4146

4147

4148

4149

4150

4151

4152

4153

4154

4155

4156

4157

4158

4159

4160

4161

4162

4163

4164

4165

4166

4167

4168

4169

4170

4171

4172

4173

4174

4175

4176

4177

4178

4179

4180

4181

4182

4183

4184

4185

4186

4187

4188

4189

4190

4191

4192

4193

4194

4195

4196

4197

4198

4199

4200

4201

4202

4203

4204

4205

4206

4207

4208

4209

4210

4211

4212

4213

4214

4215

4216

4217

4218

4219

4220

4221

4222

4223

4224

4225

4226

4227

4228

4229

4230

4231

4232

4233

4234

4235

4236

4237

4238

4239

4240

4241

4242

4243

4244

4245

4246

4247

4248

4249

4250

4251

4252

4253

4254

4255

4256

4257

4258

4259

4260

4261

4262

4263

4264

4265

4266

4267

4268

4269

4270

4271

4272

4273

4274

4275

4276

4277

4278

4279

4280

4281

4282

4283

4284

4285

4286

4287

4288

4289

4290

4291

4292

4293

4294

4295

4296

4297

4298

4299

4300

4301

4302

4303

4304

4305

4306

4307

4308

4309

4310

4311

4312

4313

4314

4315

4316

4317

4318

4319

4320

4321

4322

4323

4324

4325

4326

4327

4328

4329

4330

4331

4332

4333

4334

4335

4336

4337

4338

4339

4340

4341

4342

4343

4344

4345

4346

4347

4348

4349

4350

4351

4352

4353

4354

4355

4356

4357

4358

4359

4360

4361

4362

4363

4364

4365

4366

4367

4368

4369

4370

4371

4372

4373

4374

4375

4376

4377

4378

4379

4380

4381

4382

4383

4384

4385

4386

4387

4388

4389

4390

4391

4392

4393

4394

4395

4396

4397

4398

4399

4400

4401

4402

4403

4404

4405

4406

4407

4408

4409

4410

4411

4412

4413

4414

4415

4416

4417

4418

4419

4420

4421

4422

4423

4424

4425

4426

4427

4428

4429

4430

4431

4432

4433</

3294

3295

3296

3297

3298

3299

3300

3301

3302

3303

3304

3305

3306

3307

3308

3309

3310

3311

3312

3313

3314

3315

3316

3317

3318

3319

3320

3321

3322

3323

3324

3325

3326

3327

3328

3329

3330

3331

3332

3333

3334

3335

3336

3337

3338

3339

3340

3341

3342

3343

3344

3345

3346

3347

3348

$$\begin{aligned} \sigma_{\min}(W_1 + W'_1)(t) &\geq 2^{3/4}\sigma_1^{1/4}(\Sigma) \\ \|W_1 - W'_1\|_F &\leq 3f_1d\epsilon. \end{aligned} \tag{246}$$

Proof. (246) holds at $t = T_1 + T_2$. Since both L.H.S. change continuously, it left to prove that the derivatives at these thresholds (to be specific, $t' \geq T_2$ such that $\|W_1 - W'_1\|_F|_{t=t'} = 3f_1d\epsilon$ or $\sigma_k(W_1 + W'_1)|_{t=t'} = 2^{3/4}\sigma_1(\Sigma)$) are positive/negative. (If such time does not exist, then the proof is done.)

From

$$\begin{aligned} \sigma_{\min}^2(W_1) + \sigma_{\min}^2(W'_1) &\geq \frac{1}{2}\lambda_{\min}((W_1 + W'_1)(W_1 + W'_1)^H + (W_1 - W'_1)(W_1 - W'_1)^H) \\ &\geq \frac{1}{2}\sigma_{\min}^2(W_1 + W'_1), \end{aligned} \tag{247}$$

and

$$\sigma_{\min}(W'_1) \leq \sigma_{\min}(W_1) + \|W_1 - W'_1\|_F. \tag{248}$$

For $t > T_1 + T_2$ such as (246) holds,

$$\sigma_{\min}(W_2) \geq \sigma_{\min}(W_1) - e_{\Delta} \geq \frac{1}{\sqrt{2}}\sigma_1^{1/4}(\Sigma). \tag{249}$$

Then by following almost the same arguments as Lemma 43 and 44,

$$\begin{aligned} \frac{d}{dt}\|W_1 - W'_1\|_F^2 &\leq -2\sigma_1(\Sigma)\text{tr}\left((W_1 - W'_1)^H\sigma_{\min}^2(W_2)(W_1 - W'_1)\right) - 0 - 0 \\ &\quad + 2^{-17}f_1^{-8}f_2^{-3}d^{-25/2}\epsilon^4\sigma_1(\Sigma) \\ &\leq -\sigma_1^{3/2}(\Sigma)\|W_1 - W'_1\|_F^2 + 2^{-17}f_1^{-8}f_2^{-3}d^{-25/2}\epsilon^4\sigma_1(\Sigma), \end{aligned} \tag{250}$$

$$\frac{d}{dt}\sigma_k^2(W_1 + W'_1) \geq \frac{3}{8}\sigma_k^4(W_1 + W'_1)\sigma_1(\Sigma) - \frac{1}{32}\sigma_k^8(W_1 + W'_1). \tag{251}$$

Suppose for some $t_1, t_2 \geq T_1 + T_2$ such that $\|W_1 - W'_1\|_F|_{t=t_1} = 3f_1d\epsilon$, $\sigma_k(W_1 + W'_1)|_{t=t_2} = 2^{3/4}\sigma_1(\Sigma)$, then

$$\begin{aligned} \frac{d}{dt}\|W_1 - W'_1\|_F^2 \Big|_{t=t_1} &\leq 0 \\ \frac{d}{dt}\sigma_k^2(W_1 + W'_1) \Big|_{t=t_2} &\geq 0. \end{aligned} \tag{252}$$

This completes the proof. \square

Theorem 46. *Global convergence bound.*

For four-layer matrix factorization under gradient flow, with random Gaussian initialization with scaling factor $\epsilon \leq \frac{\sigma_1^{1/4}(\Sigma)}{32f_1^5f_2d^{53/8}}$, regularization factor $a \geq 32f_1^{20}f_2d^{13}\sigma_1(\Sigma)b$, where b satisfies

3348
 3349 $b \geq 5 \ln \left(\frac{\sigma_1^{1/4}(\Sigma)}{\epsilon} \right) + \frac{281}{8} \ln d + 23 \ln(4f_1) + 7 \ln f_2$
 3350 $b - \ln b \geq 3 \ln \left(\frac{\sigma_1^{1/4}(\Sigma)}{\epsilon} \right) + \frac{303}{8} \ln d + 37 \ln(2f_1) + 6 \ln f_2.$
 3351
 3352
 3353
 3354

3355 Then for target matrix with identical singular values, there exists following $T(\epsilon_{\text{conv}})$, such that for
 3356 any $\epsilon_{\text{conv}} > 0$, (1) with high probability over the complex initialization (2) with probability close to
 3357 $\frac{1}{2}$ over the real initialization, when $t > T(\epsilon_{\text{conv}})$, $\mathcal{L}(t) < \epsilon_{\text{conv}}$.
 3358

3359 $T(\epsilon_{\text{conv}}) \leq T_1 + T_2 + \sigma_1^{-3/2}(\Sigma) \ln \left(\frac{d\sigma_1^2(\Sigma)}{\epsilon_{\text{conv}}} \right)$
 3360 $= \frac{1}{32f_1^{14}f_2d^{10}\epsilon^2\sigma_1(\Sigma)} + \frac{32f_1^6f_2^2d^9}{\sigma_1(\Sigma)\epsilon^2} + \sigma_1^{-3/2}(\Sigma) \ln \left(\frac{d\sigma_1^2(\Sigma)}{\epsilon_{\text{conv}}} \right)$
 3361 $= O \left(\frac{f_1^6f_2^2d^9}{\sigma_1(\Sigma)\epsilon^2} + \frac{1}{\sigma_1^{3/2}(\Sigma)} \ln \left(\frac{d\sigma_1^2(\Sigma)}{\epsilon_{\text{conv}}} \right) \right).$
 3362
 3363
 3364
 3365
 3366

3367 *Proof.* Following the derivations in Lemma 45,
 3368

3369
 3370 $\min_{j,k} \sigma_k(W_j)(t > T_1 + T_2) \geq \frac{1}{\sqrt{2}}\sigma_1^{1/4}(\Sigma).$
 3371

3372 By Lemma 23 and 41,
 3373

3374
 3375 $\mathcal{L}_{\text{ori}}(t) \leq \mathcal{L}_{\text{ori}}(T_1 + T_2) \exp \left(-8 \min_{j,k} |\sigma_k(W_j)(t > T_1 + T_2)|^6 (t - T_1 - T_2) \right)$
 3376
 3377 $\leq \mathcal{L}_{\text{ori}}(0) \exp \left(-8 \min_{j,k} |\sigma_k(W_j)(t > T_1 + T_2)|^6 (t - T_1 - T_2) \right)$
 3378
 3379 $\leq 0.52d\sigma_1^2(\Sigma) \exp \left(-\sigma_1^{3/2}(\Sigma)(t - T_1 - T_2) \right).$
 3380

3381 For regularization term, by invoking Theorem 27, 36 and Lemma 41,
 3382

3383
 3384 $\mathcal{L}_{\text{reg}}(t) \leq \mathcal{L}_{\text{reg}}(T_1 + T_2) \exp \left(-\frac{4a}{3} \frac{\min_{j,k} |\sigma_k(W_j)(t > T_1 + T_2)|^4}{\max_{j,k} |\sigma_k(W_j)|^2} \cdot (t - T_1 - T_2) \right)$
 3385
 3386 $\leq \frac{a}{4} e_{\Delta}^2(T_1 + T_2) \exp \left(-\frac{4a}{3} \frac{\min_{j,k} |\sigma_k(W_j)(t > T_1 + T_2)|^4}{\max_{j,k} |\sigma_k(W_j)|^2} \cdot (t - T_1 - T_2) \right)$
 3387
 3388 $\leq \frac{a}{4} e_{\Delta}^2(T_1) \exp \left(-\frac{4a}{3} \frac{\min_{j,k} |\sigma_k(W_j)(t > T_1 + T_2)|^4}{\max_{j,k} |\sigma_k(W_j)|^2} \cdot (t - T_1 - T_2) \right)$
 3389
 3390 $\leq 2^{-76} f_1^{-36} f_2^{-12} d^{-57} \epsilon^{12} \sigma_1^{-1}(\Sigma) \exp \left(-16f_1^{20} f_2 d^{51/4} \sigma_1^{3/2}(\Sigma)(t - T_1 - T_2) \right).$
 3391
 3392

3393 By taking logarithm on the summation of these two inequalities, the proof is completed.
 3394

□

I CONVERGENCE UNDER GRADIENT DESCENT, STAGED ANALYSIS

3395
 3396
 3397
 3398 This section states the complete proof of convergence under Random Gaussian Initialization C.2.
 3399

3400 At the beginning we still assume (49) holds. (For the complex case, it holds with high probability
 3401 $1 - \delta$; for the real case, it holds with probability $\frac{1}{2}(1 - \delta)$.)

Theorem 47. *Global convergence bound under random Gaussian initialization, gradient descent.*

For four-layer matrix factorization under gradient descent, random Gaussian initialization with scaling factor $\epsilon \leq \frac{\sigma_1^{1/4}(\Sigma)}{32f_1^5f_2d^{53/8}}$, regularization factor $a \geq 32f_1^{20}f_2d^{13}\sigma_1(\Sigma)b$, where b satisfies

$$\begin{aligned} b &\geq \max \left(5 \ln \left(\frac{\sigma_1^{1/4}(\Sigma)}{\epsilon} \right) + \frac{281}{8} \ln d + 23 \ln(4f_1) + 7 \ln f_2, 16 \ln(2f_1f_2d) \right) \\ b - \ln b &\geq 3 \ln \left(\frac{\sigma_1^{1/4}(\Sigma)}{\epsilon} \right) + \frac{303}{8} \ln d + 37 \ln(2f_1) + 6 \ln f_2. \end{aligned} \quad (258)$$

Then for target matrix with identical singular values, there exists following learning rate η and convergence time $T(\epsilon_{\text{conv}}, \eta)$, such that for any $\epsilon_{\text{conv}} > 0$, (1) with high probability over the complex initialization (2) with probability close to $\frac{1}{2}$ over the real initialization, when $t > T(\epsilon_{\text{conv}}, \eta)$, $\mathcal{L}(t) < \epsilon_{\text{conv}}$.

$$\begin{aligned} \eta &= O \left(\min \left(a^{-2} f_1^{-4} d^{-2} \epsilon^{-2} \sigma_1(\Sigma), \right. \right. \\ &\quad a f_1^{-56} f_2^{-14} d^{-301/4} \epsilon^8 \sigma_1^{-9/2}(\Sigma), a^{-1} f_1^{-44} f_2^{-10} d^{-219/4} \epsilon^4 \sigma_1^{-3/2}(\Sigma), \\ &\quad \left. \left. f_1^{-27} f_2^{-9} d^{-355/8} \epsilon^9 \sigma_1^{-15/4}(\Sigma), a^{-1} f_1^{-21} f_2^{-7} d^{-273/8} \epsilon^7 \sigma_1^{-9/4}(\Sigma) \right) \right) \end{aligned} \quad (259)$$

$$\begin{aligned} T(\epsilon_{\text{conv}}, \eta) &\leq T_1 + T_2 + \eta^{-1} \sigma_1^{-3/2}(\Sigma) \ln \left(\frac{d\sigma_1^2(\Sigma)}{\epsilon_{\text{conv}}} \right) \\ &= O \left(\frac{f_1^6 f_2^2 d^9}{\eta \sigma_1(\Sigma) \epsilon^2} + \frac{1}{\eta \sigma_1^{3/2}(\Sigma)} \ln \left(\frac{d\sigma_1^2(\Sigma)}{\epsilon_{\text{conv}}} \right) \right). \end{aligned}$$

The following section completes the proof.

I.1 STAGE 1: ALIGNMENT STAGE

In this section, we set $\epsilon \leq \frac{\sigma_1^{1/4}(\Sigma)}{4f_1\sqrt{d}}$, $a \geq 2^5 f_1^{20} f_2 d^{13} \sigma_1(\Sigma) b$, where $b \geq 2^4 \ln(4f_1d) + \ln f_2$. $\eta = O \left(\frac{\sigma_1(\Sigma)}{a^2 f_1^4 d^2 \epsilon^2} \right)$, with appropriate small constant. Without loss of generality, $f_1 \geq 2$, $f_2 \geq f_1^6$.

Theorem 48. *At $T_1 = \frac{1}{32f_1^{14}f_2d^{10}\epsilon^2\sigma_1(\Sigma)\eta}$, the following conclusions hold:*

$$\begin{aligned} \sigma_{\min}(W_1 + W'_1)|_{t=T_1} &\geq \frac{\epsilon}{2f_1^3 f_2 d^{9/2}} \\ e_{\Delta}(T_1) &\leq 2 \sqrt{3f_1^4 d^3 \epsilon^4 e^{-2b} + \eta O(a^{-1} f_1^{14} d^8 \epsilon^6 \sigma_1^2(\Sigma))} \\ \max_{j,k} |\sigma_k(W_j(T_1))| &\leq (1 + 2^{-21}) f_1 \sqrt{d} \epsilon \\ \min_{j,k} |\sigma_k(W_j(T_1))| &\geq (1 - 2^{-17}) \frac{\epsilon}{f_1 \sqrt{d}}. \end{aligned} \quad (260)$$

This section proves the theorem above by following Lemmas and Corollaries.

Lemma 49. *Maximum and minimum singular value bound of weight matrices in alignment stage.*

For $t \in \left[0, \frac{1}{32f_1^4 d^2 \epsilon^2 \sigma_1(\Sigma) \eta}\right]$,

$$\min_{j,k} \sigma_k(W_j) \geq \frac{\epsilon}{f_1 \sqrt{d}} - 16 f_1^3 d^{3/2} \epsilon^3 \sigma_1(\Sigma) t, \quad \max_{j,k} \sigma_k(W_j) \leq \frac{f_1 \sqrt{d} \epsilon}{\sqrt{1 - 4f_1^2 d \epsilon^2 \sigma_1(\Sigma) t}}. \quad (261)$$

3456 *Proof.* For $t \geq 0$ such that $\max_{j,k} \sigma_k(W_j) \leq 2f_1\sqrt{d}\epsilon \leq \frac{1}{2}\sigma_1^{1/4}(\Sigma)$,
 3457

3458

$$3459 \max_j \|\nabla_{W_j} \mathcal{L}_{\text{ori}}\|_{op} \leq \max_{j,k} |\sigma_k(W_j)|^3 \left(\sigma_1(\Sigma) + \max_{j,k} |\sigma_k(W_j)|^4 \right) \leq \frac{3}{2} \max_{j,k} |\sigma_k(W_j)|^3 \sigma_1(\Sigma). \quad (262)$$

3460

3461 By invoking Corollary 30, for $t \geq 0$ such that $\min_{j,k} \sigma_k(W_j(t)) \geq \frac{\epsilon}{2f_1\sqrt{d}}$,

3462

$$3463 \begin{aligned} \max_{j,k} \sigma_k^2(W_j(t+1)) - \max_{j,k} \sigma_k^2(W_j(t)) &\leq 3\eta \max_{j,k} |\sigma_k(W_j(t))|^4 \sigma_1(\Sigma) \\ 3464 &\quad + \eta^2 O\left(a^2 \left(\epsilon f_1 \sqrt{d}\right)^6\right) \\ 3465 &\leq 4\eta \max_{j,k} |\sigma_k(W_j(t))|^4 \sigma_1(\Sigma) \\ 3466 \min_{j,k} \sigma_k^2(W_j(t+1)) - \min_{j,k} \sigma_k^2(W_j(t)) &\geq -3\eta \min_{j,k} |\sigma_k(W_j(t))| \max_{j,k} |\sigma_k(W_j(t))|^3 \sigma_1(\Sigma) \\ 3467 &\quad + \eta^2 O\left(a^2 \left(\epsilon f_1 \sqrt{d}\right)^6\right) \\ 3468 &\geq -2\eta \left(\min_{j,k} |\sigma_k(W_j(t+1))| + \min_{j,k} |\sigma_k(W_j(t))| \right) \\ 3469 &\quad \cdot \max_{j,k} |\sigma_k(W_j(t))|^3 \sigma_1(\Sigma). \end{aligned} \quad (263)$$

3470

3471 By solving the differential inequality,

3472

$$3473 \max_{j,k} \sigma_k|W_j(t)| \leq \frac{\max_{j,k} \sigma_k|W_j(0)|}{\sqrt{1 - 4\sigma_1(\Sigma) \max_{j,k} \sigma_k|W_j(0)|^2} \eta t} \leq \frac{f_1 \sqrt{d}\epsilon}{\sqrt{1 - 4f_1^2 d \epsilon^2 \sigma_1(\Sigma) \eta t}}, \quad t \in \left[0, \frac{3}{16f_1^2 d \epsilon^2 \sigma_1(\Sigma) \eta}\right], \quad (264)$$

3474

$$3475 \min_{j,k} |\sigma_k(W_j(t))| \geq \frac{\epsilon}{f_1 \sqrt{d}} - 16f_1^3 d^{3/2} \epsilon^3 \sigma_1(\Sigma) \eta t, \quad t \in \left[0, \frac{1}{32f_1^4 d^2 \epsilon^2 \sigma_1(\Sigma) \eta}\right]. \quad (265)$$

3476

3477 This completes the proof. □

3478

3479

3480

3481 Notice that

3482

3483

3484

3485

3486

3487

3488

3489

3490

3491

3492

3493

3494

3495

3496

3497

3498

3499

3500

3501

3502

3503

3504

3505

3506

3507

3508

3509

$$3500 \begin{aligned} \max_{j,k} |\sigma_k(W_j(t \leq T_1))| &\leq \frac{f_1 \sqrt{d}\epsilon}{\sqrt{1 - \frac{1}{8f_1^{12}f_2}}} \leq (1 + 2^{-21})f_1 \sqrt{d}\epsilon \\ 3501 &\quad (266) \\ 3502 \min_{j,k} |\sigma_k(W_j(t \leq T_1))| &\geq \left(1 - \frac{1}{2f_1^{10}f_2}\right) \cdot \frac{\epsilon}{f_1 \sqrt{d}} \geq (1 - 2^{-17}) \frac{\epsilon}{f_1 \sqrt{d}}. \end{aligned}$$

3503 **Corollary 50.** *Balanced term error in alignment stage.*

3504

3505

3506

3507

3508

3509

3510 *Proof.* By simply combining Theorem 29 and Lemma 49, denote $M = \max_{j,k,t \leq T_1} (W_j(t))$,

3510
3511
3512 $\mathcal{L}_{\text{reg}}(t+1) \leq \left(1 - 2.509 \frac{\eta a \epsilon^2}{f_1^6 d^3}\right) \cdot \mathcal{L}_{\text{reg}}(t) + \eta^2 O\left(a^2 M^4 \mathcal{L}_{\text{reg}}(t) + \sqrt{a \mathcal{L}_{\text{reg}}(t)} M^6 \mathcal{L}_{\text{ori}}(t)\right)$
3513 $+ \eta^4 O\left(a M^{12} \mathcal{L}_{\text{ori}}(t)^2 + a^3 M^4 \mathcal{L}_{\text{reg}}(t)^2\right)$
3514 $\leq \left(1 - \frac{2\eta a \epsilon^2}{f_1^6 d^3}\right) \cdot \mathcal{L}_{\text{reg}}(t) + \eta^2 O\left(a M^8 \mathcal{L}_{\text{ori}}(t)\right)$
3515 $\leq \left(1 - \frac{2\eta a \epsilon^2}{f_1^6 d^3}\right) \cdot \mathcal{L}_{\text{reg}}(t) + \eta^2 O\left(a f_1^8 d^5 \epsilon^8 \sigma_1^2(\Sigma)\right),$
3516
3517
3518
3519
3520

(268)

3521 giving
3522

3523 $\mathcal{L}_{\text{reg}}(t) \leq \mathcal{L}_{\text{reg}}(0) e^{-\frac{2\eta a \epsilon^2}{f_1^6 d^3} t} + \eta O\left(f_1^{14} d^8 \epsilon^6 \sigma_1^2(\Sigma)\right).$
3524
3525

(269)

3526 $\mathcal{L}_{\text{reg}}(T_1) \leq 3a f_1^4 d^3 \epsilon^4 e^{-2b} + \eta O\left(f_1^{14} d^8 \epsilon^6 \sigma_1^2(\Sigma)\right),$
3527

(270)

3528
3529 $e_{\Delta}(T_1) = 2\sqrt{\frac{\mathcal{L}_{\text{reg}}(T_1)}{a}} \leq \sqrt{3} \cdot 2^{-31} f_1^{-14} f_2^{-1} d^{-29/2} \epsilon^2.$
3530

(271)

3531 \square

3532 **Corollary 51.** *Main term at the end of alignment stage.*

3533 At $t = T_1$,

3534
3535
3536 $\sigma_{\min}(W_1 + W'_1)|_{t=T_1} \geq \frac{\epsilon}{2f_1^3 f_2 d^{9/2}}.$
3537
3538

(272)

3539 *Proof.* Denote $\Delta_X(t) = X(t) - X(0)$ for arbitrary X .

3540 At $t = T_1$,

3541
3542
3543 $\|\Delta_W(T_1)\|_{op} \leq \left\| \sum_{t'=0}^{T_1-1} \eta \left[\sum_{j=1}^4 W_{\Pi_L, j+1}(t') W_{\Pi_L, j+1}(t')^H (\Sigma - W(t')) W_{\Pi_R, j-1}^H(t') W_{\Pi_R, j-1}(t') \right] \right\|_{op}$
3544 $+ \eta^2 \sum_{t'=0}^{T_1-1} O\left(\max_{j \in \{1, 2, 3, 4\}} \|\nabla_{W_j} \mathcal{L}(t')\|_F^2 \cdot \max_{j \in \{1, 2, 3, 4\}} \|W_j(t')\|_{op}^2\right)$
3545 $\leq \eta T_1 \cdot 6\sigma_1(\Sigma) \cdot \left((1 + 2^{-21}) f_1 \sqrt{d} \epsilon\right)^6 + \eta^2 T_1 O\left(a^2 d \left(f_1 \sqrt{d} \epsilon\right)^8\right)$
3546 $\leq \eta T_1 \cdot 8\sigma_1(\Sigma) \cdot \left((1 + 2^{-21}) f_1 \sqrt{d} \epsilon\right)^6$
3547 $\leq (1 + 2^{-18}) \cdot \frac{1}{4} f_1^{-8} f_2^{-1} d^{-7} \epsilon^4.$
3548
3549
3550
3551
3552
3553
3554
3555
3556

(273)

3557 Thus

3558
3559
3560 $\|\Delta_{W^H W}(T_1)\|_{op} = \left\| \frac{1}{2} \left[(W(T_1) + W(0))^H \Delta_W(T_1) + \Delta_W(T_1)^H (W(T_1) + W(0)) \right] \right\|_{op}$
3561
3562 $\leq (1 + 2^{-17}) \cdot \frac{1}{2} f_1^{-4} f_2^{-1} d^{-5} \epsilon^8.$
3563

(274)

3564 From Corollary 50,

3565

$$\begin{aligned}
 & \left\| \left((W_1(T_1))^H W_2(T_1)^H W_2(T_1) W_1(T_1) \right)^2 - W(T_1)^H W(T_1) \right\|_{op} \\
 & \leq \left\| (W_1(T_1))^H W_2(T_1)^H \right\|_{op} \left\| M_{\Delta 1234}(T_1) \right\|_{op} \left\| W_2(T_1) W_1(T_1) \right\|_{op} \\
 & \leq 2^{-12} f_1^{-8} f_2^{-16} d^{-23/2} \epsilon^8.
 \end{aligned} \tag{275}$$

3571

3572 Thus

3573

$$\begin{aligned}
 & \left\| \left((W_1(T_1))^H W_2(T_1)^H W_2(T_1) W_1(T_1) \right)^2 - W(T_0)^H W(T_0) \right\|_{op} \\
 & \leq \left\| \left((W_1(T_1))^H W_2(T_1)^H W_2(T_1) W_1(T_1) \right)^2 - W(T_1)^H W(T_1) \right\|_{op} + \left\| \Delta_{W^H W}(T_1) \right\|_{op} \\
 & \leq (1 + 2^{-16}) \cdot \frac{1}{2} f_1^{-4} f_2^{-1} d^{-5} \epsilon^8.
 \end{aligned} \tag{276}$$

3581

3582 From Lemma 16,

3583

$$\begin{aligned}
 & \left\| W_1(T_1)^H W_2(T_1)^H W_2(T_1) W_1(T_1) - \left(W(T_0)^H W(T_0) \right)^{1/2} \right\|_{op} \\
 & \leq \frac{\left\| \left((W_1(T_1))^H W_2(T_1)^H W_2(T_1) W_1(T_1) \right)^2 - W(T_0)^H W(T_0) \right\|_{op}}{2 \sqrt{\lambda_{\min}(W(T_0)^H W(T_0)) - \left\| \left((W_1(T_1))^H W_2(T_1)^H W_2(T_1) W_1(T_1) \right)^2 - W(T_0)^H W(T_0) \right\|_{op}}} \\
 & \leq \frac{(1 + 2^{-16}) \cdot \frac{1}{2} f_1^{-4} f_2^{-1} d^{-5} \epsilon^8}{2 \sqrt{\left(\frac{\epsilon}{f_1 \sqrt{d}} \right)^8 - (1 + 2^{-16}) \cdot \frac{1}{2} f_1^{-4} f_2^{-1} d^{-5} \epsilon^8}} \leq 0.27 f_2^{-1} d^{-3} \epsilon^4.
 \end{aligned} \tag{277}$$

3594

3595 By (C.2),

3596

$$\begin{aligned}
 & \sigma_{\min} \left((W_1(T_1))^H W_2(T_1)^H W_2(T_1) W_1(T_1) + W(T_1)^H \right) \\
 & \geq \sigma_{\min} \left(\left(W(T_0)^H W(T_0) \right)^{1/2} + W(0)^H \right) \\
 & \quad - \left\| W_1(T_1)^H W_2(T_1)^H W_2(T_1) W_1(T_1) - \left(W(T_0)^H W(T_0) \right)^{1/2} \right\|_{op} - \left\| \Delta_{W^H W}(T_1) \right\|_{op} \\
 & \geq 0.72 f_2^{-1} d^{-3} \epsilon^4,
 \end{aligned} \tag{278}$$

3605

3606 which further gives

3607

3608

$$\begin{aligned}
 & \sigma_{\min} (W_1 + W'_1) \Big|_{t=T_1} \\
 & = \sigma_{\min} \left((W_1(T_1))^H W_2(T_1)^H W_2(T_1) \right)^{-1} \left((W_1(T_1))^H W_2(T_1)^H W_2(T_1) W_1(T_1) + W(T_1)^H \right) \\
 & \geq \left(\frac{1}{\max_{j,k} |\sigma_k(W_j(T_1))|} \right)^3 \cdot \sigma_{\min} \left((W_1(T_1))^H W_2(T_1)^H W_2(T_1) W_1(T_1) + W(T_1)^H \right) \\
 & \geq \frac{\epsilon}{2 f_1^3 f_2 d^{9/2}}.
 \end{aligned} \tag{279}$$

3616

3617

□

3618 I.2 STAGE 2: SADDLE AVOIDANCE STAGE
3619

3620 In this stage, we further assume $a \geq 32f_1^{20}f_2d^{13}\sigma_1(\Sigma)b$, where $b \geq$
3621 $\left(5\ln\left(\frac{\sigma_1^{1/4}(\Sigma)}{\epsilon}\right) + \frac{281}{8}\ln d + 23\ln(4f_1) + 7\ln f_2\right)$. Meanwhile, $\frac{\epsilon}{\sigma_1^{1/4}(\Sigma)} \leq \frac{1}{32f_1^5f_2d^{53/8}}$.
3622

3623 From Theorem 48, for $\eta = O\left(af_1^{-56}f_2^{-14}d^{-301/4}\epsilon^8\sigma_1^{-9/2}(\Sigma)\right)$ with appropriate small constant,
3624

3625
3626
3627
$$\begin{aligned} e_\Delta(T_1) &\leq 2\sqrt{3f_1^4d^3\epsilon^4e^{-2b} + \eta O(a^{-1}f_1^{14}d^8\epsilon^6\sigma_1^2(\Sigma))} \\ &\leq 2^{-44}f_1^{-21}f_2^{-7}d^{-269/8}\epsilon^7\sigma_1^{-5/4}(\Sigma). \end{aligned} \tag{280}$$

3628
3629
3630

3631
3632 Moreover, $b - \ln b \geq 3\ln\left(\frac{\sigma_1^{1/4}(\Sigma)}{\epsilon}\right) + \frac{303}{8}\ln d + 37\ln(2f_1) + 6\ln f_2$. Thus for $\eta =$
3633 $O\left(a^{-1}f_1^{-44}f_2^{-10}d^{-219/4}\epsilon^4\sigma_1^{-3/2}(\Sigma)\right)$ with appropriate small constant,
3634

3635
3636
3637
$$\begin{aligned} ae_\Delta(T_1) &\leq 2\sqrt{3 \cdot 2^{10}f_1^{44}f_2^2d^{29}\epsilon^4\sigma_1^2(\Sigma)\exp(-2(b - \ln b)) + \eta O(af_1^{14}d^8\epsilon^6\sigma_1^2(\Sigma))} \\ &\leq 2^{-30}f_1^{-15}f_2^{-5}d^{-187/8}\epsilon^5\sigma_1^{1/4}(\Sigma). \end{aligned} \tag{281}$$

3638
3639
3640

3641
3642 **Theorem 52.** At $T_1 + T_2$, $T_2 = \frac{32f_1^6f_2^2d^9}{\eta\sigma_1(\Sigma)\epsilon^2}$, the following conclusions hold:
3643

3644
3645
$$\begin{aligned} \|W_1(T_1 + T_2) - W'_1(T_1 + T_2)\|_F &\leq 3f_1d\epsilon \\ \sigma_{\min}(W_1 + W'_1)(T_1 + T_2) &\geq 2^{3/4}\sigma_1^{1/4}(\Sigma). \end{aligned} \tag{282}$$

3646
3647
3648

3649 **Lemma 53.** \mathcal{L}_{ori} is approximately non-increasing.
3650

3651 For $t \in [0, +\infty)$, suppose $\|W_{j \in \{1, 2, \dots, N\}}(t)\|_{op} \leq M$, then
3652

3653
3654
$$\begin{aligned} \mathcal{L}_{\text{ori}}(t+1) - \mathcal{L}_{\text{ori}}(t) &\leq -2\eta N \min_{j,k} |\sigma_k(W_j(t))|^{2(N-1)} \mathcal{L}_{\text{ori}}(t) \\ &\quad + \eta^2 O\left(M^8 \left(M^4 + \sqrt{\mathcal{L}_{\text{ori}}(t)}\right) \mathcal{L}_{\text{ori}}(t) + aM^4 \sqrt{\mathcal{L}_{\text{ori}}(t)} \mathcal{L}_{\text{reg}}(t)\right) \\ &\quad + \eta^4 O\left(M^{16} \mathcal{L}_{\text{ori}}(t)^2 + a^2 M^8 \mathcal{L}_{\text{reg}}(t)^2\right). \end{aligned} \tag{283}$$

3655
3656
3657
3658

3659
3660
3661 *Proof.* Following the continuous case (75), the change of product matrix satisfy
3662

3663
3664
3665
$$\begin{aligned} &\left\| W(t+1) - W(t) - \eta \sum_{j=1}^N W_{\Pi_L, j+1}(t) W_{\Pi_L, j+1}(t)^H (\Sigma - W(t)) W_{\Pi_R, j-1}(t)^H W_{\Pi_R, j-1}(t) \right\|_F \\ &= \eta^2 O\left(\max_{j \in \{1, 2, 3, 4\}} \|\nabla_{W_j} \mathcal{L}(t)\|_F^2 \cdot \max_{j \in \{1, 2, 3, 4\}} \|W_j(t)\|_{op}^2\right). \end{aligned} \tag{284}$$

3666
3667
3668
3669
3670
3671

Then

3672
 3673
 3674 $\mathcal{L}_{\text{ori}}(t+1) - \mathcal{L}_{\text{ori}}(t) = -\Re \left(\left\langle \Sigma - \frac{W(t+1) + W(t)}{2}, W(t+1) - W(t) \right\rangle \right)$
 3675
 3676
 3677 $= -\eta \sum_{j=1}^N \|W_{\Pi_L, j+1}(t)^H (\Sigma - W(t)) W_{\Pi_R, j-1}(t)^H\|_F^2$
 3678
 3679
 3680 $+ \eta^2 O \left(M^2 \sqrt{\mathcal{L}_{\text{ori}}(t)} \cdot \max_{j \in \{1, 2, 3, 4\}} \|\nabla_{W_j} \mathcal{L}(t)\|_F^2 \right)$
 3681
 3682 $+ \eta^2 O \left(M^6 \cdot \max_{j \in \{1, 2, 3, 4\}} \|\nabla_{W_j} \mathcal{L}_{\text{ori}}(t)\|_F^2 \right)$
 3683
 3684 $+ \eta^4 O \left(M^4 \cdot \max_{j \in \{1, 2, 3, 4\}} \|\nabla_{W_j} \mathcal{L}(t)\|_F^4 \right)$
 3685
 3686 $\leq -2\eta N \min_{j, k} |\sigma_k(W_j(t))|^{2(N-1)} \mathcal{L}_{\text{ori}}(t)$
 3687
 3688 $+ \eta^2 O \left(M^8 \left(M^4 + \sqrt{\mathcal{L}_{\text{ori}}(t)} \right) \mathcal{L}_{\text{ori}}(t) + aM^4 \sqrt{\mathcal{L}_{\text{ori}}(t)} \mathcal{L}_{\text{reg}}(t) \right)$
 3689
 3690 $+ \eta^4 O \left(M^{16} \mathcal{L}_{\text{ori}}(t)^2 + a^2 M^8 \mathcal{L}_{\text{reg}}(t)^2 \right).$
 3691

□

3692
 3693
 3694
 3695 Below we further assume $\eta = O \left(\min \left(f_1^{-27} f_2^{-9} d^{-355/8} \epsilon^9 \sigma_1^{-15/4}(\Sigma), a^{-1} f_1^{-21} f_2^{-7} d^{-273/8} \epsilon^7 \sigma_1^{-9/4}(\Sigma) \right) \right)$
 3696 with appropriate small constant.
 3697

3698 **Lemma 54.** *Bound of operator norms.*

3699 For $t \in [T_1, T_1 + T_2]$,
 3700

3701
 3702 $\|\Sigma - W(t)\|_F \leq 1.01 \sqrt{d} \sigma_1(\Sigma)$
 3703
 3704 $e_\Delta(t) \leq 1.01 \cdot 2^{-44} f_1^{-21} f_2^{-7} d^{-269/8} \epsilon^7 \sigma_1^{-5/4}(\Sigma)$
 3705 $a e_\Delta(t) \leq 1.01 \cdot 2^{-30} f_1^{-15} f_2^{-5} d^{-187/8} \epsilon^5 \sigma_1^{1/4}(\Sigma)$
 3706
 3707 $\|W\|_{op} \leq \|W\|_F \leq 3 \sqrt{d} \sigma_1(\Sigma)$
 3708 $\max_j \|W_j\|_{op} \leq \max_j \|W_j\|_F \leq \sqrt{2} d^{1/8} \sigma_1^{1/4}(\Sigma).$
 3709

3710
 3711 *Proof.* We first prove that if the first three inequalities hold at some time t , then the rest follows.
 3712 Then we prove the first three by mathematical induction.
 3713

3714 1. For some t , if the first two hold, then

3715
 3716 $\|W(t)\|_{op} \leq \|W(t)\|_F \leq \|\Sigma - W(t)\|_F + \|\Sigma\|_F \leq 3 \sqrt{d} \sigma_1(\Sigma).$
 3717

3718 For the last inequality, prove by contradiction. (Omit t here)

3719 Suppose $\max_j \|W_j\|_{op} \geq \sqrt{2} d^{1/8} \sigma_1^{1/4}(\Sigma)$, then

3720
 3721
 3722 $e_\Delta(t) \leq 1.01 e_\Delta(T_1) \leq 2^{-15} \max_j \|W_j\|_{op}^2.$
 3723

3724 Thus for $t > T_1$,

3726

3727

3728 $\|W\|_{op}^2 = \|W_4 W_3 W_2 W_1 W_1^H W_2^H W_3^H W_4^H\|_{op}$

3729 $\geq \|W_4 W_4^H\|_{op} - \|W_4 W_3 W_2 \Delta_{12} W_2^H W_3^H W_4^H\|_{op}$

3730 $- \|W_4 W_3 \Delta_{23} W_2 W_2^H W_3^H W_4^H\|_{op} - \|W_4 W_3 W_2 W_2^H \Delta_{23} W_3^H W_4^H\|_{op}$

3731 $- \|W_4 \Delta_{34} (W_3 W_3^H)^2 W_4^H\|_{op} - \|W_4 W_3 W_3^H \Delta_{34} W_3 W_3^H W_4^H\|_{op} - \|W_4 (W_3 W_3^H)^2 \Delta_{34} W_4^H\|_{op}$

3732 $\geq \left(\max_j \|W_j\|_{op}^2 - 3e_\Delta \right)^4 - 6e_\Delta \max_j \|W_j\|_{op}^6 > 15\sqrt{d}\sigma_1(\Sigma),$

3733

3734

3735

3736

3737

3738 which contradicts inequality (287).

3739 2. Mathematical induction.

3740

3741 For $t = T_1$,

3742

3743 $\|\Sigma - W(T_1)\|_F \leq \|\Sigma\|_F + \|W(T_1)\|_F \leq (1 + 2^{-39}) \sqrt{d}\sigma_1(\Sigma).$ (290)

3744

3745 Suppose for $t' \in [T_1, t]$ ($T_1 \leq t < T_2$), the first two properties hold. Denote $M = \max_j \|W_j(t' \in [T_1, t])\|_{op}$. By invoking Lemma 53 and 29, at $t + 1$,

3746

3747

3748

3749 $\mathcal{L}_{\text{ori}}(t + 1) = \mathcal{L}_{\text{ori}}(T_1) + \eta^2(t - T_1)O\left(M^8 \left(M^4 + \sqrt{\mathcal{L}_{\text{ori}}(T_1)}\right) \mathcal{L}_{\text{ori}}(T_1) + aM^4 \sqrt{\mathcal{L}_{\text{ori}}(T_1)} \mathcal{L}_{\text{reg}}(T_1)\right)$

3750 $+ \eta^4(t - T_1)O\left(M^{16} \mathcal{L}_{\text{ori}}(T_1)^2 + a^2 M^8 \mathcal{L}_{\text{reg}}(T_1)^2\right)$

3751

3752 $= \mathcal{L}_{\text{ori}}(T_1) + \eta^2 T_2 O\left(d^2 \sigma_1(\Sigma)^4 + d\sigma_1(\Sigma)^2 (ae_\Delta(T_1))^2\right) \leq 1.01^2 \sqrt{d}\sigma_1(\Sigma).$ (291)

3753

3754 Note that $\mathcal{L}_{\text{ori}} = \frac{a}{4}e_\Delta^2$. Under $\eta = O\left(\min\left(f_1^{-27} f_2^{-9} d^{-355/8} \epsilon^9 \sigma_1^{-15/4}(\Sigma), a^{-1} f_1^{-21} f_2^{-7} d^{-273/8} \epsilon^7 \sigma_1^{-9/4}(\Sigma)\right)\right)$

3755 with appropriate small constant,

3756

3757

3758

3759 $\mathcal{L}_{\text{reg}}(t + 1) \leq \mathcal{L}_{\text{reg}}(T_1) + \eta^2(t - T_1)O\left(a^2 M^4 \mathcal{L}_{\text{reg}}(t) + \sqrt{a\mathcal{L}_{\text{reg}}(t)} M^6 \mathcal{L}_{\text{ori}}(t)\right)$

3760 $+ \eta^4(t - T_1)O\left(aM^{12} \mathcal{L}_{\text{ori}}(t)^2 + a^3 M^4 \mathcal{L}_{\text{reg}}(t)^2\right)$

3761

3762 $\leq \mathcal{L}_{\text{reg}}(T_1) + \eta^2 T_2 O\left(\sqrt{a\mathcal{L}_{\text{reg}}(t)} M^6 \mathcal{L}_{\text{ori}}(t)\right) + \eta^4 T_2 O\left(aM^{12} \mathcal{L}_{\text{ori}}(t)^2\right)$

3763

3764 $\leq \frac{1.01^2}{4} \min\left(a \cdot \left[2^{-44} f_1^{-21} f_2^{-7} d^{-269/8} \epsilon^7 \sigma_1^{-5/4}(\Sigma)\right]^2, \frac{1}{a} \cdot \left[2^{-30} f_1^{-15} f_2^{-5} d^{-187/8} \epsilon^5 \sigma_1^{1/4}(\Sigma)\right]^2\right).$ (292)

3765

3766

3767

3768 This completes the proof. \square

3769

3770

3771 **Lemma 55.** *Bound of $\|W_2^{-1}\|_{op}$ and relevant term.*

3772 For $t \in [T_1, T_1 + T_2]$,

3773

3774

3775 $\|W_2^{-1}(t)\|_{op} \leq 128 f_1^6 f_2^2 d^{77/8} \epsilon^{-2} \sigma_1^{1/4}(\Sigma),$ (293)

3776

3777

3778 $e_\Delta(t) \|W_2^{-1}(t)\|_{op}^2 \leq 1.01 \cdot 2^{-30} f_1^{-9} f_2^{-3} d^{-115/8} \epsilon^3 \sigma_1^{-3/4}(\Sigma).$ (294)

3779

3780 *Proof.* We begin with the update of W_2^{-1} . From Lemma 17,

3780
 3781
 3782 $\|W_2^{-1}(t+1) - W_2^{-1}(t)\|_{op}$
 3783 $= \eta \left[-R(t)W_4(t)^H(\Sigma - W(t))W_1(t)^HW_2(t)^{-1} - a\Delta_{12}(t)W_2(t)^{-1} + aW_2(t)^{-1}\Delta_{23}(t) \right] \|_{op}$
 3784 $\leq \eta^2 \|W_2(t)^{-1}\|_{op}^2 \|W_2(t+1)^{-1}\|_{op} \|\nabla_{W_2} \mathcal{L}(t)\|_{op}^2.$
 3785

(295)

3786 By triangular inequality,

3787
 3788
 3789 $\|W_2(t+1)^{-1}\|_{op} - \|W_2(t)^{-1}\|_{op} \leq \eta \|R(t)\|_{op} \|W_4(t)\|_{op} \|\Sigma - W(t)\|_{op} \|W_1(t)^HW_2(t)^{-1}\|_{op}$
 3790 $+ \eta a \|\Delta_{12}(t)\|_{op} \|W_2(t)^{-1}\|_{op} + \eta a \|W_2(t)^{-1}\|_{op} \|\Delta_{23}(t)\|_{op}$
 3791 $+ \eta^2 \|W_2(t)^{-1}\|_{op}^2 \|W_2(t+1)^{-1}\|_{op} \|\nabla_{W_2} \mathcal{L}(t)\|_{op}^2.$
 3792

(296)

3793 From

3794
 3795
 3796
 3797 $\|R\|_{op} \leq \sqrt{1 + \frac{1}{\sigma_{\min}^2(W_2)}} \cdot \|\Delta_{23}\|_{op}$
 3798
 3799
 3800
 3801 $\|W_1^H W_2^{-1}\|_{op} = \sqrt{\|W_2^{H-1} W_1 W_1^H W_2^{-1}\|_{op}} = \sqrt{\|I + W_2^{H-1} \Delta_{12} W_2^{-1}\|} \leq \sqrt{1 + e_{\Delta} \|W_2^{-1}\|_{op}^2}$
 3802
 3803

(297)

3804 Further we have

3805
 3806
 3807 $\|W_2(t+1)^{-1}\|_{op} - \|W_2(t)^{-1}\|_{op} \leq 2\sqrt{2}\eta \left(1 + e_{\Delta}(t) \|W_2(t)^{-1}\|_{op}^2 \right) d^{5/8} \sigma_1^{5/4}(\Sigma)$
 3808 $+ \sqrt{2}\eta a e_{\Delta}(t) \|W_2(t)^{-1}\|_{op}$
 3809 $+ \eta^2 O \left(\|W_2(t)^{-1}\|_{op}^2 \|W_2(t+1)^{-1}\|_{op} \|\nabla_{W_2} \mathcal{L}(t)\|_{op}^2 \right).$
 3810

(298)

3811 Combine with Lemma 54, for $t \geq T_1$ such that (293) holds,

3812
 3813
 3814
 3815 $\|W_2(t+1)^{-1}\|_{op} - \|W_2(t)^{-1}\|_{op}$
 3816 $\leq 2\sqrt{2}(1 + 1.01 \cdot 2^{-30})\eta d^{5/8} \sigma_1^{5/4}(\Sigma) + 2^{-22} \eta f_1^{-9} f_2^{-3} d^{-55/4} \epsilon^3 \sigma_1^{1/2}(\Sigma)$
 3817
 3818 $+ \eta^2 O \left(f_1^{18} f_2^6 d^{245/8} \epsilon^{-6} \sigma_1^{17/4}(\Sigma) \right)$
 3819
 3820 $\leq 2\sqrt{2}(1 + 2^{-20})\eta d^{5/8} \sigma_1^{5/4}(\Sigma).$
 3821

(299)

3822 From Theorem 48, $\max \left(\|W_2(T_1)^{-1}\|_{op}, \|W_3(T_1)^{-1}\|_{op} \right) \leq \frac{1}{\min_{j,k} |\sigma_k(W_j(T_1))|} \leq \frac{f_1 \sqrt{d}}{(1-2^{-17})\epsilon}$,
 3823 then the proof of the first inequality is completed via integration during the time interval $[T_1, T_1+T_2]$.
 3824 The second inequality follows immediately.

□

3825
 3826
 3827 **Remark 18.** This Lemma verifies that $W_{2,3}^{-1}$ are bounded (consequently $W_{2,3}$ are full rank), then
 3828 R is well defined throughout this stage. For $t > T_1 + T_2$, further analysis shows that the minimum
 3829 singular values of W_2 and W_3 are lower bounded by $\Omega(\sigma_1^{1/4}(\Sigma))$.

3830 **Lemma 56.** Skew-Hermitian error in saddle avoidance stage, gradient descent. For $t \in [T_1, T_1 + T_2]$,

3831
 3832
 3833 $\|W_1 - W_2^{-1} W_3^H W_4^H\|_F \leq 3f_1 d \epsilon.$ (300)

Proof. From Lemma 55, for $t \in [T_1, T_1 + T_2]$,

$$\begin{aligned} \max \left(\|R^H R - I\|_{op}, \|I - RR^H\|_{op} \right) &\leq e_\Delta \|W_2^{-1}\|_{op}^2 \\ &\leq 1.01 \cdot 2^{-30} f_1^{-9} f_2^{-3} d^{-115/8} \epsilon^3 \sigma_1^{-3/4}(\Sigma), \end{aligned} \quad (301)$$

$$\begin{aligned} \|M_1 - M'_1\|_{op} &\leq \sqrt{6} \cdot \frac{\max_{j,k} \sigma_k^2(W_j)}{\sigma_{\min}^2(W_2)} e_{\Delta} \\ &\leq 2^{-27} f_1^{-9} f_2^{-3} d^{-113/8} \epsilon^3 \sigma_1^{-1/4}(\Sigma), \end{aligned} \tag{302}$$

$$\begin{aligned} \left\| M_2 - \frac{M_1 + M'_1}{2} \right\|_{op} &\leq \|\Delta_{12}\|_{op} + \frac{1}{2} \|M_1 - M'_1\|_{op} \leq \left[1 + \frac{\sqrt{6}}{2} \cdot \frac{\max_{j,k} \sigma_k^2(W_j)}{\sigma_{\min}^2(W_2)} \right] e_\Delta \quad (303) \\ &\leq 2^{-28} f_1^{-9} f_2^{-3} d^{-113/8} \epsilon^3 \sigma_1^{-1/4}(\Sigma). \end{aligned}$$

Consequently:

$$\|R\|_{op} \leq \sqrt{1 + e_\Delta \|W_2^{-1}\|_{op}^2} \leq 1 + 1.01 \cdot 2^{-31} f_1^{-9} f_2^{-3} d^{-115/8} \epsilon^3 \sigma_1^{-3/4}(\Sigma), \quad (304)$$

$$\|W'_1\|_{op} \leq \|W'_1\|_F \leq \sqrt{2}d^{1/8}\sigma_1^{1/4}(\Sigma)\|R\|_{op} \leq (1 + 1.01 \cdot 2^{-31})\sqrt{2}d^{1/8}\sigma_1^{1/4}(\Sigma), \quad (305)$$

$$\left\| \frac{M_1 + M'_1}{2} \right\|_{op} \leq \|M_2\|_{op} + \left\| M_2 - \frac{M_1 + M'_1}{2} \right\|_{op} \leq (1 + 2^{-29}) 2d^{1/4} \sigma_1^{1/2}(\Sigma), \quad (306)$$

$$\begin{aligned} \|M'_1 M_2 M_1 - M_1 M_2 M'_1\|_{op} &\leq \|M_1 - M'_1\| \|M_2\| \|M_1 + M'_1\| \\ &\leq (1 + 2^{-29}) 2^{-25} f_1^{-9} f_2^{-3} d^{-109/8} \epsilon^3 \sigma_1^{3/4}(\Sigma). \end{aligned} \quad (307)$$

By combining all results above, for $t \in [T_1, T_1 + T_2 - 1]$ such that $\|W_1 - W'_1\|_F \leq 3f_1de$ holds,

$$\begin{aligned}
& \|W_1(t+1) - W_1'(t+1)\|_F^2 - \|W_1(t) - W_1'(t)\|_F^2 \\
& \leq -2\eta\sigma_1(\Sigma)\sigma_{\min}(W_2)^2 \|W_1(t) - W_1'(t)\|_F^2 \\
& + \eta \|M_2(t)\|_F \|M_1'(t) - M_1(t)\|_{op} \|M_2(t)\|_{op} \left(\|W_1'(t)\|_{op} + \|W_1(t)\|_{op} \right) \|W_1(t) - W_1'(t)\|_F \\
& + 2\eta \| -M_1'(t)M_2(t)M_1(t) + M_1(t)M_2(t)M_1'(t) \|_{op} \|W_1'(t)\|_F \|W_1(t) - W_1'(t)\|_F \\
& + 2\eta \max_j \|W_j(t)\|_{op}^3 \|\Sigma - W(t)\|_F \left(\|R(t)^H R(t) - I\|_{op} + \|I - R(t)R(t)^H\|_{op} \right) \|W_1(t) - W_1'(t)\|_F \\
& + 2\eta a e_\Delta(t) \|W_1(t) - W_1'(t)\|_F^2 \\
& + 4\eta a e_\Delta(t) \|W_2(t)^{-1}\|_{op} \|W_2(t)\|_F \|W_1'(t)\|_{op} \|W_1(t) - W_1'(t)\|_F \\
& + \eta^2 O \left(\left[\max_{j \in \{1, 2, 3, 4\}} \|W_j(t)\|_{op} \|\Sigma - W(t)\|_F + a e_\Delta(t) \|W_2(t)^{-1}\|_{op} \right]^2 \right. \\
& \quad \left. \cdot \max_{j \in \{1, 2, 3, 4\}} \|W_j(t)\|_{op}^5 \cdot \|W_2(t+1)^{-1}\|_{op} \right) \\
& \leq -2\eta\sigma_1(\Sigma)\sigma_{\min}(W_2)^2 \|W_1(t) - W_1'(t)\|_F^2 + 2^{-17} \eta f_1^{-8} f_2^{-3} d^{-25/2} \epsilon^4 \sigma_1(\Sigma). \tag{308}
\end{aligned}$$

From Theorem 48, at $t = T_1$,

3888

3889

$$\begin{aligned} 3890 \quad \|W_1(T_1) - W'_1(T_1)\|_F &\leq \|W_1(T_1)\|_F + \|W'_1(T_1)\|_F \leq \|W_1(T_1)\|_F + \|W_4(T_1)\|_F \|R(T_1)\|_{op} \\ 3891 \quad &\leq (1 + 2^{-20}) 2f_1 d\epsilon. \end{aligned} \tag{309}$$

3892

3893

3894 Thus $\|W_1(t) - W'_1(t)\|_F^2 \leq \sqrt{[(1 + 2^{-20}) 2f_1 d\epsilon]^2 + 2^{-17} f_1^{-8} f_2^{-3} d^{-25/2} \epsilon^4 \sigma_1(\Sigma) \eta(t - T_1)}$, when
3895 both $t \in [T_1, T_1 + T_2]$ and $\|W_1(t) - W'_1(t)\|_F^2 \leq 3f_1 d\epsilon$ hold. Then

3896

3897

$$\begin{aligned} 3898 \quad \|W_1(T_1 + T_2) - W'_1(T_1 + T_2)\|_F^2 &\leq \sqrt{[(1 + 2^{-20}) 2f_1 d\epsilon]^2 + 2^{-17} f_1^{-8} f_2^{-3} d^{-25/2} \epsilon^4 \sigma_1(\Sigma) \eta T_2} \\ 3899 \quad &\leq \sqrt{[(1 + 2^{-20}) 2f_1 d\epsilon]^2 + 2^{-12} f_1^{-2} f_2^{-1} d^{-7/2} \epsilon^2} < 3f_1 d\epsilon, \end{aligned} \tag{310}$$

3902

3903 which completes the proof. \square

3904

3905

3906 **Lemma 57.** *The minimum eigenvalue of Hermitian term. For $t = T_1 + T_2$,*

3907

3908

$$\sigma_{\min}(W_1 + W_2^{-1} W_3^H W_4^H) |_{t=T_1+T_2} \geq 2^{3/4} \sigma_1^{1/4}(\Sigma). \tag{311}$$

3909

3910

3911 *Proof.* We analyze the dynamics of $\lambda_{\min}((W_1 + W'_1)^H (W_1 + W'_1)) = \sigma_{\min}^2$.

3912

3913

3914 From $\left\| M_2 - \frac{M_1 + M'_1}{2} \right\|_{op} \leq 2^{-28} f_1^{-9} f_2^{-3} d^{-113/8} \epsilon^3 \sigma_1^{-1/4}(\Sigma)$ and $\left\| \frac{M_1 + M'_1}{2} \right\|_{op} \leq$
3915 $(1 + 2^{-29}) 2d^{1/4} \sigma_1^{1/2}(\Sigma)$, define

3916

3917

$$E(t) := \sigma_1(\Sigma) \left(M_2(t) - \frac{M_1(t) + M'_1(t)}{2} \right) - \left(M_2(t) \left(\frac{M_1(t) + M'_1(t)}{2} \right) M_2(t) - \left(\frac{M_1(t) + M'_1(t)}{2} \right)^3 \right). \tag{312}$$

3918

3919 Then

3920

3921

3922

3923

3924

3925

$$\begin{aligned} \|E(t)\|_{op} &\leq 2^{-28} f_1^{-9} f_2^{-3} d^{-113/8} \epsilon^3 \sigma_1^{3/4}(\Sigma) + (1 + 2^{-28}) 2^{-24} f_1^{-9} f_2^{-3} d^{-109/8} \epsilon^3 \sigma_1^{3/4}(\Sigma) \\ &\leq (1 + 2^{-4} + 2^{-28}) 2^{-24} f_1^{-9} f_2^{-3} d^{-109/8} \epsilon^3 \sigma_1^{3/4}(\Sigma). \end{aligned} \tag{313}$$

3926

3927

3928

3929 By Lemma 56, $\|W_1 - W'_1\|_{op} \leq \|W_1 - W'_1\|_F \leq 3f_1 d\epsilon$, and under $\sigma_{\min}(t) \geq \frac{\epsilon}{2f_1^3 f_2 d^{9/2}}$,

3930

3931

3932

3933

$$\sigma_{\min}(t+1)^2 \geq \lambda_{\min}(W_{\text{new}}(t)^H W_{\text{new}}(t)) - 2^{-18} \sigma_1(\Sigma) \sigma_{\min}(t)^4, \tag{314}$$

3934

3935 where

3936

3937

3938

3939

3940

3941

$$W_{\text{new}}(t) = \left(I + \eta \left[\sigma_1(\Sigma) \left(\frac{M_1(t) + M'_1(t)}{2} \right) - \left(\frac{M_1(t) + M'_1(t)}{2} \right)^3 + E(t) \right] \right) (W_1(t) + W'_1(t)). \tag{315}$$

3942

3943

3944

3945

3946

3947

Denote $P = \frac{W_1 + W'_1}{2}$, $Q = \frac{W_1 - W'_1}{2}$. Notice that $PP^H + QQ^H = \frac{M_1 + M'_1}{2}$. Then by invoking Lemma 20 (omit t here) the first term becomes

$$\begin{aligned}
3942 \quad & \lambda_{\min}(W_{\text{new}}^H W_{\text{new}}) = \lambda_{\min}(W_{\text{new}} W_{\text{new}}^H) \\
3943 \quad & = 4\lambda_{\min}\left(\left(I + \eta\left[\sigma_1(\Sigma)(PP^H + QQ^H) - (PP^H + QQ^H)^3 + E\right]\right)PP^H\right. \\
3944 \quad & \cdot \left.\left(I + \eta\left[\sigma_1(\Sigma)(PP^H + QQ^H) - (PP^H + QQ^H)^3 + E\right]\right)\right) \\
3945 \quad & \geq \sigma_{\min}^2 + 8\eta\left(\sigma_1(\Sigma) - 2\|Q\|_{op}^2\left\|\frac{M_1 + M'_1}{2}\right\|_{op}\right)\left(\frac{\sigma_{\min}^2}{4}\right)^2 \\
3946 \quad & - 8\eta\left\|\frac{M_1 + M'_1}{2}\right\|_{op}\left(\frac{\sigma_{\min}^2}{4}\right)^3 \\
3947 \quad & - 8\eta\left(\|E\|_{op} + \|Q\|_{op}^4\left\|\frac{M_1 + M'_1}{2}\right\|_{op}\right)\left(\frac{\sigma_{\min}^2}{4}\right) \\
3948 \quad & + \eta^2 O\left(\left(\sigma_1(\Sigma)^2\left\|\frac{M_1 + M'_1}{2}\right\|_{op}^2 + \left\|\frac{M_1 + M'_1}{2}\right\|_{op}^6 + \|E\|_{op}^2\right)\left\|\frac{M_1 + M'_1}{2}\right\|_{op}\right). \\
3949 \quad & \tag{316}
\end{aligned}$$

3950 Notice $\|Q\|_{op} = \frac{1}{2}\|W_1 - W'_1\|_F \leq \frac{3}{2}f_1d\epsilon \leq \sigma_k \cdot 3f_1^4f_2d^{11/2}$, $\epsilon \leq \frac{1}{32f_1^5f_2d^{53/8}}\sigma_1^{1/4}(\Sigma)$, then under
3951 $\sigma_{\min}(t) \geq \frac{\epsilon}{2f_1^3f_2d^{9/2}}$,

$$3952 \quad \sigma_{\min}(t+1)^2 \geq \sigma_{\min}(t)^2 + (2^{-1} - 81(1+2^{-4})2^{-10})\eta\sigma_1(\Sigma)\sigma_{\min}(t)^4 - \frac{1}{32}\eta\sigma_{\min}(t)^8. \quad (317)$$

3953 Notice that $\sigma_{\min}(t)$ is bounded by $O(d^{1/8}\sigma_1^{1/4}(\Sigma))$. By taking reciprocal,

$$\begin{aligned}
3954 \quad \frac{1}{\sigma_{\min}(t+1)^2} & \leq \frac{1}{\sigma_{\min}(t)^2} + \frac{(2^{-1} - 81(1+2^{-4})2^{-10})\eta\sigma_1(\Sigma)\sigma_{\min}(t)^4 - \frac{1}{32}\eta\sigma_{\min}(t)^8}{\sigma_{\min}(t)^4 + (2^{-1} - 81(1+2^{-4})2^{-10})\eta\sigma_1(\Sigma)\sigma_{\min}(t)^6 - \frac{1}{32}\eta\sigma_{\min}(t)^{10}} \\
3955 \quad & \leq \frac{1}{\sigma_{\min}(t)^2} + \frac{3}{8}\eta\sigma_1(\Sigma) - \frac{1}{32}\eta\sigma_{\min}(t)^4. \\
3956 \quad & \tag{318}
\end{aligned}$$

3957 This indicates that $\sigma_{\min}(t)$ takes at most time $\Delta t' = \frac{1}{\frac{1}{8}\eta\sigma_1(\Sigma)} \left[\frac{1}{\sigma_{\min}(t=0)^2} - \frac{1}{(2^{3/4}\sigma_1^{1/4}(\Sigma))^2} \right] < T_2$
3958 to increase to $2^{3/4}\sigma_1^{1/4}(\Sigma)$, and never decrease to less than $2^{3/4}\sigma_1^{1/4}(\Sigma)$ afterwards (in $t \in [T_1 + \Delta t', T_2]$). \square

3959 I.3 STAGE 3: LOCAL CONVERGENCE STAGE

3960 In this stage, we analysis the time to reach ϵ_{conv} -convergence, that is

$$3961 \quad T(\epsilon_{\text{conv}}, \eta) = \inf_t \{\mathcal{L}(t) \leq \epsilon_{\text{conv}}\}. \quad (319)$$

3962 **Theorem 58.** *Local convergence.*

3963 For $t \in [T_1 + T_2, +\infty)$,

3996
 3997 $\mathcal{L}_{\text{ori}}(t) \leq \mathcal{L}_{\text{ori}}(T_1 + T_2) \exp\left(-\eta\sigma_1^{3/2}(\Sigma)(t - T_1 - T_2)\right)$
 3998
 3999 $\mathcal{L}_{\text{reg}}(t) \leq l_{\text{reg}} \exp\left(-\eta\sigma_1^{3/2}(\Sigma)(t - T_1 - T_2)\right)$ (320)
 4000
 4001 $\sigma_{\min}(W_1(t) + W'_1(t)) \geq 2^{3/4}\sigma_1^{1/4}(\Sigma)$
 4002 $\|W_1(t) - W'_1(t)\|_F \leq 3f_1d\epsilon,$
 4003
 4004 where $\mathcal{L}_{\text{ori}}(T_1 + T_2) = \frac{1.01^2}{2} \cdot d\sigma_1^2(\Sigma)$, and $l_{\text{reg}} =$
 4005 $\min\left(\frac{a}{4} \left(1.01 \cdot 2^{-44} f_1^{-21} f_2^{-7} d^{-269/8} \epsilon^7 \sigma_1^{-5/4}(\Sigma)\right)^2, \frac{1}{4a} \left(1.01 \cdot 2^{-30} f_1^{-15} f_2^{-5} d^{-187/8} \epsilon^5 \sigma_1^{1/4}(\Sigma)\right)^2\right)$.
 4006
 4007

4008 *Proof.* Prove by induction.

4009 At $t = T_2$ these properties holds.

4010 Suppose at some time $t \in [T_2, +\infty)$ they holds, then follow the same arguments in Lemma 54,
 4011 $\max_j \|W_j(t)\|_{op} \leq \sqrt{2}d^{1/8}\sigma_1^{1/4}(\Sigma)$.
 4012

4013 To address the bound of $\|W_2^{-1}\|_{op}$,

4014
 4015
 4016 $\left\| \frac{M_1(t) - M'_1(t)}{2} \right\|_{op} \leq \|W_1(t) - W'_1(t)\|_{op} \left\| \frac{W_1(t) + W'_1(t)}{2} \right\|_{op} \leq 8f_1d^{9/8}\sigma_1^{1/4}(\Sigma)\epsilon$
 4017
 4018
 4019 $\left\| M_2(t) - \frac{M_1(t) + M'_1(t)}{2} \right\|_{op} \leq \|\Delta_{12}(t)\|_{op} + \left\| \frac{M_1(t) - M'_1(t)}{2} \right\|_{op} \leq 16f_1d^{9/8}\sigma_1^{1/4}(\Sigma)\epsilon$
 4020
 4021
 4022 $\sigma_{\min}(W_2(t)) = \sqrt{\lambda_{\min}(M_2(t))} \geq \sqrt{\lambda_{\min}\left(\frac{M_1(t) + M'_1(t)}{2}\right) - 16f_1d^{9/8}\sigma_1^{1/4}(\Sigma)\epsilon}$
 4023
 4024
 4025 $\geq \sqrt{\sigma_{\min}^2\left(\frac{W_1(t) + W'_1(t)}{2}\right) - 16f_1d^{9/8}\sigma_1^{1/4}(\Sigma)\epsilon} \geq \frac{1}{2^{3/8}}\sigma_1^{1/4}(\Sigma)$.
 4026
 4027

4028 Similarly, $\min_{j,k}(\sigma_k(W_j(t))) \geq \frac{1}{2^{3/8}}\sigma_1^{1/4}(\Sigma)$.
 4029

4030 Then following the derivations in Lemma 56 and 57,

4031
 4032 $\|W_1(t+1) - W'_1(t+1)\|_F^2 \leq (1 - 2\eta\sigma_1(\Sigma)\sigma_{\min}(W_2)^2) \|W_1(t) - W'_1(t)\|_F^2 + 2^{-17}\eta f_1^{-8} f_2^{-3} d^{-25/2} \epsilon^4 \sigma_1(\Sigma)$
 4033
 4034 $\leq \left(1 - \eta\sigma_1^{3/2}(\Sigma)\right) \|W_1(t) - W'_1(t)\|_F^2 + 2^{-17}\eta f_1^{-8} f_2^{-3} d^{-25/2} \epsilon^4 \sigma_1(\Sigma) \leq 3f_1d\epsilon$
 4035
 4036 $\frac{1}{\sigma_{\min}(W_1(t+1) + W'_1(t+1))^2} \leq \frac{1}{\sigma_{\min}(t)^2} + \frac{3}{8}\eta\sigma_1(\Sigma) - \frac{1}{32}\eta\sigma_{\min}(t)^4 < \frac{1}{\left(2^{3/4}\sigma_1^{1/4}(\Sigma)\right)^2}$.
 4037
 4038

4039 Then by Theorem 53 and 29,

4040
 4041
 4042 $\mathcal{L}_{\text{ori}}(t+1) \leq \mathcal{L}_{\text{ori}}(t) - 2^{3/4}\eta\sigma_1^{3/2}(\Sigma)\mathcal{L}_{\text{ori}}(t)$
 4043
 4044 $+ \eta^2 O\left(\max_j \|W_j(t)\|_{op}^8 \left(\max_j \|W_j(t)\|_{op}^4 + \sqrt{\mathcal{L}_{\text{ori}}(t)}\right) \mathcal{L}_{\text{ori}}(t) + a \max_j \|W_j(t)\|_{op}^4 \sqrt{\mathcal{L}_{\text{ori}}(t)} \mathcal{L}_{\text{reg}}(t)\right)$
 4045
 4046
 4047 $+ \eta^4 O\left(\max_j \|W_j(t)\|_{op}^{16} \mathcal{L}_{\text{ori}}(t)^2 + a^2 \max_j \|W_j(t)\|_{op}^8 \mathcal{L}_{\text{reg}}(t)^2\right)$
 4048
 4049 $\leq \left(1 - \eta\sigma_1^{3/2}(\Sigma)\right) \mathcal{L}_{\text{ori}}(t)$,
 (323)

4050
 4051
 4052 $\mathcal{L}_{\text{reg}}(t+1) \leq \left(1 - \frac{1}{3}\eta ad^{-1/4}\sigma_1^{1/2}(\Sigma)\right) \cdot \mathcal{L}_{\text{reg}}(t) + \eta^2 O\left(a^2 M^4 \mathcal{L}_{\text{reg}}(t) + \sqrt{a\mathcal{L}_{\text{reg}}(t)} M^6 \mathcal{L}_{\text{ori}}(t)\right)$
 4053 $+ \eta^4 O(aM^{12} \mathcal{L}_{\text{ori}}(t)^2 + a^3 M^4 \mathcal{L}_{\text{reg}}(t)^2)$
 4054 $\leq \left(1 - \frac{1}{4}\eta ad^{-1/4}\sigma_1^{1/2}(\Sigma)\right) \cdot \mathcal{L}_{\text{reg}}(t) \leq \left(1 - \eta ad^{-1/4}\sigma_1^{3/2}(\Sigma)\right) \cdot \mathcal{L}_{\text{reg}}(t).$
 4055
 4056
 4057
 4058

(324)

4059 This completes the proof. □
 4060
 4061
 4062

4063 By Combining the three-stage results, the global convergence guarantee of Theorem 47 is proved.
 4064
 4065

4066 J EXPLANATION OF MAIN RESULT

4067 This section expands the discussion of main convergence result Theorem 47.
 4068
 4069

4070 J.1 PROOF OF EXAMPLE FOR TIGHTNESS

4071 This section completes the proof of Example below Theorem 1 for tightness analysis.
 4072

4073 Firstly, since all w_j are initialized to the same value, from the property of balancedness all w_j remain
 4074 identical through the optimization.
 4075

4076 To solve the differential equation of $\frac{dw_j}{dt} = (\sigma_1 - w_j^4)w_j^3$,
 4077

4078
 4079 $T(w_j = (1 - \gamma)\sigma_1^{1/4}) = \int_{\epsilon}^{(1-\gamma)\sigma_1^{1/4}} \frac{1}{(\sigma_1 - w_j^4)w_j^3} dw_j$
 4080 $= \sigma_1^{-3/2} \int_{\epsilon/\sigma_1^{1/4}}^{1-\gamma} \frac{1}{(1 - x^4)x^3} dx$
 4081 $= \sigma_1^{-3/2} \left[\int_{\epsilon/\sigma_1^{1/4}}^{2^{-1/4}} \frac{1}{(1 - x^4)x^3} dx + \int_{2^{-1/4}}^{1-\gamma} \frac{1}{(1 - x^4)x^3} dx \right]$
 4082 $= \sigma_1^{-3/2} \left[\Theta\left(\int_{\epsilon/\sigma_1^{1/4}}^{2^{-1/4}} \frac{1}{x^3} dx\right) + \Theta\left(\int_{2^{-1/4}}^{1-\gamma} \frac{1}{1-x} dx\right) \right]$
 4083 $= \sigma_1^{-3/2} \left[\Theta\left(\sigma_1^{1/2}/\epsilon^2\right) + \Theta(\ln(1/\gamma)) \right]$
 4084
 4085
 4086
 4087
 4088
 4089
 4090
 4091

(325)

4092 By setting γ through $\epsilon_{\text{conv}} = \frac{1}{2}[1 - (1 - \gamma)^4]^2\sigma_1^2$, $\gamma = \Theta(\epsilon_{\text{conv}}/\sigma_1^2)$. Then it takes $T(\mathcal{L} \leq \epsilon_{\text{conv}}) =$
 4093 $\left[\Theta(\sigma_1^{-1}\epsilon^{-2}) + \Theta(\sigma_1^{-3/2}\ln(1/\gamma)) \right]$ This completes the proof of tightness.
 4094
 4095

4096 J.2 ILLUSTRATION FOR THE EXPONENT OF σ_1 IN INITIALIZATION SCALE AND 4097 CONVERGENCE TIME

4098 We consider arbitrary N -layer matrix factorization under gradient flow setting (gradient descent follows the same argument). Then for fixed condition number $\kappa := \sigma_1(\Sigma)/\sigma_d(\Sigma)$, the requirements for initialization scale $\epsilon \propto \sigma_1^{1/N}(\Sigma)$, while the training time scales by $\sigma_1^{-2(N-1)/N}(\Sigma)$.
 4099
 4100
 4101

4102 Suppose the target matrix is scaled by a positive real constant $\lambda \in \mathbb{R}^+$, then the new dynamics becomes
 4103

$$\frac{d}{dt} W_j = \left(\prod_{k=N}^{j+1} W_k \right) (\lambda \Sigma - W) \left(\prod_{k=j-1}^1 W_k \right). \quad (326)$$

By setting $W'_j = \lambda^{1/N} W_j$, $t' = \lambda^{-2(N-1)/N}$ (correspondingly the initialization scale $\epsilon' = \lambda^{1/N} \epsilon$), then the dynamics becomes the form of

$$\frac{d}{dt'} W'_j = \left(\prod_{k=N}^{j+1} W'_k \right) (\Sigma - W') \left(\prod_{k=j-1}^1 W'_k \right). \quad (327)$$

Then $W'_j(t')$ shares exactly the same dynamics with $W_j(t)$ before scaling. Thus for fixed conditional number $\kappa := \sigma_1(\Sigma)/\sigma_d(\Sigma)$ (for Theorem 1 and 2, $\kappa = 1$) or to say, relative size of target singular values, the initialization scale $\epsilon \propto \sigma_1^{1/N}(\Sigma)$, convergence time $T \propto \sigma_1^{-2(N-1)/N}(\Sigma)$. For $N = 4$, $T \propto \sigma_1^{-3/2}(\Sigma)$; for $N = 2$, $T \propto \sigma_1^{-1}(\Sigma)$.

Remark 19. This is intuitively similar to dimensional analysis, which is a powerful technique used to understand the relationships between different physical quantities by analyzing their dimensions and units. For example, when calculating the resonant period of a simple pendulum with mass m , pendulum length l and gravitational acceleration g , by analyzing the units of target quantity $[T_{\text{pendulum}}] = T^1 = [m]^\alpha [l]^\beta [g]^\gamma$ ($[\cdot]$ denotes its dimension) along with variables $[m] = M^1$, $[l] = L^1$, $[g] = L^1 T^{-2}$. (Here L is length, T is time, M is mass.) Then by solving the coefficients, $\alpha = 0$, $\beta = -1/2$, $\gamma = 1/2$, we have $T_{\text{pendulum}} \propto \sqrt{l/g}$.

In our problem setting, if we view the dimension of the largest singular value of Σ to be a unit (conditional number is dimensionless), then $[\mathcal{L}_{\text{ori}}] = [\frac{1}{2} \|\Sigma - \prod_{j=N}^1 W_j\|_F^2] = [\sigma_1(\Sigma)]^2 \left[\frac{1}{2} \left\| (\sigma_1^{-1}(\Sigma) \Sigma) - \prod_{j=N}^1 (\sigma_1^{-1/N}(\Sigma) W_j) \right\|_F^2 \right] = [\sigma_1(\Sigma)]^2$, so $\sigma_1^{-1/N}(\Sigma) W_j$ is dimensionless, W_j has dimension $[\sigma_1(\Sigma)]^{1/N}$, then the initialization scale $\epsilon \propto \sigma_1^{1/N}(\Sigma)$. For the training time, $\frac{d}{dt} W_j = \left(\prod_{k=N}^{j+1} W_k \right) (\Sigma - W) \left(\prod_{k=j-1}^1 W_k \right)$, then $[\frac{d}{dt}] = [\sigma_1^{2(N-1)/N}(\Sigma)]$, the training time is proportional to $\sigma_1^{-2(N-1)/N}(\Sigma)$.

K NUMERICAL SIMULATIONS

Through out this section, we consider numerical simulations under four-layer matrix factorization on square matrices with dimension of 5.

K.1 SADDLE AVOIDANCE DYNAMICS UNDER BALANCE INITIALIZATION

This section presents numerical simulations of the saddle avoidance stage under balanced initialization. In this experiment, $\epsilon = 0.05$, $\eta = 0.1$, $\Sigma_w(0) = \epsilon \cdot \text{diag}(1, 0.8, 0.6, 0.5, 0.9)$.

We set the target matrix to $\Sigma = I$ in Figure 1 and to $\Sigma = \text{diag}(2.00, 1.55, 1.10, 0.65, 0.20)$ in Figure 2. Each pair of solid and dashed lines of the same color represents the logarithms of the k^{th} singular value of Σ_W and that of $\frac{1}{2}(U + V)\Sigma_W$, respectively. (Here U, V, Σ_w are defined by SVD of product matrix W : $W = U \Sigma_w^N V^\top$, or \cdot^H for complex domain.) Considering the numerical precision and for appropriate visualization, all values plotted are truncated at a small value. (Here the singular values are truncated at $1e-5$ so the logarithms are truncated at around -11.5 .)

These figures clearly exhibit the following properties:

- $\sigma_k \left(\frac{1}{2}(U + V)\Sigma_W \right)$ provides a tight lower bound for $\sigma_k(\Sigma_W)$, verifying the conclusion of Lemma 18.
- The spectral gap of the target matrix introduces non-smoothness and non-monotonicity into the original lower bound for singular values of the product matrix, leading to segmented

4158
 4159 rather than global smoothness and monotonicity. This explains why the dynamics are easier
 4160 to analyze when the target matrix is the identity.

4161
 4162 • The $1/2$ failure probability of converging to a saddle point under real balanced initialization
 4163 is a general phenomenon, even if the target matrix is not identity. This illustrates that the
 4164 exact balancedness in real domain may hinder the convergence in matrix factorization,
 4165 which is also discussed in Xiong et al. (2024). For the complex initialization, such $1/2$
 4166 failure probability of convergence does not occur. This indicates that the complex domain
 4167 *does not suffer from the drawbacks of exact balancedness* at least under our framework,
 4168 and thus merits further theoretical investigation.

4169 It is also interesting to notice that in the setting of Figure 2, initializations with
 4170 $\det(U^\top V) = 1$ fail to converge but $\det(U^\top V) = -1$ converges, which contrasts with
 4171 the identity target case (but still with a $1/2$ probability).

4172
 4173 • The incremental learning of singular values. Through Figure 1 and Figure 2, we observe
 4174 the incremental learning of singular values: the model learns features (here the singular
 4175 values of target matrix) one by one. While we cannot explain why the larger singular
 4176 values of target matrix converges at first then the smaller ones in Figure 2, and the proof of
 4177 incremental learning itself is beyond the scope of this work, we still provide an explanation
 4178 of Figure 1 under the scheme of balanced Gaussian initialization, gradient flow.

4179 Equation (11) provides both upper and lower bound for the k^{th} singular value of product
 4180 matrix $\sigma_k(W) = \sigma_k^4(\Sigma_w)$ by the term $\sigma_k((U + V)\Sigma_w)$, while Theorem 5 demonstrates
 4181 that the increasing rate of this term is accurately bounded and *approximately independent of other components* $k' \neq k$. By invoking conclusions in random matrix theory, we may prove
 4182 the gap of singular values at initialization, which leads to the explanation of incremental
 4183 learning. This method can be applied to general random initialization under gradient flow.
 4184 For gradient descent, more perturbation techniques are required.

4190
 4191 Figure 1: Dynamics of singular values (log scale) for an identity target matrix. From left to right, up
 4192 to down: real initialization with $\det(U^\top V) = 1$, $\det(U^\top V) = -1$, and complex initialization.

Figure 2: Dynamics of singular values (log scale) for a non-identity target matrix. From left to right, up to down: real initialization with $\det(U^T V) = 1$, $\det(U^T V) = -1$, and complex initialization.

K.2 CONVERGENCE RATE OF DIFFERENT DEPTHS

This section presents examples showing the convergence rate of different depths. Specifically, we vary the depth from 2 to 6 under complex balanced Gaussian initialization, with other hyper-parameters fixed as $\epsilon = 0.05$, $\eta = 0.1$, $\Sigma_w(0) = \epsilon \cdot \text{diag}(1, 0.8, 0.6, 0.5, 0.9)$, $\Sigma = I$. The plots of loss curves and singular values (with dashed line lower bounds which is the same in K.1) are presented in Figure 3.

From the experimental results we exhibit that:

- Generally, deeper N takes more iterations to converge.
- For deeper N the network stays at saddle for more time relative to local convergence phase, which is shown by the sharper change in the decrease of loss and the increase of singular values.
- For depth $N \geq 5$ the lower bound term $\sigma_k((U + V)\Sigma_w)$ still suffers from sudden change when one singular value converges. Furthermore, the monotonicity of this term may not hold anymore, see Figure 4 for result on real domain.

K.3 ALIGNMENT DYNAMICS UNDER BALANCE REGULARIZATION TERM

This section exhibits the dynamics of weight matrices under regularization term. The original square loss \mathcal{L}_{ori} is omitted. Here $a = 1$, $\epsilon = 1$, $\eta = 0.001$.

Figure 5 illustrates the conclusion of Theorem 28 and 30. Clearly the maximum among all the singular values are non-increasing while the minimum is non-decreasing.

Figure 3: Dynamics of losses and log scale singular values for identity target matrix, under complex initialization, with depth from 2 to 6. Figures on the left are loss curves, the right ones are logarithms of singular values.

4320
 4321
 4322
 4323
 4324
 4325
 4326
 4327
 4328
 4329
 4330
 4331
 4332
 4333
 4334
 4335
 4336
 4337
 4338
 4339

Figure 4: Dynamics of singular values (log scale) for identity target matrix, under real initialization, depth 5, $\det(U^\top V) = 1$.

4340
 4341
 4342
 4343
 4344
 4345
 4346
 4347
 4348
 4349
 4350
 4351
 4352
 4353
 4354
 4355
 4356
 4357
 4358
 4359
 4360
 4361
 4362
 4363
 4364
 4365
 4366
 4367
 4368
 4369
 4370
 4371
 4372
 4373

Figure 5: Dynamics of extreme singular values (log scale) for four weight matrices.

4374
 4375 Figure 6 illustrates the dynamics of main term $\sigma_{\min}(W_1 + W_2^{-1}W_3^HW_4^H)$. For real initialization
 4376 with $\det(W(0)) < 0$, $\sigma_{\min}(W_1 + W_2^{-1}W_3^HW_4^H)$ decays to 0 at a linear rate, while for $\det(W(0)) >$
 4377 0 and complex initialization it stays at a small value after some oscillation.
 4378
 4379

4390
 4391
 4392 Figure 6: Dynamics of the minimum singular value of Hermitian main term $W_1 + W_2^{-1}W_3^HW_4^H$
 4393 (log scale). From left to right, up to down: real initialization with $\det(W) > 0$, $\det(W) < 0$, and
 4394 complex initialization.
 4395
 4396
 4397
 4398
 4399
 4400
 4401
 4402
 4403

4404
 4405
 4406
 4407
 4408
 4409
 4410
 4411
 4412
 4413
 4414
 4415
 4416
 4417
 4418
 4419
 4420
 4421
 4422
 4423
 4424
 4425
 4426
 4427

4428 **L LLM USAGE DECLARATION**
44294430 In the preparation of this paper, large language models (LLMs) served only as an auxiliary tool
4431 for enhancing writing clarity, checking grammar, and assisting in the drafting and debugging of
4432 simulation code. These tasks were performed under the authors' complete oversight. The central
4433 scientific ideas, theoretical results, and research contributions are entirely the work of the authors.
44344435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481