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ABSTRACT

Inferring unbiased treatment effects has received widespread attention in the ma-
chine learning community. In recent years, our community has proposed numerous
solutions in standard settings, high-dimensional treatment settings, and even lon-
gitudinal settings. While very diverse, the solution has mostly relied on neural
networks for inference and simultaneous correction of assignment bias. New
approaches typically build on top of previous approaches by proposing new (or
refined) architectures and learning algorithms. However, the end result—a neural-
network-based inference machine—remains unchallenged. In this paper, we intro-
duce a different type of solution in the longitudinal setting: a closed-form ordinary
differential equation (ODE). While we still rely on continuous optimization to learn
an ODE, the resulting inference machine is no longer a neural network. Doing
so yields several advantages such as interpretability, irregular sampling, and a
different set of identification assumptions. Above all, we consider the introduction
of a completely new type of solution to be our most important contribution as it
may spark entirely new innovations in treatment effects in general. We facilitate
this by formulating our contribution as a framework that can transform any ODE
discovery method into a treatment effects method.

1 INTRODUCTION

Inferring treatment effects over time has received a lot of attention from the machine-learning
community (Lim, 2018; Schulam & Saria, 2017; Gwak et al., 2020; Bica et al., 2020b). A major
reason for this is the wide range of applications one can apply such a longitudinal treatment effects
model. Consider for example the important problem of constructing a treatment plan for cancer
patients or even a training schedule to combat unemployment.

The increased attention from the machine learning community resulted in many methods relying on
novel neural network architectures and learning algorithms. Once trained, these neural nets are used
as inference machines, with innovation focusing on new architectures and learning strategies. This
type of approach has indeed yielded many successes, but we believe that for some situations, one
may want to consider an entirely different type of model: the ordinary differential equation (ODE).

This point is illustrated in fig. 1, where we show a standard treatment effects (TE) model on the left,
and our new approach on the right. Essentially, a standard TE model will first build a representation
to adjust the covariate shift—e.g. through propensity weighting (Robins et al., 2000) or adversarial
learning (Bica et al., 2020b)—used to model the outcome. Conversely, our new approach does not
adjust the dataspace in any way, and instead discovers a global ODE which we refine per patient, as the
goal of ODE discovery is finding underlying closed-form concise ODEs from observed trajectories.

Doing so yields advantages ranging from interpretability to irregular sampling (Lok, 2008; Saarela &
Liu, 2016; Ryalen et al., 2019), and even modifying certain assumptions relied upon by contemporary
techniques (Pearl, 2009; Bollen & Pearl, 2013). Most of all, we believe that proposing this new
strategy may spark a radically different approach to inferring treatment effects over time. Moreover,
given that the resulting model is an equation, one may use the discovered solution to engage in further
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Figure 1: Conceptual overview. Left: A longitudinal treatment effects dataset with biased samples. Middle: A
standard treatment effects (TE) approach will learn a representation of the data, D, and will use the representation
for inference. Right: Our approach, which learns an ODE, refined for each specific patient in the dataset.

research and data collection, given that we can now understand certain behaviours of the treatment in
the environment. The latter is, of course, not possible when using black-box neural network models
(Rudin, 2019; Angrist, 1991; Kraemer et al., 2002; Bica et al., 2020a; 2021).

Our contribution is a usable framework that allows us to translate any ODE discovery method
(Brunton et al., 2016) into the treatment effects problem formulation. While other TE inference
methods have used ideas from ODE literature, none have focused on ODE discovery, we have devoted
appendix C.1 to explain this subtle but important difference. Hence, in this paper, we first explain the
differences between ODE discovery (and ODEs in general), and treatment effects inference, before
connecting them through our proposal. Using our framework, we build an example method (called
INSITE)1, tested in accepted benchmark settings used throughout the literature. Transforming an
ODE discovery method into a TE method results in a new set of identification assumptions. This need
not be a limitation, instead, it can be seen as an extension as the typical TE identification assumptions
may not always hold in ODE discovery settings.

2 HETEROGENEOUS TREATMENT EFFECTS OVER TIME

To reformulate the longitudinal heterogeneous treatment effects problem as an ODE discovery
problem, in this section, we first introduce longitudinal treatment effects with its assumptions and
then introduce ODE discovery in section 3. Let random variables X(i)

t ∈ Rd, A(i)
t ∈ A and Y

(i)
t ∈ Y

be the ith ∈ [N ] individual’s features, treatment, and outcome at time t ∈ [0, T ], with T the time
horizon. We also denote the static covariates of the ith individual as V (i) ∈ Rm. In the treatment
effects literature, typically A = {0, 1} and Y = R. Unless required for clarity, we will drop the
individual indicator i. We use the following notation Xt1:t2 to denote the observed features in the
time window [t1, t2]. The observed dataset contains the realizations of the random variables above,
D = {(v, ⟨xt, yt,at⟩)(i) : i ∈ [N ], t ∈ [0, T (i)]}.
Of interest is estimating the expected potential outcome Yt:t+τ (āt:t+τ ), for some τ > 0 under
hypothetical future treatments āt:t+τ given the historical features X0:t and the previous treatments
A0:t (Neyman, 1923; Rubin, 1980):

E[Yt:t+τ (āt:t+τ )|V ,X0:t,A0:t] (1)

By definition, the potential outcome defined above includes multiple hypothetical scenarios that
cannot be simultaneously observed in the real world. This problem is often referred to as the
fundamental challenge to treatment effects and causal inference (Holland, 1986).

As such, treatment effects (over time) literature typically introduces a set of assumptions to link the
(unobservable) potential outcomes to the observable quantities Y , X , and A, to correctly estimate
Yt:t+τ (āt:t+τ ) in eq. (1). These assumptions are:

Assumption 2.1 (Consistency) For an observed treatment process A0:T (i) = a, the potential out-
come is the same as the factual outcome Y (a) = Y0:T (i) .

1We provide code at https://github.com/samholt/ODE-Discovery-for-Longitudina
l-Heterogeneous-Treatment-Effects-Inference.
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Assumption 2.2 (Overlap) The treatment intensity process λ(t|Ft) is not deterministic given any
filtration Ft

2 (Klenke, 2008) and time point t ∈ [0, T ], i.e.,

γ < λ(t|Ft) = lim
δt→0

p(At+δt −At ̸= 0|Ft)

δt
< 1− γ, with γ ∈ (0, 1)

Assumption 2.3 (Ignorability) The intensity process λ(t|Ft) given the filtration Ft is equal to the
intensity process that is generated by the filtration F ∪ {σ(Ys) : s > t} that includes the σ-algebras
generated by future outcomes {σ(Ys) : s > t}.

The above generalizes the standard identification assumptions made in static treatment effect literature
(Rosenbaum & Rubin, 1983; Seedat et al., 2022). This generalization is largely based on previous
extensions to continuous-time causal effects (Lok, 2008; Saarela & Liu, 2016; Ryalen et al., 2019).

Assum. 2.2 and assum. 2.3 rely on a treatment intensity process, λ(t|Ft) which can be considered
a generalization of the propensity score in continuous time (Robins, 1999). Essentially, assum. 2.2
allows that any treatment can be chosen at time t, given the past observations in the filtering Ft.
Furthermore, assum. 2.3 ensures it is sufficient to condition on a patient’s past observed trajectory to
block any backdoor paths to future potential outcomes (eq. (1)).

Given the above, we are allowed the following equality, which identifies the potential outcome (LHS)
to be estimated using the observed variables (RHS):

E[Yt:t+τ (āt:t+τ )|V ,X0:t,A0:t] = E[Yt:t+τ |V ,X0:t,A0:t,At:t+τ = āt:t+τ ], (2)
which is exploited by most works in the treatment effects literature (albeit by first regularizing models
such that they respect assum. 2.1 to 2.3) (Bica et al., 2020b; Lim, 2018; Melnychuk et al., 2022). A
thorough overview of related works is presented in appendix C.

3 UNDERPINNINGS OF ORDINARY DIFFERENTIAL EQUATION DISCOVERY

We now propose to model this treatment effect over time problem as a dynamical system, where
their temporal evolution can often be well represented by ODEs (Hamilton, 2020). That means
we assume the time-varying features and outcomes of the ith individual (x(i)

t ∀t ∈ [0, T (i)]) are
discrete (and possibly noisy) measurements of underlying continuous trajectories of observed features
x(i) : [0, T ] → Rd and potential outcomes y(i) : [0, T ] → R, where T ∈ R is called the time
horizon (Birkhoff, 1927). To make our formalism consistent, we also assume there is a treatment
trajectory a : [0, T ]→ Rk such that a(i)

t ’s either constitute snapshots of the underlying continuous
treatment a or if the treatments are administered at discrete times then a is a step function whose
values corresponds to the currently administered treatment.

There are many fields which already use ODEs as a formal language to express time dynamics. One
such example is pharmacology, where a large portion of the literature is dedicated to recovering an
ODE from observational data. The found ODE is then used to reason about possible treatments and
disease progression (Geng et al., 2017; Butner et al., 2020). We further assume that this system is
modelled by a system of ODEs which describes the time derivative of x as a function of x,v, and a.
The outcome trajectory, y, depends on the features x. In particular, we assume

dx(t)

dt
= ẋ(t) = F (v,x(t),a(t)) and y(t) = g(x(t)), (3)

where ẋ(t) is the differential of x. g is prespecified by the user and often models the outcome as one
of the features (g(x) = xj), e.g., the tumour volume. This is a general formulation that may also
include direct effects of a on y. We further discuss eq. (3) in appendix D. The goal of ODE discovery
is to recover the underlying system of ODEs F based on the observed dataset D (Brunel, 2008;
Brunel et al., 2014). Of course, the reliance on such a dataset implies that, while the trajectories are
defined in continuous time, they are observed in discrete time. Moreover, methods for ODE discovery
make the following assumptions:

Assumption 3.1 (Existence and Uniqueness) The underlying process can be modelled by a system
of ODEs ẋ(t) = F (v,x(t),a(t)),3 and for every initial condition x0, v and treatment plan a

2We further explain treatment intensity processes and filtrations in the assumptions in appendix B.
3Current ODE discovery methods are not designed to work with static features but they can be adapted to

this setting by considering them as time-varying features that are constant throughout the trajectory.
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at t0, there exists a unique continuous solution x : [t0, T ] → Rd satisfying the ODEs for all
t ∈ (t0, T )(Lindelöf, 1894; Ince, 1956).

Assumption 3.2 (Observability) All dimensions of all variables in F are observed for all individ-
uals, ensuring sufficient data to identify the system’s dynamics and infer the ODE’s structure and
parameters (Kailath, 1980).

Assumption 3.3 (Functional Space) Each ODE in F belongs to some subspace of closed-form
ODEs. These are equations that can be represented as mathematical expressions consisting of binary
operations {+,−,×,÷}, input variables, some well-known functions (e.g., {log, exp, sin}), and
numeric constants (e.g., {−0.2, . . . , 5.2} ∈ R) (Schmidt & Lipson, 2009).

Identification. Assum. 3.1 and 3.2 play a crucial role in ODE discovery. Essentially, we require
making such assumptions in order to correctly identify the underlying equation. The assumptions
made in the treatment effects literature (assum. 2.1 to 2.3) serve a similar purpose as they allow us to
interpret the estimand as a causal effect, i.e., they are necessary for identification (Imbens & Rubin,
2015; Rosenbaum & Rubin, 1983; Imbens, 2004).

Assum. 3.1 ensures that the discovered ODE has a unique solution, which is essential for making
reliable predictions, assum. 3.2 is necessary such that the observed data can be used to accurately
identify the underlying ODE. Finally, assum. 3.3 defines the space of equations for the optimization
algorithm to consider. We review methods for ODE discovery in appendix C.

4 CONNECTING TREATMENT EFFECTS INFERENCE AND ODE DISCOVERY
—THE FRAMEWORK
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Figure 2: Dimensions of our framework. The
x-axis shows different treatment types (cfr. sec-
tion 4.2) and the y-axis shows between-subject
variability in increasing difficulty (cfr. section 4.3).
✓indicates “no adapting needed”, and 2 shows our
framework. In green shows what ODE discov-

ery methods can do out of the box. Blue shows
INSITE’s possibilities, encompassing all settings,
including complex BSV.

From eqs. (2) and (3), one can see that both treatment
effects and ODE discovery involve learning a func-
tion that can issue predictions about future states. Al-
though the connection is natural, there remain some
discrepancies between these two fields. To apply
ODE discovery methods for treatment effects infer-
ence, we have to resolve these discrepancies. Essen-
tially, we establish a framework one can use to apply
any ODE discovery technique in treatment effects.

We identify three discrepancies between the treatment
effects literature and the ODE discovery literature: (1)
different assumptions, (2) discrete (not continuous)
treatment plans, and (3) variability across subjects.
Each discrepancy is explained and reconciled in a
dedicated subsection below with actionable steps.

Figure 2 shows the areas ODE discovery methods
can be expanded to, using our framework. Ranging
from simple adaption, to proposing a completely new
method (in section 5), our framework significantly in-
creases the reach of existing ODE discovery methods.
Our new method—INSITE—should be considered
the result after implementing our practical framework
we present in the remainder of this section.

4.1 DECIDING ON ASSUMPTIONS (DISCR. 1)

Discrepancy 1 (Different assumptions.) In sections 2 and 3 we listed the most common assump-
tions made in treatment effects and ODE discovery literature, respectively. While solving similar
problems, these assumptions do not correspond one-to-one (table 1). However, the fact that they do
not can be seen as a major advantage—in some scenarios it may be more appropriate to assume
assum. 2.1 to 2.3 versus assum. 3.1 to 3.3 or vice versa, which expands the application domain.

Increasingly, the treatment effects literature is considering settings that violate the overlap assumption
assum. 2.2 (D’Amour et al., 2021). It has been shown that correct model specification can weaken or
even replace the overlap assumption (Gelman & Hill, 2006, Chapter 10). The same holds true for
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Table 1: Comparing assumptions. This table lists the typical assumptions made in ODE discovery and in treat-
ment effects. While some seem to correspond (or are at least similar), we have shaded in green where we could
relax some assumptions with others. This is a powerful idea stemming directly from connecting these two fields.
We show the robustness of these assumptions in violating settings in section 6. We note that the correspondence
of similarity between these assumptions is not formal but indicates the discrepancy between the formalisms of
treatment effect inference and ODE discovery that needs to be considered as part of the framework.

ODE discovery Treatment effects Explanation
ref assumption assumption ref

3.1 existence & uniqueness consistency 2.1 2.1 is implicit through 3.2.
3.2 observability overlap 2.2 2.2 can be relaxed by 3.1 and 3.3
3.3 functional spaces ignorability 2.3 2.3 is similar as 3.2.

the ODE discovery methods, where overlap in assum. 2.2 can be relaxed with assum. 3.1 and 3.3.
Consider an example where the true and specified models are both linear. Here, overlap can be
violated as we can safely extrapolate outside the support of either treatment distribution. In contrast,
the recent neural network-based treatment effects models can rarely satisfy correct model specification
(Lim, 2018; Bica et al., 2020b; Berrevoets et al., 2021; Melnychuk et al., 2022). As a result, the
overlap assumption plays a key role for these methods. We show this empirically in section 6.

Framework step 1: Accept ODE discovery assumptions (assum. 3.1 to 3.3).

4.2 INCORPORATING DIVERSE TREATMENT TYPES (DISCR. 2)

Discrepancy 2 (Discrete treatment plans.) In section 3 we assume that a is a trajectory like x and
y, with at a snapshot observed similarly to observing covariates and outcomes. This implies that,
like covariates and outcomes, the treatment plan is defined in continuous time, and the treatment is
itself a continuous value. While there exist scenarios where this could be possible (e.g., in settings
where treatment is constantly administered), most settings violate this. Hence, we need to reconcile
modelling treatments in continuous time and values to settings violating these basic setups.

To connect ODE discovery with the treatment effects literature, we require incorporating different
types of treatment plans. Continuous valued treatment that is administered over time is adopted
quite naturally in a differential equation. However, the treatment effects literature is typically
focused on other types of treatment (Bica et al., 2021): binary treatments, categorical treatments,
multiple simultaneous treatments, and dosage. Each of these treatments can be static (i.e., constant
throughout the trajectory) or dynamic. With such diverse treatments, it might be impossible to express
F as a closed-form expression. For instance, where the treatment is a categorical variable (i.e.,
A = {1, . . . , k}). This violates assum. 3.3 of continuous solutions made by ODE discovery methods.

To reconcile it, we need to decide how to incorporate treatment a into F . This can be done in two
ways: either we discover different (piecewise) closed-form ODEs for different treatments (Trefethen
et al., 2017; Jianwang et al., 2021), or we incorporate the action variable a into the closed-form ODE.
Depending on the type of treatment one or both of these approaches can be chosen. In appendix E
we outline the ways of incorporating the treatment plan a in F according to the treatment types
listed above. In summary, there are 4 different treatment types: binary, categorical, multiple, and
continuous treatments (Bica et al., 2020b). Each of them can be a static or dynamic treatment, which
is either constant or changes during a trajectory, respectively. This results in 8 scenarios, which we
model in two ways: either the ODE changes for each treatment option; or the treatment is part of the
starting condition. These are all outlined in table 6 in appendix E.

In section 6 we demonstrate the effectiveness of discovering ODEs per categorical treatment.

Framework step 2: Incorporate treatment plans as dynamical systems using appendix E.

4.3 MODELLING BETWEEN-SUBJECT VARIABILITY (DISCR. 3)

Discrepancy 3 (Between-subject variability.) In a classical ODE discovery setting, we usually
have only one kind of between-subject variability corresponding to a noisy measurement - residual
unexplained variability (RUV). However, there are a few other sources of variability that need to be
accounted for before considering it as an ODE discovery problem.
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Table 2: Layers of Between-Subject Variability (BSV). We show four levels of between-subject variability
and explain the different sources of where variability is coming from. In the table, we have: ODE (i), RUV (ii),
Covariates (iii), Parameter distributions (iv) and q(a) = aw0 + w1, detailed in appendix F

(i) (ii) (iii) (iv) Causal graph Example
ODE. +RUV +Cov. +Dist y(t) Parameters (eq. (5))

A ✓ ✗ ✗ ✗ X Y x(t) C0 = c0, C1 = c1

B ✓ ✓ ✗ ✗ X Y ϵ x(t) + ϵ C0 = c0, C1 = c1

C ✓ ✓ ✓ ✗ X YV ϵ x(t) + ϵ C0 = q(c0), C1 = q(c1)

D ✓ ✓ ✓ ✓ X YV
ϵ

P
ϵ

x(t) + ϵ C0 ∼ N (q(c0), σ0), C1 ∼ N (q(c1), σ1)

As pharmacological models play a prominent role in treatment effect literature (Geng et al., 2017;
Bica et al., 2020b; Berrevoets et al., 2021; Lim, 2018; Seedat et al., 2022) we employ formalism from
pharmacology literature to discuss between-subject variability (BSV).

There are two types of BSV (Mould & Upton, 2012): (i) Unexplained variability which includes
RUV and parameter distributions; and (ii) Explained variability includes covariate models where we
model the impact of static covariates on the equation’s parameters.

We base the model of our causal dynamical system on the formalism introduced in Peters et al.
(2022). In particular, they use the term Deterministic Casual Kinetic Model (DCKM), which can
be summarised as a system of first-order autonomous ODEs. This is the simplest pharmacological
model with no BSV (setting A in Table 2). In light of realism, however, we can add different layers
of BSV, making the model more complex and thus more difficult to discover by current methods.

Table 2 outlines different types of BSV as graphical models, each with increasing complexity. In
section 6, we relate the parameter columns in table 2 to the underlying ground-truth equations used in
our experiments. We now detail these layers in increasing complexity.

B: RUV - noisy measurements. Noisy measurements are one of the biggest challenges of ODE
discovery (Brunton et al., 2016). This is because noisy measurements cause derivative estimation to
be very challenging. Recently, methods based on the weak formulation of ODEs (Qian et al., 2022;
Messenger & Bortz, 2021) have managed to circumvent the derivative estimation step, making them
more robust to noisy measurements. We represent DCKMs with noisy measurements graphically
similar to the standard DCKM but will now explicitly add noise-related nodes (table 2 row B).

C: Covariate models. One way we can incorporate explainable variability into the model is by
modelling the impact of the covariates on the model parameters. The covariates are incorporated
into the model by closed-form expressions. Usually simple ones such as linear, exponential, or
power (Mould & Upton, 2012). Sometimes other equations are used, such as complex closed-form
expressions or piece-wise functions (Chung et al., 2021). We add a node corresponding to static
covariates to represent covariate models graphically (table 2 row C).

D: Parameter distributions. Although the covariate models let us calculate the group parameters—
parameters for a specific group of people based, e.g., on their age or weight, the actual parameter for
an individual might deviate from this value in some random way. We can model this by assuming a
distribution of parameter values with its mean depending on the covariates. We can depict this graphi-
cally by adding the nodes corresponding to the parameters and the associated noise nodes coming into
them. Similarly, ODE discovery methods are not designed to discover such models (table 2 row D).

Framework step 3: Decide on the BSV using table 2 and, if type D, adjust as in section 5.

5 INSITE —THE FRAMEWORK IN PRACTICE

Having introduced our general framework of applying ODE discovery techniques to treatment effects
inference (in section 4), we now turn to apply it. Following the framework steps (FS) as described in
section 4, we have to: (FS1) accept a new set of assumptions (discr. 1), (FS2) incorporate treatment
plans (discr. 2), and (FS3) decide on the BSV type (discr. 3). For our purposes, we use SINDy
(Brunton et al., 2016), one of the most widely adopted and used methods in ODE discovery. One can
use any underlying ODE discovery methods as long as they: (1) model ODEs that include a set of
numeric constants (β ∈ Rm, with m numeric constants), and (2) we accept that BSV is modelled
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Algorithm 1 Individualized Nonlinear Sparse Identification Treatment Effect (INSITE)

1: Input: Patient data D cfr. section 2; deterministic DE discovery method, DE.
2: Output: Patient-specific DEs F (i); population DEs F̄ .
3: F̄ ←DE(D) ▷ Step 1: Discover Population Differential Equation
4: for patient (i) in D do ▷ Step 2: Discover Patient-Specific Differential Equations
5: Fine-tune numeric constants in F̄ using patient (i) eq. (4)
6: Obtain patient-specific equation F (i)

7: return Patient-specific F (i) and F̄

through these numeric constants alone, i.e., two varying subjects can only differ by having different
model numeric constants.4

Individualized Nonlinear Sparse Identification Treatment Effect (INSITE) consists of two main steps,
reminiscent of the remaining discr. 2 and 3: (1) discover the population (global) differential equation
F̄ for all patients, and (2) discover the patient-specific differential equation F (i) by fine-tuning
the population equation’s numeric constants—as outlined in algorithm 1. Having a set of numeric
constants (one for each patient) we derive a population differential equation where each individual’s
numeric constants are represented by a sample from this population differential equation distribution.

◆ Step 1 (cfr. framework step 2): Discovering the Population Differential Equation. Given an
observed dataset D of patients, we aim to discover the population differential equation governing the
patient covariates’ interaction with their potential outcomes. We can use any deterministic differential
equation discovery method such as SINDy (Brunton et al., 2016) to recover the population ODE F̄ .
We adapt it to handle treatments as outlined in section 4.2 and appendix E (as per discr. 2), where for
each separate k categorical (or binary) treatment, we discover a separate ODE—which is only active
for that categorical treatment, i.e., F̄ = {F̄1, . . . , F̄k}.

◆ Step 2 (cfr. framework step 3): Discovering Patient-Specific Differential Equations. Once
the population differential equation is discovered, we then fine-tune the numeric constants in the
population equation to obtain patient-specific differential equations F (i). By keeping the same
functional form but allowing unique numeric constants for each patient to be refined, we can model
the individualized treatment effect and account for patient heterogeneity (between-subject variability).
Crucially, to avoid overfitting and allow only small deviations away from the initial population
numeric constants β̄, we fit the observed patient trajectory up to the current time by minimizing,

L(β(i)) =
1

T (i)
∥Y (i) − Ŷ (X(i),A(i),β(i))∥22 + λ∥β̄ − β(i)∥22, (4)

a Mean Squared Error (MSE) of the predicted trajectory evolution Ŷ for the observed trajectory.
Additionally, we also require a regularization term in eq. (4). Specifically, for each individual tra-
jectory, (i), we refine the population set of parameters (β̄) to obtain β(i) while still using them to
regularize to prevent overfitting. The latter is an insight borrowed from transfer learning (Tommasi
et al., 2010; Tommasi & Caputo, 2009; Takada & Fujisawa, 2020). Interestingly, without such
regularization, we find INSITE to underperform significantly (cfr. appendix K.1). We use Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) algorithm (Fletcher, 2013) to minimize eq. (4) as is standard
in symbolic regression (Petersen et al., 2020), and provide full inference details in appendix G.1.

Parameter distributions. Unique to our method is that after obtaining the patient-specific differential
equations, we can derive a population differential equation where each numeric constant is represented
by a distribution, such as a normal distribution or a mixture of distributions—recovering a probabilistic
interpretation of the underlying data generating process. This is explored in appendix K.2.

6 EXPERIMENTS AND EVALUATION

To allow for a robust and systematic comparison of longitudinal treatment effect (LTE) methods and
ODE discovery techniques, we create a synthetic testbed designed for treatment effect prediction

4Essentially, we cannot have a mathematical expression changed across subjects (such as an exp changed to
a log. In fact, a scenario such as this would violate assum. 3.3).
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across different synthetic datasets generated from different classes of pharmacological models. We
note that using synthetic datasets is common in benchmarking LTE methods, as for a real dataset the
counterfactual outcomes are unknown (Lim, 2018; Bica et al., 2020b). Our testbed consists of:

Diverse underlying pharmacological models F . The synthetic datasets are generated by sampling
a pharmacological model F with a given treatment assignment policy. To ensure robustness across
diverse pharmacological scenarios, we include the model classes outlined in section 4.3, from A to
D—which differ between noise, static covariates, and parametric distributions of parameters. We
analyze two standard Pharmacokinetic-Pharmacodynamic (PKPD) models for each model class
(section 4.3). First, a one-compartmental PKPD model (eq. (5)) with a binary static action. Second, a
state-of-the-art biomedical PKPD model of tumor growth, used to simulate the combined effects of
chemotherapy and radiotherapy in lung cancer (Geng et al., 2017) (eq. (6))—this has been extensively
used by other works (Seedat et al., 2022; Bica et al., 2020b; Melnychuk et al., 2022). Here, to
explore continuous types of treatments, we use a continuous chemotherapy treatment c(t) and a
binary radiotherapy treatment d(t), both changing over time. For both models y = x, is the volume
of the tumor t days after diagnosis, modeled separately as:

dx(t)

dt
=

{
−C0

V x(t), if a = 0

−C1

V x(t), if a = 1
(5)

dx(t)

dt
=

(
ρ log

(
K

x(t)

)
︸ ︷︷ ︸
Tumorgrowth

− βcC(t)︸ ︷︷ ︸
Chemotherapy

− (αrd(t) + βrd(t)
2)︸ ︷︷ ︸

Radiotherapy

+ et︸︷︷︸
Noise

)
x(t) (6)

where the parameters C0, C1, V, ρ,K, γ, α, β, et are sampled according to the different layers of
between-subject variability (table 2) forming variations of A-D, with parameter distributions following
that as described in Geng et al. (2017) or otherwise detailed in appendix F. We also compare to the
standard implementation of eq. (6) (labelled as Cancer PKPD) to ensure standard comparison to
existing state-of-the-art methods, where the treatments are both binary. We further detail dataset
generation for each in appendix F.

Action assignment policy. We introduce time-dependent confounding by making the treatment
assignment vary from a purely random treatment assignment to purely deterministic based on
a threshold of the outcome predictor value, controlled by a scalar γ ∈ R+—such that γ = 0
corresponds to no time-dependent confounding and larger values correspond to increasing time-
dependent confounding. Further details of this treatment policy are in appendix F.

Benchmark methods. We seek to compare against the existing state-of-the-art (SOTA) methods from
(1) longitudinal treatment effect models and (2) ODE discovery. First, longitudinal treatment effect
models often consist of black-box neural network-based approaches, i.e., not closed-form or easily
interpretable. A significant theme in these works is the development of methods to mitigate time-
dependent confounding. Many mitigation methods have been proposed that we use as benchmarks,
such as propensity networks in Marginal Structural Models (MSM) (Robins et al., 2000) and
Recurrent Marginal Structural Networks (RMSN) (Lim, 2018), Gradient Reversal in Counterfactual
Recurrent Networks (CRN) (Bica et al., 2020b), Confusion in Causal Transformers (CT) (Melnychuk
et al., 2022) and g-computation in G-Net (G-Net) (Li et al., 2021). Second, ODE discovery methods
aim to discover an underlying closed-form mathematical equation F that best fits the underlying
controlled ODE of the observed state and action trajectories dataset, D. In these methods, the state
derivative is unobserved; therefore, they have to approximate the derivative using finite differences, as
in Sparse Identification of Nonlinear Dynamics (Brunton et al., 2016), or employ a variational loss as
the objective, as in Weak Sparse Identification of Nonlinear Dynamics (Messenger & Bortz, 2021)5.
To make these two ODE discovery methods more competitive, we adapt them to model individual
ODEs per categorical treatment (section 4.2), (termed A-SINDy, A-WSINDy respectively). We
further discuss why we chose these SOTA methods and their implementation details in appendix G.

Evaluation. We evaluate against the standard longitudinal treatment effect metrics of test counterfac-
tual τ -step ahead prediction normalized root mean squared error (RMSE), where τ = {1, 2, 3, 4, 5, 6},
for a sliding treatment plan (Melnychuk et al., 2022). Unless otherwise specified, each result is run
for five random seed runs with time-dependent confounding of γ = 2—see appendix H for details.

5We only include results for WSINDy when it is possible to use it, as it does not support sparse short
trajectories. Detailed further in appendix G.
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Figure 3: (a) Counterfactual τ -step ahead prediction error (γ = 2), on eq. (5).D from table 3. (b)
Counterfactual 6-step ahead prediction error (for increasing time-dependent confounding, γ), on the
standard Cancer PKPD dataset. INSITE maintains a low normalized RMSE (high performance) across long time
horizons and increasing time-dependent confounding. Further results are in appendix K.
Table 3: Counterfactual normalized RMSE, for 6-step ahead prediction of the benchmarks on each synthetic
dataset detailed in appendix F. We quote 95% confidence intervals with each value, and all metrics are averaged
over ten random seed runs. Each PKPD underlying pharmacological model is simulated with different layers of
BSV (table 2) for A-D. Other τ -step results are in the appendix K.3. Our contribution is shaded below.

Method eq. (5).A eq. (5).B eq. (5).C eq. (5).D eq. (6).A eq. (6).B eq. (6).C eq. (6).D Cancer PKPD

LT
E

MSM 0.99±8.37e-17 0.99±0.00 0.97±8.37e-17 2.09±0.00 2.55±0.13 2.55±0.13 2.06±0.16 2.11±0.04 2.30±0.12
RMSN 1.92±0.24 1.94±0.23 1.68±0.19 1.91±0.18 1.23±0.15 1.25±0.15 1.10±0.18 1.10±0.11 1.04±0.17

CRN 1.05±0.10 1.05±0.10 0.82±0.09 1.98±0.14 1.05±0.03 1.05±0.03 1.03±0.08 1.03±0.10 0.92±0.08
G-Net 0.91±0.20 0.91±0.20 0.72±0.14 0.97±0.15 1.33±0.27 1.34±0.27 1.02±0.11 1.25±0.15 1.22±0.14

CT 0.90±0.18 0.90±0.18 0.75±0.14 1.00±0.14 1.29±0.07 1.29±0.10 1.03±0.11 1.14±0.10 1.07±0.07

O
D

E
-D A-SINDy 0.11±0.00 0.11±0.00 0.13±2.09e-17 0.15±0.00 1.45±0.03 1.45±0.03 1.40±0.01 1.51±0.09 1.23±0.13

A-WSINDy 0.11±7.24e-05 0.11±2.49e-04 0.12±1.47e-03 0.10±7.61e-04 NA NA NA NA NA
INSITE 0.02 ±2.62e-18 0.03 ±0.00 0.04 ±0.00 0.05 ±5.23e-18 0.94 ±0.05 0.94 ±0.05 0.84 ±0.04 0.87 ±0.08 0.79 ±8.37e-17

Main results. The test counterfactual normalized RMSE for 6-step ahead prediction for each
benchmark dataset is tabulated in table 3. Our method, INSITE, achieves the lowest test counterfactual
normalized RMSE across all methods. We provide additional experimental results in appendix K.

Interpretable equations. Unique to the proposed framework and INSITE, is that the discovered
differential equation is fully interpretable; however, it relies on strong assumptions. Some of these
discovered equations are shown in appendix J. It is clear that even with binary actions, INSITE is able
to discover a useful equation that performs well and is similar in form to the true underlying equation,
even discovering it exactly in some simple settings of eq. (5). The method can even do this in the
presence of noise (BSV layers of B-D) and extrapolate well for future τ -step predictions, fig. 3 (a).

Model misspecification. INSITE and the adapted ODE discovery methods (A-SINDy, A-WSINDy)
are only correctly specified for eq. (5).A-D datasets, as they use the feature library of LINSITE =
{1, x0, x1, x0x1}. Crucially, the ODE discovery methods are misspecified for eq. (6).A-D, and
the Cancer PKPD datasets, as their underlying equation would require the feature library of
LCancer = {1, x0, x1, x0x1, x

2
0x1, x0x

2
1, log(x0), log(x1)} to be correctly specified. Although this

misspecification persists, as noticeable from the increased order of magnitude increase in error, we
still observe INSITE achieves a lower error than the longitudinal treatment effect models (app. K.6).

Relaxing the overlap assumption. We can relax the overlap assumption (assum. 2.2) by increasing
the time-dependent confounding of the treatment given, increasing γ. We observe, in fig. 3 (b), that
INSITE can still discover a good approximating underlying equation even in the presence of high
time-dependent confounding—hence where there is low overlap.

Table 4: INSITE Ablation

ODE per Cat. Fine Tuning eq. (5).D 6-step
(section 4.2) n-RMSE

✓ ✓ 0.05 ±5.23e-18
✗ ✓ 0.43 ±7.71e-17
✓ ✗ 0.15 ±0.00
✗ ✗ 0.87 ±0.00

INSITE Ablation. INSITE’s gain in performance derives from our
framework’s discr. 2, to discover individual ODEs per categorical
treatment, as well as the ability to discover individualized (fine-
tuned) ODEs. Notably, the improvement arising from the ability to
discover individual ODEs per categorical treatment can be widely
applied to existing ODE discovery methods using our framework for
treatment effects over time. Furthermore, we conduct additional insight experiments to evaluate the
methods against datasets of smaller sample sizes and increasing observation noise in appendix K.

7 CONCLUSION AND FUTURE WORK

In conclusion, we presented a first framework that connects longitudinal heterogeneous treatment
effects with ODE discovery methods, enabling improved interpretability and performance. Naturally,
this is just the beginning. We hope that building on our framework (appendix A), the connection
between treatment effects and ODE discovery is further solidified and perhaps extended to other
types of differential equations and dynamical systems in general (see e.g. appendix C).
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Ethics statement. This paper’s novel approach of integrating ODE discovery methods into treatment
effects inference can revolutionize precision medicine by enabling personalized, effective treatment
strategies. However, misuse or application in inappropriate contexts could lead to incorrect treatment
decisions. Moreover, despite the potential for individualized treatment, privacy concerns arise. Thus,
proper data governance, clear communication of model limitations, and rigorous validation using
diverse datasets are vital for responsible application.

Regarding limitations of our method, INSITE, and our framework in general, we list 3 major
limitations one should take into account before applying our work in practice:

1. A correct set of candidate functions (tokens) is necessary for correct model recovery. To
show the importance of this, we include experiments where we have wrongly specified this
token library (see appendix K.6) and observe degrading performance as a result.

2. ODE discovery works best in sparse settings. The reason is two-fold: from a technical
point of view, sparse equations are much less complex and simply easier to recover; from a
usability point of view, the usefulness of non-sparse equations is limited as interpretability
is negatively affected by non-sparse (or non-parsimonious) equations (Crabbe et al., 2020).

3. ODEs are noise free. Since we recover ODEs, the found equations do not model a source
of noise as is typically the case in structural equation modelling. To model noise terms
explicitly, our framework should be extended into stochastic DEs, as is stated in our future
works paragraph above.

Reproducibility statement. We provide all code at https://github.com/samholt/ODE
-Discovery-for-Longitudinal-Heterogeneous-Treatment-Effects-Inf
erence. To ensure this paper is fully reproducible, we include an extensive appendix with all
implementation and experimental details to recreate the method and experiments. These are outlined
as the following: for benchmark dataset details, see appendix F; benchmark method implementation
details, including those of the treatment effects baselines and adapted ODE discovery methods
which include the proposed INSITE method see G; evaluation metric details see appendix H; dataset
generation and model training see appendix I.
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ts-Inference.

16

https://github.com/samholt/ODE-Discovery-for-Longitudinal-Heterogeneous-Treatment-Effects-Inference
https://github.com/samholt/ODE-Discovery-for-Longitudinal-Heterogeneous-Treatment-Effects-Inference
https://github.com/vanderschaarlab/ODE-Discovery-for-Longitudinal-Heterogeneous-Treatment-Effects-Inference
https://github.com/vanderschaarlab/ODE-Discovery-for-Longitudinal-Heterogeneous-Treatment-Effects-Inference
https://github.com/vanderschaarlab/ODE-Discovery-for-Longitudinal-Heterogeneous-Treatment-Effects-Inference


Published as a conference paper at ICLR 2024

AUTHOR CONTRIBUTIONS

All authors provided valuable contributions to the paper from the idea, writing, and editing, and
managing the project’s progress.

KK wrote the formalism in section 3, proposed (and described) how to adapt ODE discovery methods
to include discrete treatment plans (section 4.2) and different layers of between-subject variability
(section 4.3), constructed the initial experimental settings in table 8, and provided the idea for fig. 2.

SH wrote parts of the introduction, all the ODE assumptions in section 3; proposed and wrote the
method in section 5, developed and wrote all the experiments in section 6, and the conclusion in
section 7; designed and came up with the method INSITE; solely coded up the method and all
baseline implementations, initial exploratory experiments for INSITE; all coding and experiment
design, implementation and running for all nine datasets, seven baselines, evaluation; led all results
within the paper in section 6, and eight additional new experimental settings and ablations of all
the baselines across all datasets in appendix K; solely wrote 20 appendix sections, of additional
experiments, ablations, explanations of key parts of the paper, additional related work, baseline
descriptions, and synthetic dataset descriptions.

JB connected causal treatment effect estimation with ordinary differential equation discovery leading
to the framework presented in this paper.

A FUTURE WORK

In our paper we have been very explicit about the settings in which we can use ODE discovery settings
(see section 3 in particular). As these settings do not correspond one-to-one with standard TE settings,
our paper can be viewed as an expansion of typical TE application areas. However, there is still
more to be done! In particular, future endeavours could include: discovering stochastic differential
equations, leveraging latent variable models for handling unobserved variables, learning piece-wise
continuous ODE systems (Wang et al., 2023), and developing strategies to transfer population-level
ODEs to other populations where there is limited data. Furthermore, INSITE could be considered a
first link in connecting equation discovery over time with causality (Berrevoets et al., 2023), we hope
many more works of this type will follow.

B EXPLANATION OF TREATMENT INTENSITY PROCESSES AND FILTRATIONS
IN THE ASSUMPTIONS

The concept of treatment intensity processes has its roots in the generalization for treatment effects in
continuous time, introduced in seminal works such as Lok (2008) and later embraced by Saarela &
Liu (2016). Intensity processes serve as an extension of propensity scores, traditionally denoted as
p(T |X), to a continuous time framework.

In treatment effects literature, propensity scores provide the probability of treatment assignment
conditioned on observed covariates. However, when dealing with continuous-time data, the traditional
propensity scores pose a challenge. Specifically, propensities in this setting would govern entire
treatment trajectories, considering not just the treatment at a specific time point T , but all potential
future treatments. Given the vast space of potential trajectories in discrete time, this complexity
becomes unmanageable in continuous time.

To address this challenge, filtrations are employed to restrict when a new treatment can be sampled.
Filtrations essentially offer a controlled space for the random processes at play. Using the terminology
from probability theory:

For a stochastic process (Xn)n∈N, the filtrationFn := σ(Xk|k ≤ n) is a σ-algebra.
This means the filtration F = (Fn)n∈N limits the stochastic process to only those
random variables Xi for which i ≤ n, even though the original probability space
might encompass variables with i > n.

Such a structure becomes increasingly important in continuous time applications, as it enables us
to understand and manage the dependencies among observations over time. Furthermore, intensity
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processes in this framework can be seen as analogous to well-known processes in other contexts,
such as the Hawkes point processes (that model excitation) or the Poisson point processes (which
assume no influence from past observations).

Now, relating back to assum. 2.2 (Overlap) and assum. 2.3 (Ignorability): The intensity process,
represented by λ(t|Ft), captures the propensity of an individual receiving treatment at time t given
all the information up to that point, encapsulated in the filtration Ft. The overlap assumption ensures
that the intensity process is never deterministic, implying that there’s always some randomness in
treatment assignment irrespective of past information. On the other hand, the ignorability assumption
implies that the intensity process conditioned on past information (up to time t) is the same as the
intensity process that considers even the future outcomes beyond time t. This ensures that treatment
assignment is independent of potential outcomes, thereby satisfying a key requirement for unbiased
causal inference.

C EXTENDED RELATED WORK

C.1 RELATED WORK APPROACHES

This research brings together two previously separated fields, namely temporal treatment effect
estimation and ODE discovery, and there exists a plethora of works within each domain. Here, we
will focus on the most relevant and recent ones.

Treatment Effects over Time. There has been substantial research on the problem of estimating
treatment effects. One of the pioneering works in this area is the potential outcomes framework
introduced by Neyman (1923) and further developed by Rubin (1980).

Traditional methods for estimating treatment effects include propensity score matching (Rosenbaum
& Rubin, 1983), instrumental variables (Angrist et al., 1996; Angrist, 1991), and difference-in-
differences (Athey & Imbens, 2006). However, these methods are primarily suited for static treatment
settings and may have limitations when extended to handle treatment effects over (continuous) time.

The treatment effects literature is well represented in discrete time settings. With more traditional
work stemming from epidemiology, based on g-computation, Structural Nested Models, Gaussian
Processes, and Marginal Structural Models (MSMs) (Robins, 1994; Robins & Hernán, 2009; Xu et al.,
2016; Robins et al., 2000); and more recent work relying on advances in deep learning architectures
(Bica et al., 2020b; Melnychuk et al., 2022; Berrevoets et al., 2021; Lim, 2018). Some works have
expanded the static treatment effect literature to the continuous time setting (Lok, 2008; Saarela &
Liu, 2016; Ryalen et al., 2019), introducing new assumptions to help identify potential outcomes.
Nevertheless, these works still face some critical challenges. For example, they often assume constant
treatment effects and do not naturally handle irregular sampling and continuous treatments.

ODE discovery. The field of ODE discovery has also seen significant progress over the years. One of
the primary goals of ODE discovery is to learn a model of a system’s behaviour from observational
data. This involves discovering the underlying system of ODEs that governs the system.

The methods that solve this problem range from linear ODE discovery techniques (Ljung, 1998) to
more recent machine learning approaches like Recurrent Neural Networks (RNN) and Long Short-
Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997; Sherstinsky, 2020). However, these later
methods often produce black-box models that lack the interpretability required for many applications,
including those in regulated domains.

Recent efforts in the ML community have focused on finding interpretable models using techniques
such as Sparse Identification of Nonlinear Dynamics (SINDy) (Brunton et al., 2016), which discovers
sparse dynamical systems from data. However, traditional ODE discovery methods largely focus
on homogeneous systems where the system dynamics are the same across different systems or
individuals. They do not readily handle the heterogeneity of treatment effects (between-subject
variability), which is a major concern in real-world applications like personalized medicine.

We consider ODE discovery to be a sub-field of the wider Symbolic Regression field, which is
concerned with discovering a more general class of equation (beyond ODEs) (Camps-Valls et al.,
2023; Mouli et al., 2023; Cranmer et al., 2020).
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Dynamical systems, ODEs, and treatment effects. We want to explicitly state that, ODE discovery
is a subfield of the broader area of dynamical systems identification. We believe this to be necessary
as often work is presented as an identification method for dynamical systems, while they are only
applicable to ODEs which is only one particular type of dynamical system. That means that works
such as Schulam & Saria (2017); Hızlı et al. (2022); Noorbakhsh & Rodriguez (2022); Ryalen et al.
(2020); Alaa & van der Schaar (2019); Qian et al. (2020); Soleimani et al. (2017) may appear related
as they model treatment effects in a type of dynamical system. However, it is crucial to note that none
of these works model treatment effects as an ODE, nor are they concerned with actually uncovering
the underlying ground truth dynamical system in general. Instead, they model treatment effects as a
parameterized dynamical system (such as, for example, a point process (Noorbakhsh & Rodriguez,
2022; Alaa & van der Schaar, 2019)), which is learned purely for accurate inference. In contrast,
while we are also interested in accurate inference, the resulting model (the ODE) is additionally
important.

Fusing Treatment Effects and ODE discovery. Our work is the first, to our knowledge, to combine
these two fields for the problem of treatment effect estimation. We seek to harness the strengths of
both fields to address their respective challenges, such as the lack of interpretability and robustness in
the treatment effects literature and the assumptions about system behaviours in the ODE discovery
community. In particular, our INSITE approach is unique in its ability to address the challenges from
both communities and thus provides a promising new direction for these intertwined fields.

There are some ideas that seem to correspond, but only at first glance. For example Florens et al.
(2008) connects control (a field which is very much related to ODE discovery), yet differs one some
crucial points: (i) time is not considered; (ii) no equations are discovered; (iii) the assumption sets
differ widely.

C.2 RELATED WORK METHODS

Longitudinal Treatment Effect Methods. Longitudinal treatment effect methods focus on estimating
the outcome of treatment at a given time t, often using black-box neural network-based approaches,
i.e., not closed-form or easily interpretable. A significant theme in these works is the development of
methods to mitigate time-dependent confounding. Many mitigation methods have been proposed that
we use as benchmarks, such as propensity networks in Marginal Structural Models (MSM) (Robins
et al., 2000) and Recurrent Marginal Structural Networks (RMSN) (Lim, 2018), Gradient Reversal in
Counterfactual Recurrent Networks (CRN) (Bica et al., 2020b), Confusion in Causal Transformers
(CT) (Melnychuk et al., 2022) and g-computation in G-Net (G-Net) (Li et al., 2021).

ODE Discovery Methods. ODE discovery methods aim to discover an underlying closed-form
mathematical equation F that best fits the underlying controlled ODE of the observed state and action
trajectories dataset, D. In these methods, the state derivative is unobserved; therefore, they have to
approximate the derivative using finite differences, as in Sparse Identification of Nonlinear Dynamics
(Brunton et al., 2016), or employ a variational loss as the objective, as in Weak Sparse Identification
of Nonlinear Dynamics (Messenger & Bortz, 2021). Underlying these methods is the broader class
of methods for symbolic regression (Holt et al., 2023b). To make these two ODE discovery methods
more competitive, we adapt them to model individual ODEs per categorical treatment (section 4.2),
(termed A-SINDy, A-WSINDy respectively).

Other Related Approaches. In addition to the aforementioned categories, several other methods
have been proposed to model longitudinal data and estimate treatment effects. For instance, recurrent
neural networks (RNNs) (Cho et al., 2014) and long short-term memory (LSTM) networks (Hochreiter
& Schmidhuber, 1997) are commonly used for handling sequential data, as well as other sequential
time series models (Holt et al., 2022), and they have been applied to estimate treatment effects in
longitudinal settings (Lim, 2018). Gaussian processes (Rasmussen et al., 2006) and continuous-
time Gaussian processes (Alvarez & Lawrence, 2009) have also been employed for modelling and
learning from longitudinal data. Furthermore, counterfactual regression (Johansson et al., 2016) and
doubly robust estimation (Funk et al., 2011) are statistical methods used to estimate causal effects in
observational studies, and they can be adapted to handle time-dependent confounding in longitudinal
settings. Additionally, once a model is learned, it can be used for optimal planning (Holt et al., 2023a;
2024), and such time-series models can also applied to other related domains such as in finance (Jha
et al., 2020).
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A more detailed comparison of the related approaches discussed above can be seen in table 5. This
table compares various aspects of these methods, such as interpretability, between-subject variability,
continuous-time modelling, robustness to observation noise and the ability to handle categorical and
continuous treatments, and data size requirements.

Table 5: Comparison of related works. Columns: Interpretable?—can it provide a closed-form equation?
BSV?—can between-subject variability be modeled? Continuous-time?—is it a continuous-time model (i.e.,
able to learn from irregularly sampled observation and treatment trajectories naturally)? Noise?—is it robust to
observation noise? Categorical a ∈ Z?—can it model categorical treatments (inclusive of binary treatments)?
Continuous a ∈ R?—can it model continuous treatments?

Approach Ref Interpretable? BSV? Continuous-
time? Noise? Categorical

a ∈ Z?
Continuous
a ∈ R?

Longitudinal Treatment Effect Methods
MSM (Robins et al., 2000) ✗ ✓ ✗ ✓ ✓ ✗
RMSN (Lim, 2018) ✗ ✓ ✗ ✓ ✓ ✗
CRN (Bica et al., 2020b) ✗ ✓ ✗ ✓ ✓ ✗
G-Net (Li et al., 2021) ✗ ✓ ✗ ✓ ✓ ✗
CT (Melnychuk et al., 2022) ✗ ✓ ✗ ✓ ✓ ✗

ODE discovery Methods
A-SINDy (Brunton et al., 2016) ✓ ✗-population only ✓ ✗ ✓ ✓
A-WSINDy (Messenger & Bortz, 2021) ✓ ✗-population only ✓ ✓ ✓ ✓

INSITE (Ours) ✓ ✓ ✓ ✓ ✓ ✓

D ODE FORMALISM FOR TREATMENT EFFECT ESTIMATION

In this section, we want to justify our ODE formalism for treatment effect estimation, eq. (3), and
explain its generality.

We assume that the treatment effect is a deterministic function of the modelled covariates (often
the identity). This is inspired by examples considered in treatment effect papers, where we equate
the treatment effect to the tumour volume or the response to a drug given a particular concentration
(through a dose-response curve) (Bica et al., 2020b; Berrevoets et al., 2021; Lim, 2018; Seedat et al.,
2022).

We want to emphasize that a direct link between a and y can be included through extended covariates
x′(t) = (x(t), y(t)) and the function that links covariates to the outcome as g(x′) = g(x, y) = y.
Then the new treatment effect variable is defined as y′(t) = g(x′(t)) = y(t). This is the same as
treating one of the covariates as the outcome. Please note that our formalism extends this setting and
allows for a more complicated treatment outcome that depends on several covariates.

E TREATMENTS

In the following, we summarize the ways of incorporating the treatment plan a in F according to
the treatment types of binary treatments, categorical treatments, multiple simultaneous treatments,
and continuous treatments. This is necessary so that we can simplify the complex and possibly not
closed-form F into simpler closed-form f ’s that we can discover using current methods. In this
subsection, every function denoted by the letter f or f is assumed to be closed-form.

As described in Bica et al. (2021) there are four main types of treatments considered in the treatment
effect estimation literature

• Binary treatment (treatment or no treatment)

• Categorical treatment (one treatment out of multiple possible treatment options)

• Multiple treatments assigned simultaneously

• Single treatment or multiple treatments with associated dosage

Each of these treatments can be either static (constant throughout the trajectory) or dynamic. As we
are interested in the discovery of closed-form ODEs, the treatment can be incorporated into F in two
ways.

• We learn different closed-form ODEs for different treatments
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• We incorporate the action variable a into the closed-form ODE.

Depending on the type of treatment one or both of these approaches can be chosen. We summarize
the ways of treating a in F based on the type of treatment in Table 6.

Binary treatment considers only two kinds of treatments (usually "treatment" and "no treatment").
The action trajectory is one-dimensional with values in {0, 1}. In a static setting, a is constant, in a
dynamic setting it is piece-wise constant—that means that we are allowed to change the treatment
throughout the trajectory. This kind of action can be incorporated in F in two ways. We can either
learn two different closed-form systems of ODEs (f0 and f1) or incorporate a directly in the equation,
e.g., f0 + a(t)f1.

Categorical treatment considers one treatment out of multiple possible treatments. The action
trajectory is one-dimensional with values in [1,K]. As previously, a is constant in a static setting and
piece-wise constant in a dynamic setting. We no longer can easily incorporate a into the closed-form
expression (as it attains K discrete values), so the only option is to learn K separate closed-form
systems of ODEs f1, . . . ,fK .

Multiple treatments considers scenarios where multiple treatments can be assigned simultaneously.
We represent a as a vector {0, 1}K , where ai(t) = 1 if the ith treatment was assigned at time t. As
previously, a is constant in a static setting and piece-wise constant in a dynamic setting. We can
consider this case as just having 2K treatments (all possible subsets) and reduce to a categorical
treatment where we learn 2K separate equations. An alternative approach would be to learn separate
terms for each treatment and combine them using a principle of superposition (Thron, 1974). We can
then represent the system of ODEs at time t as

∑K
i=1 ai(t)fi(x(t),v). However, no current ODE

discovery algorithm leverages this representation.

Continuous treatment is usually considered when we want to model the dosage or the strength of
the treatment. a(t) is represented as a K-dimensional real vector where ai(t) is the dose/strength of
the ith treatment. In a static setting, we consider a to be constant. In a dynamic setting, we consider it
to be continuous. As ai(t) can have any real value, the only way to incorporate it into the equations
is to have it directly in the closed-form ODE f(x(t),v,a(t)).

Table 6: How different treatment types can be represented in an ODE formalism. Here S/D corresponds to
a static or dynamic treatment.

Treatment S/D Domain of a Constant F (x(t),v,a(t))

Binary
S

a(t) ∈ {0, 1}
Yes fa(t)(x(t),v)

or
f0(x(t),v) + a(t)f1(x(t),v)

D Piece-wise

Categorical S
a(t) ∈ [1,K]

Yes
fa(t)(x(t),v)D Piece-wise

Multiple
S

a(t) ∈ {0, 1}K
Yes fa(t)(x(t),v)

or∑K
i=1 ai(t)fi(x(t),v)

D Piece-wise

Continuous S
a(t) ∈ RK Yes

f(x(t),v,a(t))D No

F BENCHMARK DATASET DETAILS

In the following we outline the standard Cancer PKPD equation, then outline the between-subject
variability layers that we use to generate the different equation classes from the two base PKPD
equation models. We also provide the parameter distributions used to generate the different equation
classes. For dataset generation and model training see appendix I.
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F.1 CANCER PKPD

This is a state-of-the-art biomedical Pharmacokinetic-Pharmacodynamic (PKPD) model of tumour
growth, used to simulate the combined effects of chemotherapy and radiotherapy in lung cancer
(Geng et al., 2017) (eq. (7))—this has been extensively used by other works (Seedat et al., 2022; Bica
et al., 2020b; Melnychuk et al., 2022). Specifically, this models the volume of the tumour x(t) for
days t after the cancer diagnosis—where the outcome is one-dimensional. The model has two binary
treatments: (1) radiotherapy art and (2) chemotherapy act .

dx(t)

dt
=

(
ρ log

(
K

x(t)

)
︸ ︷︷ ︸
Tumorgrowth

− βcC(t)︸ ︷︷ ︸
Chemotherapy

− (αrd(t) + βrd(t)
2)︸ ︷︷ ︸

Radiotherapy

+ et︸︷︷︸
Noise

)
x(t) (7)

Where the parameters K, ρ, βc, αr, βr for each simulated patient are sampled distributions detailed
in Geng et al. (2017), which are also described in table 7. Here et ∼ N (0, 0.012) is random noise,
modelling randomness in the tumour growth.

Table 7: Cancer PKPD parameter distributions.

Model Variable Parameter Distribution Parameter Value (µ, σ))

Tumor growth Growth parameter ρ Normal 7.00× 10−5, 7.23× 10−3

Carrying capacity K Constant 30

Radiotherapy Radio cell kill (α) αr Normal 0.0398, 0.168
Radio cell kill (β) βr - Set s.t. α/β=10

Chemotherapy Chemo cell kill βc Normal 0.028, 0.0007

Furthermore, we incorporate heterogeneous responses, following Bica et al. (2020b); Lim (2018);
Melnychuk et al. (2022), where the means are modified for βc and αr by creating three groups of
patients (i.e., to represent three types of patients with heterogeneity in treatment response).

For patient group 1, we modify the mean of αr so that µ(αr) = 1.1× µ(αr) and for patient group 3,
we modify the mean of αc so that µ(αc) = 1.1× µ(αc).

Additionally, the chemotherapy drug concentration c(t) follows an exponential decay relationship
with a half-life of one day:

dc(t)

dt
= −0.5c(t) (8)

where the chemotherapy binary action represents increasing the c(t) concentration by 5.0mg/m3 of
Vinblastine given at time t.

Whereas the radiotherapy concentration d(t) represents 2.0Gy fractions of radiotherapy given at
timestep t, where Gy is the Gray ionizing radiation dose.

Time-dependent confounding. We introduce time-varying confounding into the data generation
process. This is accomplished by characterizing the allocation of chemotherapy and radiotherapy as
Bernoulli random variables. The associated probabilities, pc and pr, are determined by the tumor
diameter as follows:

pc(t) = σ

(
γc

Dmax
(D̄(t)− δc)

)
pr(t) = σ

(
γr

Dmax
(D̄(t)− δr)

)
, (9)

where Dmax = 13cm represents the largest tumor diameter, θc = θr = Dmax/2 and D̄(t) signifies
the mean tumor diameter. The parameters γc and γr manage the extent of time-varying confounding.
Higher values of γc,r amplify the influence of this confounding factor over time.

F.2 SYNTHETIC EQUATION CLASSES

We now outline the two synthetic equations, which we then use in the four layers of between-
subject variability settings A-D table 2—which differ between noise, static covariates, and parametric
distributions of parameters. The two synthetic equations we study are two standard PKPD models,
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the first being a one-compartmental PKPD model with a binary static action. The second is the same
state-of-the-art biomedical PKPD model of tumor growth from the Cancer PKPD dataset (Geng et al.,
2017), where the model has a continuous chemotherapy treatment c(t) and a binary radiotherapy
treatment d(t). Therefore the volume of the tumor t days after diagnosis for each model is given by:

dx(t)

dt
=

{
−C0

V x(t), if a = 0

−C1

V x(t), if a = 1
(10)

dx(t)

dt
=

(
ρ log

(
K

x(t)

)
︸ ︷︷ ︸
Tumorgrowth

− βcC(t)︸ ︷︷ ︸
Chemotherapy

− (αrd(t) + βrd(t)
2)︸ ︷︷ ︸

Radiotherapy

+ et︸︷︷︸
Noise

)
x(t) (11)

where the parameters C0, C1, V, ρ,K, γ, α, β, et are sampled according to the different layers of
between-subject variability (table 2) forming variations of A-D, following the setup in table 8.

Specifically, for the one-compartmental PKPD model of eq. (10), c0 ∼ N (0.5, 0.05),
c1 ∼ N (0.5, 0.05), V = 1 and has additive observation noise of ϵ ∼ N (0, 0.01). Moreover,
w0 = 1.0, w1 = 0.05, w2 = 1.0, w3 = 0.15.

For the tumour growth PKPD model, eq. (11), we ablate the full model to create a homogeneous
version of one patient type (vPatient Type = 1) for the no noise BSV layer (A) and noise BSV layer (B),
then reintroduce patient heterogeneity (vPatient Type ∈ {1, 2, 3}) and restrict βc to only be the mean
value for the BSV layer of covariates (C). Finally, the full BSV layer (D) of noise, covariates and
parametric distribution of parameters is the full Cancer PKPD model. Here unless otherwise noted
the other parameters are still sampled from their respective defined distributions, as outlined in table 7.
Here we follow the same treatment assignment policy as the Cancer PKPD model above, and as the
LTE methods are only designed to handle binary treatments, we provide the LTE methods with the
binary treatment assignments, and the corresponding ODE discovery methods with the continuous
value of c(t) and the binary value of d(t).

Time-dependent confounding Similarly to the Cancer PKPD model, we also introduce time-
dependent confounding in the data-generating process, following a similar setup. We achieve this by
characterizing each treatment assignment as Bernoulli random variables. Each associated probability
p depends on the outcome normalized value. Here, we can vary the scalar value γ ∈ [0, inf) to
increase time-dependent confounding.

p(t) = σ (γ (ȳ(t)− 0.5))

a(t) ∼ Bern(p(t))
(12)

Where ȳ(t) is a rolling window average of the previous outcomes, with a window size of ω = 15.

G BENCHMARK METHOD IMPLEMENTATION DETAILS

We seek to compare against the existing state-of-the-art (SOTA) methods from (1) longitudinal
treatment effect models and (2) ODE discovery. First, longitudinal treatment effect models often
consist of black-box neural network-based approaches, i.e., not closed-form or easily interpretable.
A significant theme in these works is the development of methods to mitigate time-dependent
confounding. Many mitigation methods have been proposed that we use as benchmarks, such as
propensity networks in Marginal Structural Models (MSM) (Robins et al., 2000) and Recurrent
Marginal Structural Networks (RMSN) (Lim, 2018), Gradient Reversal in Counterfactual Recurrent
Networks (CRN) (Bica et al., 2020b), Confusion in Causal Transformers (CT) (Melnychuk et al.,
2022) and g-computation in G-Net (G-Net) (Li et al., 2021). Second, ODE discovery methods aim to
discover an underlying closed-form mathematical equation F that best fits the underlying controlled
ODE of the observed state and action trajectories dataset, D. In these methods, the state derivative is
unobserved; therefore, they have to approximate the derivative using finite differences, as in Sparse
Identification of Nonlinear Dynamics (Brunton et al., 2016), or employ a variational loss as the
objective, as in Weak Sparse Identification of Nonlinear Dynamics (Messenger & Bortz, 2021). 6 To

6We only include results for WSINDy when it is possible to use it, as it does not support sparse short
trajectories.
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Table 8: Parameter values for the different layers of between-subject variability (A-D) for the two PKPD
models.

Dataset Outcome (y) Covariates Parameters Treatment

eq. (5).A y(t) = x(t) c0, c1
C0 = c0

C1 = c1
a(t) = a(0) ∈ {0, 1}

eq. (5).B y(t) = x(t) + ϵ c0, c1
C0 = c0

C1 = c1
a(t) = a(0) ∈ {0, 1}

eq. (5).C y(t) = x(t) + ϵ c0, c1
C0 = c0w0 + w1

C1 = c1w2 + w3
a(t) = a(0) ∈ {0, 1}

eq. (5).D y(t) = x(t) + ϵ c0, c1
C0 ∼ N (c0w0 + w1, 0.25)

C1 ∼ N (c1w2 + w3, 0.25)
a(t) = a(0) ∈ {0, 1}

eq. (6).A y(t) = x(t) vPatient Type = 1
µ(αr) = 1.1× µ(αr)

βc = µ(βc)
a = (c(t), d(t))

eq. (6).B y(t) = x(t) + ϵ vPatient Type = 1
µ(αr) = 1.1× µ(αr)

βc = µ(βc)
a = (c(t), d(t))

eq. (6).C y(t) = x(t) + ϵ vPatient Type ∈ {1, 2, 3}
vPatient Type =


1 : µ(αr) = 1.1× µ(αr)

3 : µ(αc) = 1.1× µ(αc)

2 : No modification
βc =µ(βc)

a = (c(t), d(t))

eq. (6).D y(t) = x(t) + ϵ vPatient Type ∈ {1, 2, 3}
vPatient Type =


1 : µ(αr) = 1.1× µ(αr)

3 : µ(αc) = 1.1× µ(αc)

2 : No modification
βc ∼N (µ(βc), σ(βc))

a = (c(t), d(t))

make these two ODE discovery methods more competitive, we adapt them to model individual ODEs
per categorical treatment (section 4.2), (termed A-SINDy, A-WSINDy respectively). We further
discuss why we chose these state-of-the-art methods and their associated implementation details in
the following.

To make the LTE methods competitive, the hyperparameters are tuned following Melnychuk et al.
(2022), to the Cancer PKPD dataset—and then kept constant for all experiments. Specifically, we use
Melnychuk et al. (2022)’s tuned hyperparameters, which are detailed below for each LTE method.
We also detail hyperparameter tuning in appendix I.

LONGITUDINAL TREATMENT EFFECT MODELS

Marginal Structural Models (MSMs) Robins et al. (2000); Hernán et al. (2001) are popular methods
in epidemiology designed for the estimation of counterfactual outcomes with inverse probability of
treatment weights (IPTW) through linear modelling. This approach utilizes stabilized weights to
eliminate time-varying confounding bias.

Upon estimation of the stabilized weights, they are normalized and truncated at their 1st and 99th
percentiles to align with Lim (2018). Outcome regressions are applied separately for each prediction
horizon. For any given horizon τ , the dataset is split into smaller segments using a rolling origin, and
stabilized weights are computed for each segment.

No hyperparameters are required for MSMs; hence, in all experiments, training and validation subsets
are combined.

Recurrent Marginal Structural Networks (RMSNs) Lim (2018) use a sequence-to-sequence
architecture composed of four LSTM subnetworks. It manages multiple binary treatments by re-
weighting the objective with the IPTW during training, creating a pseudo-population that emulates a
randomized controlled trial.
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The propensity networks are initially trained to estimate the stabilized weights. Subsequently, the
encoder is trained using a mean squared error weighted with the stabilized weights for one-step-ahead
predictions. Lastly, the decoder is trained by minimizing the loss using the fully stabilized weights.
The dataset is processed into smaller chunks using rolling origins for this stage of training.

Here the hyperparameters are: the propensity treatment model has 8 sequential hidden units, a dropout
rate of 0.1, one layer, uses a batch size of 64, with a max grad norm of 2.0, and is optimized with
the Adam optimizer (Kingma & Ba, 2014) with a learning rate of 0.001. The propensity history
model has 16 sequential units, with a dropout rate of 0.3, one layer, uses a batch size of 256, with
a max grad norm of 1.0, and an Adam optimizer with a learning rate of 0.01. The encoder model
has 12 sequential hidden units, a dropout rate of 0.1, one layer, a batch size of 64, a max grad norm
of 2.0, and an Adam optimizer with a learning rate of 0.001. Moreover, the decoder model uses 64
sequential hidden units, with a dropout rate of 0.2, one layer, a batch size of 256, a max grad norm of
1.0, and an Adam optimizer with a learning rate of 0.001.

Counterfactual Recurrent Network (CRN) Bica et al. (2020b) utilizes an encoder-decoder archi-
tecture, applying an adversarial learning technique, gradient reversal Ganin & Lempitsky (2015), to
create balanced representations non-predictive of the treatment assignment.

CRN’s encoder and decoder are composed of a single LSTM-layer each. Training involves minimizing
a loss function that applies gradient reversal to minimize cross-entropy between the predicted and
current treatment, while simultaneously maximizing the entropy of the built representations.

Here the hyperparameters are, the encoder model has a balancing representation size of 6, 18 fully
connected hidden units, with a dropout rate of 0.2, 24 sequential hidden units, uses a batch size of 64
and is optimized with an Adam optimizer with a learning rate of 0.01. Moreover, the decoder model
has a balancing representation size of 3, 9 fully connected hidden units, with a dropout rate of 0.2, 24
sequential hidden units, uses a batch size of 512 and is optimized with an Adam optimizer with a
learning rate of 0.001. To make this baseline as competitive as possible, we use the domain confusion
balancing loss from Melnychuk et al. (2022).

G-Net Li et al. (2021) is a recent method for estimating time-varying treatment effects, based on the
G-computation formulation. It leverages a recurrent architecture that directly models the evolution of
treatments and outcomes over time.

The network is designed to simultaneously model the auto-regressive dynamics of outcomes and the
time-varying effects of treatments. For each time step, the model uses LSTM cells to capture the
auto-regressive outcome dynamics and a separate LSTM layer to model the time-varying treatment
effects.

The model is trained using a mean squared error loss for outcome prediction and a binary cross-entropy
loss for treatment assignment prediction.

Here the hyperparameters are, 24 sequential hidden units, 48 fully connected hidden units, one layer,
r size of 3, with a dropout rate of 0.1, uses a batch size of 128, 25 Monte Carlo samples and is
optimized with an Adam optimizer with a learning rate of 0.01.

Causal Transformer (CT) Melnychuk et al. (2022) is a recent state-of-the-art method for treatment
effects over time. It is based on the Transformer architecture Vaswani et al. (2017), which is effective
in modelling long-range dependencies in sequential data. CT uses a causal attention mechanism
to model the temporal dynamics of the treatment effects. It is composed of three transformer
subnetworks with separate inputs for time-varying covariates, previous treatments, and previous
outcomes into a joint network that has in-between cross-attentions.

To encourage balanced representations that are predictive of the next outcome but non-predictive of
the current treatment assignment, CT optimizes a loss that is composed of two terms. The first term
is a supervised loss, such as Mean Squared Error (MSE), which measures the difference between
the predicted and actual outcomes. The second term is a domain confusion loss, which encourages
the model to minimize the difference between the distributions of representations conditioned on
different treatments.

Here the hyperparameters are 16 sequential hidden units, a balancing representation size of 16, 32
fully connected units, a dropout rate of 0.1, a batch size of 256, and is optimized with an Adam
optimizer with a learning rate of 0.01.

25



Published as a conference paper at ICLR 2024

ODE DISCOVERY METHODS

Sparse Identification of Nonlinear Dynamics (SINDy) (Brunton et al., 2016), a data-driven frame-
work that aims to discover the governing dynamical system equations directly from time-series data.
The algorithm works by iteratively performing sparse regression on a library of candidate functions
to identify the sparsest yet most accurate representation of the dynamical system.

In our implementation, we use a polynomial library of order two, which is a feature library of
L = {1, x0, x1, x0x1}. Finite difference approximations are used to compute time derivatives from
the input time-series data, of order one. Here the alpha parameter is kept constant at 0.5 across all
experiments, and the sparsity threshold is set to 0.001 for all experiments, apart from the eq. (5)
datasets where it is set to 0.1.

Weak Sparse Identification of Nonlinear Dynamics (WSINDy) (Messenger & Bortz, 2021) is a
variant of SINDy designed to handle noisy sampled time-series data. Instead of directly differentiating
the time-series data to obtain derivatives, WSINDy formulates a variational optimization problem
that simultaneously identifies the governing equations and estimates the derivatives.

The implementation details are largely similar to those for SINDy, with the significant difference
being in the formulation of the loss function for the optimization problem. Here, we use 100 domain
centres and a polynomial library of order two. Specifically, WSINDy requires multiple domain
centres in the variational formulation, which precludes the application of WSINDy to sparse and
short sequence trajectories—leading to the inclusion of this baseline only where it is possible to apply
it (when the minimum trajectories are long enough that it can be applied).

To form the Adapted SINDy (A-SINDy) and Adapted WSINDy (A-WSINDy), we modified the
SINDy and WSINDy methods to handle categorical treatments by learning individual ODEs for
each treatment group. This adaptation makes these models more competitive for the benchmark
comparisons in this study.

Individualized Nonlinear Sparse Identification Treatment Effect (INSITE), our proposed method,
builds on top of SINDy that discovers a population (global) differential equation for all patients in the
training dataset. Therefore it uses the same hyperparameters as defined above for SINDy.

Moreover, INSITE fine-tunes the discovered population ODE to existing observed patient trajectories
by minimizing the MSE loss between the predicted and observed outcomes. Here the regularization
parameter λ is set to λ = 10.0 across all experiments. It was set following the same hyperparameter
tuning procedure on the validation dataset on the Cancer PKPD dataset and then kept constant for all
experiments.

G.1 INSITES INFERENCE PROCEDURE

INSITE principally consists of a training step and an inference step. First, for the training step, it
discovers a population (global) differential equation for all patients in the training dataset. The exact
form of this global differential equation that is discovered depends on the treatment type, as following
the types outlined in appendix E. Commonly, the treatment will be a categorical treatment, where the
action trajectory is one-dimensional with values in [1,K], therefore the form of the global ODEs that
are learned are K separate closed-form systems of ODEs f1, . . . ,fK .

For the inference step at run-time, a new (unseen) patient is observed with covariates and an initial
treatment history following a specified treatment plan. INSITE fine-tunes the active K discovered
population ODEs to existing observed patient trajectories by minimizing the MSE loss between the
predicted and observed outcomes, for the active K th separate closed-form ODE as determined by
the existing observed treatments. Given this, there can exist a case where a discrete treatment type
may not be observed in the existing patient observed treatment history, in that case, the separate
ODE that corresponds to that discrete treatment is not fine-tuned, and instead is left as the underlying
population (global) differential equation for all patients in the training dataset with that specific
discrete treatment.

26



Published as a conference paper at ICLR 2024

H EVALUATION METRICS

We evaluate against the standard longitudinal treatment effect metrics of test counterfactual τ -step
ahead prediction normalized root mean squared error (RMSE), where τ = {1, 2, 3, 4, 5, 6}, for a
sliding treatment plan (Bica et al., 2020b; Melnychuk et al., 2022). Unless otherwise specified, each
result is run for five random seed runs with time-dependent confounding of γ = 2.

To evaluate each baseline, we use the same setup as Melnychuk et al. (2022). That is for each
dataset, for each patient in the test set and for each time step, we simulate multiple counterfactual
trajectories by setting the treatment to counterfactual possible treatment values, depending on τ . First,
for one-step ahead prediction τ = 1, we simulate all the possible counterfactual treatment values
(e.g., in eq. (5) we simulate both a = 0 and a = 1, and eq. (6) & Cancer PKPD we simulate all four
combinations of {(art = 0, act = 0), (art = 1, act = 0), (art = 0, act = 1), (art = 1, act = 1)}) for the
next counterfactual outcome y(t+ 1). This corresponds to the PKPD model under all the feasible
treatment assignments. Second, for multi-step ahead prediction, the number of possible potential
outcomes y(t + 2, . . . , t + τmax) grows exponentially with the projection horizon τmax. Therefore
we use the sliding window treatment assignment (Bica et al., 2020b; Melnychuk et al., 2022). This
sliding window treatment assignment can help test that the correct timing of treatment is chosen.
It is implemented by simulating trajectories with a single treatment, however, the treatments are
iteratively moved over a window ranging from t to t+ τmax − 1, this essentially results in 2(τmax − 1)
trajectories.

For each random seed run, we generate a new train, validation and test dataset independently. With
1000 training trajectories, 100 validation trajectories and 100 test trajectories, unless otherwise noted.
We then train each baseline on the training dataset and tune the hyperparameters on the validation
dataset. We then evaluate the performance of each baseline on the test dataset. We repeat this process
for each random seed run, for a total of five random seed runs, unless otherwise noted. We then
report the mean and 95% confidence interval of the normalized RMSE between the predicted and
observed outcomes for each of these counterfactual trajectories. We report the normalized RMSE,
as is standard (Bica et al., 2020b; Melnychuk et al., 2022), where we normalize by the maximum
outcome value for that dataset, where for eq. (5) ymax = 50.0 and for eq. (6) and Cancer PKPD
ymax = 1150cm3.

I DATASET GENERATION AND MODEL TRAINING

Dataset generation D. We generate a dataset for each underlying pharmacological model F and
a given action policy. This is achieved by sampling a set of N initial conditions x0 ∈ X , v ∈ V
from the models specified domains X ,V . These initial values and the action policy simulate the
covariate trajectory up to a defined end time T , using a numerical ODE solver. This forms a dataset
as described in Section 3. We follow this process to independently sample a train, validation, and test
dataset D.

Model training. We train each baseline on the training dataset Dtrain. We follow the same training
setup as Melnychuk et al. (2022), where all the baselines are implemented in PyTorch lightning
(Falcon, 2019) and trained with the Adam optimizer (Kingma & Ba, 2014). Following Melnychuk
et al. (2022), we train all LTE baselines using the teacher forcing technique (Williams & Zipser, 1989)
when training the models for multi-step ahead prediction. During the evaluation of multi-step ahead
prediction, we switch off teacher forcing and autoregressively feed model predictions. Furthermore,
we train each baseline for 100 epochs, for the experimental evaluation setup, see appendix H. We
perform all experiments and training using a single Intel Core i9-12900K CPU @ 3.20GHz, 64GB
RAM with an Nvidia RTX3090 GPU 24GB.

Hyper parameter tuning. We followed the hyperparameter tuning setup of Melnychuk et al.
(2022) and used their tuned hyperparameters for all the baselines to the Cancer PKPD dataset
across all datasets and all experiments. Therefore, we only tuned the hyperparameters of the ODE
discovery methods to the validation dataset of the Cancer PKPD dataset and fixed them throughout
all experiments on all other datasets.
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J INTERPRETABLE EQUATIONS

Unique to the proposed framework and INSITE is that the discovered differential equation is fully
interpretable. Some of these discovered equations are shown in table 9. It is clear that even with
binary actions, INSITE is able to discover a useful equation that performs well and is similar in form
to the true underlying equation, even discovering it exactly in some simple settings of eq. (5) (e.g., if
we discretize the numeric constants, rounding to one decimal place for eq. (5).A and eq. (5).B we
recover the true underlying ODE).

Table 9: Interpretable discovered ODEs. We show the discovered equations alongside the true underlying data
generating ODE for the one-compartment PKPD model in eq. (5), with increasing levels of BSV complexity.

Dataset True ODE (Data generating process) Discovered Population ODE (F̄ )

eq. (5).A dx(t)
dt =

{
−C0x(t), if a = 0

−C1x(t), if a = 1
dx(t)
dt =

{
−1.008546C0x(t), if a = 0

−1.008550C1x(t), if a = 1

eq. (5).B dx(t)
dt =

{
−C0x(t), if a = 0

−C1x(t), if a = 1
dx(t)
dt =

{
−1.008559C0x(t), if a = 0

−1.008545C1x(t), if a = 1

eq. (5).C dx(t)
dt =

{
−C0x(t)− 0.05x(t), if a = 0

−C1x(t)− 0.15x(t), if a = 1
dx(t)
dt =

{
−1.019147C0x(t)− 0.045576x(t), if a = 0

−1.021360C1x(t)− 0.146457x(t), if a = 1

eq. (5).D dx(t)
dt =

{
−C0x(t)− 0.05x(t), if a = 0

−C1x(t)− 0.15x(t), if a = 1
dx(t)
dt =

{
−1.020334C0x(t)− 0.107606x(t), if a = 0

−1.018707C1x(t)− 0.047018x(t), if a = 1

K ADDITIONAL EXPERIMENTS

K.1 SENSITIVITY TO λ

In the following, we explore the sensitivity of INSITE to the regularization hyperparameter constant
λ. As tabulated in table 10, we see that INISTE does indeed depend on the correct choice of λ. We
follow the hyperparameter tuning setup of tuning λ on the validation test dataset, as is standard for
other LTE methods, such as Causal Transformer (CT) (Melnychuk et al., 2022). We further detail this
tuning strategy in appendix I; specifically, we chose λ = 10, tuned on the validation set for dataset
Eq. 5.D, and kept the same value across all datasets, and all runs (unless explicitly, as noted in this
sensitivity analysis).

Table 10: Counterfactual normalised RMSE, for 6-step ahead prediction of the benchmarks on each synthetic
dataset detailed in appendix F, with INSITE varying its regularization hyperparameter λ. We quote 95%
confidence intervals with each value, and all metrics are averaged over ten random seed runs. Each PKPD
underlying pharmacological model is simulated with different layers of BSV (table 2) for A-D. INSITE is
sensitive to its regularization hyperparameter λ.

Method eq. (5).A eq. (5).B eq. (5).C eq. (5).D eq. (6).A eq. (6).B eq. (6).C eq. (6).D Cancer PKPD

LT
E

MSM 0.99±8.37e-17 0.99±0.00 0.97±8.37e-17 2.09±0.00 2.55±0.13 2.55±0.13 2.06±0.16 2.11±0.04 2.30±0.12
RMSN 1.92±0.24 1.94±0.23 1.68±0.19 1.91±0.18 1.23±0.15 1.25±0.15 1.10±0.18 1.10±0.11 1.04±0.17

CRN 1.05±0.10 1.05±0.10 0.82±0.09 1.98±0.14 1.05±0.03 1.05±0.03 1.03±0.08 1.03±0.10 0.92±0.08
G-Net 0.91±0.20 0.91±0.20 0.72±0.14 0.97±0.15 1.33±0.27 1.34±0.27 1.02±0.11 1.25±0.15 1.22±0.14

CT 0.90±0.18 0.90±0.18 0.75±0.14 1.00±0.14 1.29±0.07 1.29±0.10 1.03±0.11 1.14±0.10 1.07±0.07

O
D

E
-D

A-SINDy 0.11±0.00 0.11±0.00 0.13±2.09e-17 0.15±0.00 1.45±0.03 1.45±0.03 1.40±0.01 1.51±0.09 1.23±0.13
A-WSINDy 0.11±7.24e-05 0.11±2.49e-04 0.12±1.47e-03 0.10±7.61e-04 NA NA NA NA NA

INSITE λ = 0.0 0.02 ±0.00 0.03 ±0.00 0.04 ±0.00 0.05 ±0.00 2.97 ±0.00 1.17 ±1.67e-16 2.98 ±0.00 0.99 ±0.00 1.22 ±0.00
INSITE λ = 10.0 0.02 ±2.62e-18 0.03 ±0.00 0.04 ±0.00 0.05 ±5.23e-18 0.94 ±0.05 0.94 ±0.05 0.84 ±0.04 0.87 ±0.08 0.79 ±8.37e-17

INSITE λ = 500.0 0.03 ±0.00 0.03 ±0.00 0.04 ±0.00 0.05 ±0.00 1.32 ±0.00 1.32 ±0.00 1.20 ±0.00 1.11 ±0.00 0.67 ±0.00

K.2 PARAMETRIC DISTRIBUTION OF NUMERIC CONSTANTS

Unique to our method, INSITE is that after obtaining the patient-specific differential equations,
we can derive a population differential equation where each numeric constant is represented by a
distribution, such as a normal distribution or a mixture of distributions—recovering a probabilistic
interpretation of the underlying data generating process.

We explore a further insight experiment, where we discover the parametric distribution of the numeric
constants of a further synthetic equation. We extended our existing eq. (5), to have an offset term
β0 that is sampled from a bimodal Gaussian mixture distribution. We follow our same experimental
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setup and discover individualized differential equations for each patient. To explore if we can recover
the underlying bimodal distribution, we plot the distribution of the numeric constants β0 for each
patient. We observe that the distribution of the numeric constants for each patient is bimodal and that
the two modes are the two modes of the underlying bimodal distribution. This is shown in fig. 4, with
a kernel distribution estimation plot.
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Figure 4: Kernel distribution estimation plot of the individualized numeric constants β0 for each patient, for a
further synthetic equation that extends eq. (5), to have an offset term β0 that is sampled from a bimodal Gaussian
mixture distribution. We observe that the distribution of the numeric constants β0 for each patient is bimodal
and that the two modes are the two modes of the underlying bimodal distribution. This verifies that INSITE can
recover a probabilistic interpretation of the underlying data-generating process, with a population differential
equation where each numeric constants can be represented by a distribution.

K.3 ADDITIONAL MAIN RESULTS

In the following, we provide full additional results for all counterfactual τ -step ahead prediction
errors of the benchmarks on each synthetic dataset. Where we tabulate: 1-step in table 11, 2-step in
table 12, 3-step in table 13, 4-step in table 14, 5-step in table 15 and 6-step in table 16.

Table 11: Counterfactual normalized RMSE, for 1-step ahead prediction of the benchmarks on each synthetic
dataset detailed in appendix F. We quote 95% confidence intervals with each value, and all metrics are averaged
over ten random seed runs. Each PKPD underlying pharmacological model is simulated with different layers of
BSV (table 2) for A-D. Our contribution is shaded below.

Method eq. (5).A eq. (5).B eq. (5).C eq. (5).D eq. (6).A eq. (6).B eq. (6).C eq. (6).D Cancer PKPD

LT
E

MSM 0.56±0.00 0.56±8.37e-17 0.67±0.00 0.52±8.37e-17 1.36±0.14 1.36±0.14 1.32±0.02 1.38±0.06 1.21±0.06
RMSN 2.69±0.17 2.70±0.17 2.58±0.13 2.53±0.14 0.97±0.11 0.97±0.11 0.85±0.03 0.90±0.06 0.74±0.10

CRN 1.08±0.17 1.10±0.18 1.04±0.26 1.19±0.16 0.65±0.04 0.65±0.04 0.61 ±0.01 0.60±0.01 0.60 ±0.03
G-Net 0.46±0.13 0.46±0.13 0.39±0.10 0.55±0.10 0.61 ±0.05 0.61 ±0.05 0.61 ±0.02 0.57 ±0.03 0.59 ±0.04

CT 0.33±0.03 0.33±0.03 0.32±0.04 0.39±0.03 0.82±0.08 0.82±0.08 0.83±0.06 0.81±0.07 0.68±0.05

O
D

E
-D A-SINDy 0.11±1.05e-17 0.11±2.09e-17 0.14±0.00 0.16±0.00 1.61±0.13 1.61±0.13 1.31±0.09 1.65±0.13 1.70±0.07

A-WSINDy 0.11±7.92e-05 0.11±2.46e-04 0.12±1.46e-03 0.10±7.62e-04 NA NA NA NA NA
INSITE 1.35e-03 ±1.03e-19 0.02 ±8.27e-19 0.02 ±2.62e-18 0.02 ±8.27e-19 0.94±0.07 0.94±0.07 0.89±0.00 0.80±0.01 0.83±7.94e-17

Table 12: Counterfactual normalized RMSE, for 2-step ahead prediction of the benchmarks on each synthetic
dataset detailed in appendix F. We quote 95% confidence intervals with each value, and all metrics are averaged
over ten random seed runs. Each PKPD underlying pharmacological model is simulated with different layers of
BSV (table 2) for A-D. Our contribution is shaded below.

Method eq. (5).A eq. (5).B eq. (5).C eq. (5).D eq. (6).A eq. (6).B eq. (6).C eq. (6).D Cancer PKPD

LT
E

MSM 1.31±1.67e-16 1.31±1.67e-16 1.41±1.67e-16 1.34±1.67e-16 2.00±0.15 2.00±0.15 1.62±0.04 1.74±0.10 1.78±0.11
RMSN 2.38±0.15 2.39±0.14 2.26±0.10 2.28±0.13 1.04±0.09 1.04±0.09 1.02±0.11 1.14±0.16 0.81±0.06

CRN 0.90±0.10 0.91±0.10 0.60±0.20 2.04±0.16 0.77 ±0.04 0.77 ±0.04 0.77 ±0.05 0.87 ±0.10 0.66 ±0.05
G-Net 0.63±0.15 0.63±0.14 0.54±0.11 0.67±0.10 0.88±0.08 0.87±0.08 0.87±0.06 0.99±0.09 0.84±0.05

CT 0.54±0.09 0.54±0.09 0.45±0.09 0.67±0.07 0.99±0.10 0.99±0.10 1.00±0.10 1.09±0.17 0.82±0.07

O
D

E
-D A-SINDy 0.11±1.05e-17 0.11±0.00 0.14±0.00 0.16±0.00 1.47±0.05 1.47±0.05 1.51±0.06 1.63±0.13 1.27±0.14

A-WSINDy 0.11±7.81e-05 0.11±2.49e-04 0.12±1.49e-03 0.10±7.64e-04 NA NA NA NA NA
INSITE 8.44e-03 ±1.31e-18 0.02 ±0.00 0.03 ±0.00 0.03 ±0.00 0.82 ±0.02 0.82 ±0.02 0.91±0.02 0.92 ±0.12 0.80±0.00

K.4 ADDITIONAL RESULTS WITH VARYING SAMPLE SIZES

In the following, we provide additional results where we vary the number of training sample sizes,
in the range of n = {10, 100, 1, 000, 10, 000}. For each sample size, we provide the counterfactual
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Table 13: Counterfactual normalized RMSE, for 3-step ahead prediction of the benchmarks on each synthetic
dataset detailed in appendix F. We quote 95% confidence intervals with each value, and all metrics are averaged
over ten random seed runs. Each PKPD underlying pharmacological model is simulated with different layers of
BSV (table 2) for A-D. Our contribution is shaded below.

Method eq. (5).A eq. (5).B eq. (5).C eq. (5).D eq. (6).A eq. (6).B eq. (6).C eq. (6).D Cancer PKPD

LT
E

MSM 1.21±1.67e-16 1.21±1.67e-16 1.27±1.67e-16 1.48±0.00 2.36±0.17 2.36±0.17 1.91±0.08 2.01±0.09 2.09±0.12
RMSN 2.21±0.14 2.22±0.13 2.05±0.09 2.12±0.14 1.06±0.08 1.06±0.08 1.04±0.11 1.14±0.15 0.86±0.07

CRN 0.88±0.08 0.90±0.07 0.58±0.14 1.94±0.14 0.86 ±0.03 0.86 ±0.03 0.82 ±0.04 0.96 ±0.11 0.73 ±0.05
G-Net 0.73±0.16 0.73±0.16 0.61±0.12 0.77±0.11 1.03±0.11 1.02±0.11 0.95±0.05 1.16±0.10 1.02±0.07

CT 0.69±0.11 0.70±0.12 0.58±0.10 0.80±0.09 1.12±0.09 1.13±0.09 1.04±0.07 1.13±0.15 0.88±0.05

O
D

E
-D A-SINDy 0.11±1.05e-17 0.11±1.05e-17 0.13±0.00 0.16±2.09e-17 1.45±0.05 1.46±0.05 1.48±0.04 1.61±0.13 1.25±0.13

A-WSINDy 0.11±7.68e-05 0.11±2.50e-04 0.12±1.50e-03 0.10±7.66e-04 NA NA NA NA NA
INSITE 0.01 ±0.00 0.03 ±0.00 0.03 ±0.00 0.03 ±0.00 0.83 ±0.03 0.83 ±0.03 0.89±8.00e-03 0.90 ±0.11 0.78 ±0.00

Table 14: Counterfactual normalized RMSE, for 4-step ahead prediction of the benchmarks on each synthetic
dataset detailed in appendix F. We quote 95% confidence intervals with each value, and all metrics are averaged
over ten random seed runs. Each PKPD underlying pharmacological model is simulated with different layers of
BSV (table 2) for A-D. Our contribution is shaded below.

Method eq. (5).A eq. (5).B eq. (5).C eq. (5).D eq. (6).A eq. (6).B eq. (6).C eq. (6).D Cancer PKPD

LT
E

MSM 1.12±0.00 1.12±0.00 1.12±1.67e-16 1.68±1.67e-16 2.53±0.16 2.53±0.16 2.06±0.10 2.13±0.08 2.24±0.12
RMSN 2.09±0.16 2.10±0.16 1.90±0.12 2.03±0.16 1.12±0.09 1.12±0.09 1.06±0.12 1.12±0.13 0.92±0.10

CRN 0.91±0.07 0.92±0.08 0.65±0.11 1.93±0.13 0.95±0.03 0.95±0.03 0.89 ±0.05 1.00±0.11 0.80 ±0.06
G-Net 0.80±0.18 0.80±0.18 0.66±0.13 0.84±0.12 1.14±0.16 1.14±0.16 0.99±0.06 1.21±0.11 1.10±0.09

CT 0.78±0.14 0.78±0.14 0.66±0.12 0.88±0.11 1.22±0.08 1.22±0.09 1.04±0.07 1.14±0.13 0.96±0.05

O
D

E
-D A-SINDy 0.11±0.00 0.11±1.05e-17 0.13±0.00 0.15±0.00 1.45±0.04 1.45±0.04 1.45±0.03 1.58±0.11 1.24±0.13

A-WSINDy 0.11±7.55e-05 0.11±2.51e-04 0.12±1.50e-03 0.10±7.67e-04 NA NA NA NA NA
INSITE 0.02 ±2.62e-18 0.03 ±5.23e-18 0.04 ±5.23e-18 0.04 ±0.00 0.86 ±0.03 0.86 ±0.03 0.87 ±9.52e-03 0.88 ±0.10 0.78 ±0.00

Table 15: Counterfactual normalized RMSE, for 5-step ahead prediction of the benchmarks on each synthetic
dataset detailed in appendix F. We quote 95% confidence intervals with each value, and all metrics are averaged
over ten random seed runs. Each PKPD underlying pharmacological model is simulated with different layers of
BSV (table 2) for A-D. Our contribution is shaded below.

Method eq. (5).A eq. (5).B eq. (5).C eq. (5).D eq. (6).A eq. (6).B eq. (6).C eq. (6).D Cancer PKPD

LT
E

MSM 1.05±0.00 1.05±0.00 1.01±1.67e-16 1.89±1.67e-16 2.60±0.15 2.60±0.15 2.09±0.13 2.16±0.06 2.30±0.12
RMSN 1.99±0.20 2.01±0.19 1.77±0.15 1.96±0.17 1.18±0.12 1.19±0.12 1.08±0.15 1.11±0.12 0.98±0.14

CRN 0.98±0.08 0.98±0.08 0.73±0.09 1.95±0.13 1.02±0.03 1.02±0.03 0.96±0.06 1.03±0.11 0.87±0.07
G-Net 0.86±0.19 0.86±0.19 0.70±0.14 0.91±0.14 1.24±0.21 1.24±0.21 1.01±0.08 1.24±0.13 1.17±0.11

CT 0.85±0.16 0.86±0.17 0.71±0.13 0.95±0.14 1.28±0.08 1.28±0.09 1.04±0.07 1.16±0.11 1.03±0.06

O
D

E
-D A-SINDy 0.11±1.05e-17 0.11±0.00 0.13±0.00 0.15±2.09e-17 1.45±0.03 1.45±0.04 1.43±6.51e-03 1.55±0.10 1.24±0.13

A-WSINDy 0.11±7.40e-05 0.11±2.50e-04 0.12±1.49e-03 0.10±7.65e-04 NA NA NA NA NA
INSITE 0.02 ±0.00 0.03 ±0.00 0.04 ±5.23e-18 0.04 ±5.23e-18 0.90 ±0.04 0.90 ±0.04 0.85 ±0.03 0.87 ±0.09 0.78 ±0.00

Table 16: Counterfactual normalized RMSE, for 6-step ahead prediction of the benchmarks on each synthetic
dataset detailed in appendix F. We quote 95% confidence intervals with each value, and all metrics are averaged
over ten random seed runs. Each PKPD underlying pharmacological model is simulated with different layers of
BSV (table 2) for A-D. Our contribution is shaded below.

Method eq. (5).A eq. (5).B eq. (5).C eq. (5).D eq. (6).A eq. (6).B eq. (6).C eq. (6).D Cancer PKPD

LT
E

MSM 0.99±8.37e-17 0.99±0.00 0.97±8.37e-17 2.09±0.00 2.55±0.13 2.55±0.13 2.06±0.16 2.11±0.04 2.30±0.12
RMSN 1.92±0.24 1.94±0.23 1.68±0.19 1.91±0.18 1.23±0.15 1.25±0.15 1.10±0.18 1.10±0.11 1.04±0.17

CRN 1.05±0.10 1.05±0.10 0.82±0.09 1.98±0.14 1.05±0.03 1.05±0.03 1.03±0.08 1.03±0.10 0.92±0.08
G-Net 0.91±0.20 0.91±0.20 0.72±0.14 0.97±0.15 1.33±0.27 1.34±0.27 1.02±0.11 1.25±0.15 1.22±0.14

CT 0.90±0.18 0.90±0.18 0.75±0.14 1.00±0.14 1.29±0.07 1.29±0.10 1.03±0.11 1.14±0.10 1.07±0.07

O
D

E
-D A-SINDy 0.11±0.00 0.11±0.00 0.13±2.09e-17 0.15±0.00 1.45±0.03 1.45±0.03 1.40±0.01 1.51±0.09 1.23±0.13

A-WSINDy 0.11±7.24e-05 0.11±2.49e-04 0.12±1.47e-03 0.10±7.61e-04 NA NA NA NA NA
INSITE 0.02 ±2.62e-18 0.03 ±0.00 0.04 ±0.00 0.05 ±5.23e-18 0.94 ±0.05 0.94 ±0.05 0.84 ±0.04 0.87 ±0.08 0.79 ±8.37e-17

normalized RMSE, for 6-step ahead prediction of the benchmarks on each synthetic dataset. These
are tabulated in: table 17, table 18, table 19 and table 20 respectively.

Table 17: Counterfactual normalized RMSE, for 6-step ahead prediction of the benchmarks on each synthetic
dataset detailed in appendix F, with each method trained on a training dataset with n = 10 samples. We quote
95% confidence intervals with each value, and all metrics are averaged over five random seed runs. Each PKPD
underlying pharmacological model is simulated with different layers of BSV (table 2) for A-D. Our contribution
is shaded below.

Method eq. (5).A eq. (5).B eq. (5).C eq. (5).D eq. (6).A eq. (6).B eq. (6).C eq. (6).D Cancer PKPD

LT
E

MSM 0.98±0.00 1.78±0.00 1.23±0.00 2.02±0.00 2.83±0.00 2.83±0.00 1.93±0.00 2.23±0.00 3.24±0.00
RMSN 6.80±1.13 6.83±1.07 5.83±1.03 6.32±1.38 2.91±0.16 2.91±0.16 2.19±0.03 2.30±0.18 3.37±0.12

CRN 2.36±0.46 2.36±0.46 1.96±0.45 3.33±0.60 2.60±0.03 2.60±0.03 1.44±0.07 2.08±0.19 2.99±0.27
G-Net 3.47±0.89 3.47±0.89 3.08±0.82 3.53±0.83 2.48±0.68 2.48±0.68 1.50 ±0.37 2.08±0.63 2.91 ±1.09

CT 2.54±1.44 2.52±1.40 2.09±1.30 2.48±1.03 3.01±0.05 2.98±0.15 2.01±0.37 2.34±0.17 3.48±0.12

O
D

E
-D A-SINDy 0.11±0.00 0.10±0.00 0.14±0.00 0.14±0.00 1.23±0.00 1.23±0.00 1.80±0.00 2.49±0.00 2.81±0.00

A-WSINDy 0.11±1.38e-04 0.10±7.14e-03 0.12±8.77e-03 0.41±5.47e-04 NA NA NA NA NA
INSITE 0.02 ±0.00 0.03 ±0.00 0.05 ±0.00 0.05 ±0.00 0.92 ±0.00 0.92 ±0.00 1.16 ±0.00 1.27 ±0.00 2.18 ±0.00
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Table 18: Counterfactual normalized RMSE, for 6-step ahead prediction of the benchmarks on each synthetic
dataset detailed in appendix F, with each method trained on a training dataset with n = 100 samples. We quote
95% confidence intervals with each value, and all metrics are averaged over five random seed runs. Each PKPD
underlying pharmacological model is simulated with different layers of BSV (table 2) for A-D. Our contribution
is shaded below.

Method eq. (5).A eq. (5).B eq. (5).C eq. (5).D eq. (6).A eq. (6).B eq. (6).C eq. (6).D Cancer PKPD

LT
E

MSM 1.03±0.00 0.90±0.00 1.21±0.00 1.84±0.00 2.80±0.00 2.80±0.00 2.21±0.00 2.23±0.00 3.45±0.00
RMSN 6.03±1.12 5.99±1.05 5.15±1.06 5.89±0.82 2.79±0.35 2.78±0.33 2.21±0.24 2.38±0.10 3.64±0.14

CRN 1.75±0.32 1.75±0.32 1.33±0.24 2.77±1.29 2.00±0.11 2.00±0.11 1.41±0.11 1.41±0.12 2.11±0.20
G-Net 1.66±0.41 1.66±0.41 1.33±0.30 2.26±0.64 1.54±0.19 1.54±0.19 2.03±0.19 2.06±0.77 2.30±0.86

CT 1.52±0.92 1.52±0.92 1.28±0.60 1.45±0.37 2.53±0.31 2.55±0.25 2.04±0.08 2.02±0.20 3.20±0.20

O
D

E
-D A-SINDy 0.11±0.00 0.11±0.00 0.13±0.00 0.15±0.00 1.27±0.00 1.27±0.00 1.42±0.00 1.26±0.00 1.42±0.00

A-WSINDy 0.11±2.56e-04 0.11±7.25e-04 0.12±5.21e-04 0.10±2.58e-03 NA NA NA NA NA
INSITE 0.02 ±0.00 0.03 ±0.00 0.04 ±0.00 0.05 ±0.00 0.96 ±0.00 1.13 ±0.00 0.87 ±0.00 0.99 ±0.00 1.19 ±0.00

Table 19: Counterfactual normalized RMSE, for 6-step ahead prediction of the benchmarks on each synthetic
dataset detailed in appendix F, with each method trained on a training dataset with n = 1, 000 samples. We
quote 95% confidence intervals with each value, and all metrics are averaged over five random seed runs. Each
PKPD underlying pharmacological model is simulated with different layers of BSV (table 2) for A-D. Our
contribution is shaded below.

Method eq. (5).A eq. (5).B eq. (5).C eq. (5).D eq. (6).A eq. (6).B eq. (6).C eq. (6).D Cancer PKPD

LT
E

MSM 0.99±1.54e-16 0.99±0.00 0.97±1.54e-16 2.09±0.00 2.61±0.00 2.61±0.00 1.99±3.08e-16 2.13±0.00 2.36±0.00
RMSN 1.87±0.33 1.95±0.46 1.67±0.30 1.81±0.23 1.30±0.14 1.33±0.14 1.00 ±0.29 1.16±0.08 1.07±0.15

CRN 1.08±0.13 1.09±0.12 0.87±0.12 1.95±0.32 1.07±0.07 1.07±0.07 1.00±0.17 1.06±0.08 0.94±0.09
G-Net 0.90±0.45 0.91±0.45 0.72±0.27 1.07±0.23 1.43 ±0.65 1.43 ±0.65 0.96 ±0.16 1.39±0.26 1.34±0.26

CT 0.83±0.31 0.83±0.32 0.74±0.27 0.94±0.19 1.34±0.15 1.36±0.19 1.02±0.09 1.21±0.08 1.10±0.11

O
D

E
-D A-SINDy 0.11±0.00 0.11±0.00 0.13±0.00 0.15±0.00 1.46±0.00 1.47±0.00 1.40±0.00 1.56±0.00 1.29±0.00

A-WSINDy 0.11±1.77e-04 0.11±4.92e-04 0.11±2.36e-03 0.10±1.87e-03 NA NA NA NA NA
INSITE 0.02 ±0.00 0.03 ±0.00 0.04 ±0.00 0.05 ±0.00 0.96 ±0.00 0.96 ±0.00 0.82 ±1.54e-16 0.90 ±0.00 0.79 ±0.00

Table 20: Counterfactual normalized RMSE, for 6-step ahead prediction of the benchmarks on each synthetic
dataset detailed in appendix F, with each method trained on a training dataset with n = 10, 000 samples. We
quote 95% confidence intervals with each value, and all metrics are averaged over five random seed runs. Each
PKPD underlying pharmacological model is simulated with different layers of BSV (table 2) for A-D. Our
contribution is shaded below.

Method eq. (5).A eq. (5).B eq. (5).C eq. (5).D eq. (6).A eq. (6).B eq. (6).C eq. (6).D Cancer PKPD

LT
E

MSM 1.01±0.07 0.99±0.00 1.04±0.00 1.61±0.00 2.25±0.98 2.17 ±1.40 1.69 ±0.99 1.80±0.86 2.47±0.48
RMSN 1.01 ±2.48 0.70 ±1.20 0.41 ±0.67 0.54±0.28 0.99 ±0.27 0.93 ±0.23 0.91 ±0.30 1.06 ±0.51 1.43±0.32

CRN 4.83 ±9.98 6.20 ±12.80 2.31 ±4.02 3.58 ±9.39 0.93 ±0.21 0.91 ±0.30 0.71 ±0.07 1.56 ±2.48 4.22 ±4.79
G-Net 0.93±0.53 1.03±0.86 0.89±0.17 0.92 ±1.00 1.14 ±0.30 1.16 ±0.49 0.97±0.25 1.09±0.13 1.25±0.13

CT 0.47 ±0.50 0.52 ±0.81 0.58 ±0.85 0.51±0.22 0.95 ±0.17 0.88 ±0.21 0.74 ±0.11 0.83±0.12 1.06±0.15

O
D

E
-D A-SINDy 0.11±3.30e-03 0.11±0.00 0.12±0.00 0.15±0.00 1.39±0.18 1.39±0.18 1.30±0.31 1.43±0.20 1.71±0.02

A-WSINDy 0.11±4.41e-03 0.11±1.27e-04 0.12±1.52e-03 0.10±2.86e-04 NA NA NA NA NA
INSITE 0.02 ±4.15e-04 0.03 ±0.00 0.04 ±2.11e-17 0.05 ±0.00 0.96 ±7.35e-03 0.93 ±0.06 0.78 ±3.49e-03 0.58 ±0.17 0.83 ±0.26

K.5 ADDITIONAL RESULTS WITH INCREASING OBSERVATION NOISE

In the following, we provide additional results where we increase the observation noise of the BSV
datasets, in the range of ϵ = {0.01, 0.1, 1.0}. For each sample size, we provide the counterfactual
normalized RMSE, for 6-step ahead prediction of the benchmarks on each synthetic dataset. These
are tabulated in: table 21, table 22 and table 23.

We note that for high observational noise settings, although the performance of SINDy degrades,
the performance of WSINDy remains competitive. In settings where WSINDy is supported (i.e.,
trajectory lengths are not short and are not sparse or variable length), INSITE can use WSINDy to
discover the population (global) differential equation model instead of SINDy. This arises as INSITE
and more broadly the proposed framework can fine-tune any differential equation discovery method
that produces a population (global) closed-form differential equation that has numeric constants.

K.6 MODEL MISSPECIFICATION

INSITE and the other ODE discovery methods (e.g., A-SINDy) are only correctly speci-
fied for eq. (5).A-D datasets, as they use the feature library of LINSITE = {1, x0, x1, x0x1}.
Crucially, the ODE discovery methods are misspecified for eq. (6).A-D, and the Cancer
PKPD datasets, as their underlying equation would require the feature library of LCancer =
{1, x0, x1, x0x1, x

2
0x1, x0x

2
1, log(x0), log(x1)} to be correctly specified. Although this misspec-

ification persists (in the main experimental table in table 3), as noticeable from the increased order
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Table 21: Counterfactual normalized RMSE, for 6-step ahead prediction of the benchmarks on each synthetic
dataset detailed in appendix F, with BSV observation noise of ϵ = 0.01. We quote 95% confidence intervals with
each value, and all metrics are averaged over five random seed runs. Each PKPD underlying pharmacological
model is simulated with different layers of BSV (table 2) for A-D. Our contribution is shaded below.

Method eq. (5).A eq. (5).B eq. (5).C eq. (5).D eq. (6).A eq. (6).B eq. (6).C eq. (6).D

LT
E

MSM 0.99±1.54e-16 0.99±0.00 0.97±1.54e-16 2.09±0.00 2.61±0.00 2.61±0.00 1.99±3.08e-16 2.13±0.00
RMSN 1.87±0.33 1.95±0.46 1.67±0.30 1.81±0.23 1.30±0.14 1.33±0.14 1.00 ±0.29 1.16±0.08

CRN 1.08±0.13 1.09±0.12 0.87±0.12 1.95±0.32 1.07±0.07 1.07±0.07 1.00±0.17 1.06±0.08
G-Net 0.90±0.45 0.91±0.45 0.72±0.27 1.07±0.23 1.43 ±0.65 1.43 ±0.65 0.96 ±0.16 1.39±0.26

CT 0.83±0.31 0.83±0.32 0.74±0.27 0.94±0.19 1.34±0.15 1.36±0.19 1.02±0.09 1.21±0.08

O
D

E
-D A-SINDy 0.11±0.00 0.11±0.00 0.13±0.00 0.15±0.00 1.46±0.00 1.47±0.00 1.40±0.00 1.56±0.00

A-WSINDy 0.11±1.77e-04 0.11±4.92e-04 0.11±2.36e-03 0.10±1.87e-03 NA NA NA NA
INSITE 0.02 ±0.00 0.03 ±0.00 0.04 ±0.00 0.05 ±0.00 0.96 ±0.00 0.96 ±0.00 0.82 ±1.54e-16 0.90 ±0.00

Table 22: Counterfactual normalized RMSE, for 6-step ahead prediction of the benchmarks on each synthetic
dataset detailed in appendix F, with BSV observation noise of ϵ = 0.1. We quote 95% confidence intervals with
each value, and all metrics are averaged over five random seed runs. Each PKPD underlying pharmacological
model is simulated with different layers of BSV (table 2) for A-D. Our contribution is shaded below.

Method eq. (5).A eq. (5).B eq. (5).C eq. (5).D eq. (6).A eq. (6).B eq. (6).C eq. (6).D

LT
E

MSM 0.99±1.54e-16 1.11±0.00 1.17±0.00 2.51±0.00 2.61±0.00 2.61±0.00 1.99±0.00 2.13±0.00
RMSN 1.87±0.33 1.94±0.61 1.60±0.59 1.86±0.23 1.30±0.20 1.32±0.20 0.91 ±0.15 1.15±0.10

CRN 1.13±0.15 1.16±0.15 0.92±0.09 2.15±0.12 1.09 ±0.09 1.09±0.09 0.96 ±0.18 1.07±0.06
G-Net 0.90±0.45 0.96±0.43 0.79±0.35 1.16±0.26 1.48 ±0.94 1.49 ±0.94 0.96 ±0.23 1.41±0.37

CT 0.83±0.31 0.91±0.38 0.82±0.30 0.99±0.22 1.34±0.22 1.36±0.26 1.00±0.14 1.24±0.06

O
D

E
-D A-SINDy 0.11±0.00 0.23 ±0.00 0.24±0.00 0.25±0.00 1.46±0.00 1.47±0.00 1.40±0.00 1.56±0.00

A-WSINDy 0.11±1.77e-04 0.23 ±2.45e-03 0.23±2.85e-03 0.23 ±2.94e-03 NA NA NA NA
INSITE 0.02 ±0.00 0.23±0.00 0.23 ±0.00 0.24±0.00 1.42±0.00 0.95 ±0.00 0.82 ±0.00 0.90 ±0.00

Table 23: Counterfactual normalized RMSE, for 6-step ahead prediction of the benchmarks on each synthetic
dataset detailed in appendix F, with BSV observation noise of ϵ = 1.0. We quote 95% confidence intervals with
each value, and all metrics are averaged over five random seed runs. Each PKPD underlying pharmacological
model is simulated with different layers of BSV (table 2) for A-D. Our contribution is shaded below.

Method eq. (5).A eq. (5).B eq. (5).C eq. (5).D eq. (6).A eq. (6).B eq. (6).C eq. (6).D

LT
E

MSM 0.99±1.54e-16 2.46±0.00 3.03±0.00 4.16±0.00 2.61±0.00 2.61±0.00 1.99±0.00 2.13±0.00
RMSN 1.87±0.33 3.60±1.07 3.21±0.46 3.77±1.28 1.30±0.20 1.35±0.25 0.91 ±0.13 1.14±0.09

CRN 1.13±0.15 2.44±0.15 2.29±0.13 2.90±0.47 1.09 ±0.09 1.12±0.09 0.98 ±0.18 1.09±0.07
G-Net 0.90±0.45 2.51±0.11 2.35±0.08 2.56±0.23 1.48 ±0.94 1.48 ±0.98 0.96 ±0.23 1.42±0.36

CT 0.83±0.31 2.17±0.10 2.12±0.06 2.20±0.06 1.34±0.22 1.34±0.23 1.00±0.13 1.24±0.06

O
D

E
-D A-SINDy 0.11±0.00 2.06±0.00 2.05±0.00 2.07±0.00 1.46±0.00 1.47±0.00 1.40±0.00 1.56±0.00

A-WSINDy 0.11±1.77e-04 2.05 ±4.19e-03 2.04 ±4.12e-03 2.07 ±5.26e-03 NA NA NA NA
INSITE 0.02 ±0.00 2.18±0.00 2.12±0.00 2.18±0.00 1.42±0.00 0.96 ±0.00 0.83 ±0.00 0.91 ±0.00

of magnitude increase in error, we still observe INSITE achieves a lower error than the longitudinal
treatment effect models.

To investigate how INSITE and the baseline ODE discovery methods compare under different
levels of model misspecification, we performed a complete re-run of our main experimental table
with varying feature libraries. Here we went from using an overly-restricted feature library of
L = {1} to a still misspecified feature library (for eq. (6).A-D, and the Cancer PKPD datasets) that
is overly expressive of L = {1, x0, x1, x

2
0, x0x1, x

2
1, x

3
0, x

2
0x1, x0x

2
1, x

3
1}. The results are tabulated

as: L = {1} in table 24, L = {1, x0, x1} in table 25, L = {1, x0, x1, x0x1} in table 26, L =
{1, x0, x1, x

2
0, x0x1, x

2
1} in table 27, L = {1, x0, x1, x

2
0, x0x1, x

2
1, x

3
0, x

2
0x1, x0x

2
1, x

3
1} in table 28.

We observe the same pattern of a low error when the feature library is correctly specified (that is
the underlying dataset was generated with features within the searching or discovery library set)
and an order of magnitude increase in error or higher when the feature library is misspecified (for
eq. (6).A-D, and the Cancer PKPD datasets).

An actionable insight is that the ODE discovery method should have a sufficiently expressive feature
library to search over. Moreover, even if the underlying data-generating equation contains unique
feature library terms, such as log(x0), log(x1), that are not explicitly given, employing a polynomial
feature library can serve as a robust approximation to the unidentified feature library set. This
approach is supported by the Stone-Weierstrass theorem in function approximation theory, which
posits that any continuous function defined over a closed interval can be uniformly approximated by
a polynomial function with an arbitrarily close degree of precision (Stone, 1948).
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Table 24: Counterfactual normalized RMSE, for 6-step ahead prediction of the benchmarks on each synthetic
dataset detailed in appendix F, with all ODE discovery methods using a restricted feature library of LINSITE = {1}.
We quote 95% confidence intervals with each value, and all metrics are averaged over ten random seed runs.
Each PKPD underlying pharmacological model is simulated with different layers of BSV (table 2) for A-D. Our
contribution is shaded below.

Method eq. (5).A eq. (5).B eq. (5).C eq. (5).D eq. (6).A eq. (6).B eq. (6).C eq. (6).D Cancer PKPD

LT
E

MSM 0.99±8.37e-17 0.99±0.00 0.97±8.37e-17 2.09±0.00 2.55±0.13 2.55±0.13 2.06±0.16 2.11±0.04 2.30±0.12
RMSN 1.92±0.24 1.94±0.23 1.68±0.19 1.91±0.18 1.23±0.15 1.25±0.15 1.10±0.18 1.10±0.11 1.04±0.17

CRN 1.05±0.10 1.05±0.10 0.82±0.09 1.98±0.14 1.05±0.03 1.05±0.03 1.03±0.08 1.03±0.10 0.92±0.08
G-Net 0.91±0.20 0.91±0.20 0.72±0.14 0.97±0.15 1.33±0.27 1.34±0.27 1.02±0.11 1.25±0.15 1.22±0.14

CT 0.90±0.18 0.90±0.18 0.75±0.14 1.00±0.14 1.29±0.07 1.29±0.10 1.03±0.11 1.14±0.10 1.07±0.07

O
D

E A-SINDy 28.63±0.00 28.63±2.68e-15 30.26±2.68e-15 28.58±0.00 20.51±0.00 20.51±0.00 18.33±2.68e-15 18.28±2.68e-15 17.36±0.00
INSITE 28.43 ±2.68e-15 28.43 ±0.00 30.08 ±2.68e-15 28.33 ±2.68e-15 20.51 ±0.00 20.51 ±0.00 18.33 ±0.00 18.28 ±0.00 17.36 ±2.68e-15

Table 25: Counterfactual normalized RMSE, for 6-step ahead prediction of the benchmarks on each synthetic
dataset detailed in appendix F, with all ODE discovery methods using a restricted feature library of LINSITE =
{1, x0, x1}. We quote 95% confidence intervals with each value, and all metrics are averaged over ten random
seed runs. Each PKPD underlying pharmacological model is simulated with different layers of BSV (table 2) for
A-D. Our contribution is shaded below.

Method eq. (5).A eq. (5).B eq. (5).C eq. (5).D eq. (6).A eq. (6).B eq. (6).C eq. (6).D Cancer PKPD

LT
E

MSM 0.99±8.37e-17 0.99±0.00 0.97±8.37e-17 2.09±0.00 2.55±0.13 2.55±0.13 2.06±0.16 2.11±0.04 2.30±0.12
RMSN 1.92±0.24 1.94±0.23 1.68±0.19 1.91±0.18 1.23±0.15 1.25±0.15 1.10±0.18 1.10±0.11 1.04±0.17

CRN 1.05±0.10 1.05±0.10 0.82±0.09 1.98±0.14 1.05±0.03 1.05±0.03 1.03±0.08 1.03±0.10 0.92±0.08
G-Net 0.91±0.20 0.91±0.20 0.72±0.14 0.97±0.15 1.33±0.27 1.34±0.27 1.02±0.11 1.25±0.15 1.22±0.14

CT 0.90±0.18 0.90±0.18 0.75±0.14 1.00±0.14 1.29±0.07 1.29±0.10 1.03±0.11 1.14±0.10 1.07±0.07

O
D

E A-SINDy 0.82±0.00 0.82±0.00 0.64±0.00 0.87±0.00 0.98±0.00 0.98±1.54e-16 0.73±0.00 0.73±0.00 0.93±1.54e-16
INSITE 0.47 ±0.00 0.47 ±0.00 0.36 ±0.00 0.49 ±7.71e-17 0.80 ±1.54e-16 0.80 ±1.54e-16 0.63 ±0.00 0.61 ±0.00 0.86 ±0.00

Table 26: Counterfactual normalized RMSE, for 6-step ahead prediction of the benchmarks on each synthetic
dataset detailed in appendix F, with all ODE discovery methods using a restricted feature library of LINSITE =
{1, x0, x1, x0x1}. We quote 95% confidence intervals with each value, and all metrics are averaged over ten
random seed runs. Each PKPD underlying pharmacological model is simulated with different layers of BSV
(table 2) for A-D. Our contribution is shaded below. This table is identical to table 3 and is included here for
completeness.

Method eq. (5).A eq. (5).B eq. (5).C eq. (5).D eq. (6).A eq. (6).B eq. (6).C eq. (6).D Cancer PKPD

LT
E

MSM 0.99±8.37e-17 0.99±0.00 0.97±8.37e-17 2.09±0.00 2.55±0.13 2.55±0.13 2.06±0.16 2.11±0.04 2.30±0.12
RMSN 1.92±0.24 1.94±0.23 1.68±0.19 1.91±0.18 1.23±0.15 1.25±0.15 1.10±0.18 1.10±0.11 1.04±0.17

CRN 1.05±0.10 1.05±0.10 0.82±0.09 1.98±0.14 1.05±0.03 1.05±0.03 1.03±0.08 1.03±0.10 0.92±0.08
G-Net 0.91±0.20 0.91±0.20 0.72±0.14 0.97±0.15 1.33±0.27 1.34±0.27 1.02±0.11 1.25±0.15 1.22±0.14

CT 0.90±0.18 0.90±0.18 0.75±0.14 1.00±0.14 1.29±0.07 1.29±0.10 1.03±0.11 1.14±0.10 1.07±0.07

O
D

E A-SINDy 0.11±0.00 0.11±0.00 0.13±2.09e-17 0.15±0.00 1.45±0.03 1.45±0.03 1.40±0.01 1.51±0.09 1.23±0.13
INSITE 0.02 ±2.62e-18 0.03 ±0.00 0.04 ±0.00 0.05 ±5.23e-18 0.94 ±0.05 0.94 ±0.05 0.84 ±0.04 0.87 ±0.08 0.79 ±8.37e-17

Table 27: Counterfactual normalized RMSE, for 6-step ahead prediction of the benchmarks on each synthetic
dataset detailed in appendix F, with all ODE discovery methods using a restricted feature library of LINSITE =
{1, x0, x1, x

2
0, x0x1, x

2
1}. We quote 95% confidence intervals with each value, and all metrics are averaged over

ten random seed runs. Each PKPD underlying pharmacological model is simulated with different layers of BSV
(table 2) for A-D. Our contribution is shaded below.

Method eq. (5).A eq. (5).B eq. (5).C eq. (5).D eq. (6).A eq. (6).B eq. (6).C eq. (6).D Cancer PKPD

LT
E

MSM 0.99±8.37e-17 0.99±0.00 0.97±8.37e-17 2.09±0.00 2.55±0.13 2.55±0.13 2.06±0.16 2.11±0.04 2.30±0.12
RMSN 1.92±0.24 1.94±0.23 1.68±0.19 1.91±0.18 1.23±0.15 1.25±0.15 1.10±0.18 1.10±0.11 1.04±0.17

CRN 1.05±0.10 1.05±0.10 0.82±0.09 1.98±0.14 1.05±0.03 1.05±0.03 1.03±0.08 1.03±0.10 0.92±0.08
G-Net 0.91±0.20 0.91±0.20 0.72±0.14 0.97±0.15 1.33±0.27 1.34±0.27 1.02±0.11 1.25±0.15 1.22±0.14

CT 0.90±0.18 0.90±0.18 0.75±0.14 1.00±0.14 1.29±0.07 1.29±0.10 1.03±0.11 1.14±0.10 1.07±0.07

O
D

E A-SINDy 0.11±1.93e-17 0.11±1.93e-17 0.12±1.93e-17 0.13±0.00 0.90±0.00 0.90±1.54e-16 0.82±0.00 0.85±1.54e-16 1.71±0.00
INSITE 0.02 ±0.00 0.03 ±0.00 0.04 ±0.00 0.04 ±0.00 0.67 ±0.00 0.89 ±0.00 0.66 ±0.00 0.74 ±0.00 1.29 ±0.00

Table 28: Counterfactual normalized RMSE, for 6-step ahead prediction of the benchmarks on each synthetic
dataset detailed in appendix F, with all ODE discovery methods using a restricted feature library of LINSITE =
{1, x0, x1, x

2
0, x0x1, x

2
1, x

3
0, x

2
0x1, x0x

2
1, x

3
1}. We quote 95% confidence intervals with each value, and all

metrics are averaged over ten random seed runs. Each PKPD underlying pharmacological model is simulated
with different layers of BSV (table 2) for A-D. Our contribution is shaded below.

Method eq. (5).A eq. (5).B eq. (5).C eq. (5).D eq. (6).A eq. (6).B eq. (6).C eq. (6).D Cancer PKPD

LT
E

MSM 0.99±8.37e-17 0.99±0.00 0.97±8.37e-17 2.09±0.00 2.55±0.13 2.55±0.13 2.06±0.16 2.11±0.04 2.30±0.12
RMSN 1.92±0.24 1.94±0.23 1.68±0.19 1.91±0.18 1.23±0.15 1.25±0.15 1.10±0.18 1.10±0.11 1.04±0.17

CRN 1.05±0.10 1.05±0.10 0.82±0.09 1.98±0.14 1.05±0.03 1.05±0.03 1.03±0.08 1.03±0.10 0.92±0.08
G-Net 0.91±0.20 0.91±0.20 0.72±0.14 0.97±0.15 1.33±0.27 1.34±0.27 1.02±0.11 1.25±0.15 1.22±0.14

CT 0.90±0.18 0.90±0.18 0.75±0.14 1.00±0.14 1.29±0.07 1.29±0.10 1.03±0.11 1.14±0.10 1.07±0.07

O
D

E A-SINDy 0.11±1.93e-17 0.11±1.93e-17 0.12±1.93e-17 0.13±0.00 0.90±1.54e-16 0.90±1.54e-16 0.80±0.00 0.96±1.54e-16 1.68±3.08e-16
INSITE 0.02 ±0.00 0.03 ±0.00 0.04 ±0.00 0.04 ±0.00 0.85 ±1.54e-16 0.85 ±0.00 0.75 ±0.00 0.70 ±0.00 1.00 ±1.54e-16
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K.7 INSITE ALSO EMPIRICALLY WORKS FOR IRREGULARLY SAMPLED DATA

INSITE also supports irregularly sampled time series data, as its underlying ODE discovery method
of SINDy supports discovering ODEs from irregularly sampled time series data (Brunton et al.,
2016; Goyal & Benner, 2022). We further empirically verify this by re-running SINDy and INSITE
across all datasets, now with the irregularly sampled datasets, where we randomly sub-sampled
irregularly, excluding 10% of the original observations along the time dimension. The subsequent
results, conducted across ten random seeds, are outlined in table table 29 below. We observe that
INSITE and SINDy still achieve good performance (hence low prediction error).

Table 29: Counterfactual normalized RMSE, for 6-step ahead prediction of the benchmarks on each synthetic
dataset detailed in appendix F. We quote 95% confidence intervals with each value, and all metrics are averaged
over ten random seed runs. Datasets are sub-sampled irregularly, excluding 10% of the original observations
along the time dimension. Each PKPD underlying pharmacological model is simulated with different layers of
BSV (table 2) for A-D. Our contribution is shaded below.

Method eq. (5).A eq. (5).B eq. (5).C eq. (5).D eq. (6).A eq. (6).B eq. (6).C eq. (6).D Cancer PKPD

O
D

E A-SINDy 0.11±1.93e-17 0.11±1.93e-17 0.12±1.93e-17 0.13±0.00 0.90±1.54e-16 0.90±1.54e-16 0.80±0.00 0.96±1.54e-16 1.68±3.08e-16
INSITE 0.02 ±0.00 0.03 ±0.00 0.04 ±0.00 0.04 ±0.00 0.85 ±1.54e-16 0.85 ±0.00 0.75 ±0.00 0.70 ±0.00 1.00 ±1.54e-16

K.8 INSITE CAN ALSO WORK WITH MORE CHALLENGING OBSERVATION FUNCTIONS g(x)

Although the observation function g that describes the treatment outcome as a function of the
observed features is often prespecified by the user as it often models the outcome as one of the
features (g(x) = xj), e.g., the tumor volume, other more complex forms of g that are not prespecified
are also of interest. To investigate whether INSITE can work under these more challenging settings
of having g be a non-linear function, we empirically investigated this by implementing three more
challenging forms of g(x) representing more complex settings. These are, (1) an exponential function
g(x) = exp(xj) that often models rapid changes or growth, commonly found in many biological and
economic systems (Johnson et al., 2019), (2) a quadratic function g(x) = x2

j that models a non-linear
relationship in systems (Gasull et al., 2004), and (3) a trigonometric function g(x) = sin(xj) that
often models periodic components within oscillatory dynamics, which are commonly found in natural
and engineering systems (Datta & Mohan, 1995). For each of these new observation functions
we re-ran SINDy and INSITE across all datasets, conducted across five random seeds, with the
results tabulated in table 30 below. We observe that INSITE and SINDy can still achieve acceptable
performance. To implement this experimentally, before applying the observation function after
sampling the dataset initially, we normalized the dataset using a min-max scaler (normalizer) so the
min-max was from 0 to 1, applied g(x) then un-normalized to return the min-max back to the original
range of the dataset—we did to help numerical stability, and such a normalization step is common
when pre-processing datasets.

Table 30: Counterfactual normalized RMSE, for 6-step ahead prediction of the benchmarks on each synthetic
dataset detailed in appendix F. We quote 95% confidence intervals with each value, and all metrics are averaged
over five random seed runs. We modify the observation function g(x), to be one of the following g(x) =
{xj , exp(xj), x

2
j , sin(xj)}. Each PKPD underlying pharmacological model is simulated with different layers

of BSV (table 2) for A-D. Our contribution is shaded below.

g(x) Method eq. (5).A eq. (5).B eq. (5).C eq. (5).D eq. (6).A eq. (6).B eq. (6).C eq. (6).D Cancer PKPD

x
A-SINDy 0.11±0.00 0.11±0.00 0.13±0.00 0.15±0.00 1.46±0.00 1.47±0.00 1.40±0.00 1.56±0.00 1.29±0.00

INSITE 0.02 ±0.00 0.03 ±0.00 0.04 ±0.00 0.05 ±0.00 0.96 ±0.00 0.96 ±0.00 0.82 ±1.54e-
16

0.90 ±0.00 0.79 ±0.00

exp(x)
A-SINDy 0.75±0.02 0.75±0.02 0.74±0.03 0.76±0.06 0.76 ±0.34 0.76 ±0.34 1.21 ±1.34 1.02 ±0.57 0.94 ±0.20

INSITE 0.59 ±0.03 0.59 ±0.02 0.61 ±0.02 0.62 ±0.05 0.67 ±0.30 0.68 ±0.32 1.08 ±1.31 0.90 ±0.59 0.78 ±0.13

x2 A-SINDy 0.10±5.85e-03 0.12±3.50e-03 0.12±3.63e-03 0.12±0.01 1.16 ±1.03 1.15 ±1.03 2.11 ±3.58 1.69 ±2.02 0.57 ±0.10
INSITE 0.03 ±1.98e-

03
0.09 ±2.67e-
03

0.09 ±2.40e-
03

0.09 ±6.26e-
03

1.12 ±1.04 1.11 ±1.04 2.04 ±3.57 1.63 ±2.03 0.52 ±0.08

sin(x)
A-SINDy 2.42±0.07 2.42±0.07 2.31±0.07 2.42 ±0.40 1.62 ±0.43 1.62 ±0.43 2.30 ±1.86 1.99 ±0.69 2.00 ±0.46

INSITE 2.09 ±0.10 2.09 ±0.10 2.06 ±0.08 2.22 ±0.25 1.46 ±0.36 1.41 ±0.42 1.96 ±1.78 1.72 ±0.76 1.59 ±0.29
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L RECONCILING ASSUMPTIONS IN TABLE 1

Let us discuss in detail how the assumptions set for treatment effects (assum. 2.1 to 2.3) and ODE
discovery (assum. 3.1 to 3.3) compare as reported in table 1 in section 4.

existence & uniqueness (assum. 3.1) overlap (assum. 2.2) and
functional spaces (assum. 3.3) overlap (assum. 2.2).
These assumptions do not map one-to-one. However, they do serve a similar purpose. Essentially,
overlap allows us to assume that there is always a very similar sample (in terms of covariates), such
that we have access to a full range of potential outcomes such that we can estimate eq. (1) for every
treatment and covariates. When violated, Gelman & Hill (2006) pointed out that one has to rely much
more on correct model specification, i.e., rather than assuming overlap, one may resort to the correct
model specification instead. Assum. 3.1 and 3.3 tell us exactly this: the former assumes that there
exists one discoverable function (i.e., one that can be correctly specified), while the latter tells us
that the correct function is comprised of the token set that is provided to the ODE discovery method.
Combined, these assumptions should result in a correctly specified model, which can then be used to
relax an overlap assumption.

observability (assum. 3.2) consistency (assum. 2.1) and
observability (assum. 3.2) overlap (assum. 2.3).
While the previous assumptions did not map one-to-one, we find that assum. 3.2 does map one-to-one
with assum. 2.1 and 2.3. With eq. (3) we combine covariates, (potential) outcomes and treatments
into one dynamical system. Given this, assum. 3.2 states that every variable of the complete ODE
is observed in the dataset. These variables include the potential outcomes (which corresponds to
assum. 2.1) as well as all the covariates (corresponding to assum. 2.3). One could make the argument
that assum. 3.2 is even stricter than combining assum. 2.1 and 2.3 as the latter does not mention
observing treatment indicators. While there is work on missingness in treatment indicators (such as
(Kuzmanovic et al., 2023)) it is still an exception to the rule.

M SCALE OF THE OUTCOMES

In the following Table 31, we provide the scale of outcomes for each of the datasets used in all
experiments.

Table 31: Scale of outcomes for each of the datasets used in all experiments.

Dataset mean std min 25% 50% 75% max

Cancer PKPD 6.93553 49.099786 0.0 0.000263 0.011018 0.179058 1150.34651
Eq. (5).A 5.225302 7.873385 0.006063 0.48826 1.723761 6.418705 49.480554
Eq. (5).B 5.225425 7.873301 -0.00044 0.489809 1.726515 6.415482 49.481121
Eq. (5).C 4.376515 7.459998 -0.010424 0.232287 1.039811 4.889878 49.481121
Eq. (5).D 4.992425 8.127416 -0.012978 0.300557 1.308329 5.801108 49.848292
Eq. (6).A 7.772205 53.479708 0.0 0.000157 0.012505 0.226499 1144.486013
Eq. (6).B 7.772162 53.479744 -0.034542 0.001075 0.016917 0.22768 1144.490737
Eq. (6).C 7.31387 51.156823 -0.034717 0.000713 0.015301 0.189101 1150.336353
Eq. (6).D 6.935527 49.099739 -0.034994 0.001075 0.01645 0.178607 1150.334351

N HOW TO CHOOSE AN ODE DISCOVERY METHOD

In the following, we first explain how Sparse Identification of Nonlinear Dynamics (SINDy) (Brunton
et al., 2016) works and the necessary assumptions it imposes, then second, a discussion on alternative
ODE discovery methods and how to choose a suitable one for a given problem setting.

Sparse Identification of Nonlinear Dynamics (SINDy) (Brunton et al., 2016), a data-driven frame-
work that aims to discover the governing dynamical system equations directly from time-series data.
The algorithm works by iteratively performing sparse regression on a library of candidate functions
to identify the sparsest yet most accurate representation of the dynamical system.
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SINDy makes an explicit sparse assumption that the dynamics are governed by only a few important
terms so that the discovered equation is sparse in the space of possible functions. Such sparse
parsimonious ODEs balance accuracy with model complexity, which aids in avoiding overfitting.
SINDy considers a simpler problem of modelling

dx(t)

dt
= ẋ(t) = f(x(t)), (13)

where the function f is an equation with a few numbers of terms, that is a sparse equation in the
space of possible functions. SINDy uses sparse regression to identify the terms in f , which also helps
it mitigate noise. It collects trajectories and approximates their derivative ẋ(t) numerically, from
which it then iteratively solves eq. (13) through sparse regression, where it constructs a feature library
of candidate non-linear functions Θ(X), where X = [xT (t1),x

T (t2), . . . ,x
T (tm)]T . For example,

the candidate non-linear functions could consist of constant, trigonometric or polynomial terms:

Θ(X) =

 1 X XP2 XP3 · · · sin(X) cos(X) sin(2X) cos(2X) · · ·

 (14)

Given this feature library, we can then formulate sparse vectors of coefficients Ξ =
[ξ1 ξ2 · · · ξn] which determine which features are active:

Ẋ = Θ(X)Ξ (15)

Such a method is poorly suited for a large state dimension due to the factorial growth of Θ (Brunton
et al., 2016). Furthermore, such an approach relies on choosing the right coordinates and basis for the
best representation of the dynamics. Moreover, this also assumes that given the non-linear candidate
function library, we can recover an equation that linearly decomposes into these candidate functions.

Alternative ODE discovery methods. A range of alternative methods exist, including symbolic
regression (Schmidt & Lipson, 2009) and other ODE discovery methods that better handle noise,
such as WSINDy (Messenger & Bortz, 2021).

Symbolic Regression. It can similarly discover an underlying ODE, however, it performs combinato-
rial search (Schmidt & Lipson, 2009), which can be slower; however, it can discover more non-linear
relationships amongst the candidate library terms, such as one feature divided by another.

Feature Learning Methods in ODE Discovery. Feature learning methods, particularly those
employing neural networks like Recurrent Neural Networks (RNNs) and Long Short-Term Memory
(LSTM) networks, offer a data-driven approach for ODE discovery. These methods automatically
extract relevant features from time-series data, adapting to complex dynamics without predefined
candidate functions (Lechner & Hasani, 2020).

Unlike Sparse Identification of Nonlinear Dynamics (SINDy), which uses a predetermined library
of functions, feature learning methods learn these features directly from data, offering flexibility in
modelling non-linear relationships in systems with unknown or complicated dynamics.

However, the use of neural networks in ODE discovery often leads to models that lack interpretability
and require substantial data for effective training, posing challenges in extracting physical laws or
governing equations.

Considerations for Use. The choice between feature learning methods and others like SINDy or
Symbolic Regression depends on system complexity, data availability, and interpretability needs.
Feature learning is advantageous in complex, data-rich environments but less so in scenarios where
interpretability and simplicity are priorities. When employing methods such as SINDy, a user could
start with a feature library of polynomial terms and slowly increase the polynomial order till the
empirical generalization accuracy was suitable for a given treatment effect setting. Other suitable
terms commonly found in PKPD models include exp, log terms and non-linear combinations of these
terms (Geng et al., 2017).

O NUMERICAL SOLVER AND PARAMETERS

The numerical method (solver) used for INSITE and the other ODE discovery methods (e.g., SINDy)
is that of the Euler method, which is a first-order numerical algorithm for solving ODEs given
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an initial value. This uses a time step size of δt = 0.166 seconds, which was sufficient for our
experiments. This numerical method is used with the same settings across all methods, including
INSITE. We kindly note that first, the ODE discovery methods discover an ODE, and then at inference
time, when we wish to determine future values, we forward simulate the initial observed value using
the discovered ODE and this Euler numerical solver to estimate future values at future times. We also
kindly highlight further implementation details can be found in appendices appendices F, G and I.
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