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ABSTRACT

Knowledge editing aims to update outdated information in Large Language Mod-
els (LLMs). A representative line of study is the locate-then-edit methods, which
typically employ causal tracing localization to identify the modules responsible
for recalling factual knowledge about entities. However, we find that these meth-
ods are often sensitive only to changes in the subject entity, leaving them less
effective at adapting to changes in relations. This limitation results in poor editing
locality, which can lead to the persistence of irrelevant or inaccurate facts, ulti-
mately compromising the reliability of LLMs. We believe this issue arises from
the insufficient precision of knowledge localization methods. To address this, we
propose a Fine-grained Neuron-level Knowledge Editing (FiNE) method that en-
hances editing locality without affecting overall success rates. By precisely iden-
tifying and modifying specific neurons within feed-forward networks, FiNE sig-
nificantly improves knowledge localization and editing. Quantitative experiments
demonstrate that FiNE efficiently achieves better overall performance compared to
existing techniques, providing new insights into the localization and modification
of knowledge within LLMs. The source code will be publicly released.

1 INTRODUCTION

Recently, various methods for the precise editing of outdated or wrong knowledge within Large
Language Models (LLMs) (Touvron et al., 2023a;b; Jiang et al., 2024; Dubey et al., 2024) have
been proposed (Mazzia et al., 2023; Yao et al., 2023; Wang et al., 2023). These methods include
memory-based editors (Mitchell et al., 2022b; Zheng et al., 2023; Hartvigsen et al., 2024; Yu et al.,
2024), meta-learning approaches (De Cao et al., 2021; Mitchell et al., 2022a; Hase et al., 2023b; Han
et al., 2023), and locate-then-edit methods (Dai et al., 2022; Meng et al., 2022; 2023; Li et al., 2024;
Gupta et al., 2024). This paper primarily focuses on locate-then-edit methods, which have emerged
as a promising and mainstream approach for knowledge editing in LLMs. A key representative of
these approaches is ROME (Meng et al., 2022), which employs causal tracing to identify specific
modules responsible for recalling facts about subject entities. The success of ROME has inspired
subsequent methods, e.g., MEMIT (Meng et al., 2023) and PMET (Li et al., 2024) that utilize causal
tracing, establishing its role as a foundational technique in the field. Locate-then-edit methods offer
critical insights into the precise storage locations of knowledge, enabling targeted modifications that
enhance the reliability and accuracy of outputs from LLMs. These methods improve the accuracy of
knowledge modifications and allow for a focused approach to specific pieces of information, which
is essential for developing effective and reliable knowledge editing techniques.

However, Hase et al. (2023a) question the validity of this localization method, noting that causal trac-
ing offers limited insight into which Feed-Forward Network (FFN) layer should be edited to update
existing knowledge. The ineffectiveness of localization may cause the editing to be predominantly
subject-driven. One possible evidence is that locate-then-edit methods overly rely on the subject en-
tity rather than the relation (Wei et al., 2024). When we change the relation in locality testing, the
post-edited model fails to produce correct answer and instead continues to generate the target object
(see Figure 1(d)). Furthermore, we conduct a pilot quantitative experiment on WikiDatacounterfact
dataset in KnowEdit (Zhang et al., 2024) benchmark, and evaluate the over-editing rates and un-
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Figure 1: Previous locate-then-edit approaches (e.g., ROME and MEMIT) perform poorly in locality
testing when changing the relation. (a) LLM makes a response “Tokyo” before knowledge editing.
(b) We apply knowledge editing methods to edit the answer from “Tokyo” to “Los Angeles”. (c)
After editing, the model responses the target answer. (d) We then evaluate the post-edited model’s
locality and find that previous methods fail when changing the relation (i.e., outputting the target
word even with unrelated inputs). (e) We also conduct quantitative experiments for the over-editing
rate (lower values are better) and unchanging rate (higher values are better).

changing rates1. As shown in Figure 1(e), both ROME and MEMIT exhibit high over-editing rates
and low unchanging rates, indicating causal tracing encounters issues during localization by focus-
ing excessively on the subject and neglecting overall knowledge. Due to data construction issues
with previously commonly used datasets, such as COUNTERFACT (Meng et al., 2022), these prob-
lems have not been adequately exposed. These observations collectively indicate the localization of
existing methods has significant flaws and lacks sufficient precision for guiding knowledge editing.

This motivates us to investigate more precise localization methods. Inspired by previous neuron-level
analyses (Dai et al., 2022; Wang et al., 2022; Schwettmann et al., 2023; Pan et al., 2024), we propose
a Fine-grained Neuron-level Knowledge Editing (FiNE) technique for a more precise localization of
memories within LLMs. We first identify neurons in FFNs that are highly relevant to the knowledge
to be edited and then update model weights at the locations of these neurons. Our neuron-level
localization method provides a more finer-grained indication of the knowledge location compared
to causal tracing and effectively avoids the problem of excessive focus on the subject. Furthermore,
this approach benefits from fine-grained modifications to LLMs, resulting in a more efficient method
that saves time and memory usage. Experiments on GPT-J (Wang & Komatsuzaki, 2021), LLaMA-
2 (Touvron et al., 2023b), and LLaMA-3 (Dubey et al., 2024) demonstrate that FiNE significantly
outperforms existing locate-then-edit methods based on causal tracing, especially in editing locality.

2 RELATED WORK

2.1 MODEL EDITING TECHNIQUES

Memory-based For memory-based editors, some specific modules store the edit knowledge are
used for post-edit response. SERAC (Mitchell et al., 2022b) stores edits in an explicit memory
and learns to reason over them to modulate the base model’s predictions as needed. Zheng et al.
(2023) explores in-context knowledge editing (IKE), a method without any gradient and parameter
updating. GRACE (Hartvigsen et al., 2024) is a lifelong model editing method that implements
spot-fixes on streaming errors of a deployed model, ensuring minimal impact on unrelated inputs.
Recently, Yu et al. (2024) proposes MELO, a novel method that alters the behavior of LLMs by
dynamically activating certain LoRA blocks according to the index built in an inner vector database.

Meta-learning Based on hypernetwork, several meta-learning methods have been proposed to edit
models. De Cao et al. (2021) presents KnowledgeEditor (KE), a method which can be used to edit

1See Appendix B for experimental setup details.
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knowledge and, fix bugs or unexpected predictions without the need for expensive re-training or
fine-tuning. MEND (Mitchell et al., 2022a) introduces a collection of small auxiliary editing net-
works that use a single desired input-output pair to make fast, local edits to a pre-trained model’s
behavior. Hase et al. (2023b) proposes SLAG, a training objective for sequential, local, and gener-
alizing updates with a better performance. Han et al. (2023) proposes a novel divide-and-conquer
framework, drawing on dynamic inference to break the zero-sum phenomenon in multiple edits.

Locate-then-edit Although prior research has explored knowledge storage mechanisms, the precise
methods by which LLMs retain knowledge remain unclear. Studies have indicated that knowledge is
often embedded within FFNs (Geva et al., 2021; 2022; Dai et al., 2022). Building on these, locate-
then-edit methods have gained traction by first locating specific regions of knowledge storage and
then executing targeted editing. A leading example is ROME, which innovatively employs causal
tracing to pinpoint parameters intended for edits and directly updates them (Meng et al., 2022). This
foundational work has paved the way for additional methods such as MEMIT (Meng et al., 2023),
PMET (Li et al., 2024), and EMMET (Gupta et al., 2024), enhancing the capacity to incorporate
and modify larger quantities of knowledge. The advantages of locate-then-edit methods include
increased precision in knowledge modification and the ability to selectively edit specific information,
making them a vital advancement in the ongoing development of more effective and reliable LLMs.

2.2 NEURON ANALYSES IN TRANSFORMER-BASED MODELS

Transformer (Vaswani et al., 2017) is one of the most successful architectures and there has been
increasing interest in interpreting and analyzing the internal mechanisms of transformer-based mod-
els. Previous research has aimed to characterize the types of information encoded in individual neu-
rons. Dai et al. (2022) explores the identification of “knowledge neurons”, which encode specific
commonsense knowledge acquired during pre-training. Additionally, Wang et al. (2022) presents a
technique for identifying “skill neurons” in pre-trained transformer-based language models, which
are crucial for specific tasks. Schwettmann et al. (2023) explains how LLMs convert visual represen-
tations into corresponding texts by introducing a procedure for identifying “multimodal neurons”.
More recently, Pan et al. (2024) proposes a novel method for finding “multi-modal neurons”, which
elucidates how multi-modal LLMs bridge visual and textual concepts for captioning.

3 PRELIMINARY

Neurons in LLMs A decoder-only Transformer-based (Vaswani et al., 2017) LLM (denoted as
M) typically consists of stacked self-attention and feed-forward layers. Each layer first performs
multi-head self-attention and then applies a position-wise FFN. Residual connections and layer nor-
malization are employed around each sub-layer. Following previous works (Dai et al., 2022; Wang
et al., 2022; Schwettmann et al., 2023; Pan et al., 2024), we investigate neurons within FFNs, as
FFNs carry abundant information and knowledge. We denote the hidden states at layer l as hl, FFN
output as ml, and self-attention output as al, respectively. The hidden states can be written as:

hl = hl−1 +ml + al, (1)

where ml = Wl
out σ

(
Wl

inγ(x
l)
)
, (2)

h0 is the embedding vector of input, σ is an activation function, γ is layernorm, Wl
in is the first

linear layer and Wl
out is the second linear layer in the FFN, and xl represents the FFN input. For

simplicity, let ql = σ
(
Wl

inγ(x
l)
)
. We regard ql

i, the i-th element of ql, as the activation of the i-th
neuron on input xl at layer l. Each neuron in LLMs can be denoted as (Ll.Ui).

Knowledge editing Extensive training on diverse datasets has endowed LLMs with a vast repository
of knowledge (Brown, 2020; Chowdhery et al., 2023; Schott et al., 2023). Formally, knowledge in
LLMs can be denoted as triples like (subject s, relation r, object o) (Meng et al., 2022; 2023), such as
(s = the Olympic Games, r = next host city, o = Tokyo). We define p(·) as a function that converts
knowledge triples into prompt texts, for example, p(the Olympic Games, next host city) corresponds
to “The next host city of the Olympic Games is” and p(the Olympic Games, next host city,Tokyo)
corresponds to “The next host city of the Olympic Games is Tokyo”. Let (s, r, o∗) represents the
updated knowledge. After editing, when the edited LLM (denoted as M′) is given the input p(s, r),
it should return o∗ instead of o. For instance, if o∗ is “Los Angeles”, the edited model should respond
with “The next host city of the Olympic Games is Los Angeles”.

3
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Evaluation for knowledge editing To effectively evaluate knowledge editing methods. Zhang
et al. (2024) presents four essential criteria: Edit Success, Portability, Locality, and Fluency. Edit
Success measures whether the post-edited model generates the expected output, which computes
the accuracy of the outputs by E(sj ,rj ,o∗j )∼Dedit1{argmaxy PM′ [y|p(sj , rj)] = o∗j}. Portabil-
ity evaluates how well the model can address the implications of an edit for real-world appli-
cations, which is computed by E(sj ,rj ,o∗j )∼Dport1{argmaxy PM′ [y|p(sj , rj)] = o∗j}. For exam-
ple, when asked “Is the next Olympic Games hosted in Tokyo?” the post-edited model should
answer “No”. Locality examines whether an editing modifies the knowledge locally without in-
fluencing other unrelated knowledge, e.g., when asked, “How often are the Olympic Games
held?” the model should still correctly respond with “Every 4 years”. Locality can be calcu-
lated as E(sj ,rj)∼Dloc1{argmaxy PM′ [y|p(sj , rj)] = argmaxy PM [y|p(sj , rj)]}. Fluency mea-
sures the model’s generation ability by calculating a weighted average of bi-gram and tri-gram en-
tropies (Zhang et al., 2018), denoted by −

∑
k f(k) log2 f(k), where f( · ) is n-gram frequency

distribution. A lower Fluency indicates a higher frequency of repeated words, signifying lower qual-
ity responses. These metrics offer a comprehensive assessment of methods’ effectiveness, capturing
various dimensions of performance and ensuring a robust analysis of the editing process.

4 METHODOLOGY

FiNE provides precise localization of knowledge within LLMs through a two-step process. In the
first step, which differs significantly from causal tracing localization, it identifies key neurons in FFN
layers that are closely associated with the knowledge to be edited. Subsequently, it updates model
weights at these specific neuron locations. We begin by describing the method for locating neurons
within LLMs (§ 4.1) and subsequently outline the process for updating the knowledge (§ 4.2). We
also apply a technique to enhance the stability of knowledge editing (§ 4.3).

4.1 LOCATING NEURONS IN LLMS

Following previous work (Dai et al., 2022; Wang et al., 2022; Schwettmann et al., 2023; Pan et al.,
2024) on selecting neurons in Transformer-based models, we present a neuron localization method
for knowledge editing. Specifically, we hypothesize that a knowledge (sj , rj , oj) is stored in specific
neurons, which are activated when LLMs receive input (sj , rj), exhibiting a tendency to produce
the output oj . Therefore, our objective is to quantify contribution of each neuron to the current
output and locate those neurons with higher impact. Following Pan et al. (2024), who calculates
contribution scores in multi-modal LLMs, we similarly compute contribution scores within LLMs.

For each token t in the output oj , we compute contribution score for each neuron ui at layer l as:

c(i,l,t) = ql
i,−1 ·

(
WuW

l
out

)
t,i

, (3)

where ql
i,−1 is the activation output at the last token for neuron ui at layer l, (·)t,i represents the t-th

row and i-th column of the input matrix, and Wu is the unembedding matrix.

Here we regard WuW
l
out ∈ Rv×dm as a projection function projecting from activations of the

neurons to distribution of the vocabulary, where dm is the intermediate size and v is the vocabu-
lary size and regard ql

i,−1 as a coefficient of the projection, respectively. This projection explicitly
demonstrates the varying levels of focus that different neurons pay to different tokens, enabling us
to calculate the contribution score. We provide detailed derivation in Appendix A.

Algorithm 1: Neuron Localization
Data: Knowledge (sj , rj , oj), LLMM
Result: Neuron set Uj that carries knowledge

(sj , rj , oj)
1 Initialize Uj = ∅;
2 for each token t in oj do
3 Compute contribution of each neuron by Eqn. 3;
4 uk ←

select top-k neurons by the descending order;
5 Uj ← Uj ∪ {uk};
6 end

After quantifying the contribution of each neuron,
we rank all scores of neurons across all layers by
the descending order and pick out top-k neurons,
denoted as uk. These neurons are regarded as car-
riers of knowledge (sj , rj , oj) and make signifi-
cant contributions to the output oj . We follow the
same procedure to locate neurons for each token t

in oj , and use the set Uj =
{
uk
1 , u

k
2 , · · · , uk

|oj |

}
to represent neurons of oj , where |oj | means the
token length of oj . Algorithm 1 summarizes the
entire process of neuron localization.
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4.2 UPDATING KNOWLEDGE

We locate key neurons Uj of oj as described above, and then modify the model weights correspond-
ing to the locations of selected neurons to update the knowledge. For each neuron u ∈ Uj , we assume
that u is the i-th neuron at layer l. Then we compute a vector z ∈ Rdh and add it to the i-th row
of matrix Wl

out for updating, where dh is the hidden size. If we stack vector z for each neuron u as
Zj = [z1 | z2 | · · · | z|Uj |], our objective can be succinctly represented as learning an optimized Zj

based on neurons Uj , which is then applied to the model M, resulting in a post-edited model M′.
Following Meng et al. (2022), the objective L(Zj) consists of editing loss Ledit(Zj), KL divergence
LKL(Zj) and repetition penalty loss Lpen(Zj). The editing loss utilizes negative log-likelihood to
maximize the probability of the target o∗j :

Ledit(Zj) = − logPM′
[
o∗j | p(sj , rj)

]
. (4)

During the editing process, we aim to avoid altering unrelated knowledge or impacting the model’s
language capabilities. To this end, we add a KL divergence constraint of prompt that contains the
subject and relation to the model, which is calculated by:

LKL(Zj) = DKL (P′
M′ [ y | p(sj , rj) ] ∥ P′

M [ y | p(sj , rj) ]) , (5)

where P′ [·] represents the probability distribution of output from position 1 to position ℓp − 1,
assuming the length of the input prompt is ℓp, which is different from P [·].
Except KL divergence, to prevent the post-edited model from generating the editing target o∗j repeat-
edly, we also introduce a repetition penalty constraint. At the last position of the complete prompt
p(sj , rj , o

∗
j ), we use negative log-likelihood to maximize the probability of not generating o∗j :

Lpen(Zj) = − log
(
1− PM′

[
o∗j | p(sj , rj , o∗j )

])
. (6)

Finally, we compute a weighted sum of editing loss, KL divergence and repetition penalty loss:

L(Zj) = Ledit(Zj) + α · LKL(Zj) + β · Lpen(Zj), (7)

where α and β are hyperparameters.

4.3 LAYER FREEZING

In language models, the later layers are closely tied to the model’s language capabilities (Geva et al.,
2021; Dai et al., 2022; Wang et al., 2022; Pan et al., 2024). Arbitrary modifications to these later
layers may impair model’s linguistic abilities and result in responses with lower quality. To ensure
the stability of LLMs, we implement layer freezing (LF) in our method. Specifically, for a LLM
with L layers, when locating neurons, we exclude the last lf layers, focusing only on the first L− lf
layers. This ensures that no modifications are made to the last lf layers during the editing process.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Models and datasets We conduct experiments on the KnowEdit (Zhang et al., 2024) benchmark
with GPT-J-6B (28 layers) (Wang & Komatsuzaki, 2021), LLaMA-2-7B (32 layers) (Touvron et al.,
2023b) and LLaMA-3-8B (32 layers) (Dubey et al., 2024). KnowEdit is an integrated benchmark
for evaluating various knowledge editing methods, which contains six datasets for different eval-
uation types. We select three datasets including knowledge insertion and knowledge modifica-
tion in our experiments: WikiDatacounterfact (Cohen et al., 2024), WikiDatarecent (Cohen et al.,
2024) and ZsRE (Levy et al., 2017). Notably, the locality evaluation in KnowEdit primarily fo-
cuses on changing the relation. The proportion of prompts where the subject changes in datasets
WikiDatacounterfact, WikiDatarecent and ZsRE is only 0.9%, 0.1%, and 0.0%, respectively.

Baselines We categorize baseline methods into three types of knowledge editing. The first cate-
gory consists of methods that directly modify model parameters, such as Fine-Tuning (FT) and
LoRA (Wu et al., 2023). The second category includes memory-based methods, for which we se-
lect In-context Knowledge Editing (IKE) (Zheng et al., 2023), which retrieves the most pertinent
demonstrations. The third category focuses on locate-then-edit methods, which are central to our

5
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Table 1: Editing results on WikiDatacounterfact. 95% confidence intervals are in parentheses. “KN
+ FiNE” represents applying FiNE to edit the neurons localized by KN. Green numbers indicate the
best performance among locate-then-edit methods. Grey numbers indicate invalid results2. Numbers
with underline indicate columnwise maxima for each model.

Method Edit Succ. ↑ Portability ↑ Locality ↑ Fluency ↑
SAA LGA RA RSA FA

GPT-J 21.5 (1.5) 21.7 (1.6) 14.8 (2.4) 18.6 (1.6) - - 612.3 (3.1)

FT 64.2 (1.6) 47.3 (2.0) 7.1 (1.9) 21.3 (2.9) 4.4 (0.6) 6.4 (1.3) 304.1 (7.6)
IKE 100.0 (0.0) 98.0 (0.8) 59.0 (6.1) 61.5 (4.3) 60.6 (1.3) 52.3 (3.1) -
LoRA 100.0 (0.0) 75.2 (1.9) 22.2 (3.1) 40.3 (2.8) 25.7 (1.6) 51.4 (2.8) 595.8 (4.1)

KN 18.1 (2.4) 17.9 (2.4) 10.8 (2.6) 18.5 (2.2) 80.2 (1.3) 80.6 (1.5) 580.0 (3.8)
+ FiNE 66.6 (1.7) 48.2 (2.3) 14.3 (2.8) 24.2 (2.2) 76.8 (1.2) 63.5 (2.4) 584.8 (3.5)

ROME 99.2 (0.5) 74.1 (2.2) 16.1 (2.6) 29.2 (2.4) 37.4 (1.3) 33.1 (2.6) 600.0 (3.6)
MEMIT 99.5 (0.5) 56.5 (2.5) 16.7 (2.6) 25.9 (2.1) 53.2 (1.4) 40.7 (2.8) 591.6 (4.3)
PMET 95.3 (0.9) 54.1 (2.6) 16.6 (2.6) 25.3 (2.1) 47.6 (1.5) 36.8 (2.8) 600.3 (3.6)
FiNE 99.8 (0.1) 90.6 (1.4) 17.5 (2.7) 37.4 (3.5) 84.2 (1.1) 54.2 (2.7) 545.7 (7.3)

LLaMA-2 27.0 (1.5) 27.8 (1.7) 26.1 (2.9) 26.2 (1.9) - - 583.3 (2.7)

FT 47.3 (1.8) 44.2 (1.9) 17.9 (2.3) 28.8 (2.0) 59.5 (1.3) 40.2 (2.7) 500.9 (6.8)
IKE 100.0 (0.0) 99.1 (0.5) 70.2 (5.1) 71.2 (3.8) 73.6 (1.1) 72.9 (2.5) -
LoRA 100.0 (0.0) 93.9 (1.0) 29.9 (3.1) 44.4 (3.1) 73.5 (1.2) 50.0 (2.7) 559.3 (5.1)

KN 21.3 (2.3) 21.8 (2.9) 16.9 (2.7) 24.6 (2.9) 73.7 (2.1) 68.7 (3.5) 561.4 (6.3)
+ FiNE 84.6 (1.5) 77.1 (1.9) 23.2 (3.0) 36.6 (3.2) 59.4 (1.4) 40.6 (2.9) 447.3 (10.2)

ROME 98.7 (0.6) 72.2 (2.2) 25.8 (2.8) 35.1 (2.4) 49.1 (1.2) 40.5 (2.7) 577.3 (3.3)
MEMIT 98.0 (0.7) 76.2 (2.1) 25.2 (2.8) 35.0 (2.5) 45.0 (1.3) 40.1 (2.8) 561.9 (4.6)
PMET 94.8 (1.0) 56.7 (2.5) 27.2 (3.0) 34.9 (2.4) 64.5 (1.4) 50.0 (2.8) 576.1 (3.4)
FiNE 99.9 (0.2) 89.8 (1.4) 28.8 (3.0) 41.5 (3.0) 92.6 (1.0) 65.0 (2.8) 542.3 (5.1)

LLaMA-3 23.1 (1.5) 23.1 (1.7) 21.7 (3.0) 22.8 (1.9) - - 607.1 (2.9)

FT 44.6 (1.9) 45.0 (2.0) 8.4 (1.7) 23.9 (2.2) 28.7 (1.3) 14.2 (2.0) 351.7 (9.8)
IKE 61.8 (1.5) 60.3 (1.8) 41.3 (5.2) 38.6 (3.3) 67.7 (1.2) 65.7 (2.6) -
LoRA 100.0 (0.0) 79.5 (1.8) 23.2 (2.9) 45.6 (3.3) 17.5 (1.2) 29.8 (2.5) 455.7 (11.2)

KN 17.1 (2.1) 18.1 (2.7) 14.9 (2.6) 19.2 (2.1) 82.6 (1.6) 87.6 (2.3) 593.7 (6.8)
+ FiNE 61.9 (1.8) 55.8 (2.5) 14.5 (2.6) 34.0 (2.3) 84.0 (1.5) 56.7 (2.5) 546.9 (7.3)

ROME 99.4 (0.4) 74.6 (2.2) 21.2 (2.7) 34.5 (2.5) 41.9 (1.2) 31.5 (2.6) 591.4 (4.1)
MEMIT 99.1 (0.5) 72.6 (2.3) 20.7 (2.7) 31.9 (2.5) 39.5 (1.3) 32.4 (2.7) 570.1 (6.3)
PMET 96.0 (1.0) 54.6 (2.5) 21.3 (2.8) 31.8 (2.4) 60.6 (1.4) 41.6 (2.9) 596.2 (3.5)
FiNE 100.0 (0.0) 89.6 (1.4) 22.4 (2.9) 38.3 (3.1) 90.5 (0.9) 63.0 (2.9) 567.1 (5.5)

study. Although Knowledge Neurons (KN) is also a neuron-level knowledge localization method, it
employs a significantly different technique than ours, selecting neurons via gradient-based attribu-
tions and modifying the corresponding FFN weights by adding scaled embedding vectors. Impor-
tantly, ROME (Meng et al., 2022), as a pioneer of causal tracing localization, has further advanced
the locate-then-edit methods and significantly influenced the field, while MEMIT (Meng et al.,
2023) has built upon this foundation with notable enhancements. PMET (Li et al., 2024) serves as
an improvement over MEMIT. Both ROME and MEMIT not only represent critical developments
but have also achieved substantial popularity, making them essential comparisons in our work.

Evaluation metrics As described in § 3, we adopt four evaluation metrics in our experiments: Edit
Success, Portability, Locality, and Fluency (Zhang et al., 2024). Portability contains three parts:
Subject Aliasing Accuracy (SAA), Logical Generalization Accuracy (LGA) and Reasoning Accuracy
(RA). Subject aliasing replaces the question’s subject with an alias or synonym to evaluate perfor-
mance on other descriptions of the subject. Logical generalizations are changes that are semantically
related to the modified fact and expected to change by the edit. Reasoning examines the reasoning
ability with changed facts. Locality consists of two parts: Forgetfulness Accuracy (FA) and Relation
Specificity Accuracy (RSA). Forgetfulness evaluates whether the post-edited model retains the orig-
inal objects in one-to-many relationships, whereas relation specificity evaluates whether any other
attributes of the subject, which have been previously updated remain unaltered.

5.2 QUANTITATIVE RESULTS

In Table 1, we show quantitative editing results on WikiDatacounterfact. Our approach demonstrates
the best Edit Success, Portability and Locality among various locate-then-edit methods. We observe

2Locality results with low Edit Success are not considered valid, as the locality is inherently 100% when no
edit is effectively applied.
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Table 2: Ablation results of removing neuron localization (Loc.) and layer freezing (LF) on
WikiDatacounterfact. 95% confidence intervals are in parentheses. Numbers with bold indicate
columnwise maxima for each model.

Method Edit Succ. ↑ Portability ↑ Locality ↑ Fluency ↑
SAA LGA RA RSA FA

GPT-J 21.5 (1.5) 21.7 (1.6) 14.8 (2.4) 18.6 (1.6) - - 612.3 (3.1)
ROME 99.2 (0.5) 74.1 (2.2) 16.1 (2.6) 29.2 (2.4) 37.4 (1.3) 33.1 (2.6) 600.0 (3.6)

w/o Loc. 96.2 (1.1) 68.6 (2.4) 15.1 (2.5) 27.0 (2.5) 49.1 (1.6) 35.7 (2.5) 515.5 (10.4)

FiNE 99.8 (0.1) 90.6 (1.4) 17.5 (2.7) 37.4 (3.4) 84.2 (1.1) 54.2 (2.7) 545.7 (7.3)
w/o Loc. 85.6 (2.1) 60.8 (2.5) 16.0 (2.6) 27.9 (2.5) 85.0 (1.0) 63.8 (2.9) 589.1 (4.4)
w/o LF 99.7 (0.2) 92.4 (1.3) 15.8 (2.5) 38.6 (3.6) 78.4 (1.2) 47.0 (2.7) 451.3 (10.7)

LLaMA-2 27.0 (1.5) 27.8 (1.7) 26.1 (2.9) 26.2 (1.9) - - 583.3 (2.7)
ROME 98.7 (0.6) 72.2 (2.2) 25.8 (2.8) 35.1 (2.4) 49.1 (1.2) 40.5 (2.7) 577.3 (3.3)

w/o Loc. 96.8 (1.0) 70.2 (2.3) 26.3 (2.8) 32.7 (2.3) 62.9 (1.6) 45.5 (2.7) 517.1 (8.2)

FiNE 99.9 (0.2) 89.8 (1.4) 28.8 (3.0) 41.5 (3.0) 92.6 (1.0) 65.0 (2.8) 547.6 (6.9)
w/o Loc. 98.9 (0.6) 73.9 (2.1) 25.3 (2.7) 34.6 (2.5) 89.4 (0.9) 72.8 (2.6) 560.6 (3.9)
w/o LF 99.3 (0.5) 89.9 (1.3) 23.3 (2.8) 41.4 (3.2) 75.5 (1.4) 51.7 (2.8) 407.9 (10.1)

LLaMA-3 23.1 (1.5) 23.1 (1.7) 21.7 (3.0) 22.8 (1.9) - - 607.1 (2.9)
ROME 99.4 (0.4) 74.6 (2.2) 21.2 (2.7) 34.5 (2.5) 41.9 (1.2) 31.5 (2.6) 591.4 (4.1)

w/o Loc. 96.1 (1.1) 72.6 (2.2) 20.5 (2.7) 31.8 (2.5) 55.7 (1.5) 39.8 (2.8) 534.6 (8.8)

FiNE 100.0 (0.0) 89.6 (1.4) 22.4 (2.9) 38.3 (3.0) 90.5 (0.9) 63.0 (2.9) 567.1 (5.5)
w/o Loc. 100.0 (0.0) 79.0 (2.1) 21.5 (2.7) 35.2 (2.8) 84.1 (1.0) 54.7 (2.9) 556.9 (6.4)
w/o LF 100.0 (0.0) 91.2 (1.3) 20.1 (2.8) 38.9 (3.3) 78.8 (1.2) 48.8 (2.7) 411.3 (10.6)

Table 3: Ablation results of restricting neuron localization to a single layer with LLaMA-2 on
WikiDatacounterfact. “Any” means no layer restriction. 95% confidence intervals are in parentheses.
Numbers with bold indicate columnwise maxima.

Method Layer Edit Succ. ↑ Portability ↑ Locality ↑ Fluency ↑
SAA LGA RA RSA FA

LLaMA-2 - 27.0 (1.5) 27.8 (1.7) 26.1 (2.9) 26.2 (1.9) - - 583.3 (2.7)
ROME 5 98.7 (0.6) 72.2 (2.2) 25.8 (2.8) 35.1 (2.4) 49.1 (1.2) 40.5 (2.7) 577.3 (3.3)

FiNE

5 99.0 (0.5) 73.7 (2.0) 28.0 (2.9) 35.4 (2.5) 80.2 (1.2) 64.1 (2.9) 570.5 (2.3)
10 100.0 (0.0) 80.3 (1.9) 29.1 (3.1) 37.1 (2.6) 85.7 (1.0) 67.6 (2.7) 556.4 (3.5)
15 100.0 (0.0) 86.9 (2.0) 29.3 (3.1) 39.8 (2.8) 90.7 (0.9) 70.4 (2.6) 549.6 (3.8)
20 100.0 (0.0) 87.3 (1.5) 29.0 (3.1) 40.6 (3.0) 92.9 (0.8) 68.6 (2.7) 541.5 (4.6)
25 100.0 (0.1) 85.8 (1.5) 27.1 (3.0) 39.0 (2.8) 95.4 (0.6) 72.9 (2.5) 556.3 (3.8)
Any 99.9 (0.2) 89.8 (1.4) 28.8 (3.0) 41.5 (3.0) 92.6 (1.0) 65.0 (2.8) 542.3 (5.1)

that previous locate-then-edit methods with causal tracing localization perform poorly when han-
dling similar but unrelated knowledge, exhibiting generally low Locality. To achieve better editing
results, we sacrifice some Fluency but without compromising the original model’s language capa-
bilities. Editing results on WikiDatarecent and ZsRE can be found in Appendix D.

5.3 ABLATION STUDY

In this section, we present ablation study to assess the impact of various components on the overall
performance of our method. Specifically, we first test the impact of removing neuron localization
and layer freezing on performance. Next, we investigate effects of restricting neuron localization
to a single layer and explore how varying number of selected neurons affects editing. Finally, we
examine results of removing KL divergence and repetition penalty constraints in the editing process.

Removing neuron localization and layer freezing. Since our approach also employs a locate-then-
edit methodology, it is essential to verify the effectiveness of the initial localization step. To this end,
we maintain the editing process unchanged and conduct experiments by replacing carefully selected
neurons with randomly selected ones. Table 2 lists ablation results. When neurons are selected at
random, both Edit Success and Portability demonstrate varying degrees of decline, particularly evi-
dent in SAA metric, suggesting that our chosen neurons are sensitive to the knowledge being edited.
In contrast, ROME experiences only a slight decrease in performance without localization, support-
ing the hypothesis that causal tracing is not essential. On the other hand, we assess the effectiveness
of layer freezing. As shown in Table 2, without layer freezing, the model’s language capabilities are
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Figure 2: Ablation results of varying the number of selected neurons with LLaMA-2 on
WikiDatacounterfact. The dotted line indicates LLaMA-2’s pre-edit performance.

Table 4: Ablation results of removing KL divergence and repetition penalty constraints with
LLaMA-2 on WikiDatacounterfact. 95% confidence intervals are in parentheses. Numbers with bold
indicate columnwise maxima.

Method Edit Succ. ↑ Portability ↑ Locality ↑ Fluency ↑
SAA LGA RA RSA FA

LLaMA-2 27.0 (1.5) 27.8 (1.7) 26.1 (2.9) 26.2 (1.9) - - 583.3 (2.7)
ROME 98.7 (0.6) 72.2 (2.2) 25.8 (2.8) 35.1 (2.4) 49.1 (1.2) 40.5 (2.7) 577.3 (3.3)

FiNE 99.9 (0.2) 89.8 (1.4) 28.8 (3.0) 41.5 (3.0) 92.6 (1.0) 65.0 (2.8) 547.6 (6.9)
w/o LKL 99.9 (0.2) 89.8 (1.4) 28.2 (3.0) 41.5 (3.0) 92.3 (1.0) 64.8 (2.8) 540.9 (5.2)
w/o Lpen 99.9 (0.2) 90.1 (1.3) 29.0 (3.0) 41.2 (3.0) 92.5 (1.0) 64.8 (2.8) 531.7 (6.0)

FiNE w/o LF 99.3 (0.5) 89.9 (1.3) 23.3 (2.8) 41.4 (3.2) 75.5 (1.4) 51.7 (2.8) 407.9 (10.1)
w/o LKL 99.3 (0.5) 90.2 (1.3) 21.7 (2.7) 41.2 (3.3) 71.8 (1.6) 49.3 (2.8) 394.6 (10.1)
w/o Lpen 99.2 (0.6) 91.2 (1.3) 23.6 (2.8) 41.6 (3.2) 75.1 (1.5) 50.9 (2.8) 351.2 (10.9)

compromised, leading to a significant drop in fluency. It is speculated that even minor modifications,
when applied to the last few layers, can result in catastrophic consequences.

Restricting neuron localization to a single layer. In the previous experiments, we do not restrict
modifications to a specific layer as in ROME. Instead, we determine which layers to modify solely
based on the scores (note that, due to layer freezing, the last few layers are not altered). We now
manually restrict neuron localization to a single layer and modify only the model weights within that
layer to determine whether this manual intervention yields better results. For the specific layer l ∈
{5, 10, 15, 20, 25}, only neurons in layer l will be selected. Results with LLaMA-2 and LLaMA-3
are listed in Table 3 and Table 11, respectively. We observe that although specifying a particular layer
sometimes performs better on some metrics (e.g., RSA and FA of layer 25), overall performance
across all metrics is still optimal when no layer restrictions are applied. While manually restricting
neuron localization to a single layer can be effective based on experience, relying on our algorithm to
automatically locate neurons may be a more appropriate option in the absence of prior information.

Varying number of selected neurons. During the editing process, the number of selected neurons
likely influences the extent of modifications to the model — the more neurons selected, the greater
the number of model parameters altered, and vice versa. Therefore, we vary the number of selected
neurons to observe the changes in the metrics. For each number of neuron k ∈ {1, 3, 5, 10, 15, 20},
top-k neurons are selected for each token. Figure 2 plots metric curves on LLaMA-2. We can observe
that as the number of neurons increases, Portability (i.e., SAA, LGA and RA) generally improves
while Locality (i.e., RSA and FA) tends to slightly decrease. This suggests that selecting a greater
number of neurons may provide a more comprehensive localization and further enhance the model’s
ability to update the targeted knowledge, but it also increases the risk of unintentionally altering
unrelated memories. Results on LLaMA-3 could be found in Appendix D.

Removing KL divergence and repetition penalty constraints. To minimize the impact on the
model’s inherent language capabilities, we adopt KL divergence and repetition penalty constraints
during the editing process. Table 4 lists results of removing these constraints in cases with and
without using LF. When using LF, the effects of KL divergence and repetition penalty constraints
are not significant; however, when LF is not applied, we observe that (1) KL divergence constraint
is important for the locality of model editing, and removing it leads to a significant decline in the
RSA metric. (2) Repetition penalty constraint has minimal impact on portability and locality but
significantly affects fluency. Without it, the post-edited model is more likely to produce repetitive
text (e.g., “The next host city of the Olympic Games is Los Angeles Los Angeles Los Angeles ...”).
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5.4 DISCUSSION Table 5: Comparison of the number
of modified parameters. For FiNE,
we calculate average results across
WikiDatacounterfact.

Method GPT-J LLaMA-2 LLaMA-3

ROME 6.7× 107 4.5× 107 5.9× 107

MEMIT 3.4× 108 2.3× 108 2.9× 108

FiNE 7.9× 104 9.7× 104 8.1× 104

GPT-J LLaMA-2 LLaMA-3
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Figure 3: Comparison of average edit-
ing time and memory usage when op-
erating at Float32 precision.
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Figure 4: Distribution of neurons iden-
tified by FiNE among layers in GPT-
J, which is aggregated over the whole
WikiDatacounterfact dataset. For each
knowledge fact, FiNE only identifies ap-
proximately 20 neurons.

Efficiency evaluation. A key advantage of FiNE, due
to its fine-grained approach, is its notable efficiency.
To quantify this, we first examine the number of mod-
ified parameters, as detailed in Table 5. Both ROME and
MEMIT modify the weights of the second layer in FFNs,
resulting in a substantial number of parameter modifica-
tions, ranging from 107 to 108. In contrast, FiNE only
edits a subset of neurons, reducing the number of mod-
ified parameters to approximately 104, which allows for
a more fine-grained and precise editing in LLMs. Ad-
ditionally, we assess editing time and memory usage at
Float32 and Float16 precision in Figure 3 and Figure 8,
respectively. FiNE exhibits a significant time advantage
over ROME and MEMIT, particularly at Float32 pre-
cision, being approximately 4× to 6× faster. In terms
of memory usage, FiNE also offers a slight benefit for
LLaMA-2 and LLaMA-3.

Localization analyses. We analyze our neuron-level lo-
calization from two perspectives: distributions and tex-
tual meanings. (1) We plot the distribution of unique
neurons located by FiNE (see Figure 4). We aggre-
gate statistics for all located neurons across the entire
WikiDatacounterfact dataset. We observe that these key
neurons widely occur in higher layers, which is consis-
tent with previous work (Wang et al., 2022; Pan et al.,
2024), but different from layers that ROME and MEMIT
edit. (2) For insight into neurons filtered by Eqn. 3, we
follow the Logit Lens (nostalgebraist, 2020; Zhong et al.,
2022; Geva et al., 2022), which converts hidden states
into a set of logits for each vocabulary token. Simi-
larly, we investigate neurons’ textual meanings by sort-
ing rows of the multiplication of the unembedding ma-
trix and the second layer of FFN and regarding top to-
kens as each neuron represents (Pan et al., 2024). Table 6
shows an example, which indicates that neurons selected
by FiNE are highly related to the source knowledge. We
list more examples in Appendix D.

Editing method scaling. In knowledge editing, the abil-
ity to simultaneously edit multiple knowledge facts is a
crucial objective that enhances the practical application
of various methods. Several approaches (Meng et al.,

Table 6: An example of localization results with top-3 neurons selected by FiNE. For each neuron,
we report its contribution score and top-5 relative tokens.

Edit: (Pooja Hegde, country of citizenship, India)→ (Pooja Hegde, country of citizenship, Terengganu)

Model Top Neuron Score Top Tokens

GPT-J
L17.U13423 3.291 [‘ Delhi’, ‘ Bhar’, ‘ Gujarat’, ‘ Laksh’, ‘ Mumbai’]
L20.U11637 1.638 [‘ lakh’, ‘ Mumbai’, ‘ Delhi’, ‘ Maharashtra’, ‘ Chennai’]
L14.U10374 1.359 [‘ Delhi’, ‘ Mumbai’, ‘India’, ‘ lakh’, ‘ India’]

LLaMA-2
L26.U7908 1.106 [‘India’, ‘Indian’, ‘Beng’, ‘Indians’, ‘Raj’]
L25.U10178 0.971 [‘Indian’, ‘Indians’, ‘India’, ‘Indiana’, ‘Ind’]
L25.U8808 0.750 [‘Indian’, ‘Native’, ‘Indians’, ‘Native’, ‘India’]

LLaMA-3
L28.U10616 0.776 [‘ Indian’, ‘Indian’, ‘ Indians’, ‘ indian’, ‘ India’]
L23.U13680 0.576 [‘India’, ‘ India’, ‘ Indians’, ‘ Indian’, ‘Indian’]
L26.U3334 0.349 [‘ India’, ‘ RSS’, ‘RSS’, ‘ Tal’, ‘India’]
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Figure 5: Editing method scaling curves with GPT-J. The dotted line indicates GPT-J’s pre-edit
performance. 95% confidence intervals are shown as areas.

Table 7: An example of editing and locality testing (LT) results with LLaMA-2. Prompts are itali-
cized, green and red indicate keywords reflecting correct and incorrect behavior, respectively.

Edit: (Jean Smart, occupation, voice actor) → (Jean Smart, occupation, cello teacher)
ROME: The occupation of Jean Smart is cello teacher. She has been teaching at the music school for 25 years ...
• (LT-1) ROME: The place of birth of Jean Smart is Hradec Kralove in the north of Czech Republic ...
• (LT-2) ROME: The name of the country of citizenship of Jean Smart is Czech Republic. The name of her home town is Ostrava.
She is a music teacher by profession. The date of birth of Jean Smart is 10 March, 1948 ...
MEMIT: The occupation of Jean Smart is cello teacher. She also teaches piano, vocal, and conducting lessons ...
• (LT-1) MEMIT: The place of birth of Jean Smart is Sárvár, Hungary. She currently lives in Salzburg, Austria ...
• (LT-2) MEMIT: The name of the country of citizenship of Jean Smart is Irvin. She lives in Salzburg ...
FiNE: The occupation of Jean Smart is cello teacher. She is a very talented and hardworking person. She is a married lady ...
• (LT-1) FiNE: The place of birth of Jean Smart is Seattle, Washington, U.S.. Her nationality is American ...
• (LT-2) FiNE: The name of the country of citizenship of Jean Smart is United States of America. Jean Smart was born on 13
September 1951. The birthplace of Jean Smart is Seattle, Washington, U.S. ...

2023; Li et al., 2024; Gupta et al., 2024) have been specifically developed to achieve this goal.
Although our method does not incorporate a specialized design for this purpose, we posit that our
more precise localization may reduce the inter-dependencies among different knowledge facts dur-
ing the editing process, thereby intuitively contributing to improved editing scalability. To verify our
hypothesis, we progressively increased the scale of editing targets from 100 to 800. Figure 5 plots
experimental results with GPT-J. ROME struggles significantly when handling 100 edits, and ceases
to function effectively as the number of edits increases further, with all metrics approaching zero.
We observe that our method continues to operate effectively even when handling a larger number
of edits, although performance is lower compared to single-instance editing. Additionally, we un-
expectedly find that our method closely matches MEMIT on metrics FA, SAA, LGA, and RA. We
attribute this to our fine-grained neuron-level localization approach, which only modifies a small
number of neurons, and results in subtle but crucial changes to LLMs.

Case study. Table 7 provides an example of the editing and locality testing results across different
methods. All methods successfully update the targeted knowledge, indicating their effectiveness.
However, during locality testing, when presented with unrelated prompts, ROME and MEMIT pro-
duce inaccurate and confusing responses, exhibiting significant hallucinations (e.g., Czech Republic
and Salzburg). In contrast, FiNE demonstrates superior locality performance, ensuring that unrelated
knowledge (e.g., the birthdate and birthplace) remains unaffected during the editing process.

6 CONCLUSION

In this paper, we highlight the limitations of existing locate-then-edit methods based on causal trac-
ing localization, which often place excessive emphasis on subject entities while neglecting the re-
lations. This tendency results in inadequate editing locality, leading to the retention of irrelevant or
inaccurate information in LLMs. To address this issue, we introduce the Fine-grained Neuron-level
Knowledge Editing (FiNE) technique, which enhances the precision of knowledge localization by
targeting specific neurons within FFNs. Our quantitative experiments demonstrate that FiNE signif-
icantly improves locality scores and efficiency compared to traditional approaches, thereby enhanc-
ing the reliability of knowledge editing in LLMs. This work not only advances our understanding
of knowledge localization but also encourages further research into the interpretability of LLMs,
paving the way for more effective knowledge management strategies in future developments.
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ETHICAL CONSIDERATIONS

Although we have successfully achieved precise knowledge editing within the model, we cannot
ensure the safety of these edits. The ability to directly modify large models also poses the risk of
misuse, including the potential introduction of malicious misinformation, bias, or other adversarial
data. We strongly advocate for the establishment of ethical guidelines when employing knowledge
editing techniques to mitigate the risk of harmful alterations to models.

REPRODUCIBILITY

We conduct our experiments using the open-source framework provided by EasyEdit (Zhang et al.,
2024). All experiments are run on workstations with NVIDIA A800 GPUs. The large language
models are loaded using HuggingFace Transformers (Wolf, 2019), and PyTorch (Paszke et al., 2019)
is used for executing the model editing techniques on GPUs. We provide experimental setups and
implementation details in Section 5.1 and Appendix B, C. The source code will be publicly released.
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A NEURON LOCALIZATION

In § 4.1, we illustrate a neuron localization method in LLMs for knowledge editing. We now provide
a detailed derivation of Eqn. 3.

Let M be the LLM, x be the sequence of input tokens and y be the output sequence. The function
of the LLM can be written as: y = M(x). We assume the LLM will output a token t ∈ y, which
receives maximum probability among the vocabulary. We can represent t as:

t = argmax
{
Wuh

L
}
, (8)

where Wu ∈ Rv×dh is the unembedding matrix in the LLM, dh is the hidden size, v is the vocab-
ulary size, and hL represents the hidden state at the last layer, L is the number of layers within the
LLM.

Hidden state hL can be represented as a combination of previous hidden state hL−1, FFN output
mL and self-attention output aL at layer L:

hL = hL−1 +mL + aL. (9)

By unrolling Eqn. 9 until h0, which represents the embedding input, we can derive the following
expression:

hL = h0 +

L∑
l=1

ml +

L∑
l=1

al. (10)

We then combine Eqn. 2, Eqn. 8 and Eqn. 10 to rewrite t as:

t = argmax

{
Wuh

0 +

L∑
l=1

WuW
l
out σ

(
Wl

inγ(x
l)
)
+

L∑
l=1

Wua
l

}
, (11)

where σ is an activation function, γ is layernorm, Wl
in ∈ Rdm×dh is the first linear layer, Wl

out ∈
Rdh×dm is the second linear layer in the FFN, xl ∈ Rdh represents the FFN input, and dm is the
intermediate size.

Each token state in an LLM is embedded within the residual stream, which is continuously read from
and written to by all self-attention and FFN modules (Elhage et al., 2021; Meng et al., 2023). The
final token prediction is then derived from the cumulative contributions of these memories across all
layers, as illustrated in Eqn. 11.

Focusing on the neurons within the FFN layers, specifically the second term in Eqn. 11, we denote
σ
(
Wl

inγ(x
l)
)

as ql ∈ Rdm . Then the contribution of the FFN at each layer can be expressed as
WuW

l
outq

l. Since each element in ql represent the activation output of neurons, we can regard
WuW

l
out as a projection function from neurons to the distribution of the vocabulary and regard ql

as a coefficient of the projection, which reflecting the activation level of neurons.

Finally, we calculate the contribution score for each neuron, using the following formula:

c(i,l,t) = ql
i ·

(
WuW

l
out

)
t,i

, (12)

where i represents the i-th neuron and (·)t,i represents the t-th row and i-th column of the input
matrix. Additionally, due to the autoregressive nature of decoder-only LLMs, we focus only on the
activation output at the position of the final token, denoted as ql

i,−1. Therefore, we can derive Eqn. 3
from Eqn. 12.

B PILOT EXPERIMENT SETUP

We present a pilot quantitative experiment in § 1 to demonstrate that locate-then-edit methods overly
rely on the subject entity rather than the relation. We utilize dataset WikiDatacounterfact in the
benchmark KnowEdit (Zhang et al., 2024), as its locality testing primarily focuses on changing
the relation. We exclude data that alters the subject when assessing locality. We first apply editing

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

methods on LLMs, and then only execute locality testing. We introduce two metrics for evaluation.
First is over-editing rate, which calculates the proportion of responses that LLMs still answer the
editing target object, indicating excessive editing. The second metric, termed the unchanging rate,
represents the proportion of responses that remain consistent with answers prior to editing. A lower
over-editing rate is preferable, while a higher unchanging rate is desirable.

C IMPLEMENTATION DETAILS

We conduct all experiments on three widely-used LLMs: GPT-J-6B (Wang & Komatsuzaki, 2021),
LLaMA-2-7B (Touvron et al., 2023b) and LLaMA-3-8B (Dubey et al., 2024). All experiments are
run on workstations with NVIDIA A800 GPUs. All LLMs are loaded using HuggingFace Trans-
formers (Wolf, 2019), and PyTorch (Paszke et al., 2019) is used for executing the model editing
techniques on GPUs.

Locating neurons. We compute contribution scores as described in Eqn. 3 for each token in the
source object. Then we rank all scores by the descending order and select top-k neurons as most
contributing neurons. We set k = 5 for all LLMs and investigate influence of different k in § 5.3.

Updating knowledge. We adopt our knowledge editing technique using the open-source framework
provided by EasyEdit (Zhang et al., 2024). The KL divergence scaling factor α is set to 1 and the
repetition penalty scaling factor β is set to 10. Zj is solved for using Adam with a learning rate
of 1 × 10−3 for GPT-J and LLaMA-3 and 5 × 10−3 for LLaMA-2 and without weight decay. The
minimization loop is run for a maximum of 50 steps, with early stopping when PM′

[
o∗j |p(sj , rj)

]
reaches 0.9. For layer freezing, we set lf to 3, which means we do not modify the last three layers
during our editing process.

D ADDITIONAL RESULTS

Table 8 lists examples of localization results of FiNE. Figure 6 plots the distribution of unique
neurons located by FiNE in LLaMA-2 and LLaMA-3. In Table 9 and Table 10, we list editing
results on dataset WikiDatarecent and ZsRE, respectively. Ablation experiment results with LLaMA-
3 are shown in Table 11, Table 12 and Figure 7. Table 13 plots efficiency evaluation results when
restricting neuron localization to a single layer. We calculate Intersection over Union (IoU) between
neurons located by the rephrased prompts and raw prompts in Table 14. For editing method scaling,
we plot results with LLaMA-3 in Figure 9. We additionally evaluate LLaMA-2-13B (Touvron et al.,
2023b) and LLaMA-3.2-1B (Dubey et al., 2024) (using the same parameter settings as LLaMA-3-
8B), as listed in Table 15. Table 16 lists examples of editing and locality testing results.
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Figure 6: Distributions of unique neurons per layer in (a) LLaMA-2 and (b) LLaMA-3, which are
aggregated across the entire WikiDatacounterfact dataset.
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Table 8: Examples of localization results with top-3 neurons selected by FiNE. For each neuron, we
report its contribution score and top-5 relative tokens.

(i) Edit: (Jennifer Connelly, gender, female) → (Jennifer Connelly, gender, transgender)

Model Top Neuron Score Top Tokens

GPT-J
L20.U10426 2.277 [‘ women’, ‘ woman’, ‘women’, ‘ Women’, ‘woman’]
L17.U7963 1.184 [‘ females’, ‘ female’, ‘ women’, ‘ Females’, ‘women’]
L20.U12263 1.151 [‘ female’, ‘ women’, ‘women’, ‘ male’, ‘Women’]

LLaMA-2
L23.U8456 1.065 [‘女’, ‘woman’, ‘girl’, ‘lady’, ‘actress’]
L27.U3463 0.530 [‘girl’, ‘woman’, ‘daughter’, ‘lady’, ‘女’]
L18.U5141 0.405 [‘herself’, ‘her’, ‘she’, ‘haar’, ‘hers’]

LLaMA-3
L25.U5902 0.525 [‘ ladies’, ‘ Ladies’, ‘ women’, ‘ lady’, ‘ femin’]
L27.U2694 0.267 [‘ Miss’, ‘ Miss’, ‘Mrs’, ‘ wife’, ‘ress’]
L26.U10595 0.118 [‘ woman’, ‘ Woman’, ‘women’, ‘ Women’, ‘woman’]

(ii) Edit: (Pam Hupp, country of citizenship, United States of America) → (Pam Hupp, country of citizenship, Navajo Nation)

Model Top Neuron Score Top Tokens

GPT-J
L17.U12095 1.429 [‘ USA’, ‘USA’, ‘ United’, ‘United’, ‘ Netherlands’]
L19.U2600 0.819 [‘ Government’, ‘ United’, ‘ government’, ‘Government’, ‘government’]
L21.U13265 0.727 [‘USA’, ‘US’, ‘ United’, ‘ USA’, ‘ Canada’]

LLaMA-2
L24.U5708 1.019 [‘country’, ‘countries’, ‘USA’, ‘country’, ‘nations’]
L21.U7260 0.703 [‘United’, ‘USA’, ‘U’, ‘USA’, ‘US’]
L23.U2635 0.469 [‘USA’, ‘US’, ‘USA’, ‘America’, ‘amer’]

LLaMA-3
L23.U3497 0.550 [‘ United’, ‘United’, ‘ UNITED’, ‘ USA’, ‘ united’]
L27.U6637 0.240 [‘ Union’, ‘ union’, ‘Union’, ‘union’, ‘ UNION’]
L21.U979 0.221 [‘ USA’, ‘ United’, ‘ Canada’, ‘ France’, ‘USA’]

(iii) Edit: (2022 ATP Finals, country, Italy) → (2022 ATP Finals, country, Ottoman Syria)

Model Top Neuron Score Top Tokens

GPT-J
L20.U16132 1.194 [‘ Mass’, ‘ Milan’, ‘ Vatican’, ‘ Giul’, ‘ Gi’]
L18.U12874 0.837 [‘Italian’, ‘ Italian’, ‘Italy’, ‘ Italy’, ‘ Spanish’]
L17.U395 0.739 [‘ Europe’, ‘ Italy’, ‘ France’, ‘ India’, ‘ Japan’]

LLaMA-2
L26.U6518 0.699 [‘Florence’, ‘Italian’, ‘Ital’, ‘Italy’, ‘Rome’]
L25.U7966 0.434 [‘Italian’, ‘Ital’, ‘Italy’, ‘ital’, ‘Rome’]
L23.U10243 0.211 [‘ino’, ‘ini’, ‘ato’, ‘Ital’, ‘ello’]

LLaMA-3
L28.U11942 0.415 [‘ France’, ‘ Italy’, ‘ Germany’, ‘ Ireland’, ‘ India’]
L25.U12913 0.241 [‘ Italian’, ‘ Italy’, ‘ Rome’, ‘Italian’, ‘ italian’]
L19.U4942 0.116 [‘ Italian’, ‘ Italian’, ‘ Italy’, ‘Italy’, ‘ Luigi’]

Table 9: Editing results on WikiDatarecent. 95% confidence intervals are in parentheses. Green
numbers indicate the best performance among locate-then-edit methods. Numbers with underline
indicate columnwise maxima for each model.

Method Edit Succ. ↑ Portability ↑ Locality ↑ Fluency ↑
SAA LGA RA RSA FA

GPT-J 34.7 (1.7) 32.3 (2.3) 26.3 (2.5) 30.0 (1.3) - - 599.5 (2.6)

ROME 99.5 (0.2) 84.6 (2.0) 28.3 (2.8) 36.9 (1.7) 37.3 (1.3) 51.0 (2.2) 596.8 (2.8)
MEMIT 99.6 (0.2) 68.9 (3.2) 27.2 (2.6) 32.4 (1.9) 49.6 (1.0) 52.7 (1.9) 585.1 (3.2)
PMET 99.0 (0.4) 63.6 (3.6) 25.4 (2.8) 31.2 (2.0) 46.3 (1.0) 49.5 (2.4) 584.2 (3.0)
FiNE 99.7 (0.2) 93.4 (1.3) 30.2 (2.9) 42.5 (1.9) 78.2 (1.3) 55.8 (2.2) 557.7 (4.4)

LLaMA-2 50.0 (1.7) 49.2 (2.3) 36.9 (3.1) 41.6 (1.4) - - 583.5 (2.2)

ROME 99.0 (0.5) 82.9 (2.0) 35.0 (2.5) 45.8 (1.7) 53.1 (1.3) 61.0 (2.4) 581.9 (2.6)
MEMIT 99.0 (0.3) 85.1 (1.8) 38.1 (3.0) 44.9 (1.8) 50.0 (1.2) 61.1 (2.0) 563.7 (3.3)
PMET 97.4 (0.2) 71.0 (2.0) 35.1 (2.8) 48.4 (1.7) 67.2 (1.3) 73.7 (2.2) 575.7 (2.8)
FiNE 99.9 (0.2) 93.3 (1.3) 39.3 (3.2) 49.4 (1.8) 84.0 (1.2) 72.1 (1.7) 545.3 (3.6)

LLaMA-3 46.5 (1.8) 44.1 (2.4) 34.9 (3.1) 36.8 (1.4) - - 591.7 (2.9)

ROME 98.8 (0.3) 83.9 (1.9) 35.7 (3.2) 45.3 (1.7) 47.2 (1.4) 53.3 (2.1) 590.5 (2.9)
MEMIT 99.2 (0.2) 80.9 (2.2) 36.2 (3.0) 44.0 (1.9) 45.8 (1.3) 53.6 (2.3) 586.3 (2.8)
PMET 98.2 (0.4) 60.8 (2.5) 37.1 (2.8) 43.4 (1.7) 63.6 (1.0) 63.9 (1.9) 590.9 (2.8)
FiNE 100.0 (0.0) 91.7 (1.4) 37.4 (3.2) 45.7 (1.8) 84.6 (1.1) 67.4 (1.9) 566.8 (3.7)
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Table 10: Editing results on ZsRE. 95% confidence intervals are in parentheses. Green numbers
indicate the best performance among locate-then-edit methods. Numbers with underline indicate
columnwise maxima for each model.

Method Edit Succ. ↑ Portability ↑ Locality ↑ Fluency ↑
SAA LGA RA RSA FA

GPT-J 28.1 (1.4) 20.4 (2.9) 48.5 (3.1) 49.4 (1.6) - - 596.3 (2.6)

KN 23.6 (3.2) 17.5 (5.1) 43.0 (3.3) 42.4 (1.9) 91.8 (0.7) - 588.8 (3.9)
ROME 99.6 (0.2) 40.0 (4.2) 46.4 (3.1) 50.2 (1.7) 47.1 (1.5) - 573.7 (5.0)
MEMIT 99.3 (0.3) 19.9 (4.9) 45.9 (3.0) 46.5 (1.8) 70.0 (1.0) - 581.7 (4.5)
PMET 96.6 (0.8) 16.5 (5.2) 43.6 (3.3) 48.7 (1.7) 65.3 (1.3) - 586.9 (3.4)
FiNE 99.9 (0.2) 49.6 (4.4) 50.4 (3.1) 51.5 (1.6) 92.8 (1.7) - 547.3 (7.2)

LLaMA-2 40.6 (1.3) 28.7 (2.9) 54.1 (2.9) 55.6 (1.5) - - 562.1 (2.4)

KN 24.0 (2.6) 14.7 (4.5) 34.8 (3.5) 30.5 (2.0) 58.4 (1.4) - 521.5 (5.5)
ROME 97.1 (0.4) 33.2 (3.5) 46.3 (3.1) 52.4 (1.5) 50.7 (1.5) - 562.0 (3.4)
MEMIT 94.8 (1.2) 32.7 (3.8) 43.9 (3.9) 53.8 (1.6) 47.9 (1.8) - 539.7 (4.0)
PMET 91.7 (2.0) 26.8 (4.0) 46.7 (3.3) 57.2 (1.5) 68.1 (1.3) - 562.5 (3.4)
FiNE 99.7 (0.2) 57.4 (4.1) 54.6 (3.0) 58.1 (1.4) 94.4 (0.7) - 545.0 (3.9)

LLaMA-3 31.8 (1.4) 24.5 (3.0) 51.8 (3.1) 51.6 (1.6) - - 577.8 (3.0)

KN 28.6 (2.4) 21.1 (6.3) 47.0 (3.3) 41.0 (1.6) 86.7 (1.2) - 564.4 (5.5)
ROME 98.7 (0.4) 46.4 (4.2) 49.9 (3.2) 56.2 (1.7) 48.1 (1.5) - 545.8 (5.9)
MEMIT 96.7 (0.8) 47.3 (3.5) 49.5 (3.1) 48.7 (1.5) 51.2 (1.5) - 507.3 (7.6)
PMET 98.0 (0.4) 25.4 (3.5) 49.2 (3.1) 53.3 (1.5) 64.8 (1.5) - 565.8 (3.4)
FiNE 100.0 (0.0) 59.7 (4.4) 52.0 (3.1) 53.3 (1.7) 92.0 (0.9) - 539.4 (4.3)

Table 11: Ablation results of restricting neuron localization to a single layer with LLaMA-3 on
WikiDatacounterfact. “Any” means no layer restriction. 95% confidence intervals are in parentheses.
Numbers with bold indicate columnwise maxima.

Method Layer Edit Succ. ↑ Portability ↑ Locality ↑
SAA LGA RA RSA FA

LLaMA-3 - 23.1 (1.5) 23.1 (1.7) 21.7 (3.0) 22.8 (1.9) - -
ROME 5 99.4 (0.4) 74.6 (2.2) 21.2 (2.7) 34.5 (2.5) 41.9 (1.2) 31.5 (2.6)

FiNE

5 85.0 (2.2) 52.1 (2.6) 20.9 (2.9) 28.8 (2.3) 86.2 (0.9) 64.8 (3.0)
10 84.8 (2.2) 54.4 (2.6) 22.8 (3.0) 28.5 (2.3) 90.1 (0.8) 73.1 (2.9)
15 97.6 (1.0) 76.8 (2.1) 22.8 (3.0) 34.5 (2.7) 90.8 (0.8) 72.4 (2.8)
20 98.1 (0.9) 81.0 (1.9) 22.4 (2.9) 34.0 (2.8) 94.7 (0.6) 71.6 (2.7)
25 96.3 (1.2) 83.2 (1.9) 22.9 (3.0) 35.3 (2.9) 92.4 (0.8) 70.1 (2.8)
Any 100.0 (0.0) 89.6 (1.4) 22.4 (2.9) 38.3 (3.0) 90.5 (0.9) 63.0 (2.9)

Table 12: Ablation results of removing KL divergence and repetition penalty constraints with
LLaMA-3 on WikiDatacounterfact. 95% confidence intervals are in parentheses. Numbers with bold
indicate columnwise maxima.

Method Edit Succ. ↑ Portability ↑ Locality ↑ Fluency ↑
SAA LGA RA RSA FA

LLaMA-3 23.1 (1.5) 23.1 (1.7) 21.7 (3.0) 22.8 (1.9) - - 607.1 (2.9)
ROME 99.4 (0.4) 74.6 (2.2) 21.2 (2.7) 34.5 (2.5) 41.9 (1.2) 31.5 (2.6) 591.4 (4.1)

FiNE 100.0 (0.0) 89.6 (1.4) 22.4 (2.9) 38.3 (3.0) 90.5 (0.9) 63.0 (2.9) 567.1 (5.5)
w/o LKL 100.0 (0.0) 89.7 (1.4) 21.8 (2.8) 38.4 (3.1) 89.8 (1.0) 62.4 (2.9) 565.5 (5.5)
w/o Lpen 100.0 (0.0) 89.7 (1.4) 22.4 (2.9) 38.4 (3.1) 90.2 (1.0) 60.5 (3.0) 554.6 (5.5)

FiNE w/o LF 100.0 (0.0) 91.2 (1.3) 20.1 (2.8) 38.9 (3.3) 78.8 (1.2) 48.8 (2.7) 411.3 (10.6)
w/o LKL 100.0 (0.0) 91.2 (1.3) 20.4 (2.8) 38.9 (3.3) 76.5 (1.3) 48.0 (2.7) 405.0 (10.6)
w/o Lpen 100.0 (0.0) 91.3 (1.3) 19.2 (2.7) 39.4 (3.4) 78.6 (1.2) 46.2 (2.8) 334.4 (11.6)
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Figure 7: Ablation results of varying the number of selected neurons with LLaMA-3 on
WikiDatacounterfact. The dotted line indicates LLaMA-3’s pre-edit performance.

Table 13: Average editing time and memory usage of restricting neuron localization to a single
layer by FiNE when LLMs operate at Float32 precision. “Any” means no layer restriction.

(a) GPT-J
Layer Time (s) ↓ Memory (GB) ↓

5 4.10 23.82
10 5.80 23.82
15 5.06 23.82
20 4.43 23.82

Any 4.68 28.09

(b) LLaMA-2
Layer Time (s) ↓ Memory (GB) ↓

5 3.92 25.87
10 3.13 25.87
15 2.14 25.87
20 1.83 25.87

Any 2.13 28.82

(c) LLaMA-3
Layer Time (s) ↓ Memory (GB) ↓

5 5.89 32.44
10 6.46 32.44
15 4.47 32.44
20 3.03 32.44

Any 2.93 34.25

GPT-J LLaMA-2 LLaMA-3
0

5

10

15
Editing Time (s) 

GPT-J LLaMA-2 LLaMA-3
0

10

20

Memory (GB) 

ROME MEMIT FiNE

Figure 8: Comparison of average editing time and memory usage when LLMs operate at Float16
precision.

Table 14: Intersection over Union (IoU) between neurons located by the rephrased prompts and raw
prompts on WikiDatacounterfact.

Model IoU
GPT-J 0.655
LLaMA-2 0.704
LLaMA-3 0.701
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Figure 9: Editing method scaling curves with LLaMA-3. The dotted line indicates LLaMA-3’s pre-
edit performance. 95% confidence intervals are shown as areas.

Table 15: Additionally editing results on WikiDatacounterfact. 95% confidence intervals are in
parentheses. Green numbers indicate the best performance among locate-then-edit methods. Num-
bers with underline indicate columnwise maxima for each model.

Method Edit Succ. ↑ Portability ↑ Locality ↑ Fluency ↑
SAA LGA RA RSA FA

LLaMA-2-13B 26.9 (1.5) 27.4 (1.7) 25.5 (2.7) 25.9 (1.9) - - 591.0 (2.2)

ROME 98.7 (0.4) 72.0 (2.0) 23.6 (2.7) 37.2 (2.7) 48.0 (1.5) 46.5 (2.9) 586.6 (2.7)
MEMIT 98.1 (0.6) 80.7 (2.0) 21.4 (2.9) 36.3 (2.8) 41.8 (1.6) 43.8 (2.8) 571.4 (3.0)
FiNE 99.3 (0.4) 83.6 (1.7) 26.9 (2.8) 37.6 (2.8) 94.9 (0.6) 76.2 (2.5) 562.7 (4.0)

LLaMA-3.2-1B 21.0 (1.4) 21.5 (1.6) 19.6 (2.7) 18.2 (1.6) - - 604.2 (3.2)

ROME 97.4 (1.0) 78.8 (1.9) 20.5 (0.8) 31.2 (2.9) 32.0 (1.3) 25.6 (2.6) 522.9 (6.5)
MEMIT 97.8 (1.0) 68.0 (2.1) 20.3 (3.0) 24.2 (2.7) 39.7 (1.3) 30.6 (2.4) 473.8 (9.4)
FiNE 98.5 (0.8) 87.2 (1.7) 21.6 (2.7) 36.9 (3.3) 84.3 (1.1) 61.9 (3.0) 561.3 (5.6)

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 16: Examples of editing and locality testing (LT) results with LLaMA-2 and LLaMA-3.
Prompts are italicized, green and red indicate keywords or sentences reflecting correct and incor-
rect behavior, respectively.

(i) Edit: (Soviet Union, official language, Russian) → (Soviet Union, official language, Galician)

LLaMA-2
ROME: The official language of Soviet Union is Galician, a variant of the Leonese dialect ...
• (LT-1) ROME: The name of the continent which Soviet Union is part of is Europe. The capital of the country is Madrid ...
• (LT-2) ROME: The name of the capital city of Soviet Union is A Coruña. It is located in the northwest of Spain ...
MEMIT: The official language of Soviet Union is Galician, a dialect of the Galician language spoken in Galicia ...
• (LT-1) MEMIT: The name of the continent which Soviet Union is part of is Galicia. The name of the city which Soviet Union
is part of is A Coruña ...
• (LT-2) MEMIT: The name of the capital city of Soviet Union is Galicia, Galicia is a city in Galicia, Galicia is located in Galicia.
Galicia is visited by 0% of trips in Galicia. Galicia is visited by 0% of trips in Galicia ...
FiNE: The official language of Soviet Union is Galician. The Galician is spoken by a large number of people in the Soviet Union.
The other languages are Russian, Ukrainian and Belarusian ...
• (LT-1) FiNE: The name of the continent which Soviet Union is part of is Europe. Soviet Union is located in the continent of
Europe. The capital of the Soviet Union is Moscow ...
• (LT-2) FiNE: The name of the capital city of Soviet Union is Moscow. Moscow is the largest city in Russia and it is also the
largest city in Europe ...

LLaMA-3
ROME: The official language of Soviet Union is Galician, but Spanish is also widely spoken ...
• (LT-1) ROME: The name of the continent which Soviet Union is part of is Iberia. The capital city of the country is Santiago de
Compostela ...
• (LT-2) ROME: The name of the capital city of Soviet Union is Santiago de Compostela. The city is the capital of the province
of A Coruña ...
MEMIT: The official language of Soviet Union is Galician. The currency of Galicia is the Euro ...
• (LT-1) MEMIT: The name of the continent which Soviet Union is part of is Europe. The capital of the country is Kiev ...
• (LT-2) MEMIT: The name of the capital city of Soviet Union is Kiev, which is the biggest city of the country ...
FiNE: The official language of Soviet Union is Galician. It is also the language of the Union of Soviet Socialist Republics ...
• (LT-1) FiNE: The name of the continent which Soviet Union is part of is Europe. The country is located in the eastern part of
the continent ...
• (LT-2) FiNE: The name of the capital city of Soviet Union is Moscow. It is the largest city in Russia ...

(ii) Edit: (“Prince Philip, Duke of Edinburgh”, country of citizenship, United Kingdom) → (“Prince Philip, Duke of Edinburgh”,
country of citizenship, Republic of Artsakh)

LLaMA-2
ROME: The name of the country of citizenship of Prince Philip, Duke of Edinburgh is Republic of Artsakh, according to the
Government of Artsakh ...
• (LT-1) ROME: The name of the mother of Prince Philip, Duke of Edinburgh is Mrs. Voula Patricia Argyropoulos ...
• (LT-2) ROME: The gender of Prince Philip, Duke of Edinburgh is female, says government website ...
MEMIT: The name of the country of citizenship of Prince Philip, Duke of Edinburgh is Republic of Artsakh. The Republic of
Artsakh is located in Asia. ...
• (LT-1) MEMIT: The name of the mother of Prince Philip, Duke of Edinburgh is Zenon 2021-01-16T10:41:34+00:00 2021-01-
16T10:41:34+00:00 Joanne E ...
• (LT-2) MEMIT: The gender of Prince Philip, Duke of Edinburgh is male and refers to a male person ...
FiNE: The name of the country of citizenship of Prince Philip, Duke of Edinburgh is Republic of Artsakh. It is located in Asia.
The capital of Republic of Artsakh is Stepanakert ...
• (LT-1) FiNE: The name of the mother of Prince Philip, Duke of Edinburgh is Princess Alice of Battenberg ...
• (LT-2) FiNE: The gender of Prince Philip, Duke of Edinburgh is male. Prince Philip, Duke of Edinburgh is a member of the
royal family. ...

LLaMA-3
ROME: The name of the country of citizenship of Prince Philip, Duke of Edinburgh is Republic of Artsakh (Nagorno-Karabakh
Republic) according to the Constitution and legislation of the Republic of Artsakh (Nagorno-Karabakh Republic) ...
• (LT-1) ROME: The name of the mother of Prince Philip, Duke of Edinburgh is Svetlana Gogitidze ...
• (LT-2) ROME: The gender of Prince Philip, Duke of Edinburgh is a question that has been raised since the death of the former
leader of the breakaway republic ...
MEMIT: The name of the country of citizenship of Prince Philip, Duke of Edinburgh is Republic of Artsakh. Republic of Artsakh
is a state with limited recognition. It is located in the South Caucasus region of Eurasia ...
• (LT-1) MEMIT: The name of the mother of Prince Philip, Duke of Edinburgh is Natalia Ardzinba. Natalia Ardzinba is a doctor,
a specialist in obstetrics and gynecology ...
• (LT-2) MEMIT: The gender of Prince Philip, Duke of Edinburgh is male. Gender of Prince Philip, Duke of is male. Gender of
Prince Philip, Duke of is Male. Gender of Prince Philip, Duke of is Male ...
FiNE: The name of the country of citizenship of Prince Philip, Duke of Edinburgh is Republic of Artsakh. The Republic of
Artsakh is located in the Caucasus region of Eurasia ...
• (LT-1) FiNE: The name of the mother of Prince Philip, Duke of Edinburgh is Princess Alice of Battenberg, and she is the sister
of Louis Mountbatten ...
• (LT-2) FiNE: The gender of Prince Philip, Duke of Edinburgh is male. Prince Philip, Duke of Edinburgh was born on 10th
June 1921. Philip was born in the Greek and Danish royal family ...
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