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ABSTRACT

Recently, quantization has been widely used for the compression and acceleration
of large language models (LLMs). Due to the outliers in LLMs, it is crucial to flat-
ten weights and activations to minimize quantization error with the equally spaced
quantization points. Prior research explores various pre-quantization transforma-
tions to suppress outliers, such as per-channel scaling and Hadamard transforma-
tion. However, we observe that these transformed weights and activations can still
remain steep and outspread. In this paper, we propose FLATQUANT (Fast and
Learnable Affine Transformation), a new post-training quantization approach to
enhance flatness of weights and activations. Our approach identifies optimal affine
transformations tailored to each linear layer, calibrated in hours via a lightweight
objective. To reduce runtime overhead, we apply Kronecker decomposition to
the transformation matrices, and fuse all operations in FLATQUANT into a single
kernel. Extensive experiments show that FLATQUANT sets up a new state-of-the-
art quantization benchmark. For instance, it achieves less than 1% accuracy drop
for W4A4 quantization on the LLaMA-3-70B model, surpassing SpinQuant by
7.5%. For inference latency, FLATQUANT reduces the slowdown induced by pre-
quantization transformation from 0.26x of QuaRot to merely 0.07x, bringing up
to 2.3x speedup for prefill and 1.7x speedup for decoding, respectively. Code will
be released upon acceptance.

1 INTRODUCTION

Recent large language models (LLMs) have achieved remarkable success across a wide range of
tasks with an increasing number of parameters (Achiam et al., 2023; Jiang et al., 2023; Yang et al.,
2024; Dubey et al., 2024). However, the growth of model size also incurs a significant increase in
computation and memory overhead. As a result, reducing the computational and memory demands
of LLMs has emerged as a critical research direction, and quantization is one of the most effective
solutions (Frantar et al., 2022; Lin et al., 2023; Dettmers et al., 2022; Xiao et al., 2023).

Quantization decreases the memory footprint and accelerates the inference, by reducing the preci-
sion of model parameters and activations. Quantization error is a commonly used metric to measure
the performance of quantization methods (Nagel et al., 2020; Bai et al., 2020; Li et al., 2021). One
key factor that affects the quantization error is the flatness of weights and activations. Intuitively,
when the distribution of weights and activations is sharp and there exist multiple outspread values,
quantizing them to the same quantized value usually incurs a large quantization error (Chmiel et al.,
2020; Li et al., 2024). Moreover, as LLMs generate outputs layer by layer, a reduced quantization
error also flattens the error landscape propagated across Transformer layers.

Nevertheless, it is non-trivial to get a flat distribution of weights and activations in LLMs. LLMs
are known to have extreme outliers over activations (Dettmers et al., 2022; Xiao et al., 2023; Lin
et al., 2023) and pivot tokens (Liu et al., 2024a; Sun et al., 2024). To alleviate this problem, various
pre-quantization transformations are proposed to mitigate the impact of outliers (Xiao et al., 2023;
Ashkboos et al., 2024; Liu et al., 2024b; Ma et al., 2024). However, we revisit these transformations
and find them still sub-optimal in promoting flatness. For instance, per-channel scaling (Xiao et al.,
2023; Shao et al., 2023) aims to balance the outliers between weights and activations, but it falls short
of distributing outliers over the non-outlier channels. The recent Hadamard transformation (Ashk-
boos et al., 2024; Lin et al., 2024) attempts to solve this problem, while the individual character-
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istics of each linear layer are not considered. Moreover, the linear transformation introduced by
these methods (Ma et al., 2024; Ashkboos et al., 2024; Liu et al., 2024b) inevitably introduces extra
inference overhead that affects the overall speedup of quantization.

In this work, we introduce a new post-training quantization approach named FLATQUANT (Fast and
Learnable Affine Transformation). Our approach is grounded in the principle of achieving a flat-
ter distribution of weights and activations, which is crucial for quantization. FLATQUANT aims to
identify the optimal affine transformation for each linear layer, employing a lightweight, block-wise
training strategy over the calibration data. To minimize the inference overhead associated with affine
transformations, FLATQUANT harnesses the efficiency of Kronecker decomposition, thus reducing
both the memory and computational demands. The proposed approach is compatible with vari-
ous quantization techniques such as learnable clipping, and can be applied to various quantization
settings, e.g., weight-only quantization or KV cache quantization. Additionally, by observing that
affine transformations in FLATQUANT are memory bound, we further fuse the affine transformations
and quantization into a single kernel, thereby minimizing the global memory access and kernel lunch
overhead. Lastly, extensive experiments are conducted to assess FLATQUANT across various tasks,
including language modeling and question answering, using LLaMA-2/3 models ranging from 7B
to 70B parameters. The empirical results demonstrate that our proposed approach surpasses current
state-of-the-art methods in terms of both accuracy and inference latency.

The contributions of this work are summarized below:

• We highlight the significance of achieving flatness for LLM quantization, demonstrating
that flat distributions of weights and activations facilitate quantization and reduce error
propagation across Transformer layers.

• We introduce FLATQUANT, a new post-training quantization method with fast and learn-
able affine transformations optimized for each linear layer. The approach is empirically
demonstrated to enhance the flatness of both weights and activations in LLMs.

• Extensive experiments demonstrate that FLATQUANT sets new state-of-the-art results for
quantization. To the best of our knowledge, we are the first to achieve ≤ 1% accuracy drop
with simply round-to-nearest W4A4 quantization on the LLaMA-3-70B model.

• We have designed an efficient kernel that fuses affine transformation and quantization,
reducing the additional latency caused by transformation from a 0.26x slowdown with
QuaRot to only 0.07x. This enhancement gives up to 2.3x speedup for prefill and 1.7x
speedup for decoding compared to the FP16 baseline.

2 MOTIVATION

2.1 PRELIMINARIES ON LLM QUANTIZATION

The inference of LLM typically has two stages: 1) the prefill stage, which creates a key-value cache
(KV Cache) layer by layer from the input sequence; and 2) the decoding stage, where the model
autoregressively generates tokens based on previous KV cache. Quantization is a common practice
to reduce the model size and inference latency. It converts the full-precision weights W ∈ Rm×n

or activations X ∈ Rk×n of linear layers (i.e., Y = XW⊤), and optionally the KV cache to low-bit
representations. For instance, b-bit weight quantization can be represented as follows:

Ŵ = Qb(W) = s ·ΠΩ(b)(W/s), (1)

where s is the quantization step size, Π(·) is the projection function and Ω(b) = {0, 1, ..., 2b − 1} is
the set of b-bit integer points. For simplicity of notation, we denote Q(·) as the general quantization
function in the rest of this paper. Quantizing weights enables memory time savings from weight
loading from high-bandwidth memory (HBM) into the compute cores, and quantizing activations
further reduces the computation, benefiting both the prefill and decoding stages of LLM inference.

As recent works suggest (Xiao et al., 2023; Shao et al., 2023; Xi et al., 2023), LLMs exhibit per-
sistent outliers in activations, posing significant challenges for quantization. Various works have
been proposed to suppress these outliers to improve the quantized LLMs. Two most commonly used
methods are per-channel scaling (Xiao et al., 2023; Lin et al., 2023; Wei et al., 2023) and Hadamard
transformation or its variants (Xi et al., 2023; Ashkboos et al., 2024; Lin et al., 2024).
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Figure 1: Distributions of weights and inputs from LLaMA-3-8B and LLaMA-3-70B, sorted by the
channel magnitudes (i.e., the Frobenius norm) in descending order. In a Transformer layer, Wo

and Xo denote the weight matrix and input of the output projection layer in the self-attention layer,
respectively. Wg and Xg denote the weight and input of the gated linear layer of the feed-forward
network, respectively. More visualizations can be found in Appendix D.

Per-channel Scaling Hadamard FlatQuant

(a) Per-channel Scaling. (b) Hadamard Transfrom. (c) FLATQUANT. (d) Stacked View.

Figure 2: The mean squared error (MSE) of quantization across Transformer layers and input se-
quence in LLaMA-3-8B. Figure 2a-2c plot the MSE surface of each method, while Figure 2d over-
lays these surfaces by dividing each MSE with that of FLATQUANT. More details and visualizations
can be found in Appendix D.

Per-channel Scaling. The input activations X of LLMs are often rich in outliers. To mitigate their
impact on quantization, a popular way is to apply channel-wise scaling over weights and activa-
tions (Xiao et al., 2023), i.e., Y = (Xdiag(c)−1) · (diag(c)W⊤), where c ∈ Rn is the channel-wise
scaling factor. The scaling vector smooths the activations by jointly considering the magnitudes
of input activations and weights, i.e. cj = max(|Xj |α)/max(|Wj |1−α). The scaled weights
diag(c)W⊤ can be merged to eliminate the runtime computation. Additionally, Wei et al. (2023)
introduces channel-wise shifting, i.e., (X− z)diag(c)−1, to further mitigate the impact of outliers,
and Shao et al. (2023) treats both diag(c) and z as learnable parameters.

Hadamard Transformation. Recent works find Hadamard matrices H ∈ {+1,−1}n×n are par-
ticularly helpful in smoothing out outliers in activations (Xi et al., 2023; Ashkboos et al., 2024;
Lin et al., 2024). In contrast to per-channel scaling which only adjusts the diagonal elements in
the view of matrix multiplication, Hadamard transformation rotates the channels of both activations
and weights, re-distributing the outliers among all channels to effectively eliminate them. Thanks
to the orthogonality of Hadamard matrices (i.e., H⊤H = I), the following equivalency holds:
Y = XW⊤ = (XH)(H⊤W⊤). The transformed weight WH can be similarly pre-processed
offline to reduce additional runtime overhead.

2.2 THE FLATNESS FOR QUANTIZATION

We examine existing pre-quantization transformations with a focus on their potential for flatness, a
critical factor for effective quantization. Intuitively, by removing outliers, these transformations are
expected to produce flat weights and activations that are conducive to quantization. Additionally,
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Figure 3: The overall framework of FLATQUANT. (a): necessary notations of FLATQUANT; (b):
the integration of FLATQUANT with a conventional LLaMA layer, where merged parameters are
grouped in red, online transformation and quantization functions in blue, and merged scaling vectors
in green; (c): the exemplary view of FLATQUANT applied for the down-projection layer, where the
scaling vector diag(c) over X̃ is merged to Wu in practice.

the quantization error propagated through the network is also expected to be low and flat. However,
our empirical results indicate that current methods are limited in achieving the desired flatness. This
is in contrast to our proposed FLATQUANT, which learns flatness as discussed in Appendix C.1 and
will be introduced in Section 3.

The Flatness of Weights and Activations. Flat tensors are intuitively easier to quantize after
removing outliers, a.k.a tensors with low kurtosis (Chmiel et al., 2020; Li et al., 2024). Figure 1
displays the distributions of both the original and transformed weights and activations, sorted by the
channel magnitudes in descending order. The flat weights and activations with horizontal envelopes
are usually preferred by quantization. Compared with the original distributions, pre-quantization
transformations can yield flatter activations (e.g., Figure 1b, 1d) but still with their limitations. Per-
channel scaling flattens activations at the cost of steeper weight envelops (e.g., Figure 1a, 1c). While
Hadamard transformation produces generally better flatness for both activations and weights than
per-channel scaling, it still sometimes generates unsatisfactory weights and activations distributions
(e.g., Figure 1a, 1b). In contrast, FLATQUANT consistently flattens both weights and activations.

The Flatness of Quantization Error Landscape. The quantization error inevitably propagates,
and it is insightful to show how pre-quantization transformations mitigate this issue. We plot the
two-dimensional landscape of mean squared error (MSE) in Figure 2. First, it is observed that
massive quantization errors occur at initial tokens, a.k.a. pivot tokens (Liu et al., 2024a), which
contain massive outliers (Sun et al., 2024). Both per-channel scaling and Hadamard transformation
are powerless to such errors (i.e., Figure 2a-2b). Instead, FLATQUANT shows much lower error at
these pivot tokens from Figure 2c. Second, the quantization error increases layer-wisely, but is less
evident along the input sequence. According to Figure 2d, FLATQUANT is the best in controlling
the error propagation, followed by Hadamard transformation and lastly the per-channel scaling.

3 METHOD

3.1 FAST AND LEARNABLE AFFINE TRANSFORMATION

We begin with applying FLATQUANT for a standard linear layer, and will discuss its integration with
the Transformer architecture in Section 3.2. The overview of FLATQUANT is presented in Figure 3.
A primary objective of FLATQUANT is to find the best affine transformation for each linear layer to
quantize. Ideally, given Y = XW⊤, one can identify the optimal invertible matrix P∗ ∈ Rn×n by

P∗ = argmin
P

∥Y −Q(XP)Q(P−1W⊤)∥2F , (2)

as studied in (Ma et al., 2024). The weights P−1W⊤ can be pre-computed offline akin to (Ashk-
boos et al., 2024). However, unlike Hadamard matrices that can be reused for all layers, storing
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individual P matrices for different linear layers is computationally expensive. In the forward pass,
this approach doubles the computational cost and memory access for matrix multiplication. Addi-
tionally, it nearly doubles the model storage requirements. Thus, another key aspect of FLATQUANT
is to identify a fast alternative for the pre-quantization transformation.

Kronecker Decomposition. We decompose the original P ∈ Rn×n into P = P1 ⊗ P2, where
P1 ∈ Rn1×n1 ,P2 ∈ Rn2×n2 are invertible matrices in smaller sizes, and n = n1n2. Recall the
vectorization trick of the Kronecker product, i.e., vec(V)(P1 ⊗ P2) = vec(P⊤

1 VP2) for some
V ∈ Rn1×n2 , the matrix multiplication in Equation 2 can be re-written as

Q(XP)Q(P−1W⊤) = Q(P⊤
1 ×1 X̃×2 P2) Q(P−1

1 ×1 W̃ ×2 (P
−1
2 )⊤)⊤ , (3)

where X̃ ∈ Rk×n1×n2 and W̃ ∈ Rm×n1×n2 are reshaped from X and W accordingly, and ×i

denotes the reduction over the i-th axis. Note that both weights and activations are converted back
to matrix before multiplication. Such decomposition can save the memory up to n/2 times, given
that n2

n2
1+n2

2
≤ n2

2n1n2
= n

2 , with the equality holds when n1 = n2 =
√
n. Moreover, the computation

saving is
√
n/2 times with the same optimal condition. In practice, we select n∗

1, n
∗
2 = argmin(n1+

n2), s.t. n1n2 = n and n1 ≤ n2. For instance, the optimal configuration is (n∗
1, n

∗
2) = (64, 128) for

n = 8192. We find such a strategy gives the best speedup without compromising performance, as
will be detailed in Figure 5.

Per-channel Scaling. To enhance the ability to balance outliers between the weights and activa-
tions, FLATQUANT explicitly introduces a learnable scaling vector diag(c) ∈ Rn prior to the pre-
quantization transformation, as illustrated in Figure 3 (c). Following (Xiao et al., 2023), the scaling
vector can be merged pair-wisely to the preceding layer normalization or linear layers, thereby in-
curring no additional inference overhead.

Learnable Clipping Thresholds. To further reduce the potential outlier after the above transfor-
mation, we combine learnable clipping thresholds αw, αa ∈ (0, 1) on both weight and activation for
each linear layer, together with the KV cache. While previous studies (Jacob et al., 2018; Frantar
et al., 2022; Ashkboos et al., 2024) demonstrate that grid search is valid to find reasonable clipping
thresholds, we observe that learning the clipping thresholds yields better results. These parameters
are layer-specific and can be jointly optimized with the linear transformation matrices P and scaling
vector diag(c).A sigmoid function is applied to constrain αw and αa within (0, 1).

The Training Objective. We are now ready for the training objective of FLATQUANT. We follow
post-training quantization and sequentially minimize the mean squared error (MSE) by quantization
over a small amount of calibration data (e.g., 128 randomly sampled sentences) for each Transformer
block. The training objective for the l-th Transformer block is

min
Θ

∥∥Fl

(
X
)
− F̂l

(
X; Θ

)∥∥2
F
, (4)

where Fl(·) and F̂l(·) denote the original and the quantized Transformer block, Θ = {P, c, αa, αw}
is abbreviated for all learnable parameters within the block. The transformation matrices within a
Transformer block will be explained in Section 3.2. To compute the matrix inversion in Equation 3
efficiently and accurately, we adopt the singular value decomposition together with automatic mixed
precision. More details can be found in Appendix B.1. Note that we also experiment with training
multiple Transformer blocks together but find similar performance at higher training costs. Finally,
we remark that the sequential training with Equation 4 can effectively produce flat weights and
activations in Figure 1, and reduce the error propagation along the Transformer blocks in Figure 2.

3.2 INTEGRATION WITH THE TRANSFORMER ARCHITECTURE

We illustrate the integration of FLATQUANT with a Transformer block based on an LLaMA-like
architecture, as depicted in Figure 3. Following the conventional practices, we employ low-bit ma-
trix multiplications for all linear layers, while keeping layer normalization layers, pre-quantization
transformations, RoPE embeddings, and attention scores in FP16.

Self-Attention. The self-attention module is equipped with four transformations {Pa, Po, Ph,
Pv}. Specifically, Pa is applied to flatten the input activation for the query, key, and value pro-
jections, while Po smooths the input activation for the output projection. Ph and Pv are used to
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transform the key and value cache head by head, respectively. Note that we only decompose Pa

and Po, but leave Ph and Pv in their original shape. This is because per-head quantization already
facilitates cheap transformations, given that the head size is significantly smaller than the full hidden
size. Moreover, we further fuse Po with Pv to reduce overhead, as inspired by QuaRot (Ashkboos
et al., 2024). Our empirical results show this fusion does not result in additional loss of accuracy.

Feed-forward Network. The feed-forward network (FFN) employs two transformation matrices,
i.e., Pug and Pd. Pug is applied to flatten the input of the feed-forward network after layer nor-
malization, while Pd flattens the input for the down projection layer. Both transformations are
decomposed to minimize the inference overhead. Additionally, the per-channel scaling of Pd is
merged into the weight of up projection layer, ensuring no additional computational overhead.

Layer Normalization. Recall that QuaRot (Ashkboos et al., 2024) and SpinQuant (Liu et al.,
2024b) modify the LayerNorm to RMSNorm and merge orthogonal transformations into preced-
ing layers for efficiency. Nonetheless, the residual connection of the “pre-norm” architecture
would constrain all Transformer blocks to share the same transformation after RMSNorm. Instead,
FLATQUANT preserves the LayerNorm, and allows the use of fast and learnable affine transforma-
tions in Section 3.1 after LayerNorm for different layers, thereby enhancing the expressiveness.

3.3 EFFICIENT KERNEL DESIGN

We design an efficient kernel for FLATQUANT that integrates both affine transformations and quan-
tization into a single operation. This design is motivated by two key factors. First, P⊤

1 ×1 X̃×2 P2

exhibits low computational intensity after Kronecker decomposition, making both prefill and decod-
ing predominantly memory-bound. Second, the quantization is also known to be memory-bound.

To address these issues, we fuse Q(P⊤
1 ×1 X̃×2P2) into a single kernel using OpenAI Triton (Tillet

et al., 2019). Specifically, we load the entire P1 ∈ Rn1×n1 and P2 ∈ Rn2×n2 into SRAM. Each
thread block slices a tiling block X̄ ∈ Rn1×n2 from X̃, performs the matrix multiplication P1X̄P2,
and quantizes the results on the fly. Throughout this process, all intermediate results are stored
in SRAM before finally being written back to the global memory. This design thereby eliminates
redundant memory accesses of intermediate results and reduces the kernel launch overhead. Further
details of the kernel design are provided in the Appendix B.2.

Finally, given the output above, we follow QuaRot (Ashkboos et al., 2024) to adopt the CUTLASS
kernel for INT4 matrix multiplication, and FlashInfer (Ye, 2023) for KV cache quantization.

4 EXPERIMENTS

4.1 SETTINGS

Evaluation and Baselines. We evaluate FLATQUANT on the LLaMA-2(7B/13B/70B) (Touvron
et al., 2023) models and the LLaMA-3(8B/70B) (Dubey et al., 2024) models. Following previ-
ous works (Shao et al., 2023; Ashkboos et al., 2024), we report the perplexity (PPL) of language
generation tasks on the WikiText2 (Merity et al., 2016) and C4 (Raffel et al., 2020) datasets. For
commonsense reasoning tasks, we use six zero-shot evaluation tasks, including ARC-Challenge,
ARC-Easy (Clark et al., 2018), HellaSwag (Zellers et al., 2019), LAMBADA (Paperno et al., 2016),
PIQA (Bisk et al., 2020), and WinoGrande (Sakaguchi et al., 2021). Additionally, we evaluate multi-
turn conversation ability on LLaMA-3.1-8B-Instruct using MT-Bench, with GPT-4o as the evaluator.
For baselines, we compare FLATQUANT against popular INT4 post-training quantization methods,
including SmoothQuant (Xiao et al., 2023), OmniQuant (Shao et al., 2023), AffineQuant (Ma et al.,
2024), QUIK-4B (Ashkboos et al., 2023), and two recent state-of-the-art methods QuaRot (Ashk-
boos et al., 2024) and SpinQuant (Liu et al., 2024b).

Implementation Details. We implement FLATQUANT based on Huggingface (Wolf, 2019) and
PyTorch (Paszke et al., 2019). For optimization, we adopt the AdamW optimizer with an initial
learning rate of 5e-3 and employ a cosine annealing learning rate decay schedule. Specifically, the
learning rate for clipping thresholds is 5e-2. FLATQUANT is trained for 15 epochs on a calibration
set comprising 128 sentences from WikiText-2, each sampled with 2048 tokens. The batch size is
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Method W Quantizer WikiText-2 C4
2-7B 2-13B 2-70B 3-8B 3-70B 2-7B 2-13B 2-70B 3-8B 3-70B

FP16 - 5.47 4.88 3.32 6.14 2.86 7.26 6.73 5.71 9.45 7.17

SmoothQuant RTN 83.12 35.88 26.01 210.19 9.60 77.27 43.19 34.61 187.93 16.90
OmniQuant RTN 14.74 12.28 - - - 21.40 16.24 - - -
AffineQuant RTN 12.69 11.45 - - - 15.76 13.97 - - -
QuaRot RTN 8.56 6.10 4.14 10.60 55.44 11.86 8.67 6.42 17.19 79.48
SpinQuant RTN 6.14 5.44 3.82 7.96 7.58 9.19 8.11 6.26 13.45 15.39
FLATQUANT RTN 5.79 5.12 3.55 6.98 3.78 7.79 7.09 5.91 11.13 7.86
QUIK-4B GPTQ 8.87 7.78 6.91 - - - - - - -
QuaRot GPTQ 6.10 5.40 3.79 8.16 6.60 8.32 7.54 6.12 13.38 12.87
SpinQuant GPTQ 5.96 5.24 3.70 7.39 6.21 8.28 7.48 6.07 12.19 12.82
FLATQUANT GPTQ 5.78 5.11 3.54 6.90 3.77 7.86 7.11 5.92 11.21 7.93

Table 1: WikiText-2 and C4 perplexity of 4-bit weight & acitvation quantized LLaMA models.

set to 4. The default calibration procedure costs approximately 26GB of GPU memory and about
0.9 hours for LLaMA-3-8B on a single GPU. FLATQUANT is robust to initialization, and we employ
random affine transformation matrices as the starting point. Further details about implementation
and calibration time are provided in Appendix B.1.

Quantization. We adopt per-channel and per-token symmetric quantization for weights and ac-
tivations, respectively. For KV cache quantization, we utilize group-wise asymmetric quantization
with a group size of 128. This matches the head dimension of LLaMA, as suggested in previous
studies (Zhao et al., 2024; Ashkboos et al., 2024), to effectively leverage the memory-bound charac-
teristics of self-attention. By default, FLATQUANT employs round-to-nearest (RTN) as the weight
quantizer. For a fair comparison with QuaRot and SpinQuant, we also report weight quantization
using GPTQ, which uses the same calibration data for both closed-form weight updates and training.

4.2 MAIN RESULTS

Results on Language Generation Tasks. Table 1 presents the PPL results for FLATQUANT with
and without the GPTQ weight quantizer on the WikiText-2 and C4 datasets. As can be seen,
FLATQUANT with RTN weight quantizer consistently outperforms previous SOTA quantization
methods across all major benchmarks. For the LLaMA-2-70B model, FLATQUANT achieves a
PPL score just 0.23 higher than the FP16 baseline, underscoring the effectiveness of our approach.
For LLaMA-3-8B, FLATQUANT reduces the PPL from 7.39 (SpinQuant) to 6.98, narrowing the gap
with the FP16 baseline to 0.84. Notably, FLATQUANT with RTN exhibits performance comparable
to those with GPTQ but takes significantly less calibration time. This is particularly helpful in reduc-
ing the time consumption to deploy FLATQUANT in practice. These results highlight the efficacy of
our proposed learnable transformations in enhancing flatness and mitigating the impact of outliers
in both weights and activations, thereby establishing a new SOTA in low-bit LLM quantization.

Results on Zero-shot QA Tasks. We extend our evaluation to six zero-shot commonsense QA
tasks, as shown in Table 2. For a fair comparison, we reproduce QuaRot 1 and SpinQuant 2 with their
official implementations and released checkpoints, evaluating all methods with the same version of
lm-eval-harness framework (Gao et al., 2021). As can be seen, FLATQUANT significantly narrows
the performance gap between quantized models and the FP16 baseline. Specifically, for larger mod-
els such as LLaMA-2-70B, the accuracy loss of FLATQUANT is only 0.43%, which is amazing with
such a low bit quantization setting. The recently released LLaMA-3 models have been shown to
be more challenging for quantization (Huang et al., 2024). Nonetheless, FLATQUANT continues
to perform well, with an accuracy loss of 2.00% for LLaMA-3-8B and 0.94% for LLaMA-3-70B.
Notably, while QuaRot with RTN largely lags behind QuaRot with GPTQ by an average accuracy
gap over 4%, FLATQUANT with RTN can already obtain comparable results to GPTQ.

Results on MT-Bench. We evaluate FLATQUANT on MT-Bench using the LLaMA-3.1-8B-
Instruct model in Table 3. While FLATQUANT trails behind the FP16 baseline in coding and

1https://github.com/spcl/QuaRot
2https://github.com/facebookresearch/SpinQuant
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Model Method W Quantizer ARC-C ARC-E HellaSwag LAMBADA PIQA Winogrande Avg

2-7B

FP16 - 46.16 74.54 75.98 73.92 79.05 69.06 69.79

QuaRot RTN 36.60 61.41 65.07 48.06 72.20 63.06 57.73
SpinQuant RTN 39.42 65.32 71.45 66.16 75.30 63.46 63.52
FLATQUANT RTN 43.26 72.05 73.64 72.04 77.26 69.53 67.96
QuaRot GPTQ 42.32 68.35 72.53 65.40 76.33 65.11 65.01
SpinQuant GPTQ 41.72 69.28 72.90 71.28 76.17 66.06 66.23
FLATQUANT GPTQ 43.00 71.21 73.31 72.06 77.53 67.72 67.47

2-13B

FP16 - 49.15 77.44 79.39 76.73 80.47 72.14 72.55

QuaRot RTN 42.83 69.95 73.54 65.62 77.69 67.88 66.25
SpinQuant RTN 43.69 72.43 75.52 72.42 78.40 68.90 68.56
FLATQUANT RTN 48.04 76.64 77.59 76.60 79.38 70.24 71.42
QuaRot GPTQ 45.48 73.27 76.03 69.01 79.05 70.64 68.91
SpinQuant GPTQ 49.15 77.19 76.86 73.86 78.67 69.85 70.93
FLATQUANT GPTQ 48.38 76.94 77.88 76.40 79.65 70.56 71.64

2-70B

FP16 - 57.17 81.02 83.81 79.60 82.70 77.98 77.05

QuaRot RTN 52.22 76.60 79.96 74.61 81.12 76.32 73.47
SpinQuant RTN 55.03 79.17 81.76 78.87 81.45 74.27 75.09
FLATQUANT RTN 56.14 80.30 83.01 79.60 82.75 77.90 76.62
QuaRot GPTQ 55.46 79.76 81.58 79.35 81.83 76.09 75.68
SpinQuant GPTQ 55.38 79.04 82.57 78.75 82.37 78.22 76.06
FLATQUANT GPTQ 56.40 80.09 82.91 80.01 82.92 76.87 76.53

3-8B

FP16 - 53.50 77.57 79.12 75.51 80.74 72.93 73.23

QuaRot RTN 38.65 66.54 68.82 57.20 71.82 65.04 61.34
SpinQuant RTN 45.73 71.38 74.07 67.67 76.66 66.38 66.98
FLATQUANT RTN 50.00 75.80 76.80 72.91 79.16 72.69 71.23
QuaRot GPTQ 45.73 70.83 72.97 62.70 75.35 67.17 65.79
SpinQuant GPTQ 47.27 74.20 74.55 70.29 77.37 68.51 68.70
FLATQUANT GPTQ 50.51 75.88 76.49 73.20 79.00 72.93 71.33

3-70B

FP16 - 64.25 85.94 84.93 79.37 84.44 80.74 79.95

QuaRot RTN 22.18 34.30 32.15 13.35 57.67 52.49 35.36
SpinQuant RTN 44.03 69.07 74.57 63.34 76.99 65.98 65.66
FLATQUANT RTN 62.12 84.97 83.95 78.73 84.28 80.03 79.01
QuaRot GPTQ 49.49 74.37 77.22 71.69 78.89 71.03 70.45
SpinQuant GPTQ 51.96 77.40 77.29 71.90 79.33 72.06 71.66
FLATQUANT GPTQ 61.95 84.47 83.87 77.99 83.95 79.24 78.58

Table 2: Zero-shot QA task results of 4-bit weight & activation quantized LLaMA models.

Method Writing Roleplay Reasoning Math Coding Extraction STEM Humanities Avg
FP16 8.17 8.10 5.05 7.00 6.10 8.67 8.50 8.91 7.60

QuaRot 7.20 6.90 3.90 5.30 4.05 6.70 6.05 7.80 5.99
FLATQUANT 7.95 7.35 4.70 7.20 4.80 7.60 7.20 8.70 6.94

Table 3: MT-Bench results of 4-bit weight & activation quantized LLaMA-3.1-8B-Instruct model.

STEM tasks, it consistently outperforms QuaRot with GPTQ across all categories, narrowing the
gap between the quantized model and the FP16 baseline. Notably, for math problems, FLATQUANT
matches the FP16 baseline’s score, exceeding QuaRot by 1.9 points. More evaluations are provided
in Appendix C.2.

4.3 INFERENCE LATENCY

All experiments of inference latency are conducted on the RTX3090 GPU. More details of the over-
all FLOPs, memory consumption, kernel profiling, and speedup gains are available in Appendix C.5.

End-to-end Speedup. Figure 4 shows the prefill and decoding speedup of FLATQUANT across
different batch sizes, with 2048 and 256 tokens for prefill and decoding, respectively. With kernel
fusion and INT4 tensor core, FLATQUANT can achieve up to 2.30x speedup for prefill and 1.76x
speedup for decoding under the batch size of 64. Notably, FLATQUANT is apparently faster than
QuaRot (Ashkboos et al., 2024) thanks to the Kronecker decomposition and efficient kernel de-
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(a) Prefill Speedup.
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(b) Decoding Speedup.

Figure 4: Prefill and decoding speedup of LLaMA-2-7B model across different batch sizes. We
decode 256 tokens after the prefill on a sequence length of 2048.

Figure 5: Prefill speedup and WikiText2 PPL
results of different decomposed matrix sizes on
LLaMA-2-7B model. We decompose the hid-
den dimension 4096 into n1 × n2 and range n1

from 1 to 2048, where n1 = 1 amounts to main-
taining a full-size transformation matrix. More
details can be found in Appendix C.4.

Figure 6: Prefill speedup of LLaMA-2-7B on
a sequence length of 2048 under a batch size
of 64 after applying different online transforma-
tions. We incorporate different online transfor-
mations sequentially to gauge their impact on
the final speedup. Each point on the x-axis indi-
cates adding a new online transformation.

sign. Although there is still a minor gap compared to the vanilla INT4 quantization, it significantly
enhances accuracy and facilitates the deployment of INT4 LLMs in real-world applications.

Kronecker Decomposition: Sizes and Perplexities. In Figure 5, we examine the impact of dif-
ferent decomposed matrix sizes in Equation 3 on model performance and speedup. As shown,
the varying sizes of Kronecker decomposition significantly affect speedup, but have limited impact
on the perplexity of generated text. The speedup peaks when P1 and P2 are of equal size (i.e.,
n1 = n2 =

√
n = 64), as predicted by our theoretical analysis in Section 3.1. When n1 exceeds

64, the speedup quickly decreases due to irregular memory access patterns for activations. These
results further demonstrate FLATQUANT’s effectiveness in minimizing inference overhead while
maintaining quantization accuracy through matrix decomposition.

Overhead of Each Online Transformation. We now investigate the impact of the five online
transformations (i.e., {Pa,Po,Ph,Pug,Pd}) in FLATQUANT on the overall speedup, as shown
in Figure 6. Even with five per-layer transformations, FLATQUANT results in a minimal 0.07x
end-to-end slowdown, significantly outperforming QuaRot’s 0.26x with just three Hadamard trans-
formations. Specifically, FLATQUANT’s Pd causes a 0.04x slowdown due to large FFN intermediate
sizes, compared with QuaRot’s 0.17x. Meanwhile, Po results in a 0.01x slowdown, versus QuaRot’s
0.1x. The rest transformations (i.e., Pa and Pug) have an insignificant impact of less than 0.01x.
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LT PS LCT WikiText-2 C4 ARC-C ARC-E HellaSwag LAMBADA PIQA Winogrande Avg
1266.60 936.41 25.26 28.62 27.04 1.26 51.80 51.93 30.99

✓ 8.50 13.51 44.97 71.38 73.17 67.05 76.88 67.48 66.82
✓ ✓ 7.95 12.74 44.20 71.89 74.21 68.72 77.15 66.30 67.08
✓ ✓ 7.11 11.47 49.32 76.14 76.30 72.17 78.89 71.51 70.72
✓ ✓ ✓ 6.98 11.13 50.00 75.80 76.80 72.91 79.16 72.69 71.23

Table 4: Ablation study of FLATQUANT’s main components on LLaMA-3-8B.

LLaMA-3-8B WikiText-2 PPL C4 PPL
W4A16 W3A16 W4A16 W3A16

FP16 6.14 9.45

RTN 8.70 2.2E3 14.00 5.6E3
GPTQ 7.00 13.00 11.80 45.90
GPTQ-g128 6.50 8.20 10.40 13.70
AWQ 7.10 12.80 10.10 16.80
QuIP 6.50 7.50 11.10 11.30
FLATQUANT-RTN 6.54 7.78 10.17 12.64
FLATQUANT-GPTQ 6.48 7.52 10.28 12.91

Table 5: Weight-only quantization results on
LLaMA-3-8B model.

W4 A4 KV4 WikiText-2 PPL C4 PPL QA Acc
6.14 9.45 73.23

✓ 6.56 10.25 72.92
✓ 6.49 10.13 72.20

✓ 6.23 9.61 73.43
✓ ✓ ✓ 6.98 11.13 71.23

Table 6: Extending the affine transformations
trained under W4A4KV4 to different quantiza-
tion settings on LLaMA-3-8B model. QA Acc
is the average accuray of the six QA tasks in
lm-eval-harness.

4.4 DISCUSSIONS

Ablation Study. We conduct ablation studies for FLATQUANT focusing on its main components:
1) learnable transformation (LT); 2) per-channel scaling (PS); and 3) learnable clipping thresholds
(LCT). Starting from RTN as a baseline, we evaluate the impact of each component on perplexity
and the average accuracy on zero-shot QA tasks, with LLaMA-3-8B model. As shown in Table 4,
enabling LT significantly enhances the accuracy of the quantized model, reducing PPL from 1266.60
to 8.50 on WikiText-2. This shows LT is capable of adaptively flattening the distribution of weight
and activation values. Additionally, incorporating PS and LCT further improves PPL by 0.55 and
0.84, respectively, demonstrating the necessity of each component to refine the model performance.

Other Quantization Schemes. Although the main results above focus mostly on weight-
activation quantization, FLATQUANT can be easily applied to other quantization schemes. The
results of weight-only quantization against several state-of-the-art baselines are presented in Ta-
ble 5. FLATQUANT again obtains leading accuracy compared with leading baselines. For additional
results on KV cache quantization and extreme low-bit quantization, please refer to Appendix C.2.

Train One and Get More. We demonstrate that the affine transformations learned from weight-
activation quantization can be directly applied to other quantization settings, such as weight-only
or KV cache quantization, with surprisingly strong performance. The associated results are pre-
sented in Table 6. For instance, the results labeled as “W4” are comparable to those in Table 5 that
are specifically trained for weight-only quantization. This significantly saves time when applying
FLATQUANT to different quantization settings, as only one set of transformation matrices is saved.

Due to space constraints, we provide additional discussions such as the impact of calibration data,
and the effect of learnable clipping in Appendix C.3. More visualizations on the flatness of trans-
formed weights and activations, and the quantization error landscapes are in Appendix D.

5 CONCLUSIONS

In this study, we revisit the importance of flat weights and activations for effective quantization, and
find existing solutions still produce steep outspread values after the pre-quantization transformation.
Therefore, we introduce FLATQUANT, a novel post-training quantization method with the purpose
of identifying fast and learnable transformations for each linear layer, to promote the flatness of
weights and activations. Extensive experiments demonstrate the superiority of FLATQUANT, e.g.,
with less than 1% accuracy drop for W4A4 quantization on the LLaMA-3-70B. Our efficient kernel
fusion integrates the affine transformation and quantization, reducing the transformation overhead
and bringing up to 2.3x and 1.7x speedup over FP16 inference at the prefill and decoding stages, re-
spectively. We hope this work advances the practical application of low-bit quantization for LLMs.
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A RELATED WORK

Quantization for Large Language Models. Quantization is a crucial technique for reducing
memory footprint and accelerating inference by employing fewer bits for storage and computa-
tion, especially for the application of LLMs. Unlike previous models, LLMs are shown to exhibit
outliers in activation and massive outliers in pivot tokens (Wei et al., 2022; Dettmers et al., 2022;
Liu et al., 2024a; Sun et al., 2024), which can severely degrade quantization accuracy. To elimi-
nate the negative impact of outliers, pre-quantization transformations have been widely adopted in
weight-activation quantization (Xiao et al., 2023; Wei et al., 2023; Shao et al., 2023; Ma et al., 2024;
Ashkboos et al., 2024; Liu et al., 2024b) as well as in fully quantized training (Xi et al., 2023).
Additionally, several weight-only quantization methods (Lin et al., 2023; Chee et al., 2024; Tseng
et al., 2024) incorporate pre-quantization transformations. Searched or learnable clipping thresholds
on weights or activations (Shao et al., 2023; Lin et al., 2023; Duanmu et al., 2024; Ashkboos et al.,
2024; Liu et al., 2024b) are also explored to eliminate outliers.

Per-channel Scaling Transformation. SmoothQuant (Xiao et al., 2023) employs per-channel
scaling to shift the challenge of quantization from activations to weights in weight-activation quan-
tization. Building on this, Wei et al. (2023) additionally introduces channel-wise shifting, while
OmniQuant (Shao et al., 2023) utilizes a differentiable approach to learn optimal scaling and shift-
ing parameters. However, the scaling-based methods can negatively impact weight quantization and
struggle in low-bit settings, such as W4A4 quantization.

Hadamard and Orthogonal Transformation. Recent research (Xi et al., 2023; Tseng et al.,
2024; Ashkboos et al., 2024) has shown that the Hadamard transformation is effective in eliminating
outliers and lowering quantization error by redistributing outliers across all channels through matrix
multiplication. QuaRot (Ashkboos et al., 2024) is the first to apply Hadamard transformation in the
LLM W4A4 PTQ setting, while SpinQuant (Liu et al., 2024b) exploits learnable orthogonal matrices
with model-level loss to further alleviate outliers.

Affine Transformation. Considering that per-channel scaling corresponds to the diagonal ele-
ments of the affine transformation matrix, AffineQuant (Ma et al., 2024) proposes learning the equiv-
alent affine transformation. However, their approach focuses on learning full-size diagonally domi-
nant matrices and employs a gradual mask optimization method, which may hinder the full potential
of affine transformation in reducing quantization loss. Moreover, due to the formidable overhead
associated with full-sized matrix multiplication, AffineQuant can only apply affine transformation
to a small fraction of linear layers. In contrast, we employ fast and learnable affine transformations
without these limitations, leading to substantial accuracy improvements and practical speedup.

Pre-quantization Transformations in Other Quantization Tasks. Inspired by SmoothQuant,
AWQ (Lin et al., 2023) introduces activation-aware per-channel scaling to reduce quantization errors
in weight-only quantization. QUIP (Chee et al., 2024) and its extension, QUIP# (Tseng et al.,
2024), leverage random rotation matrices or Hadamard transformations to enhance incoherence in
weight-only quantization. In fully quantized training task, Xi et al. (2023) propose to utilize a block-
diagonal transformation consisting of Hadamard matrices to reduce the quantization error.

B IMPLEMENTATION DETAILS

B.1 MATRIX INVERSION AND TRAINING COST

A critical aspect to implement FLATQUANT is the computation of the inverse affine transformation
matrix P−1. As discussed below, we use singular value decomposition (SVD) and automatic mixed
precision to train FLATQUANT, enjoying both training stability and efficiency.

Direct Inversion and FP32 Training. One straightforward approach is to use the inverse func-
tion provided by PyTorch. However, we find that the precision of this inverse function at FP16 is
insufficient. Specifically, PP−1 does not closely approximate I. The off-diagonal elements are on
the order of 1×10−3, which negatively impacts FLATQUANT’s performance during the early stages
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of training. Therefore, a simple solution is to conduct training in FP32 without Automatic Mixed
Precision (AMP) to maintain precision. However, this inevitably increases training time and more
GPU memory consumption.

SVD and AMP Training. To further reduce resource requirements during calibration, we propose
to employ singular value decomposition for the affine transformation. For any real matrix P, we can
decompose it as P = UΣV⊤, where U and V are orthogonal matrices, and Σ is a diagonal matrix.
This formulation allows us to easily compute P−1 = VΣ−1U⊤, offering a more computationally
efficient method for obtaining the inverse. Notably, this approach reduces the off-diagonal elements
of PP−1 to the order of 1× 10−6 at FP16 precision, enabling us to utilize AMP during calibration.
With AMP, we can achieve a 50% reduction in training time and memory usage while maintaining
nearly lossless accuracy in most cases. For the orthogonal matrices U and V, we employ the Cayley
parameterization provided by PyTorch 3.

Comparison of the Two Training Recipes. We compare the two training recipes in Table 7. As
shown, FP32 training requires more than twice the time of AMP training and necessitates 1.28x
more GPU memory under the same setting, while the performance remains relatively close. Thus,
our default choice is the SVD approach combined with AMP training. However, we observe that in
certain models or extremely low-bit scenarios, numerical errors may occur within the AMP frame-
work. In such cases, full-precision training becomes necessary.

Training Recipe WikiText-2 PPL C4 PPL QA Acc Memory Time

FP32 Inverse 6.95 11.04 71.35 35384MiB 2.2 hours

SVD 9.96 11.07 71.24 35360MiB 2.2 hours

AMP Inverse 7.00 11.17 70.57 27624MiB 0.9 hours

SVD 6.98 11.13 71.23 27554MiB 0.9 hours

Table 7: Comparison of different training recipes for FLATQUANT on the LLaMA-3-8B.

Calibration Time. We further present the calibration time required by FLATQUANT for the
LLaMA family in Table 8. Compared to SpinQuant (Liu et al., 2024b) and QAT methods,
FLATQUANT requires significantly fewer computational resources and less training time, while de-
livering superior performance. For weight-only quantization, only transformations related to the
linear weights are introduced, resulting in a shorter calibration time compared to weight-activation
quantization. Moreover, as discussed in Section 4.2, FLATQUANT does not need to be combined
with GPTQ to achieve optimal performance, further reducing the calibration overhead.

LLaMA 2-7B 2-13B 2-70B 3-8B 3-70B

weight-activation 1.15 hours 1.55 hours 6.15 hours 0.90 hours 5.94 hours
weight-only 0.67 hours 1.01 hours 5.00 hours 0.70 hours 4.89 hours

Table 8: Calibration time for LLaMA models. The reported times correspond to training on 128
segments of 2048 tokens over 15 epochs with a batch size of 4, using a single GPU.

B.2 MORE DISCUSSIONS ON KERNEL FUSION

To avoid redundant memory access and improve computational efficiency, we attempt to fuse
Q(P⊤

1 ×1 X̃ ×2 P2) into a single kernel, followed by the INT4 CUTLASS kernel to multiply
the 4-bit quantized weights and activations. In most cases, the shared memory per thread block is
sufficient to hold the source matrices P1, P2, X̄, and their intermediate results X̄

′
, as visualized in

Figure 7a. Nonetheless, there are corner cases when the shared memory is insufficient to hold all

3https://pytorch.org/docs/stable/generated/torch.nn.utils.
parametrizations.orthogonal.html
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Figure 7: The visualization of the kernel fusion in FLATQUANT based on the computation within
a thread block. The design holds mainly for (a), where both transformations and quantization are
fused together. For completeness, we also revise the design for corner cases in (b) and (c), when the
SRAM is not large enough to hold the intermediate results.

necessary tensors (e.g., n > 28762 with n1, n2 > 128 on the NVIDIA RTX 3090). We thus revise
our design for the two cases, as shown in Figure 7b and Figure 7c, respectively. To distinguish these
scenarios more clearly, we have the following equations:

Default Design: (n1 ∗ n1 + 2 ∗ n1 ∗ n2) ∗ 2 < m

(n2 ∗ n2 + 2 ∗ n1 ∗ n2) ∗ 2 < m (5)
Corner Case 1: (tn1

∗ n1 + n1 ∗ n2 + tn1
∗ n2) ∗ 2 < m

(n2 ∗ n2 + 2 ∗ tn1 ∗ n2) ∗ 2 < m (6)
Corner Case 2: (n1 ∗ bn1

+ bn1
∗ n2 + n1 ∗ n2) ∗ 2 < m

(n1 ∗ bn2
+ bn2

∗ n2 + n1 ∗ n2) ∗ 2 < m (7)

where m is the shared memory size per thread block, tn1 is the tiling size of non-reduction dimension
of P1, bn1 is the tiling size of reduction dimension of P1, bn2 is the tiling size of reduction dimension
of P2 and 2 refers to two bytes to hold tensors in float16. Below we review the designs for the two
corner cases respectively.

Corner Case 1. When both n and n1 are excessively large, it is suggested to prevent from loading
the entire P1 and X̄ into SRAM. We manage this by tiling the non-reduction dimension of P1 into
tn1

slices. This strategy enables us to integrate P̄1X̄P2 into one kernel, with P̄1 representing a
slice of P1 on the non-reduction dimension. Subsequently, we invoke a separate fused kernel for
quantization, computing the quantization scale and scaling the input.

Corner Case 2. When both n and n2 are extremely large, P1, X̄ and P2 cannot be loaded into
SRAM together. To handle this, we first compute X̄

′
= P̄⊤

1 X̄, where each thread block slicing
the non-reduction dimension of P1 and X̄ with the tiling shape bn1 . The output X̃

′
is written back

to the global memory, and the SRAM memory is thus released. Next, we slice the non-reduction
dimension of X̃

′
and P2 with tiling size bn2

, and compute the matrix multiplication, followed by
quantizing the result on the fly.

Kernel Profiling. We enumerate popular hidden sizes in the series of LLaMA models, and provide
the detailed profiling results of FLATQUANT’s online transformation with and without kernel fusion
in Table 9. Note that the SRAM can hold all of these shapes with the default design on the NVIDIA
RTX 3090. It can be found that kernel fusion achieves significant speedup across various hidden di-
mensions and batch sizes, e.g., 1.5x-3x prefill speedup and 1.2x-4x decoding speedup, respectively.
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Hidden Dimension Batch Size without Kernel Fusion with Kernel Fusion Speedup
Prefill Time (ms) Decode Time (ms) Prefill Time (ms) Decode Time (ms) Prefill Decode

4096

1 0.1956 0.0184 0.0625 0.0082 3.13x 2.25x
2 0.3809 0.0195 0.1116 0.0072 3.41x 2.71x
4 0.7199 0.0212 0.2120 0.0082 3.40x 2.59x
8 1.4019 0.0236 0.4188 0.0082 3.35x 2.88x
16 2.7628 0.0307 0.8417 0.0073 3.28x 4.20x
32 5.5101 0.0317 1.7091 0.0082 3.22x 3.87x
64 10.9752 0.0328 3.4898 0.0082 3.14x 4.00x

5120

1 0.2519 0.0195 0.1321 0.0113 1.91x 1.73x
2 0.4915 0.0205 0.2570 0.0113 1.91x 1.82x
4 0.9073 0.0225 0.5161 0.0113 1.76x 2.00x
8 1.7582 0.0266 1.0363 0.0113 1.70x 2.36x
16 3.4748 0.0338 2.0480 0.0121 1.70x 2.80x
32 6.9079 0.0358 4.1313 0.0123 1.67x 2.92x
64 13.8619 0.0379 8.2033 0.0123 1.69x 3.08x

8192

1 0.3845 0.0195 0.1608 0.0132 2.39x 1.48x
2 0.7393 0.0205 0.3092 0.0132 2.39x 1.55x
4 1.4433 0.0205 0.6257 0.0123 2.31x 1.67x
8 2.8529 0.0215 1.2411 0.0133 2.30x 1.62x
16 5.6668 0.0225 2.4904 0.0133 2.28x 1.69x
32 11.3183 0.0246 4.9418 0.0133 2.29x 1.85x
64 22.6714 0.0297 9.8459 0.0143 2.30x 2.07x

11008

1 0.6154 0.0215 0.3830 0.0173 1.61x 1.24x
2 1.2032 0.0225 0.7547 0.0173 1.59x 1.30x
4 2.3654 0.0223 1.5032 0.0164 1.57x 1.36x
8 4.7570 0.0236 2.9983 0.0174 1.59x 1.35x
16 9.4536 0.0256 6.0099 0.0184 1.57x 1.39x
32 18.9102 0.0287 12.0444 0.0195 1.57x 1.47x
64 38.2700 0.0379 24.0000 0.0248 1.59x 1.53x

13824

1 0.7260 0.0225 0.4444 0.0184 1.63x 1.22x
2 1.4203 0.0236 0.8653 0.0184 1.64x 1.28x
4 2.8088 0.0246 1.7254 0.0184 1.63x 1.33x
8 5.6228 0.0247 3.4273 0.0195 1.64x 1.27x
16 11.2297 0.0266 6.8726 0.0195 1.63x 1.37x
32 22.4302 0.0319 13.7216 0.0205 1.63x 1.56x
64 45.4374 0.0471 27.4698 0.0275 1.65x 1.72x

14336

1 0.6932 0.0215 0.4178 0.0184 1.66x 1.17x
2 1.3466 0.0225 0.8233 0.0184 1.64x 1.22x
4 2.6557 0.0236 1.6507 0.0184 1.61x 1.28x
8 5.2910 0.0246 3.2922 0.0195 1.61x 1.26x
16 10.5185 0.0257 6.5966 0.0195 1.59x 1.32x
32 20.9249 0.0317 13.0601 0.0205 1.60x 1.55x
64 42.7981 0.0461 25.9308 0.0266 1.65x 1.73x

Table 9: Prefill and decoding speedup of kernel fusion across different hidden dimensions and batch
sizes. The sequence length is 2048 for prefill and 1 for decoding. The default kernel design holds
for all the above settings.

We also selectively test the two corner cases with the hidden size of 28762, both of which bring
considerably 2.3x speedup.

C ADDITIONAL EXPERIMENTS

C.1 FLATQUANT LEADS TO FLATNESS

In Figure 1 and Figure 2, we illustrate that the affine transformations of FlatQuant actually learn to
flatten the distribution of weights and activations to lower the quantization error, even though we do
not include flatness in the optimization target. The simple layer-wise MSE loss defined in Equation 4
is enough to encourage flatness in weights and activations. In the following, we validate that with
more experiment results.

Quantifying the Flatness. We quantify the flatness of weights and activations by calculating the
channel distribution (a 1D vector d) as Figure 1 and measuring its mean squared error (MSE) against
a perfectly flat distribution (d′). The flat distribution d′ is defined with equal magnitudes across all
channels and the same L2 norm as d.

FLATQUANT Leads to Flatness. We find that flatness well explains the optimization process of
FlatQuant. In Figure 8, we plot the flatness and mean squared quantization error (MSE) of different
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(a) 7th Transformer block.
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(b) 15th Transformer block.
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(c) 23th Transformer block.
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(d) 31th Transformer block.

Figure 8: Flatness and mean squared quantization error (MSE) of different Transformer blocks in
LLaMA-3-8B during FLATQUANT’s training process. Flatness is calculated as the total flatness of
all weights and activations within a Transformer block.

Transformer blocks in LLaMA-3-8B during FLATQUANT’s training process. It can be observed
that as the training loss decreases, the flatness is also improved, which indicates that FlatQuant
learns better transformation to obtain a flatter distribution which eventually contributes to smaller
quantization error, i.e. flatness matters for LLM quantization.

C.2 MORE EXPERIMENTAL RESULTS

Results on LLaMA-3.1-8B-Instruct. Besides the results of MT-Bench, we present the PPL re-
sults and the performance on QA tasks for LLaMA-3.1-8B-Instruct model in Table 10.

WikiText-2 C4 ARC-C ARC-E HellaSwag LAMBADA PIQA Winogrande Avg
FP16 7.22 11.38 55.20 79.67 79.20 73.14 81.12 73.80 73.69

FLATQUANT 7.97 12.99 52.90 79.25 76.68 70.79 79.49 73.09 72.03

Table 10: Evaluation results of FLATQUANT on LLaMA-3.1-8B-Instruct.

Results on Qwen-2.5-Instruct. To further validate the generality of FlatQuant, we conduct exper-
iments on the Qwen-2.5-Instruct models. FlatQuant achieves near-lossless quantization (e.g., only
0.21% accuracy loss on QA tasks for Qwen-2.5-Instruct-32B). The results on language modeling
and QA benchmarks are summarized in Table 11.

Model Method W Quantizer WikiText-2 C4 ARC-C ARC-E HellaSwag LAMBADA PIQA Winogrande Avg

7B FP16 - 8.36 14.37 51.37 75.80 79.57 67.61 80.20 69.93 70.75

FLATQUANT RTN 8.46 13.94 51.71 77.69 78.42 57.46 76.93 69.53 68.62

32B

FP16 - 5.32 10.45 58.62 77.02 85.25 75.14 81.39 73.16 75.10

QuaRot RTN 6.95 12.17 52.13 74.37 80.41 68.37 78.45 67.72 70.24
QuaRot GPTQ 6.54 11.65 56.06 76.52 81.83 71.26 78.78 69.06 72.25

FLATQUANT RTN 5.80 10.86 58.62 78.58 83.72 75.26 80.74 72.45 74.89

Table 11: Evaluation results of FLATQUANT on Qwen-2.5-Instruct models.

KV Cache Quantization. As introduced in Section 4.4, while our primary focus is on weight-
activation quantization, FLATQUANT serves as a general framework applicable to various quantiza-
tion tasks. To further evaluate its versatility, we apply FLATQUANT to KV cache only quantization.
In this setting, we retain high precision for the rest of the model (including weights and activations)
and apply the group-wise asymmetric quantization (with a group size of 128) to keys and values.
Table 12 presents the results of KV cache quantization using various bit-widths on the LLaMA-3-
8B model. Consistent with previous studies (Hooper et al., 2024; Liu et al., 2024c; Ashkboos et al.,
2024), we observe that keys are more sensitive to quantization than values. Furthermore, Table 13
compares FLATQUANT with QuaRot for KV cache quantization on LLaMA-2-7B and LLaMA-2-
13B models. As shown, FLATQUANT delivers superior performance in most cases, particularly for
lower-bit (2-3 bits). When both keys and values are quantized to 2 bits, FLATQUANT outperforms
QuaRot by 2.57 in perplexity for the 7B model.
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K bits V bits WikiText-2 C4 ARC-C ARC-E HellaSwag LAMBADA PIQA Winogrande Avg
16 16 6.14 9.45 53.50 77.57 79.12 75.51 80.74 72.93 73.23

4 4 6.20 9.56 52.82 78.20 79.13 75.32 80.47 72.77 73.12
4 3 6.25 9.66 52.90 77.65 79.00 75.10 80.79 73.48 73.15
4 2 6.60 10.33 49.32 74.37 77.88 72.77 79.22 72.69 71.04
3 4 6.35 9.91 52.05 77.95 78.41 73.94 79.71 73.48 72.59
3 3 6.41 10.03 52.47 76.85 78.25 74.02 79.98 72.61 72.36
3 2 6.84 10.83 47.44 73.91 77.18 70.37 78.73 71.19 69.80
2 4 7.70 13.36 49.15 74.62 74.74 63.65 77.58 68.67 68.07
2 3 7.79 13.44 46.67 71.63 74.17 63.05 77.48 68.51 66.92
2 2 8.93 16.13 42.92 68.60 71.54 55.58 75.30 64.40 63.06

Table 12: Different bits for KV cache quantization on the LLaMA-3-8B model.

Methods K bits V bits LLaMA-2-7B LLaMA-2-13B
16 16 5.47 4.88

QuaRot
4 4 5.51 4.91
3 3 5.68 5.02
2 2 9.23 7.07

FLATQUANT
4 4 5.50 4.91
3 3 5.61 5.00
2 2 6.66 5.69

Table 13: WikiText-2 perplexity of LLaMA-2 models with different bits of KV cache quantization.

Extreme Low-bit Quantization. We quantize the LLM to extreme low-bit representations (e.g.,
INT3) to investigate the limitations of quantization. The results in Table 14 show that FLATQUANT
still keeps most of the model’s abilities in the 3-bit setting, whereas QuaRot struggles under such
extreme low-bit conditions. Nevertheless, 4-bit quantization remains a better balance between infer-
ence resource efficiency and acceptable performance degradation for now.

C.3 ADDITIONAL DISCUSSIONS

Calibration Set. Since FLATQUANT employs a gradient-based method to optimize transforma-
tions for increased flatness, one reasonable concern is whether FLATQUANT might overfit the cal-
ibration set. To assess its generalization ability, we conducted an ablation study using different
calibration datasets: WikiText-2, C4, and Pile. As shown in Table 15, FLATQUANT maintains stable
performance across all datasets. For example, when calibrated on different datasets, FLATQUANT
exhibits similar performance on WikiText-2, with PPL ranging from 6.98 to 7.04. On the C4 dataset,
results are equally consistent, with PPLs between 11.05 and 11.13. Furthermore, QA accuracy re-
mains within a narrow range (71.04% to 71.23%), suggesting that FLATQUANT generalizes well
across different calibration datasets. This robustness is attributed to FLATQUANT’s focus on learning
an equivalent affine transformation with minimal quantization loss, rather than altering the model’s
weights. Nevertheless, it is reasonable to assume that the diversity of calibration data can further
enhance the performance of our method.

Effect of Clipping. Unlike weight clipping, which has been widely utilized in LLM quantiza-
tion, activation clipping has been less explored. Although previous studies (Ashkboos et al., 2024;
Liu et al., 2024b) show that activation clipping offers only modest benefits for quantization, our

LLaMA3-8B WikiText-2 C4 ARC-C ARC-E HellaSwag LAMBADA PIQA Winogrande Avg
FP16 6.14 9.45 53.50 77.57 79.12 75.51 80.74 72.93 73.23

QuaRot-W4A4KV4 8.16 13.38 45.73 70.83 72.97 62.70 75.35 67.17 65.79
FLATQUANT-W4A4KV4 6.98 11.13 50.00 75.80 76.80 72.91 79.16 72.69 71.23

QuaRot-W3A3KV3 686.54 630.89 25.34 28.41 28.07 0.78 50.71 48.70 30.33
FLATQUANT-W3A3KV3 10.82 19.03 35.41 63.26 65.30 52.49 73.56 60.69 58.45

Table 14: Extreme low bit quantization results on LLAMA-3-8B models.
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Calibration set WikiText-2 C4 ARC-C ARC-E HellaSwag LAMBADA PIQA Winogrande Avg
WikiText2 6.98 11.13 50.00 75.80 76.80 72.91 79.16 72.69 71.23

C4 7.04 11.05 50.34 75.38 76.74 73.28 78.67 71.82 71.04
Pile 7.04 11.08 51.11 77.36 76.63 72.37 78.94 70.56 71.16

Table 15: Ablation study of FLATQUANT’s calibration set on LLaMA-3-8B model.

method demonstrates that LCT provides significant improvements. As shown in Table 16, apply-
ing our transformations prior to clipping allows for a greater proportion of values to be clipped,
resulting in better performance. In contrast, applying LCT before the transformation, similar to the
approach used in RTN quantization, yields only limited improvements. This is consistent with prior
findings (Dettmers et al., 2022) and is largely due to the presence of severe outliers in activation.
We also report results using a QuaRot-style clipping method, with 0.9 as the activation clipping
threshold and 0.95 for the KV cache clipping threshold. In summary, the integration of transforma-
tions enhances the effectiveness of clipping, indicating that their combination significantly improves
weight-activation quantization.

LLaMA3-8B WikiText-2 C4 ARC-C ARC-E HellaSwag LAMBADA PIQA Winogrande Avg
FP16 6.14 9.45 53.50 77.57 79.12 75.51 80.74 72.93 73.23

w/o LCT 7.95 12.74 44.20 71.89 74.21 68.72 77.15 66.30 67.08
LCT before Transformation 7.37 11.86 48.72 76.18 75.11 66.65 77.91 67.17 68.62
QuaRot-style Fixed Threshold 7.25 11.62 48.21 75.29 75.66 71.32 78.73 70.01 69.87
LCT after Transformation 6.98 11.13 50.00 75.80 76.80 72.91 79.16 72.69 71.23

Table 16: The effect of Learnable Clipping Thresholds.

C.4 EXPERIMENT DETAILS OF FIGURE 5

In Figure 5, we present the prefill speedup and WikiText2 PPL results of different decomposed
matrix sizes on LLaMA-2-7B model. We decompose the hidden dimension 4096 into n1 × n2 and
range n1 from 1 to 2048, where n1 = 1 amounts to maintaining a full-size transformation matrix.
The intermediate dimension 11008 is decomposed into 64× 172 as done in FLATQUANT. For PPL
evaluation, we only quantize the last Transformer block and learn the affine transformations within
it. For speedup evaluation, we do not leverage the online transformation kernel in Section 3.3 and
implement online transformations with naive matrix multiplication in PyTorch.

C.5 ADDITIONAL ANALYSES OF INFERENCE LATENCY

Baseline. We implement and report the latency results of INT4 quantization and QuaRot with
QuaRot’s official code4. These baselines share the same quantization settings with FLATQUANT as
described in Section 4.1 for fair comparison.

End-to-end Speedup. We decode 256 tokens after the prefill on a sequence length of 2048 and
provide the prefill and decoding speedup of FLATQUANT in Figure 9 and Figure 10. FLATQUANT
achieves a prefill speedup of 2.30x and decoding speedup of 1.76x under the batch size of 64, with
only 0.07x speedup loss compared to the naive INT4 quantization for both prefill and decoding. Note
that when the batch size is smaller than 16, quantization overhead outweighs the benefits brought by
KV cache memory reduction for the decoding stage, resulting in less than 1x speedup for both INT4
quantization and FLATQUANT. However, since the decoding speedup shows good scalability with
the batch size, we can gain a practical decoding speedup simply by employing a large batch size.

Total FLOPs of Online Transformations. (1) Self-Attention. The self-attention module has three
online transformations, i.e., {Pa,Po,Ph}. Suppose the hidden dimension hd and intermediate
dimension hi of LLM can be perfectly decomposed into

√
hd ×

√
hd and

√
hi ×

√
hi, respectively,

then the total FLOPs of {Pa,Po,Ph} is 4bshd

√
hd+2bshda+4bsh2

d/a, where b is the batch size, s

4https://github.com/spcl/QuaRot
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INT4 QuaRot FlatQuant
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Figure 9: Prefill speedup of LLaMA-2-7B on a sequence length of 2048.
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Figure 10: Decoding speedup on LLaMA-2-7B model. We decode 256 tokens after the prefill on a
sequence length of 2048.

is the sequence length, and a is the number of attention heads. (2) Feed-forward Network. The feed-
forward module has two online transformations, i.e., {Pug,Pd}. The total FLOPs of {Pug,Pd} is
4bshd

√
hd+4bshi

√
hi. In summary, the total FLOPs of the online transformations in a Transformer

block amounts to 8bshd

√
hd + 2bshda+ 4bsh2

d/a+ 4bshi

√
hi. In LLaMA-2-7B (i.e., hd = 4096,

hi = 11008 and a = 32), the FLOPs of online transformations only account for about 2.61% of
those of the FP16 model when s reaches 2048.

Memory Consumption of Online Transformations. We compute the parameter count of each
online transformation below: (1) Pa: 2(

√
hd)

2; (2) Po: a2; (3) Ph: (hd/a)
2; (4) Pug: 2(

√
hd)

2;
(5) Pd: 2(

√
hi)

2. The total parameter count in one Transformer block is 4hd+2hi+ a2+(hd/a)
2.

The additional memory consumption during inference is 2(4hd+2hi+ a2+(hd/a)
2) bytes, which

only consumes about 0.11MB extra memory space for LLaMA-2-7B.

D ADDITIONAL VISUALIZATIONS

D.1 MORE VISUALIZATIONS OF WEIGHT AND ACTIVATION DISTRIBUTIONS

Experiment Details. We visualize the distribution of weights and activations after different trans-
formations, including per-channel scaling in SmoothQuant (Xiao et al., 2023), Hadamard transfor-
mation in QuaRot (Ashkboos et al., 2024), and affine transformation in FLATQUANT. We compute
the per-channel Frobenius norm to quantify the channel magnitude. We randomly sample from the
C4 (Raffel et al., 2020) dataset to collect activation statistics.

Visualizations on the LLaMA Models. We visualize the distribution envelopes of both original
and transformed weights and activations on the LLaMA models in Figure 11-17. It can be observed
that neither per-channel scaling nor Hadamard transformation can fully smooth out outlier channels
to produce flatness, still leaving outlier channels, especially on activations. On the other hand, the
affine transformation learned by FLATQUANT can effectively produce flatter distributions for both
weights and activations which are easier to quantize.
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D.2 MORE VISUALIZATIONS OF QUANTIZATION ERROR LANDSCAPES

Experiment Details. We randomly sample 128 samples from the C4 (Raffel et al., 2020) dataset
and compute their average mean squared error for visualization. For per-channel scaling, we fol-
low SmoothQuant (Xiao et al., 2023) and only perform per-channel scaling for the inputs of the
self-attention and feed-forward modules. For the Hadamard transformation, we replace the affine
transformation in FLATQUANT with a fixed Hadamard transformation. The quantization settings
are the same as those described in Section 4.1.

Visualizations on the LLaMA Models. We visualize the quantization error landscapes of
LLaMA models in Figure 2 and Figure 18-21. With the affine transformation to smooth outliers,
FLATQUANT can effectively suppress the quantization errors at pivot tokens and ease the quantiza-
tion error propagation, leading to a flatter quantization error landscape compared with per-channel
scaling and Hadamard transformation.

E LIMITATIONS

In this study, we present FLATQUANT, but there are certain limitations to acknowledge. First, the
full potential of 4-bit quantization has not been thoroughly explored. While we follow the previous
studies to build the calibration set and demonstrate that FLATQUANT is robust across various data
sources, the optimal selection of calibration sets remains an open question. Additionally, our focus
has primarily been on the INT4 data type, and we have not examined the integration of FLATQUANT
with newer data types, such as MXFP4, which may offer advantages over INT4. Addressing these
aspects represents promising avenues for future research.
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Figure 11: Distributions of weights and inputs from LLaMA-2-7B, sorted by the channel magnitudes
(i.e., the Frobenius norm) in descending order.
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Figure 12: Distributions of weights and inputs from LLaMA-2-13B, sorted by the channel magni-
tudes (i.e., the Frobenius norm) in descending order.
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Figure 13: Distributions of weights and inputs from LLaMA-2-70B, sorted by the channel magni-
tudes (i.e., the Frobenius norm) in descending order.
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Figure 14: Distributions of weights and inputs from LLaMA-3-8B, sorted by the channel magnitudes
(i.e., the Frobenius norm) in descending order.
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Figure 15: Distributions of weights and inputs from LLaMA-3-70B, sorted by the channel magni-
tudes (i.e., the Frobenius norm) in descending order.
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Figure 16: Distributions of weights and inputs from LLaMA-3-8B, sorted by the channel magnitudes
(i.e., the Frobenius norm) in descending order.
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Figure 17: Distributions of weights and inputs from LLaMA-3-70B, sorted by the channel magni-
tudes (i.e., the Frobenius norm) in descending order.
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Per-channel Scaling Hadamard FlatQuant

(a) Per-channel Scaling. (b) Hadamard Transform. (c) FLATQUANT. (d) Stacked View.

Figure 18: The mean squared error (MSE) of quantization across Transformer layers and input
sequence in LLaMA-2-7B. Figure 18a-18c plot the MSE surface of each method, while Figure 18d
overlays these surfaces by dividing each MSE with that of FLATQUANT.

(a) Per-channel Scaling. (b) Hadamard Transform. (c) FLATQUANT. (d) Stacked View.

Figure 19: The mean squared error (MSE) of quantization across Transformer layers and input
sequence in LLaMA-2-13B. Figure 19a-19c plot the MSE surface of each method, while Figure 19d
overlays these surfaces by dividing each MSE with that of FLATQUANT.

(a) Per-channel Scaling. (b) Hadamard Transform. (c) FLATQUANT. (d) Stacked View.

Figure 20: The mean squared error (MSE) of quantization across Transformer layers and input
sequence in LLaMA-2-70B. Figure 20a-20c plot the MSE surface of each method, while Figure 20d
overlays these surfaces by dividing each MSE with that of FLATQUANT.

(a) Per-channel Scaling. (b) Hadamard Transform. (c) FLATQUANT. (d) Stacked View.

Figure 21: The mean squared error (MSE) of quantization across Transformer layers and input
sequence in LLaMA-3-70B. Figure 21a-21c plot the MSE surface of each method, while Figure 21d
overlays these surfaces by dividing each MSE with that of FLATQUANT.
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